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ABSTRACT1

Large language models (LLMs) and Transformer-based ar-2

chitectures have achieved remarkable progress in symbolic3

music generation, producing outputs with increasing co-4

herence, stylistic richness, and expressive depth. Control-5

lability in symbolic music generation is essential for align-6

ing outputs with compositional intent and user-specified7

goals. Among high-level perceptual attributes, tonal ten-8

sion remains underexplored for explicit control. In this9

work, we present a novel approach that integrates a compu-10

tational model of tonal tension into a transformer genera-11

tion framework through a dual-level beam search strategy.12

At the token level, candidate continuations are re-ranked13

for probability and diversity, while at the bar level, tension14

similarity measures ensure alignment with a target tension15

curve. Preliminary evaluations indicate that this method16

enables explicit control of tonal tension while maintaining17

overall musical quality and coherence. This contributes to18

the broader effort of aligning LLMs with creative control,19

and highlights tonal tension as an underexplored but musi-20

cally salient axis of controllability.21

1. BACKGROUND22

Symbolic music generation has progressed rapidly with23

Transformer-based architectures, which now produce long,24

coherent sequences comparable to natural language out-25

puts [1, 2]. Beyond fluency, however, musicians require26

the ability to control music generative systems toward spe-27

cific stylistic [3] or expressive goals [4–6]. Although there28

are various controllable generation methods, explicit con-29

trol over tonal tension in symbolic music models remains30

rare.31

Several approaches to modeling tonal tension have been32

proposed. Lerdahl’s cognitive model [7] is conceptually33

rich but difficult to implement due to manual hierarchies34

and parameter settings. Systems such as MorpheuS [8, 9]35

employ Spiral Array–based features like dissonance or ten-36

sile strain, yet these often overlook deeper harmonic struc-37

ture. By contrast, the model based on Tonal Interval Vec-38

tor (TIV) [10,11] offers a perceptually grounded approach39

© F. Author, S. Author, and T. Author. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Author, S. Author, and T. Author, “Inference-Time Con-
trol of Tonal Tension in Symbolic Music Generation”, submitted to IS-
MIR, 2025.

by projecting chroma features into an interval space where40

harmonic similarity and chordal relationships are well rep-41

resented. However, previous applications of TIV to gener-42

ative tasks have been limited to offline optimization [12],43

restricting their use for real-time or interactive composi-44

tion.45

Inference-time control techniques provide a promising46

alternative to training-based methods. Approaches such47

as beam search [13] or surprisal profile matching [14]48

demonstrate that external constraints can be dynamically49

enforced during decoding without retraining. Building50

on these ideas, our work integrates target tension curves51

into Transformer-based music generation by combining52

two complementary strategies: local sequence quality is53

maintained through token-level re-ranking based on model54

probability and diversity, while global expressive control is55

introduced by re-ranking complete bars against a specified56

tension trajectory. This framework illustrates how tonal57

tension can function as a perceptually meaningful and58

practically effective control signal for LLM-based sym-59

bolic music generation.60

2. METHOD61

We represent music using REMI+ [3], an extension of the62

REMI format [15] that encodes notes with position, pitch,63

velocity, duration, and adds tokens for chords, tempo, in-64

struments, and time signatures. A Transformer is trained in65

a translation-style setup [3], where bar-level control tokens66

condition the decoder to generate REMI+ sequences. We67

include time signature, instrument list, and note density as68

control tokens, and introduce tonal tension as an additional69

conditioning feature.70

To model tonal tension, we use the TIV framework in-71

troduced by Bernardes et al. [10], which projects chroma72

features into a Tonal Interval Space (TIS) where har-73

monic relations are represented more perceptually. Build-74

ing on this representation, we employ the computational75

model proposed by Navarro et al. [11], which combines76

three components: (i) tonal distance, capturing relation-77

ships between chords, keys, and tonal functions; (ii) dis-78

sonance, reflecting internal chordal roughness; and (iii)79

voice-leading, measuring melodic stability across succes-80

sive chords. A weighted combination of these components81

yields an efficient descriptor of harmonic tension, which82

we use both as a control signal during training and as a83

scoring function at inference time.84



Model Inference Instrument F1 Note Density Groove Sim Tension Corr
Baseline normal 0.82 0.88 0.52 0.16

Baseline + Tension normal 0.83 0.62 0.54 0.18
Baseline + Tension Dual Beam 0.86 0.85 0.56 0.50

Table 1. Objective evaluation metrics comparing baseline Transformer models (with and without tension conditioning)
against our dual-level beam search inference strategy. Results for 8-bar samples represent performance on the entire test
set for the first-best ranked candidates from our dual-level beam search inference

