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Abstract

Online reinforcement learning (RL) with complex function approximations such
as transformers and deep neural networks plays a significant role in the modern
practice of artificial intelligence. Despite its popularity and importance, balancing
the fundamental trade-off between exploration and exploitation remains a long-
standing challenge; in particular, we are still in lack of efficient and practical
schemes that are backed by theoretical performance guarantees. Motivated by
recent developments in exploration via optimistic regularization, this paper pro-
vides an interpretation of the principle of optimism through the lens of primal-dual
optimization. From this fresh perspective, we set forth a new value-incentivized
actor-critic (VAC) method, which optimizes a single easy-to-optimize objective
integrating exploration and exploitation — it promotes state-action and policy es-
timates that are both consistent with collected data transitions and result in higher
value functions. Theoretically, the proposed VAC method has near-optimal regret
guarantees under linear Markov decision processes (MDPs) in both finite-horizon
and infinite-horizon settings, which can be extended to the general function ap-
proximation setting under appropriate assumptions.

1 Introduction

In online reinforcement learning (RL) [Suffon_ef-all, T99X], an agent learns to update their policy in
an adaptive manner while interacting with an unknown environment to maximize long-term cumu-
lative rewards. In conjunction with complex function approximation such as large neural networks
and foundation models to reduce dimensionality, online RL has achieved remarkable performance in
a wide variety of applications such as game playing [Silverefall, 20T], control [Mnih“ef-all, 2OTH],
language model post-training [OpenAl, 2073, Team ef all, P023] and reasoning [Gno_efall, OS],
and many others.

Despite its popularity, advancing beyond current successes is severely bottlenecked by the cost and
constraints associated with data collection. While simulators can subsidize data acquisition in cer-
tain domains, many real-world applications—such as clinical trials, recommendation systems and
autonomous driving—operate under conditions where gathering interaction data is expensive, time-
consuming or potentially risky. In these high-stake scenarios, managing the fundamental yet delicate
trade-off between exploration (gathering new information about the environment) and exploitation
(leveraging existing knowledge to maximize rewards) requires paramount care. Naive exploration
schemes, such as the e-greedy method, are known to be sample-inefficient as they explore randomly
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without strategic information gathering [[Dann_ef all, ZO27]. Arguably, it is still an open challenge
to develop practical online RL algorithms that come with provable sample-efficiency guarantees,
especially in the presence of function approximation.

Addressing this limitation, significant research attempts have been made to develop statistically effi-
cient approaches, often guided by the principle of optimism in the face of uncertainty [Catfimore and
Szepesvari, Z020]. Prominent approaches include constructing optimistic estimates with data-driven
confidence sets [Aner_ef all, POOX, Agarwal et al], 2023, Chen_ef all, P02, Fosfer_ef all, 2021, as
well as employing Bayesian methods like Thompson sampling [Russoefall, POTR] and its optimistic
variants [Agrawal and Jia, POT7, Zhang, P077]. While appealing theoretically, translating them into
practical algorithms compatible with general function approximators often proves difficult. Many
such theoretically-grounded approaches either suffer from prohibitive computational complexity or
exhibit underwhelming empirical performance when scaled to complex problems.

Recently, Cinef-all [Z024] introduced an intriguing framework termed Maximize to Explore (MEX)
for online RL, which optimizes a single objective function over the state-action value function (i.e.,
Q@-function), elegantly unifying estimation, planning and exploration in one framework. In addition,
MEX comes with appealing sub-linear regret guarantees under function approximation. However,
the practical optimization of the MEX objective presents significant challenges due to its inherent
bi-level structure. Specifically, it incorporates the optimal value function derived from the target
@-function as a regularizer [Kumar and Becker, T987], which is not directly amenable to first-order
optimization toolkits. As a result, nontrivial modifications are introduced in the said implementation
of MEX, making it challenging to ablate the benefit of the MEX framework. This practical hurdle
raises a crucial question:

Can we design a sample-efficient model-free online RL algorithm that optimizes a unifying
objective function, but without resorting to complex bilevel optimization?

1.1 Our contribution

In this paper, we answer this question in the affirmative, introducing a novel actor-critic method that
achieves near-optimal regret guarantees by optimizing a single non-bilevel objective. Our contribu-
tions are summarized as follows.

* Incentivizing exploration from the primal-dual perspective. We start by offering a new interpre-
tation of MEX, where optimistic regularization—central to MEX—arises naturally from a La-
grangian formulation within a primal-dual optimization perspective [Daiefall, POT8, Nachum and
be derived as the regularized Lagrangian of a canonical value maximization problem, subject to
the constraint that the ()-function satisfies the Bellman optimality equation. This viewpoint allows
deeper understanding of the structure of the MEX objective and its exploration mechanism.

* VAC: Value-incentivized actor-critic method. Motivated by this Lagrangian interpretation, we de-
velop the value-incentivized actor-critic (VAC) method for online RL, which jointly optimizes the
Q-function and the policy under function approximation over a single objective function. Different
from MEX, VAC optimizes a regularized Lagrangian constructed with respect to the Bellman con-
sistency equation as the constraint, naturally accommodating the interplay between the Q-function
and the policy. This formulation preserves the crux of optimistic regularization, while allowing
differentiable optimization of the ()-function and the policy simultaneously under general function
approximation.

* Theoretical guarantees of VAC. We substantiate the efficacy of VAC with rigorous theoretical anal-
ysis, by proving it achieves a rate of O(dH? \/T) regret under the setting of episodic linear Markov
decision processes (MDPs) [[lin"ef all, D020], where d is the feature dimension, H is the horizon
length, and T is the number of episodes. We further extend the analysis to the infinite-horizon
discounted setting and the general function approximation setting under similar assumptions of
prior art [Coefall, 2O24]].

In summary, our work bridges the gap between theoretically efficient exploration principles and
practical applicability in challenging online RL settings with function approximation.



1.2 Related work

We discuss a few lines of research that are closely related to our setting, focusing on those with
theoretical guarantees under function approximation.

Regret bounds for online RL under function approximation. Balancing the exploration-
exploitation trade-off is of fundamental importance in the design of online RL algorithms. Most
existing methods with provable guarantees rely on the construction of confidence sets and perform
constrained optimization within the confident sets, including model-based [Wang et all, P07, [FosA
fer ef all, 2023K, Chen_ef all, P025], value-based [Agarwal et all, 2023, lin_ef all, 2021, Xie_ef all,
2073], policy optimization [[Cinef-all, 2023], and actor-critic [Tan_ef-all, Z0I75] approaches, to name
a few. Regret guarantees for approaches based on posterior sampling [Osband and Van Royj, Z0T7]
are provided in [Zhong et all, P027, [iand T-nd, 2074, Agarwal and Zhang, P077] under function
approximation. Regret analysis under the linear MDP model [[lin"ef all, 2020] has also been actively
established for various methods, e.g., for the episodic setting [Zaneffe_ef all, DU2(, lin"ef all, DO,
Papini et all, 2021] and for the infinite-horizon setting [Zhon ef-all, 2021, Monlin ef all, Z075]. How-
ever, the confident sets computation and posterior estimation are usually intractable with general
function approximator, making the algorithm difficult to be applied.

Exploration via optimistic estimation. Exploration via optimistic estimation has been actively
studied recently due to its promise in practice, which has been examined over a wide range of
settings such as bandits [Kumar_and Becket, 987, Lin_ef all, 2020, Hung et all, 202T], RL with
human feedback [Cen"efall, 2074, Xie'et all, 2074, Zhang et al], 2024]], single-agent RL [Mefeefall,
20270, Cmef all, 2024, Chen_ef all, P079], and Markov games [Eosfer ef all, D0734, Xiong et all,
D074, Yang et all, 2025]. Tailored to online RL, most of the optimistic estimation algorithms are
model-based, with a few exceptions such as the model-free variant of MEX in [[Ci‘ef-all, P020], but
still with computationally challenges.

Primal-dual optimization in RL. Primal-dual formulation has been exploited in RL for handling
the “double-sampling” issue [Dai—ef all, POT7, POTR] from an optimization perspective. By con-
necting through the linear programming view of MDP [De Farias and Van Koy, 2004, Pufermar,
20714, Wang, POT, Nen“ef-all, POT7, Cakshminarayanan et all, P0T7, Bas-Serrano_ef all, O2T], a
systematic framework [Nachumef all, ZOTYH] has been developed for offline RL, which induces
concrete algorithms for off-policy evaluation [Nachum ef-all, Z019a, Uehara'ef all, P70, [Yang et all,
2020], confidence interval evaluation [Dai_ef-all, 2020], imitation learning [Kosfrikav_ef all, POTY,
Zhurefall, 2020, Maefall, 2027, Sikchiefall, 2023], and policy optimization [Nachum efall, POT9H,
Cee et all, P02T]. However, how to exploit the primal-dual formulation in online RL setting has not
been investigated formally to the best of our knowledge.

Paper organization and notation. The rest of this paper is organized as follows. We describe
the background, and illuminate the connection between exploration and primal-dual optimization
in Section . We present the proposed VAC method, and state its regret guarantee in Section B.
Section B provide numerical experiments to corroborate the effectiveness of the proposed method.
Finally, we conclude in Section B. The proofs and generalizations to the infinite-horizon and general
function approximation settings are deferred to the appendix.

Notation. Let A(A) be the probability simplex over the set .4, and [n] denote the set {1,...,n}.
For any = € R", we let ||x||, denote the ¢, norm of x, where p € [1, 0o]. The d-dimensional ¢ ball
of radius R is denoted by B$(R), and the d x d identity matrix is denoted by I.

2 Background and Motivation

2.1 Background

Episodic Markov decision processes. Let M = (S, A, P, r, H) be a finite-horizon episodic MDP,
where S and A denote the state space and the action space, respectively, H € N7 is the horizon
length, and P = {P}, }e(m) and 7 = {rp }nem) are the inhomogeneous transition kernel and the
reward function: for each time step h € [H], P, : S x A — A(S) specifies the probability



distribution over the next state given the current state and action at step h, and 7, : S x A — [0, 1]
is the reward function at step h. We let m = {7y, }ne(m) : S x [H] = A(A) denote the policy of the
agent, where 7y, (|s) € A(A) specifies an action selection rule at time step h.

For any given policy , the value function at step i, denoted by V;™ : S — R, is given as
VseS, helH]: Vi(s)=E[SML, risiai)lsn = 5|, )

which measures the expected cumulative reward starting from state s at time step h until the end
of the episode. The expectation is taken over the randomness of the trajectory generated following
a; ~ m;(+|s;) and the MDP dynamics s;11 ~ P;(-|s;,a;) fori = h,..., H. We define V7 (s) == 0
for all s € S. The value function at the beginning of the episode, when i = 1, is often denoted
simply as V™ (s) := V{"(s). Given an initial state distribution s; ~ p over S, we also define
V() = Euynp [Vi (s1)):

Similarly, the Q-function of policy 7 at step h, denoted by @} : S x A — R, is defined as
V(s,a) e Sx A, he[H|: Qf(s,a)=E {Zih ri(si,ai)|sn = s,ap = a} , 2)

which measures the expected discounted cumulative reward starting from state s and taking action
a at time step h, and following policy 7 thereafter, according to the time-dependent transitions. We
define Q% ,(s,a) == 0and Q" (s,a) = QT (s,a) forall (s,a) € S x A. They satisfy the Bellman
consistency equation, given by, for all (s,a) € S x A, h € [H]:

QZ (3’ CL) = Th(57 a) + Esh+1NPh('|S,a),ah+1~7Th+1('\Sh+1) [Q2+1(3h+17 ah+1)]' 3)
It is known that there exists at least one optimal policy 7* = (n},...,7n}) that maximizes the

value function V™ (s) for all initial states s € S [Puferman, Z014]. The corresponding optimal
value function and Q-function are denoted as V'* and Q*, respectively. In particular, they satisfy the
Bellman optimality equation, given by, for all (s,a) € S x A, h € [H]:

Qn(s,a) =rn(s,a) + By, P (lsia),aniimm gy Clone) [@hr1 (She1, an)]- “

Goal: regret minimization in online RL. In this paper, we are interested in the online RL setting,
where the agent interacts with the episodic MDP sequentially for 7' episodes, where in the t-th
episode (¢t > 1), the agent executes a policy m;, = {m, h}hH:1 learned based on the data collected up
to the (¢t — 1)-th episode. To evaluate the performance of the learned policy, our goal is to minimize
the cumulative regret, defined as

Regret(T) = Y, (V*(p) — V™ (p)), )

which measures the sub-optimality gap between the values of the optimal policy and the learned
policies over T episodes. In particular, we would like the regret to scale sub-linearly in 7, so the
sub-optimality gap is amortized over time.

2.2 Motivation: revisiting MEX from primal-dual lens

Recently, MEX [Cin‘efall, Z074] emerges as a promising framework for online RL, which balances
exploration and exploitation in a single objective while naturally enabling function approximation.
Consider a function class Q = Hthl Qy, of the Q-function. For any f = {fh}he[H] € 9, we
denote the corresponding Q-function Qy = {Qy n}nem) With Q. = fn. At the beginning of the
t-th episode, given the collection D;_1 j, of transition tuples (sp, ap, Sp+1) at step h up to the (t—1)-
th episode, MEX [Lin“ef-all, P074] (more precisely, its model-free variant) updates the Q-function
estimate as

fi = argsup Eslwp[mafoyl(sl,a) — aLly(f), 6)
feo acA

where « > 0 is some regularization parameter, and L;(f) is

L =Y D (ralsnan)+ max Q h41(Sh+1,0) — Qr(sn an))” (M

h=1L&n€Di—1,n



. 2
- ghlélgh Z (rn(sn,an) + max Qfhr1(shy1,0) = gn(sn,an))” |,
§n€Dt—1,n
where £, = (sp,an, Sp+1) is the transition tuple. The first term in (H) promotes exploration by
searching for @-functions with higher values, while the second term ensures the Bellman consistency
of the -function with the collected data transitions. The policy is then updated greedily from Q) y,
to collect the next batch of data. While Lin_ef-all [2024] offered strong regret guarantees of MEX,
there is little insight provided into the design of (B), which is deeply connected to the reward-biased
framework in Kumar and Becket [T987].

Interpretation from primal-dual lens. We offer a new interpretation of MEX, where optimistic
regularization arises naturally from a regularized Lagrangian formulation of certain constrained
value maximization problem within a primal-dual optimization perspective. As a brief detour to
build intuition, we consider a value maximization problem over the Q-function with the exact (i.e.,
population) Bellman optimality equation as the constraints:

sup ESINP[maX Qﬁl(sl,a)} 8)
feo acA

st. Qpn(s,a) =1u(s,a) + Eyop,(s,a) {%a}Qf7h+1(8’7a) , VY(s,a,h) €S x Ax[H],
with the boundary condition @ ¢, 1 = 0. When the optimal @Q-function is realizable, i.e., Q* € Q,
the unique solution of (8) recovers the true optimal Q-function Q*.

How is this connected to the MEX objective? Introducing the dual variables {\p, } e[z, the regular-
ized Lagrangian of (B) can be written as

sup Eg, ~p [max Qf,l(sha)] )
feQ acA
H
ot Y B s (mls.0) F max Qi (s a) — Qealsia)) + D ns.a)?),
nthem f— (s,0,5")~Dp, acA 2

where 3 > 0 is the regularization parameter of the dual variable,¥ and Dj, denotes a properly de-
fined joint distribution over the transition tuples that covers the state-action space over (s,a). We
invoke the trick in Dai"efall [2OTY], Baird [T995], which deals with the double-sampling issue, and
reparameterize the dual variable

M(s.a) = & ’h(s’a)ﬁ_ i) (10)

which satisfies
Yoy, (s, a) : An(s,a)(0n(s,a) — Qpn(s,a)) + g)\h(& a)?

1 2 2

= 55 [ (n(5:@) = Qpa(s,@)” = (u(s,0) ~ 9u(5,0)°] - (D)
Consequently, by setting 0y, (s,a) = rp(s,a) + maxse 4 Qfprt1(s’,a) in (), the Lagrangian
objective (d) becomes

H
1 ’ 2

sup Es, ~ [maxQ’ s,a]fg —  sup E [rh s,a) +max Qs rti1(s,a) — Qrn(s,a

req laca o) h=1 2B g, €9y, (s,a,5)~Dy, ( (s,0) aca +( ) #nl ))

— ((s,0) + max Qrapa(s'sa) — gn(s,0))°] (12)

By replacing the population distribution D;, with its samples in D;_; ;, at each round, then we
recover the model-free MEX algorithm in ().

However, (B) is a bilevel optimization problem where in the lower level, another optimization prob-
lem max,ec 4 Q¢,n (8, a) needs to be computed in (). This can be can be computationally intensive
if not intractable. In this paper, inspired from this primal-dual view, we derive a more implementable
algorithm.

*It is possible to use an (s, a, h)-dependent regularization too.



3 Value-incentivized Actor-Critic Method

3.1 Algorithm development

We now develop the proposed value-incentivized actor-critic method. In contrast to the model-free
MEX for (), we consider a value maximization problem over both the Q-function and the policy
with the exact (i.e., population) Bellman consistency equation as the constraints:

Sup ]Eslwp, a1~71'1(~\51)|:Qf,1(317a1)] (13)
feQ, meP

st. Qpn(s,a) =rp(s,a) +E vop, o [Qpns1(s’,a)], V (s,a,h) € S x Ax [H|,
a’~mp g1 (ls)
where P = H,IL{:l Py, is the policy class. This formulation explicits the joint optimization over
the Q-function (critic) and the policy (actor), and uses the Bellman’s consistency equation as the
constraint, rather than the Bellman’s optimality equation, which is key to obtain a more tractable
optimization problem.

Similar as (8), we can write the regularized Lagrangian of (I3) as

sup Eslwp, a1~71'1(-|51)[Qf71(817a1)] (14)
feQ, meP
- 8
e B et @) Qo) + i)

h=1 a’~7rh+1(-\s’)

Similar to earlier discussion, we also consider the reparameterization (Il) which gives

H

™ 1 o 2

o {70y B [0 )~ Cpat)
= a/~mp 1 (ls?)

2
~ (rn(5,) + Qrana(ssa) = gn(s,a)’] b, (1)
where we define
VI(8) = Eanmy(1s) [@ra(s,a)], and  VF(p) =Ky, [VF(s)]. (16)
Note that, the objective function (I3) is easier to optimize over both )y and m. Replacing the

population distribution Dy, of £ = (s, a, s’) by its empirical samples leads to the proposed algorithm,
which is termed value-incentivized actor-critic (VAC) method; see Algorithm [ for a summary.

Algorithm 1 Value-incentivized Actor-Critic (VAC) for finite-horizon MDPs
1: Input: regularization coefficient o > 0.
2: Initialization: dataset Dy j, := () for all h € [H].
3: fort=1,---,T do
4:  Update Q-function estimation and policy:

(foom) «arg_sw {VF(p)—aLy(f,m)}. a7
feQ,meP
5:  Data collection: run 7; to obtain a trajectory {s;1,a¢1,8¢.2,...,5:,m+1}, and update the
dataset Dy, < Di—1.n U{(St.n,aen,Se.n+1)} forall h € [H].

6: end for

In Algorithm [, at ¢-th iteration, given dataset D;_1 j, of transitions (sp, an, sp+1) collected from
the previous iterations for all h € [H], and use the current policy 7 to collect new action o’ for each
tuples, we define the loss function as follows:

H

Lo(fm) =) { D> EawrempiClangn) (Pr(sn,an) + Qi (sns1,d') — Qrn(sn an))’

h=1 *&RE€D_1,n

In€Qn
Eh€Ds_1,h

— inf Z Ea’Nr;L+1(»\sh+1)(rh(s}uah)+Qf,h+l(5h+17al)_gh(shaah))Z}y
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where £, = (Sp,an, Sp+1) is the transition tuple. To approximately solve the optimization prob-
lem (I2), which is the sample version of (I3), we can, in practice, employ first-order method, i.e.,

* Critic evaluation: Given the policy m;_; fixed, we solve the saddle-point problem for f; as biased
policy evaluation for 7;_1, i.e.,

fi = arg max VI (p) — aly(f,mia). (19)

* Policy update: Given the critic f is fixed, we can update the policy 7 through policy gradient
following the gradient calculation in Nachum efall [Z0T9H].

Clearly, the proposed VAC recovers an actor-critic style algorithm, therefore, demonstrating the
practical potential of the proposed algorithm. However, we emphasize the critic evaluation step
is different from the vanilla policy evaluation, where we have V[ (p) to bias the policy value. In
contrast, MEX only admits an actor-critic implementation for oo = 0 (corresponding to vanilla actor-
critic when there is no exploration) since their data loss term requires the optimal value function,
while the data loss term £, ( f, 7) is policy-dependent in VAC.

3.2 Theoretical guarantees

The design of VAC is versatile and can be implemented with arbitrary function approximation. To
corroborate its efficacy, however, we focus on understanding its theoretical performance in the linear
MDP model, which is popular in the literature [lin"efall, D020, Cuefall, PO2T].

Assumption 1 (linear MDP, lin"ef all [2020]). There exist unknown vectors (p, € R? and unknown

(signed) measures puj, = (,uﬁll), e ,ugld)) over S such that

Th(sa CL) = ¢h(57a)—r§h and Ph(5/|57a) = ¢h(57a)Tuh(5/)v (20
where ¢, : S x A — R? is a known feature map satisfying ||én(s,a)ll2 < 1, and
max{[|Culy , ||n(S)|ly} < V4, forall (s,a,s") € S x Ax Sandall h € [H].

We also need to specify the function class Q for the Q-function and the policy class P for the policy.
Under the linear MDP, it suffices to represent Q-function linearly w.r.t. ¢y, (s,a), i.e., Qp (s,a) =

on (s,a) T 9),, and the log-linear function approximation for the policy derived from the max-entropy
policy [Renefall, PO27], with the following two regularization assumptions on the weights.