The core contribution is a dual-level beam search strat-85

egy. At the token level, candidate continuations are ex-86

panded and re-ranked using a balance of model probabil-87

ity and diversity, ensuring music quality. At the bar level,88

once a bar is completed, candidates are additionally eval-89

uated against a target tonal tension curve computed with90

TIV. This allows us to control the generated music toward91

rising, falling, or arch-shaped patterns of tension and re-92

lease.93

Although we introduce tension as a control token dur-94

ing training, its effect is limited since tonal tension is non-95

differentiable and cannot be directly optimized with a loss.96

The primary mechanism of control is therefore applied at97

inference through our dual-level beam search. This design98

keeps the approach modular and largely model-agnostic:99

because re-ranking operates only during decoding, it can100

be applied to a variety of symbolic music LLMs without101

retraining. The separation between token-level control and102

bar-level control reflects musical fluency at the note and103

chord level, and global tension shaping at the bar level.104

Retaining multiple beams further provides composers with105

diverse musical generations under the same target curve.106

3. PRELIMINARY EXPERIMENTS107

3.1 Setup108

We trained on the Lakh MIDI-Matched dataset [16], pre-109

processing files with Midi Miner [17] to extract chordal110

tracks, yielding 25,555 usable MIDI pieces. Data were111

split into 0.85, 0.10, and 0.05 proportions for training, val-112

idation, and test sets. Our Transformer model (512 di-113

mensions, 12 heads, 4 encoder and 6 decoder layers, max114

length 256) was trained for 12 epochs with cross-entropy115

loss on an NVIDIA A40 GPU.116

At inference, we combined nucleus sampling (p = 0.9)117

with our dual-level beam search. Each step expanded 8118

candidates, re-ranked at the token level by probability and119

diversity (λ = 0.7). At the bar level, the top 3 beams were120

selected according to a tension weight of 4.0, with a tem-121

perature of 0.9, explicitly shaping the generated sequence122

toward the desired tension curve.123

3.2 Objective Evaluation124

We assess the impact of tension control via our dual-level125

beam search using four metrics. Instrument F1, Note Den-126

sity, Groove Similarity, and Tension Correlation. Results127

for 8-bar samples are shown in Table 1.128

The baseline Transformer achieves strong instrument129

accuracy (0.82) and relatively stable rhythmic patterns130

(0.52 groove similarity), but exhibits weak control over131

tonal tension, with a low correlation of 0.16 against the132

target curves. Adding tension tokens during training133

yields only a marginal improvement (0.18), confirming134

that token-based conditioning is insufficient when the un-135

derlying descriptor is non-differentiable and complex.136

In contrast, our proposed dual-level beam search137

achieves a substantial leap in tension alignment, with cor-138

relation rising to 0.50. This represents more than a twofold139

increase compared to the baseline, indicating that explicit140

inference-time re-ranking is essential for shaping expres-141

sive trajectories. Importantly, this improvement is not142

achieved at the expense of other qualities: instrument accu-143

racy improves to 0.86, groove similarity increases slightly144

to 0.56, and note density remains close to the baseline level145

(0.85 vs. 0.88). These results demonstrate that tension146

shaping can be integrated while preserving musical qual-147

ity.148

Taken together, the results suggest that inference-time149

control not only enhances expressive accuracy but also150

supports a flexible design that could generalize to other151

non-differentiable musical descriptors. Moreover, the152

preservation of note density and groove implies that the153

method does not compromise the naturalness of the gener-154

ated music, a key requirement for composer-facing appli-155

cations.156

4. CONCLUSION157

We introduced a dual-level beam search method that inte-158

grates a tonal tension model into Transformer-based sym-159

bolic music generation. The approach enables inference-160

time control of tonal tension while preserving music qual-161

ity and diversity. Preliminary results demonstrate its162

promise, and ongoing efforts aim to improve scalability,163

perceptual accuracy, and cross-repertoire applicability. We164

view this as a step toward practical, controllable LLMs for165

music that empower human creators with nuanced expres-166

sive tools.167

Next directions include: (i) scaling to longer pieces168

where maintaining global control is more challenging, (ii)169

developing interactive composer interfaces that visualize170

and edit tension curves in real time, (iii) extending con-171

trol to other expressive dimensions such as rhythmic com-172

plexity or emotional trajectory, (iv) exploring multimodal173

prompting scenarios that combine text and symbolic con-174

straints, and (v) evaluating performance across culturally175

diverse repertoires to ensure inclusivity in generative out-176

comes.177
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