Assumption 2 (linear Q)-function class). The function class Q = Hle Oy, is
Vhe[H]: Qp = {feyh = ¢n() 0|0, < (H+1— h)Vd, lfonll <H+1— h}
Assumption 3 (log-linear policy class). The policy class P = HhH:1 Py, is

exp (gi)h(s, a)Tw)
Za’EA exXp (¢h(8a a/)Tw)

Vhe[H]: Pp:= {wa’h s n(als) = with ||w|ly < BH\/&}

with some constant B > (.

Under these assumptions, we first state the regret bound of Algorithm [ in Theorem [.

Theorem 1. Suppose Assumptions [I-B hold. We let B = TIZLH‘A' in Assumption B, and set
1 73/2\\ 1 /2
= 1 14— . 21
“ (Hmog (log | ATT/5) 8 < T )> ey

Then for any 6 € (0,1), with probability at least 1 — 6, the regret of VAC (cf. Algorithm ) satisfies
1 T T3/2
Regret(T) = O (dHQ\FT\/log (og(|(;4|)> log <1 + d)) . (22)

Theorem [ shows that by choosing B = O(T/dH) and a = O (#ﬁ)’ the regret of VAC is

no larger than the order of 6(dH 2\/T) up to log-factors. Compared to the minimax lower bound
Q(dv H3T) [Heefall, 2023], this suggests that our bound is near-optimal up to a factor of v/H, but
with practical implementation generalizable to arbitrary function approximator.




Extension to the infinite-horizon setting. Our algorithm and theory can be extended to the
infinite-horizon discounted setting leveraging the sampling procedure in [Ynan“ef-all [20773, Algo-

rithm 3]. We demonstrate that the sample complexity of VAC is no larger than 9) (%) to

return an e-optimal policy, where -y is the discount factor. This rate is near-optimal up to polynomial
factors of ﬁ and logarithmic factors. We leave the details to the appendix.

Extension to the general function approximation. Our theoretical analysis can also be extended
to general function approximation, under standard assumptions for general function approximation
such as low generalized Eluder coefficient (GEC) [Zhong et all, P022, Cin_ef all, 2074]. The cor-
responding tight regret bound is provided in Appendix BZ3, which matches the bound given in Liii
ef-all [2024, Corollary 5.2] under similar assumptions.

Extension to KL-regularized MDPs. Recently, MDPs regularized by the Kullback-Leibler (KL)
divergence KL (7||Trr), with respect to a reference policy et = {Tef,n fre(m) : S % [H] = A(A),
has attracted much attention for preventing over-optimization and increasing stability of the learning
process [Ouyang et al], Z027, Yang et all, PO75]. Our framework of VAC can be extended straight-
forwardly, by invoking the soft Bellman consistency equation in the derivation:

Thi1(@ns1]sni1)
Tret,h1(@h+1]8nt1) |

Th(s,a) =rp(s,a) + E o finrucise |:Q:7h+1(8h+1, apt1) — 7 log
apy1~mp41Clsp41)

(23)
where 7 > 0 is the regularization parameter. We omit the details for conciseness.

4 Experiments

We provide numerical experiments to demonstrate the efficacy of the value-incentivized regulariza-
tion in the actor-critic framework.

Setup. We evaluate on two challenging continuous-control benchmarks in MuJoCo [Todorovefall,
20172]: Ant-v4 and Walker2d-v4. For the base learner, we adopt Soft Actor-Critic (SAC) imple-
mented in Stable-Baselines3 [Raffin"ef-all, ?071] and add a simple sample-based value-incentivized
term to its critic objective.

Critic update. With two critics {Qy, ?:1 and target networks {Q),- ?:1’ the SAC target is
J

y = r(s,0) +7 (minQy(5,0) — T log(a' | 5)), o ~7(-] ),
J J

Here, r(s, a) denotes the one-step reward, and 7 denotes the current stochastic policy used by SAC
for target evaluation (i.e., a’ ~ (- | s’)). Our modified critic objective uses minibatch sample
averages (replacing population expectations) and reads

Lo({0i}) = X (eannen Die (Qo,(5:0) = 9)° = i YoenXimy & 200, Qo, (s, 2).

Here we use a single Monte Carlo sample = Zfil Qo,(s,a;) to approximate V[(s) =
Eqer(.|s)[@r(s,a)]. We found that setting N = 1, i.e., using a single policy sample is good enough.
We use a minibatch B of size 256 sampled uniformly from a replay buffer of size 10°. The buffer
stores the historical data: during the first 100 steps we act uniformly at random (warm-up). After
warm-up, the current policy selects one action at each step, and the resulting (s, a,r(s,a),s’) is
appended to the replay buffer. We optimize the critic with Adam (learning rate 3 x 10~%), perform
one gradient step, and update target networks every step via Polyak averaging with 7,y = 0.005.
Training starts after collecting 100 steps. The entropy coefficient is tuned automatically by optimiz-
ing a learnable log-temperature to match a target entropy.

Policy update. The actor is updated with the standard SAC loss

~ 1 .
Lr(w) = @ ;anww(~|s) [’Tem logm,(a]s) — jerr{lig} Qo,(s,a)|,
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Figure 1: Ant-v4 with 1/« € {0,2000}. Shaded area indicates standard deviation across 3 seeds.
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(a) Walker2d-v4: best return over 3 seeds (b) Walker2d-v4: average return over 3 seeds

Figure 2: Walker2d-v4 with 1/« € {0,1000}. Shaded area indicates standard deviation across 3
seeds.

estimated with one reparameterized sample per state using the Tanh-squashed Gaussian policy; we
optimize the actor with Adam (learning rate 3 x 10~%) in lockstep with the critic. VAC modifies
only the critic objective above, leaving the actor update identical to SAC.

Network architecture. Both critics are separate MLPs with two hidden layers of 256 ReLU units
each (“twin Q”), and the actor is an MLP with the same hidden sizes producing a Gaussian policy
with Tanh-squashed actions.

Results. We run both experiments for 10° iterations over 3 seeds. Figures M and @ summarize
performance. For each task, we plot the best return across the three seeds and the average return
over seeds; shaded regions denote standard deviation. The VAC regularization improves sample
efficiency compared to SAC.

5 Conclusion

In this paper, we develop a provably sample-efficient actor-critic method, called value-incentivized
actor-critic (VAC), for online RL with a single easy-to-optimize objective function that avoids com-
plex bilevel optimization in the presence of complex function approximation. We theoretically es-
tablish VAC’s efficacy by proving it achieves O(+/T)-regret in both episodic and discounted settings.
Our work suggests that a unified Lagrangian-based objective offers a promising direction for prin-
cipled and practical online RL, allowing many venues for future developments. Further, we empiri-
cally validate VAC’s performance on MuJoCo tasks. Follow-up efforts will focus on more empirical
validation, and extending the algorithm design to multi-agent settings.
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societal impacts of the work performed?

Answer: [NA]

Justification: This is a foundational research paper and does not have any societal impact.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a foundational research paper and does not have any societal impact.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credit and mention the license and terms of use.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limi-
tations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We have no crowdsourcing or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data collec-
tor.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We have no crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs in the core methods.
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Technical Lemmas

We provide some technical lemmas that will be used in our proofs.

Lemma 2 (Freedman’s inequality, Lemma D.2 in Cincefall [2074]). Let { X, }.<r be a real-valued
martingale difference sequence adapted to filtration {F;}i<r. If | Xi| < R almost surely, then for
any n € (0,1/R) it holds that with probability at least 1 — 6,

Y xi <o (nZJE[Xfm_l] + 10g($/5)> :
t=1

t=1

Lemma 3 (Covering number of /5 ball, Lemma D.5 in lin'efall [2020]). Forany e > 0andd € N,
the e-covering number of the {5 ball of radius R in R? is bounded by (1 + 2R/¢)%.

Lemma 4 (Lemma 11 in Abbasi-Yadkori ef all [ZO11]). Let {xs}sem be a sequence of vectors
with x5 € V for some Hilbert space V. Let Ao be a positive definite matrix and define Ay =
Ao+ X' wsx]. Then it holds that

T
' det(Ar)

_1 < T (A |
Szzlmm {17 ||ISHA571} < 2log <det(/\o) >

Lemma 5 (Lemma F.3 in Dicefall [P021]). Ler X C R? and sup,cx ||zl < Bx. Then for any
n € N, we have

. 1 - T 7’LB§(
YA>0: x1,~m,%§ex log det (Id + by ;xzxz ) < dlog (1 + o)

Lemma 6 (Corollary A.7 in Edelman_ef all [2027]). Define the softrmax function as softmax(-) :

R? — A? by softmax(z); = %ﬁ)r all i € [d) and x € R%. Then for any z,y € RY, we
$—1 exp(z;

have

|Isoftmax(z) — softmax(y)||1 < 2|z — ¥||co-

B Proofs for Episodic MDPs

B.1 Proof of Theorem [

Notation and preparation. For notation simplicity, we let f* := Q* be the optimal Q-function.
We let IT := A(A)® denote the whole policy space. We have P}, C 11 for all h € [H]. We also
define the transition tuples

£:=1(s,a,8) €S xAXxS and &, := (sp,an,sn41) €S x AxS. (24)
Given any policy profile 7 = {7, } e[y and f = {fn : S x A — R}, we define P f as
V(sh,an) € S x A: rf(shsan) =rp(sn,an) + E oppi~rncisnan). [frt1(Sht1, ant1)] s
apy1~mp41Clopg)
(25)
and let P™ f := {IP} f},e[a). Let
On={0:forncQ}, Q:= {w wlly < BH\/&} (26)

be the parameter space of Qp, and Py, respectively for all h € [H]. We also define

Vin(s) = Egmns) [Qra(s,a)]  and V[ (p) = Eewy, [Viu(s)], Ve QmeP,se S helH]
(27)

We’ll repeatedly use the following lemma, which guarantees that under Assumption [, the optimal
Q-function Q* isin Q, and P"f € Q forany f € Q and m € II¥. Similar results can be found
in the literature, e.g., lin"ef-all [P020]. For completeness, we include the proof of Lemma @ in
Appendix BT
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Lemma 7 (Linear MDP =- Bellman completeness + realizability). Under Assumption [l, we have

* (realizability) Q* € Q;
* (Bellman completeness)Vm € lland f € Q, P™ f € Q.

We also use the following lemma, which bounds the difference between the optimal value function
V* and max,cp V™ — the optimal value over the policy class P, where we let

T = arg nax Vi n(p), Vhe[H], (28)

and 7 = {7} }necm) be the optimal policy within the policy class P. The proof of Lemma B is
deferred to Append1x B

Lemma 8 (model error with log-linear policies). Under Assumptions -8, we have

1
VseS,helH: 0<Vi(s) =V L(s) < OgB|“4|, (29)
where B is defined in Assumption B.
Main proof. We first decompose the regret (cf. (8)) as follows:
T T T
Regret(T) = _ (V*(p) = V™(p)) = >_ (V*(0) = Vi () + X_ (Vi () = V™ (6) ) (30)
t=1 t=1 t=1

() (ii)
where recall we define V7 = V7, in (I[6). We will bound the two terms separately.

Step 1: bounding term (i). The linear MDP assumption guarantees that Q* € Q by Lemma [,
and by definition (Z8), 7* is in P. Thus by our update rule (1), we have

VEeNy : VE (p) — ali(f*,7) <V (p) — ali(fi, ™),
which gives
VE () = VI (p) < a (Lol f*7) = Lol fro o).
Invoking Lemma B, we have

VA 0) = V(o) < (Ll 7) — Lol ) + 2L

Thus to bound (i), it suffices to bound L:(f*,7*) — Li(f:, m:) for each t € [T]. To introduce our
lemmas, we define ¢, : Qp x S x A x I — Rforall h € [H] as

(3D

2

b(f,s,a,m) = (E dnmy e, [Th(8,a) + fria(s’,a’) — fh(S,a)]) - (32)
a’~mp o (Cls?)

We give the following lemma that bounds (i), whose proof is given in Appendix B2Z3.

Lemma 9. Suppose Assumptions I-8 hold. For any 6 € (0, 1), with probability at least 1 — 6, for
any t € [T, we have

t—1 H

. 1
Lo(f777) = Le(feme) < —5 ZZE(Si,h,ai,h)w:;L (Cn(fe, Sishs @isns )]

i=1 h=1

+OH? <dlog (BHdT) 4 Tog M) (33)

) BH

for some absolute constant C' > 0. Here, dzih is the state-action visitation distribution induced by
policy m; at step h.
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By (B1l) and Lemma B, we have

t—1 H
X .y 1 BHAT
VA (p) — VE(p) < a{ S S sy, [0 S )] + CHPdlog ( ! ) }

i=1 h=1

log | Al
B b

+ (CH?aT +1)

which gives

1 L& BHAT
(i) < a{ ~ 5 Y (B, [0 5ims 0 m0)] ) + CTHdlog ( : ) }

t=1 i=1 h=1
T1
+ (CH?T +1) %'A‘. (34)
Step 2: bounding term (ii). For any A > 0, we define
d(A) =dlog | 1+ £l (35)
= g )
We use the following lemma to bound (ii), whose proof is in Appendix BZ24.
Lemma 10. Under Assumption [, for any n > 0, we have
T T t—-1 H
Tt Tt . . . 2 2
> ‘Vt (0 -V ’(p)‘ <0 Euanears, ofesivai,m) + (6H? + H/m)d(A) + HAdT.
t=1 t=1i=1 h=1
By Lemma [, we have
T t-1 H
(i) < n Z Z Z E(si,ai)wd::fhgh(ftv Siy Qi 7Tt) + (6H2 + H/U)d()\) + H?\dT. (36)
t=1 i=1 h=1

Step 3: combining (i) and (ii). Substituting (34) and (38) into (B), and letting n = %, we have

BHAT T1
Regret(T) < aCTH?3dlog ( ; ) + (CH?aT +1) %'A‘
+ (6H? +2H/a)d(\) + H*\dT. (37)
o\ 1/2
Setting A\ = \%, a = (WZOQ (1 + %/Z» ,and B = TI%H‘A' in the above

bound, we have with probability at least 1 — 9,

3/2
Regret(T) < C’dex/T\/log <1og((.;4|)T> log (1 + Td>

for some absolute constant C’ > 0. This completes the proof of Theorem .

B.2 Proof of key lemmas
B.2.1 Proof of Lemma 2
Assumption [ guarantees that
Qh(shran) = rr(snran) + Eg, by Clsnan) [Vire1 (She1)]

= ¢n(sn,an) " Cu +/Ph(8h+1|8h,ah)V;f+1(5h+1)d8h+1
S

= ¢>h(8haah)T(Ch +[SV5+1(Sh+1)dﬂh(5h+1)>v (38)

P
=y
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where v} € R? satisfies

1villy =

Ch+/ Vi1 (8na1)dpn(sne1)
2

||ChH2 + HVh+1H HMh )Hz < \/a"‘ (H — h)\/& = \/‘j(H —h+1).
We also have ||Q7 ||, < H +1—hforall h € [H]. Thus Q* € Q.
Moreover, for any f € Q, we have

Pr f(shyan) = ri(sn,an) + E sy iimencionan  [fr1(8nt1, angr)]
ap41~Th1 Clspgt)

= ¢n(sn.an) ¢ + / Pr(sht1l8hs an)Bayy ~mpir Clsnin) a1 (Sha1, angr)] dspgr
s

= ¢h(5h7ah)T<Ch +/S (Eapsrmmni Clsnsn) frt1(Sha1s ang)) duh(Sh,+1)),

=Ch

where (;, € RY satisfies
lIChlly =
2

< Gnlly + 1 fnsalloo llnlly < Vd+ (H = B)Vd = Vd(H — h +1).
In addition, we have
IPhflle < lIrnlloo Ifnti1llee < H —h+1, Vhe[H]

gh + /S (Eah+1~7fh,+1('|Sh,+1)fh+1(3h+1’ athl)) d:u’h(sh+1)

Thus P™ f € Q.

B.2.2 Proof of Lemma B

From Lemma [, it is known that for all h € [H], there exists v} € Oy, such that
Q;L(Sa a) - (,ZSh(S, a)TV}fm V(S, a) €S x A (39

Let

exp(Bon(s,a)Tvr

malals) = B0 )
Za’EA eXp(B¢h(57 a ) Vh)

where B is defined in Assumption B. It follows that 7;, € Py, and for all s € S, m,(+|s) is the

solution to the following optimization problem [BecK, 2017, Example 3.71]:

V(s,a) € S x A, (40)

1
max ,Qr(s,a)) + =H (p), where a)lo 41
Jmax - (p @il a)) + B H(p) ;p gp(a (41
Here, H(-) is the entropy function satisfying
0 < H(p) <loglAl, Vpe A(A). (42)

The optimality of 7, for (E), together with (EX), implies
log | A| N 1
AL > (1), @ s,0)) + SH (ma(19)
* * 1 *
2 (mi(+]s), Qi(s,a)) + FH (mi(]s))

= V() M (i () > Vi (o), @3)

VseS: Vi ,(s)+

which further indicates

log | A|
VT (s) = ViE(s) — :
Jnax Vp! n(s) = Vi(s) B

The desired bound (DY) follows from the above inequality and the fact that Vj*(s) =
maxgea Q*(s,a) > Vf’ﬂ/’h(s) for any policy profile 7/, s € S and h € [H].

(44)
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B.2.3 Proof of Lemma
We bound the two terms L (f*,7*) and —L;( f;, m;) on the left-hand side of (B3) separately.

Step 1: bounding —L;(f;, 7). Given f, f' € Q, data tuple £ = (s,a,s’) and policy profile
7 = {m, }}L_, € TI¥, we define the random variable

lh(fa f/a€77r) = T}L(57a)+fh+1(8,7a,) —f;/L(S,CL)7 vh € [H]a (45)
where o’ ~ m,11(¢|s"). Then we have (recall we define P™ f in (23))
lh(f» ]P)Trfa 57 7T) = fh+1(slv a'l) —-E s/ ~Pp (+]s,a) [fh+1(s/, a/)] 3 (46)

a/N-n—thl(.\s’)

which indicates that for any f, f/ € Q, £ and ,
lh(f7 fl7 57 71—) - lh(f? Pﬂ—fﬂ §7 7T) =E sl Py (+]s,a) [lh(f7 f/7 57 T‘—)} . (47)

a/~mp g (ls’)

Forany f € Q,7 € 1" and ¢ € [T, we define X}, as

X;Jr,h = Ea’ww;b+1(~|st,h+1) [lh(f7 fa gt,ha 7T)2 - lh(f? ow7 gt,ha 7)2] 5 (48)

where &, 5, == (St.n, Gr.h, St,p+1) is the transition tuple collected at time ¢ and step h. Then we have
forany f € Q:

t—1 t—1 t—1
S X an = Baemis(lsinetn(f r&Gn ) = ZEa’Nwh+1(-\521}L+l)lh(f7 P™f, &, )

=1 =1 =1
t—1 t—1
< Z ]Ea’wﬂ'h+1(~\s;7h’+1)lh(fa fa gi,ha 7)2 - glgfg ZEa//\/ﬂh+1('|s;1h+1)lh(f7 g, 5i,h7 71—)2 = Ct,h(fa 77)7
i=1 =1

(49)
where the inequality uses the fact that P™ f € O, which is guaranteed by Lemma [1. Here, we define

t—1

2
Lin(fym) = ZanﬂhHusi,hH) [(Th(si,m ain) + fra1(sint1,a) — fu(sin, ain)) }
i=1
t—1 ,
— glng Ea/wwh+1(~|51.h+1) [(Th(si,hvai,h) + fh+1(si7h+17a/) - g(sivh’ai1h)) :| :
B (50)
Therefore, to upper bound —L:(f;,m) = — Zthl Ly p(fr,m), it suffices to bound

— Zf;i X }tm, , for all b € [H]. In what follows, we use Freedman’s inequality (Lemma ) and a
covering number argument similar to that in [Yang et all [Z025] to give the desired bound.

Step 1.1: building the covering argument. We start with some basic preparation on the covering
argument. For any X C R?, let N(X, ¢, ||-||) be the e-covering number of X’ with respect to the

norm ||-||. Assumption D and Assumption B guarantee that (cf. (Z8)) ©; C BY (H \/E) and Q =

B4 (BH \/E) for all h, where we use B(R) to denote the /5 ball of radius R in R¢. Thus by
Lemma B we have

(51a)

2HVd
log N (O, €, |2) < log V" (B (HVd) e, ]1],) < dlog (1 + == ) ,

(51b)

mNm@w”ZMN@KMWQ@H@sm%G+%Tﬂ)
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for any e > 0. This suggests that for any € > 0, there exists an e-net ©p, . C O}, and an e-net 2, C 2
such that

2Hd

€

log |©p,| < dlog (1 + (52)

2BH+d
> , and log|Q.| < dlog (1 + f) .
€

For any f, = fo,n € Qp with 6, € Oy, there exists 0, . € Oy, such that ||y, — 05, |2 < €, and we
let fp.c == fp, . and define

H
Qne={frcibnec€Onct, Q=[] e (53)
h=1
In addition, for any 7, € Py, there exists wy, € Q and wy, € Qe such that ||wy, — wp ¢||2 < €, such
that

exp(on(s,a) wy) exp(n(s,a) wp.e)

als) = , (als) = , V(s,a) € SxA.
) = 5 ety S S eplontsa) T
We define
H
Phe = {mne wne €0}, Pe= ][] Pue (54)
h=1

We claim that for any f € Q and 7 € P, there exists f. € Q. and 7w, € P, such that
|XF ron— Xfon| < 24H%e (55)
The proof of (B3) is deferred to the end of this proof.

Step 1.2: bounding the mean and variance. Assumption [l ensures X t,wh is bounded:
VieQmePhelH]: |Xj,,l<4H. (56)

We now bound E (X% ..»]- Notice that

St ht1~Pr(c|s¢,n,08,1)

lh(f7 f7§7 77)2 = (lh<f7 f,f,ﬂ') - lh(f7 Pﬂ—fagaﬂ-) + lh(f,Pﬁf,f,Tf))2
2
D (5 oy [0 FER] 40P 60 )

a/~mp 1 (ls’)

2
= <E s/ ~Pp (+]s,a) [lh(fa fafa’]r)]) —I-lh(f,Pﬂf,fﬂT)Q-l-QE s/ ~Pp (+]s,a) [lh(fv fagaﬂ_)] lh(fv]P)ﬂ—fvgaﬂ—)v

a’~mp g (ls’) a,/Nthrl(.\s/)

(57
where the expectation of the last term satisfies
E s/ ~Pp (+]s,a) |:]E s/ ~Pp (+]s,a) [bl(f? f7 57 ﬂ-)] lh(f7 ]P)Trf> §7 7T):|
a/~7"h,+1('|5/) a/~7"h,+1('|5/)
P (C))
=E verciom [ LEMIE warycom n(f,PTf,6m)] = 0. (58)

a’~mp oy (ls?) a’~mp g (ls?)

Combining (E8), (84) and (BY), we have

2
(B2)
Est,lz+1NPh(‘lst,h,vat,h,) [X.;’ﬂ',h} = (]E st,h41~FRClsenrag n) [lh (fa /s gt,h, 77)] ) =ty (f’ St,hs Qt,hs 7T)'
a’~mp 1 Clse pgt)
(59

Now we consider the martingale variance term. Define the filtration F; := o(D;) (the o-algebra
generated by the dataset D, = UthlDt7 n). We have

Vf S Q’h S [H] : ]E I:X;,Tl',h|ft_1:| = E [Est,thlN]Ph("St,h;at,h) [X;,ﬂ',h] |‘Ft—1}

(89)
= E(St,h,at,h)mad;fh [éh(.ﬂ St,hy At by 77)] 5 (60)
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where we define d7 ;, to be the state-action visitation distribution at step / and time ¢ under policy
profile 7 and 1n1t1a1 state distribution p, i.e.,

dg’h(s, a) i=Eq P (sp = s,an, = alsy).

Furthermore, we have

Var [X})Tr,hl}—tfl} < E [(X;)Tr’h)Q ‘]:,5,1}

(61)

2
=E |:(]Ea,~77h+1('|3t,h+l) [ (rh(st,ha at,h) + fh-&-l(st,h-i-l, a/) - fh(st,h’ atﬁ))

9 2
- (fh+1(8t,h+17a/) —Eor,cisgpann [fh—O—l(S/aa/)]) D

a’~mp g (ls’)

s

2
< E[(Th(st,h, atn) + 2fn1(senr1,0") = fr(sen, aen) = Eorycroppanm [far(s', a’)])

a/~mp g (ls?)

2
: <rh(st,h,at,h) +Eorr, clogparn [fryi(s,a’)] = fh(St,h,at,h))

a’~7rh+1(-\s’)

< 16H2E(St,h,,af,,h)~d;fh [fh(f, 3t,h7at,h77r)]7 VfeQ,

]

(62)

where the first equality follows from (B3) and (B6), and the second inequality follows from Jenson’s
inequality.

Step 1.3: applying Freedman’s inequality and finishing up. By Lemma I, (B8), (60) and (B2),
and noticing that ¢, (f, s, a,n) is only related to fy, fr+1 and 7,41, we have with probability at
least 1 — 6, forallt € [T], h € [H], fe € Qc and 7 € P.,

t

1 t—1
E(si,h,ai,h)wd:fh [eh(f€7 Si7h7 a’i;h’ 7'(-6)] - Z X.’]L"E,Tl'e,h

1 i=1
t

(]

%

I
-

<

[\E\ﬂri

E(siyh,aiyh)wd:fh [eh(fea Sihy Qi hy ﬂ—é)] + C1H2 1Og(TH‘®h7€‘|6h+11€”Q€|/5)

=1

‘*H

&= 1
<

BHd
2}: enmreig, U s )]+ C1r? (dtog (220) 4 1ow(T/2)) - (69

where C,C] > 0 are absolute constants. From (B3) we deduce that for all ¢ € [T, f. € Q., and

Te

t—

; BHd
o Z Z Xf€77r€7h S 75 Z ]E(Sri,mﬂi,h)“’d:fh, [éh(fev Si,hs Qi hy 71—6)] + Cng <d IOg (

i=

fo.
(104

€ P., we have with probability at least 1 — 4,

1 H t—1 H
1

1 h=1 i=1 h=1

Note that for any ¢t € [T] and h € [H], there exist ;) € O} and w;;, €  such that f; ) =

> + 10g(T/5)> .
(64)

. € Qpand my, = 7, € Pn. We can choose 0y € Op and wype € e such that

{7 we . tnerm) € Pe. Then by (B4) we have for all ¢ € [T,
- [ft(ftaﬂ't)

(G
<

t—1 H

:::: ft,ﬂ'tf
=1h
—1
1
t

1=

H
- Z ZX}{ cmeon +24H3T
h=

i=1 h=1
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t—1

l\J\H

i=1 h=1

(65)
where the last line follows from (B3) and (B9).

Step 2: bounding £;(f*,7*). Forany f € Qandt € [T], we define

Vin = Eaery, (oo [0 6702 = n(F F & )| where J* = P71,

(66)
Note that for any tuple £ = (s, a, s’), we have
I (F £ 67 = (" T 6 7))
= | )+ T 6T I £ 67 — (7, T 7
SAH|E oy ciony [0(F 167 |, G

A1 ClsD

where the last line follows from (E7). Furthermore, we have

E cosycion a5 f 67 S E vy [rals,0) + fiii (s a) = fi(s,a)]

'~ ClsD) QLD

= 12(5,) + Egnty (1) | Vinar(5)] = fi(s,)

=Ey P, (s,0) [Vf%**,h+1(8/)} —Eyp,(1s,a) [Vis1(s)] . (68)
where the last line follows from Bellman’s optimality equation:

Th(57 a) =+ ES,N]Ph('IS,a) [Vi:+1(8/)] - f;:(& CL) =0.
Note that by Lemma B, we have

al ~7

log |A| 7
Byt (lsa) Vi1 (8)] = =5 < Bonry (o |V nir ()] € Bonpypoay [Visa ()]
(69)
Plugging the above inequality into (B7) and (BX) leads to
* Pk ~% * Pk ~% log | A
‘lh(f,f,f,’/T)2*lh(f,f,f,W)2‘<4H gg | (70)
The above bounds (I[0) and (Bd) imply that
t—1 t—1
Lon(f7) =Y Baar, clapln(f5 15 &n 77 = [nf) D Barear (a5 0,60,7)°
i=1 i=1
t—1
, 4HT log | A|
< sup YY)+ ——, (71)
feQ ; (=¥in) B

where we also use the definitions of Y}’ p (c.f. (B6)) and f* (c.f. (B)). Thus to bound L.(f*,7*),

below we bound the sum Zf;i Y;, p forany f € Q,t € [T] and h € [H] by applying Freedman’s
inequality and the covering argument. By a similar argument as earlier, we have for any f € 9,
there exists f. € Q. such that

Y} =Y}, <4He, (72)
whose proof is deferred to the end. We next compute the key quantities required to apply Freedman’s

inequality.
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* Repeating a similar derivation of (89), we have

2
ES’N]P’h(»\s,a) [Yﬁh] = (E s/ ~Pp (+]s,a) [lh(f*7f7 fta%*)]> ) (73)

a’~%2+1(.|s’)

which implies

~ 2
VieQ: E[Yf,|Fi1]= E(senacn)~d, {(]Est,h+1~wh<wst,h~at,h> Un(f* fren, 7)) }
’ al~awp L Clst ny)

(74)
¢ We have

Var [V}, | Fi—1]

<E[(Y}a)" 1]

=E (anﬂﬂust,h) [(Th(st,h, atn) + fiy1(sepe1,a’) — fh(st,mat,h))Q
27\ 2
= (Fesloern ) =By [iaalornna)] ) |) f“]
ol Clag g )
2
<E (Th(St,h, arn) + 2f5 i1 (Sent1,0") = fa(senaen) = EeppimenClonnann [ (Stas1,a’)] )

al g Clog pgt)

2
' (Th(st,h»at,h) +EeppiamtnCloenann [fre(Stpt1,a’)] — fh(st,mat,h))

a/N%;+1("5t,h,+1)

-

2
< 16H2E(st,h,at,h)~d7pr,th <Est,h+1’\’ﬂ)h('St,hvat,h) [lh<f*’f7 5t,h7%*)}> 5 (75)

al T Clst )

where the first line uses (by (Ef))

lh(f*a f*a gt,ha 7T*) = f]:+1(5t,h+17 a/) - Est,h+1"’w)h(“5t,hvat,h) [f}):+1(5t,h+1; a/)] (76)
QIN;"E+1("5t,h+1)
where a’ ~ 75 (+[s¢,n+1) and the second inequality uses Jenson’s inequality.

* Last but not least, it’s easy to verify that
Y| < 4H?. (77)

Invoking Lemma D, and setting 7 as

1 | 10g(|On.c[|®n+1,e[HT/)
27 _ )
4H Zf:} Var {Y;7h|]‘—7;71]

we have with probability at least 1 — 6, for all f. € Q.,t € [T],h € [H],

7 = min

t—1

2
7Yfi,h + E(siyh,ai,h)wd::fh (Esi,h+1'\’ﬂph('Si,hrai,h) [lh(f*v fe; gi,ha 77—*)]>

i=1 “’l~%2+1(’|si.h+1)

t—1 2
S H |1og(|On,||Ons1,e|HT/) ZE(si,h,am)Nd"ih <]E5i,h+1~“”h('"‘i:hﬂ“fhh) [lh(f*’fé’&’h’%*)o
2 sk al~FE L Clsg hg)

+ H10g(|Oh,c ][O 41, |[HT/S).

Reorganizing the above inequality, we have for any f. € Q.,t € [T]:
t—1

> (Yia)

i=1

(78)
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t—1 2
Sf _ZE(Si,h,ai,n)Nd:f’h <]Esz',h+1~””h('Si,h»%,h) [lh(f*vfeagi,ha%*)]> + H? IOg( )
=1

al~F 1 Clsi )

t—1 2
+H log(\@h,e\|@h+1,e|HT/5) ZE(si,h,ai,h)Nd:fh <E si,h+1~FPRClsi noag n) [lh(f*7 fea gi,hv 7~T*)]>

i—1 a/~wp 1 Clsi 1)
< H?10g(|Oh.c||Ony1.|HT/S), (79)

where the last line makes use of the fact that —z? + bz < b%/4.
Combining (I9) and (I2), we have with probability at least 1 — ¢, forany ¢ € [T] and f € O,

t—1 H t—1 H

(=Y},) < (=Y} ) +4H?eT
1 h=1 1=1 h=1

(B2) H
< CoH? (dlog <d> + log(T/6)> + 4H?eT, (80)
€

i

where C'; > 0 is an absolute constant. Plugging this into ([1l), we have

4H?T log | A

5 (81)

~ Hd
Li(f*,7) < CoH? (dlog () + log(T/é)) + 4H?eT +
€
Step 3: combining the two bounds. Combining (B3) and (BTl), we have for any ¢ € [T,

t—1
* N* 1
Li(f*,7%) — Lo(fr,me) < —3 Z (5i.mys, )~ [n(ft,8in, Qi n, Tt)]

i=1 h=1

+CH? dlog(B?d) +1log(T/6) + €' + —>—

[\

(82)

T'log | Al
BH

for some absolute constant C' > 0. Letting ¢ = =, we obtain the desired result.

1
T 9
Proof of (83) and (). By Assumption [, we have

V(s,a) € Sx A [fu(s,a) = fre(s,a)] < lon(s,a)lly 10n — Onell,
and thus for any f € Q and m € P, we have

| X5 mh = X

2
= |Barmmnia (lsenin) [(T‘h(st,h» arn) + fri1,e(8en11,0") = fre(sen, arn))

<€ (83)

2
- <fh+1,€(3t,h+lval) —Eor,Clsgpiann [fh+1(5/aa/)]) ]

G/NT"}L+1('|S/)

2
—Ear i (senr) {(Th(st,h, atn) + fagr(Sena1,a") = fr(sens ann))

2
- (fh+1(3t,h+1aa/) —Eoer,Clseparn [fh+1(8'7a')}> }

a/~mp g (cls?)

= ‘Ea/'\/ﬂ'h+1('|5t,h+l) {(2rh(3t,h, atn) + frat,e(Sene1,a") = fre(sen aen) + fra1(Sene1,a") — fu(sen, an))

' (fh+1.,e(5t,h+1, a') = frs1(8t,n41,0") = Eurnry i o [frr1(s,0") = frpre(s',a’)] )}

a’~mp g (clsh)

+ Ea' o Clsinra) [(fh+1(8t,h+17 a') = fryte(Sehi1,0") = Eocr,cloppar [fnr1(s,0") = fryie(s'sa’)] )

alromp 1 (ls’)

' (fh+1(8t,h+17a/) —Eure,croppanm 180+ fayre(8ent1,0") = Eoneycisy pa ) [frae(s’,a)] )H

a’ g g (1)) al~rp g (s’
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< 8He+8He = 16He, (84)
where in the last inequality we use (B3).

Similarly, by Lemma B, we have
Vs €S helH]:  lma(ls) = mne([s)ll; < 2max||gn(s, @)y llwn — wn.ell, <26 (85)

Therefore, we have
2
XJtcﬂrmh - X;‘nr,h| = Ea/NW}L+1("St,}L+1) [(rh(st,hv at,h) + fh+1(5t,h+1a a/) - fh(StJH at,h))

2
- (fh+1(8t,h+17a') —Eune,Cloppann [fh+1(3’7a/)]> }

a’~mp g (cls’)

2
—Eo i Clsenst) [(Th(st,ha atn) + frr1(Se,he1.0") = falsen, at,h))

2
- (fh+1(5t,h+1aa,) —Eovr,clsgpann) [fh+1(5'7a')]) }

a/~mpgq,eClsh)

&)
SAH? ||mhg1(CIsent1) — Thate(lsensr)ll; < 8H7e, (86)
where the first inequality follows from Holder’s inequality and the fact that

2
(ri(s,0) + fuir(s',0') = fuls,a)® — <fh+1(8/»a/) —E verpcrom [fara(s a/)]) <4H?

a’ g g (1))

forall (s,a) e Sx A, f € Qand 7 € P.
Combining (B4) and (BH), we have the desired bound in (B3):

X = Xl <X o = X 1 X = Xfmn| < 16He + 8H?e = 24He.
Similarly, we have ([Z2) follows by

2
Yih=Yin=Eaa oo | (ra(senaen) + fipa(sent1,0") = fen(sen, ann))

2
— (ra(stn aen) + fia (senra,a’) = fu(sen, ann))

~75 1 Clsen) (2Th(5t,h; at,h) + 2fﬁ+1(st,h+1>a/) - fe,h(st,h,at,h) - fh(St,iu at,h))

= Ea’

“(fu(stnyaen) = fen(sensarn))
< 4He,
where the last inequality uses (§3).

B.2.4 Proof of Lemma Il

First note that for any policy profile 7 € I, any f € Q and h € [H], we have (note that Vig+1 =
0)

VE(P) =E  cimpapmmnirClan)

Sh41~Pp Clsp,ap),YheH]

> (Vin(sn) — fohﬂ(s’l“))]

h=1

M=

=E si~pap~mh 4 Clsp) [

sh41~Pp (lsp,ap) Yhe[H]

(Qr.n(sn,an) — Vf’fhﬂ(sw))] , (87)

h=1

and

H
VT(p) =E  cimpan~ntlsy - [Z Th(shaah)‘| . (88)
h=1

Sp41~PR(lsp,ap),Vhe
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The above two expressions (B4) and (BS) together give that

H
VE(p) =VT(p) =E  simpap~rmniiClon | lz (Qr.n(sn,an) —ru(sh, an) — ijjh+1<sh+1))]

Sp41~Pp(lsp,ap),Vhe[H h—1

I
M=

E(sp.an)~dr, { (Qp.n(shyan) — rh(sn, an) — PRV (s, an)) ]7

>
Il

1
=:En(f,5n,an,m)

where we define
th‘fﬂ-(s, a) = ]Es’NIP’;L(‘|s,a) [VfT:-h—‘rl(sl)} 5

and

Eh(f,s,a, 71-) = Qf,h(sva’) - ’I”h(S,a) - PhV;T(s?a)'

By Assumption [, for any f € Q, there exists §; € © such that f(s,a) =

we have

(89)

(90)

oD

(0f.1,dn(s,a)). Thus

En(f,s,a,m) = dn(s, G)T(Qf,h —Ch — /s V£h+1(sl)dﬂh(3/))7

=Wy, (f,m)

where W, (f, ) satisfies

VieQmell,hel[H]: |Wu(f,m,<2HVd

under Assumption 0. We define
xh(ﬁ) = ]E(s,a)wd::,h [¢h(57 a)] .
Then we have

H
Vi(p) = V7™ ( ZE(b a)~d? En(f,s,a,m) z xp(m

h=1 h=1

Forall ¢ € [T] and h € [H], we define

t—1

Aen(N) = Mg+ Y wp(m)zn(m)", YA >0,

=1

where I, is the d X d identity matrix. Then by Lemma B, we have

¢ t—1
. 1
E min {||xh(7ri)\|Ai1h(A),1 ,1} < 2log (det (Id + X E mh(m)mh(wi)")) .
i—1 i=1

Further, we could use Lemma B to bound the last term in (87), and obtain

Vie| Zmln{”xh(m)HA Loy ,1} < 2d(N),

where in the last line, we use the definition of d(\) (c.f. (B3)) and the fact that

len(m)lly <1

which is ensured by Assumption [I.

Observe that

)
<

T H
ZZ| xh 7Tt Wh ft,Wt)>|

t=1 h=1

‘V’” ~vrg)|'
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H
- ZZ| Th ﬂ—t Wh ftaﬂ—t»‘ 1{||:17h(7rt)||/\t’h()\)_1 < ].}

t=1 h=1

(a)

T H
+ZZ| Th 7Tt Wh ftaﬂ_t»‘ I{Hxh(ﬂt)HAt;(A) 1 > ]-} (100)

t=1 h=1

(b)
where 1{-} is the indicator function.

To give the desired bound, we will bound (a) and (b) separately.

Bounding (a). We have for any A > 0,

M=
M=

(@) < IWa (o), om0l -1 L {lan(m)la, 1 <1}

t=1h

I
—

B
M=

< IWa(fesme)lla, o0 min{Hmh(Wt)HAt)h(A)*l 71}- (101)

t

Note that |W3(ft, m¢)

1

>
Il
—

‘At A () Can be bounded as follows:

t—1 1/2
[Wh(fesm)lla, o) < V- 2HVd + <Z|<£€h(7fi),Wh(ft77Tt)>|2> ) (102)
i=1

where we use (23), (88) and the fact that v/a + b < v/a + Vb for any a,b >
The above two bounds () and (I02) together give

Y i 1/2
@< > (va-2mVi+ (Z |<xh(77i)aWh(fta77t)>|2> min{\lxh(ﬁt)||m,h(x>fl ’1}

t=1 h=1 i=1

B /2 ,p g 1/2
< (ZZA-ALdHQ) (ZZmln{Hxh e HA w1 ,1})

t=1 h=1 t=1 h=1

(a-i)

" 12 , 0 g 1/2
Z‘ xh 7rz Wh ftaﬂ't»Z) <szln{”xh Tt HAt R(N)~1 71}> ,

1 h=1 t=1 h=1

t—1

(3

t=1 14

(a-ii)
(103)

where in the second inequality we use Cauchy-Schwarz inequality and the fact that
2
vt e [T]: min{Hxh(m)HAt’h(A),l ,1} < min {||ach(7rt)HAm()\),1 71} L (104)
The first term (a-i) in (IT3) could be bounded as follows:

(a-i) “2) 2H?\/2XdTd()). (105)

To bound (a-ii), note that for any 7, 7’ € IT¥ | we have

2
[ (8) Wil ) 2 = (B 0y, [Qrn(s,a) = 15, @) = PuVF (5, a)]|
< E(s,a)wd;’fh [Eh(.ﬂ S, a, 7T)] 3 (106)
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where the inequality follows from Jenson’s inequality, and recall ¢ (f, s,a, ) is defined in (B2).
Combining (M#) and (BR), we could bound (a-ii) in (I3) as follows:

T t—1 H 1/2
(a-ii) < <2Hd(>\) SN E(a, a0, n(fr 505 i, m)) (107)

t=1 i=1 h=1

Plugging (I03) and (I7) into (I3), we have

T t—1 H 1/2
(a) < 2H?\/20dTd()) <2Hd ZZZE(si,anwd;f,ﬁ(ft,si,ahwt)) . (108)

t=1 i=1 h=1
Bounding (b). By Assumption 0 and (23), we have
Vo eIl [(an(r), Wa(f,m))| < 2H. (109)
Combining the above inequality with (B8), we have

(b) < 4H?d(N). (110)

Combining (a) and (b). Plugging (IN8) and (10) into (0), we have

> [z -veol

_ 1/2
< 2H?\/2X\dTd()\) + <2Hd(>\) ZT: ti ZH: E (o, amar, On(fe: s ai, m) +4H?d(N).
t=1 i=1 h=1 1
The first term in the right hand side of (IT) could be bounded as
2H?\/2X\dTd()\) < H?> (\dT + 2d()\)), (112)

and the second term in the right hand side of (ITl) could be bounded as

T -1 H 1/2 T H
<2Hd()\) ZZZE(si,ai)w;fhfh(ft,Suauﬂt)) + 1Y D> Eaay w7y, En(ft: 8i @iy mt)

t=1 i=1 h=1 t=1 i=1 h=1

t—1

(113)

for any n > 0, where in both (IT2) and (I13), we use the fact that vab < “7“’ forany a,b > 0
Substituting (IT2) and (IT3) into () and reorganizing the terms, we have

T
Z\V’” V)| <0

t=1 i=

t—1 H
> B, ofos sisai,m) + (6H2 + H/n)d(X) + H?AdT.
1 h=1
(114)

This gives the desired result.

B.3 Extension to general function approximation

We now extend the analysis to finite-horizon MDPs with general function approximation. We first
state our assumptions in this section.

Assumption 4 (Q-function class). The Q-function class Q = HhH:1 Oy, satisfies
* (realizability) Q* € Q.

* (Bellman completeness)V'm € Pand f € Q, P™f € Q.

* (boundedness) V' f, € Qn, || fnlloo < H+1—h.

34



Assumption B is a standard condition in prior literature involving general function approxima-
tion [Ciu“ef-all, PO24, Assumption 3.1], [lin"ef-all, P01, Assumption 2.1]. In particular, Assump-
tion @ holds under linear MDPs (c.f. Assumption [), as established inLemma . Under Assumption &,
we set the policy class P as follows.

Assumption 5 (Policy class). The policy class P = [[}_, Py is
exp (BQp(s,a))
>weaexp (BQun(s,a'))’

Vhe[H]: Pp= {ﬂh s mR(s,a) = VQn € Qh} (115)

with some constant B > (.

Moreover, drawing upon the work of Zhong et al] [Z(027], Cinef-all [2024], we require the MDP
to feature a low generalized Eluder coefficient (GEC). This characteristic is essential for ensuring
that the minimization of in-sample prediction error, based on historical data, also effectively limits
out-of-sample prediction error.

Assumption 6 (Generalized Eluder coefficient, Assumption 4.2 in Cinef-all [2024]). Given any

A > 0, there exists d(\) € R such that for any sequence {f;}1_, C O, {m}1_, C P, we have

T T t-1 H d(X) — -
Z (Vm Vm ) < %I;EHZZZE(% a,)wd’” Zh(fhs“a“']rt) " + d()\)HT‘F)\HT
t=1 t=1 i=1 h=1

(116)
For each \ > 0, we denote the smallest J(X) € Ry that makes (O8) hold as dGEC(X).

From Lemma M we can see that under linear MDPs (c.f. Assumption M), Assumption B holds with
deec(N) < Hd ( 7 H), where d(-) is defined in (B3). Moreover, as demonstrated by Zhong et all

[20272], RL problems characterized by a low Generalized Eluder Coefficient (GEC) constitute a
significantly broad category, such as linear MDPs [[Yang and Wang, 2019, lin"ef-all, PO2(0], linear
mixture MDPs [[Ayoub et all, 2020], MDPs of bilinear classes [[Du_ef_all, Z021], MDPs with low
witness rank [Sunefall, 2019], and MDPs with low Bellman Eluder dimension [lin_efall, ZO02T], see
Zhong et al] [20272] for a more detailed discussion.

We let N'(Qp, €, ||| .,) denote the e-covering number of Qj, w.r.t. the £, norm, and assume the
e-nets 9y, . are finite.

Assumption 7 (Finite e-nets). N (€) = max,c(m N(Qn, €, ||[l ) < +oo.

The following theorem gives the regret bound under the above more general assumptions.
Theorem 11 (Regret under general function approximation). Suppose Assumptions B, B, B, U hold.
We let B = TI%W in Assumption B, and set

1/2

L d (,/H> (117)
o = GEC — .
TH?3 log (N(e/5B)HT) T

Then for any ¢ € (0,1), with probability at least 1 — 6, the regret of Algorithm W satisfies

Regret(T) = O H3?\T <log <H6T) + log <N (@))) dgec <ﬁ> . (118)

Under linear MDPs, (ILTH) reduces to (Z2) given in Theorem [. Besides, this bound also matches (is
slightly tighter than) the bound given in Corollary 5.2 of Cinefall [2074] under similar assumptions.

B.4 Proof of Theorem [
In this proof, we use the same notations as in the proof of Theorem [ in Appendix Bl First, we
define

T = VE Vhe [H 119
m, = arg max Vi, (p), Vh e [H], (119)

and 7 = {7} } nea). Using the same argument as Lemma B, we have the following lemma.
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Lemma 12 (model error with log linear policies). Under Assumption B and B, we have

- log | A|

VseS,helHl: 0<Vy(s)— Vi (s) < T (120)
where B is defined in Assumption B.
We bound the two terms in the regret decomposition (B0) separately.
Bounding term (i). Following the same analysis as (&), we have
VA ) Vi) < (Ll ) — L) + AL 121

It boils down to bound L, (f*, 7*) — L ( fi, ;) foreach ¢ € [T]. Recall the definition of £, (f, s, a, 7)
in (B2), we give the following lemma, whose proof is deferred to Appendix BZZ3.

Lemma 13. Suppose Assumption B, B, @ hold. For any § € (0, 1), with probability at least 1 — 6,
foranyt € [T, we have

t—1 H

~x 1
Lo(f*,7%) = Lo(fe,m) < 9 ZZE(SMﬂM)Nd:fh (Cn(fes Siiny @iny )]

i=1 h=1
T log | A| )

+CH? (log (N (¢/B)) +log(TH/S) + B (122)

for some absolute constant C' > 0.

By (Z21) and Lemma 3, we have

) 1 T t—1 H N B BT
(1) < a{ o 5 Z Z Z (E(Si,hﬂli,h)"’d;?h [gh(flﬁ Si,]’“dfi,h’ ﬂt)}) + CTH3 log <(6/5)>

t=1 i=1 h=1

+ (CH?aT +1) TlogA],

(123)

Bounding term (ii). By Assumption B, we have for any 2> 0,7>0,

t—1

. -
) d(\ == .
(<Y DD Biaanyears, nlfr i a0,m) + (n) +\/d\)HT + XHT. (124)

t=1i=1 h=1

Combining (i) and (ii). Substituting (IZ3) and (Z4) into (BW), and letting n = %, we have

B)HT T1 2d ~ ~
Regret(T) < aCTH? log (A/(e/é)) + (CH?aT +1) o§|A| + GZC()\) +1\/deec(\)HT + AHT.

Setting

1/2
_ TloglAl
o H

, and B (125)

L ioc (1/B)

R o =
’ N(e/B)HT
TH? log (L21T)

in the above bound, we have with probability at least 1 — 4,

it <1 o (F) o (i) e )

for some absolute constant C’ > 0. This completes the proof of Theorem .
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B.4.1 Proof of Lemma I3

The proof is similar to the proof of Lemma B given in Appendix BZZ3. We use the same notations as
in Appendix B3, and also bound the two terms L;(f*,7*) and —L(f:, m;) in the left-hand side
of (IX2) separately.

Bounding —£;(f;, 7). Same as in (ER), here we also define

X},rr,h = Ea/NW;L+1(~|st,h+1) [lh(fv fa gt,ha 7T)2 - lh(f, }Pﬂrf7 gt,ha 7T)2] 5 (126)
then for any f € O:

t—1 t—1 t—1
ZX},ﬂ,h = ZanwhH(-\si,hH)lh(ﬂ fr&inm)? = ZEa’Nﬂh_H(-\s;hi)lh(fv P™ f, & n,m)°
=1 =1 =1

t—1 t—1
< Z ]E(L’Nthrl('\s’h,i)lh(fv f7 gi,ha 71—)2 - gigfgzEa/""’thrl("slh,,i)lh(f’ g, gi,ha 71—)2 = Et,h(fa ﬂ—)a
i=1 =1

(127)
where we use the fact that P™ f € Q guaranteed by Assumption B. Therefore, to upper bound
—Li(fr,m) = — ZhH:1 L n(ft, ), it suffices to bound — Zf;i X.;;ct;ﬂ't;h forall h € [H].

For all h € [H], there exists an e-net Qy, . of Qj, w.r.t. the £, norm such that
|Qn.e| <N (€) < 400, (128)

where the last relation is due to Assumption B. Then for any f € Qp, there exists f; . € Qp  such
that

1f = fr.el

and thus for any f € Q and m € P, we have

<6 (129)

| X5, wn = Xfmn]

2
= Ea’Nﬂh,+1('|St,h+1) |: (rh(st7h7 atﬁ) + fh+17€(st7h+17 CL/) - fh7€(st7h7 at,h))

2
- (chrl,e(St,thlaal) — Eonr,Clsenann) [fh+1(5/7a/)]) ]

a’~mp g1 (lsh)

2
—Earompia (lsinta) [(Th(st,m atn) + frr1(sene1,0") = fr(sens aen))

2
- (fh+1(3t,h+1; a/) - ]ES'NH’h,('\St,hvat,h) [chrl(Slv al)} ) :|

al ~mpyq Cls’)

= ‘anwh“(.m,hﬂ) {(27"h(3t,h7 ain) + fort,e(Sent1,0") = fre(Sensann) + far1(Sens1,a’) — fa(sens ann))
' (fh+1,e(3t,h+1= @) = frnr1(st,h41,0") —=Bone,cisp o, [frr1(s,0") = fayie(s'a')] )]

alremp 1 (ls’)

+ Barompir Clseinsn) [(fh+1(8t,h+17 a') = fri1,e(s6,n41,0") = Eonr,cioppa, [frr1(s,0") = fagr,e(s',a')] )

a/~mp g (ls’)

' (fh+1(8t,h+1, @) =B, cionpanm [frai(ssa)] + fayre(sene1, @) = Bone,cioppanm [frrie(s’sa)] )} ‘

a/~mp 1 (ls?) a/~mp g1 (ls)

< 8He+ 8He = 16He, (130)

where in the last inequality we use (IZ9) and the boundedness of fj, and fj, 1 assumed in Assump-
tion H.

In addition, there exists Q, . /B of Q}, w.r.t. the ¢, norm such that

|Qn.c/8| < N(e/B) < +oc. (131)
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We define

exp (BQ(s,a)) }
Ph,e = : ,a) = , ¥ B ¢ 132
he {Wh (s, a) S oxp (BQn(s, a)) Qn € Qh.e/B (132)
then we have
Phel = |Qn.e/| <N(e/B), (133)

and by Assumption B, for any 7, € Py, there exists Qp, € Q) ./ such that
exp (BQ(s,a))

TS, a) = . (134)
() 2w €xp (BQn(s,a’))
There also exists Qy,./p € Qp./p such that
|Qn — Q5] < €/B. (135)
We let
BQn.e/B(s,
(5. a) = exp (BQp,e/5(s,a)) . 136)
> weaexp (BQh.e/p(s,a'))
Then by Lemma B, we have
|17 — Thell; < 2€. (137)

In other words, we have shown that P}, . is an 2e-net of Pj, w.r.t. the £; norm.

Therefore, we have
2
XJtcﬂrah - X}ﬂr,h’ = ]Ea’N‘fTh,+1('\St,h,+1) [(rh(stﬁv at,h) + fh+1(8t,h+17 a/) - fh(st,h’ atﬁ))

2
- (fh+1(3t,h+17al) —Eonr, Clorpacn) [fh+1(3/va/)]> }

a/~mp 1 (ls?)
) 2
—Eo i Clsenst) {(Th(st,ha ag,n) + frr1(senr1,a") — fu(sen, at,h))

2
- (fh+1(8t,h+1aa') —Eorry Clog e [fh+1(8'>a')]) }

a’~mpgr,eClsh)
2 @D 2
<AH? |1 (seng1) = Thane(Clsensn)ll, < 8HZe, (138)

where the first inequality follows from Hélder’s inequality and the fact that

2
(rn(s,a) + frar(s',a') — fu(s.a))® — <fh+1(8/»a/) —E oor, s [fh+1(8/7a/)]) < 4H?

a’ g (1))

forall (s,a) € S x A, f € Q and 7 € P, which is ensured by Assumption .
Combining (I30) and (I3R), we have
| Xemon = Xpnl SIXF won = Xfown| + [ X n = X | < 16He + 8H?e = 24H7e.
(139)

On the other hand, Assumption B ensures X }Jh is bounded:

VfeQmeP,heH|: |X},,l<4H? (140)
Thus following the same argument as in Appendix BZ23 that leads to (B3), here we could obtain that
for any ¢ € (0, 1), with probability at least 1 — 0, forall t € [T], h € [H], f. € Q. = HhH:1 Oh,e
and T, € P, = HhH:1 Phe,

t—1 t—1
Z E(Si‘hvai,h,)Ndz_ih [h(fes Sisny @ishy Te)] — Z XFomeh
i=1 ' i=1
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t—1
1
< ZE(Sz By, h)"‘d i [eh(fE)S’L h;az hvﬂe)] + ClH2 log(TH|Qh 5||Qh+1 e||,Ph e|/5)
’L:1

t—1
1
< 9 Z (84,n,a3,n)~d3 ", [en(fe, Si,hs Qihs )] + CiHQ (log (N (¢/B)) +1og(T'H/3)), (141)
i=1

where C, C7] > 0 are absolute constants.

From (&) we deduce that for all ¢ € [T}, f. € Q., and 7, € P., we have with probability at least
1-96,

t—1 H t—1 H
i 1
SN X< = S Eirann di, (O (fes Siins @i, )] + C1 H? (log (N (¢/B)) + log(TH/6)) .
i=1 h=1 i=1 h=1
(142)
By (IXD), for any ¢t € [T'] and h € [H], we can choose f; p.e € Qp. and my e € Pp . such that
| fen = frmelloo <€ e n — Tenell; < 26 (143)
Then by (IZ2) we have for all ¢ € [T,
- ﬁt(ftﬂTt)
e
< - Z Z Xft e, h

i=1 h=1

t—1 H

Z Z Xft €T, h + 24H3€T

=1 h=1

t—1 H
(m) 1 3 3
53 D B, cmeds, [En(FreySihs aips )] + CLH® (log (N (¢/ B)) + log(TH/6)) + 24H?eT
i=1 h=1
|1 H

<3 > Eonain) 7, [ (fts Sins @i )] + CLH? (log (N (¢/ B)) + log(TH/9)) + 36 H €T,

=1 h=1

(144)
where the last line follows from (I39) and (BY).

Bounding £;(f*,7*). Same as in (B8), for any f € Q and ¢ € [T, we define

th *Ea ~T +1(|st h |:lh(f*7f7£t,ha77—*)2 7lh(f*af*7£t,ha7~r*)2 3 (145)
where we define
X =P (146)

Then following the same argument that leads to ([[9), setting 7 in Lemma O as

1 | log(|Qn,c||Qni1,[HT/5)
27 :
TS Var v 17

7 = min

we have with probability at least 1 — 0, for any f. € Q.,t € [T]:

t—1

> (Yia)

i=1

t—1 2
'S o ZE(Si‘h,,ai,h)Nd:fh (E Si h4+1~PrClsq, hoai n) [lh(f*v fea Ei,ha %*)]> + H? 10g(|Qh,eHQh+1,e|HT/6)
i=1

a’~FE 1 Clsing)
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t—1 2
+H IOg( ) +176|HT/5)ZE(si,;L,ai,h)Nd;rf‘h (Esi.thlNWh('Si,h@i,h) [lh(f*7fe,§i,}u%*)]>

=1 QIN%Z+1("5i,}L+1)
< H?log(N(e)HT/S), (147)

where the last line makes use of the fact that —z2 + bz < b%/4.

Moreoever, for any t € [T'], h € [H], we have

[ 2
Y;F,h - nyh - EG’N%?LHHSM) (Th(st,h»at,h) + fﬁ+1(5t,h+1, a’) — Jen(Sen, at,h))
2
— (ra(sensaen) + froi(sent1:a’) — fu(sen, ann))

=Eao s, Clsin) (2rn(se,ny ann) + 251 (Sehe1,0") = fen(Sensann) — fa(sen. ain))

(fu(st,nyaen) — fen(senan)) | < 4He. (148)

Combining (I&7) and ([4X), we have with probability at least 1 — 0, forany ¢ € [T] and f € Q,

t—1 H t—1 H

DD (Vi) DY (FYi) FAHT
i=1 h=1 i=1 h=1
© 3 2
< CoH  log(N(e)HT/6) + 4H* €T, (149)
where C5 > 0 is an absolute constant.
By (D) we have
4H?T1
Lo(f*,7) < CoH3 log(N (€) HT/S) + AH2eT + %'Al. (150)
Combining the two bounds. Combining (IZd)) and (I30), we have for any ¢ € [T,
Rl
Lo f*7) = La(frm) < =5 S B e a1 (fes $ishs @i ns )
i1=1 h=1
T1
+CH? <log (¢/B)) + log(TH/5) + €T + ;ﬂ”‘”) (151)

for some absolute constant C' > 0. Letting € = %, we obtain the desired result.

C Value-incentivized Actor-Critic Method for Discounted MDPs

Infinite-horizon MDPs. Let M = (S, A, P,r,~) be an infinite-horizon discounted MDP, where
S and A denote the state space and the action space, respectively, v € [0, 1) denotes the discount
factor, P : S x A — A(S) is the transition kernel, and r : § x A — [0, 1] is the reward function.
A policy 7 : § — A(A) specifies an action selection rule, where 7(a|s) specifies the probability
of taking action « in state s for each (s,a) € S x A. For any given policy 7, the value function,
denoted by V'™ : S — R, is given as

VseS: V7™(s)=E lZWtT(StaatHSO = s] , (152)

t=0

which measures the expected discounted cumulative reward starting from an initial state s = s,
where the randomness is over the trajectory generated following a; ~ 7(-|s;) and the MDP dynamic
St41 ~ P(|st,ar). Given an initial state distribution sg ~ p over S, we also define V™ (p) =
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Es~, [V™(s)] with slight abuse of notation. Similarly, the Q-function of policy 7, denoted by Q™ :
S x A +— R, is defined as

V(s,a) eSxA: Q7(s,a) =E lZ’ytr(st,atﬂso =s,a9 = a} , (153)

t=0

which measures the expected discounted cumulative reward with an initial state sy = s and an initial
action ag = a, with expectation taken over the randomness of the trajectory. It is known that there
exists at least one optimal policy 7* that maximizes the value function V™ (s) for all states s € S
[Puferman, 20T4], whose corresponding optimal value function and Q-function are denoted as V'*
and Q*, respectively. We also define the state-action visitation distribution dj; € A(S x A) induced
by policy 7 and initial state distribution p as

dy(s,a) = (1 —7)Esy~p lz YV Pr(sy, = s, a5 = a|so)1 . (154)
h=0

C.1 Algorithm development

Similar as (I3), we start with an optimization problem:

nax (1= ) Eqorpann(ioo) [@1 (0,0)] (153)

st. Qs (s,a) =7(s,a) +7 - Egup(|s,a)a~r(snQf (s',a")], V(s,a) € S x A.
Writing the regularized Lagrangian system of (I33) as

I’I}laX (1 - ’7) ESUNp,aNﬂ"("S(]) [Qf (507 a)]

Z T

+min [ X5.0) ((510) 47 Bup(lsayamacion @ 4500 = Qs (5.0) + 25D 0(5, 0

2
(156)
Similar to the finite-horizon case, we use the reparameterization () which gives
n}f}rx {(1 = N Esgrnp,ammn(-ls0) [@F (50, a)] — / mEs/NP(,‘S,a)@/NW(,‘S/) (r(s,a) +vQs(s',a’) — Qy (s, a) )2
(157)

P

— min (r(s,a) + yQs(s',a’) — g(s,a))g} dsda},

which is easier to optimize over both @y and 7. The population primal-dual optimization problem
(IX7) prompts us to design the proposed algorithm, by computing the sample version of (IX1), see
Algorithm B, where we let

Vi (s) = Eann(ls) [Q(s,a)], and VI (p) :=Esn, [VF(s)]. (158)

In Algorithm D, at iteration ¢, given dataset D;_; collected from the previous iterations, we define
the loss function as follows:

Et(f? ,/T) = Z ECL/NTF(‘lsl) (T(Sv (l) + ’YQf(S/?a/) - Qf (55 a))2
(57‘175,)6’th1
— inf Z Eormn()s) (1(s,a) +7Qp(s',a") — g(s,a))2 ) (159)

geQ
(s,a,5")€EDt—1

We compute (I60) in each iteration, which is the sample version of (IX4), and use the current policy
m; to collect new data following the sampling procedure in Algorithm B, which is also used in Ynan
ef-all [2023, Algorithm 3], Yang et all [2024, Algorithm 5], and [Yang et al] [2025, Algorithm 7].
Algorithm B has an expected iteration number E[h + 1] = ﬁ and it guarantees P(s;, = s,a, =
a) = dj (s, a) [Ynan efall, 2023] for any (s,a) € S x A and any policy 7.
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Algorithm 2 Value-incentivized Actor-Critic (VAC) for infinite-horizon discounted MDPs.
1: Input: regularization coefficient o > 0.
2: Initialization: dataset Dy := ().
3: fort=1,---,7T do
4:  Update Q-function estimation and policy:

(ft, ) < arg fGIS%TXGP {(1 —VF(p) — aLy(f, 7r)} (160)

5:  Data collection: sample (s¢, at, s;) < Sampler(7, p), and update the dataset D; = D;_1 U

{(st7at7 S%)}

6: end for

Algorithm 3 Sampler for (s,a) ~ d7 and 5" ~ P(-[s, a)

1: Input: policy m, initial state distribution p, player index n.
2: Initialization: sy ~ p, ag ~ 7(+|sg), time step h = 0, variable X ~ Bernoulli(7).
3: while X =1 do
4:  Sample s,41 ~ P(:|sn,an)
5: Sample apy1 ~ 7(-|Spt1)
6: h<«h+1
7: X ~ Bernoulli(y)

8: end while

9: Sample s,+1 ~ P(|sp,ap)
10: return (sp,ap, Sp4+1)-

C.2 Theoretical guarantees

Same as the finite-horizon setting, we assume the following d-dimensional linear MDP model.
Assumption 8 (infinite-horizon linear MDP). There exists unknown vector ( € R? and unknown

(signed) measures pi = (p™V) - -+ 1\D) over S such that
r(s,a) = ¢(s,a) "¢ and P(s'|s,a) = ¢(s,a) u(s),
where ¢ : S x A — R? is a known feature map satisfying ||¢(s,a)la < 1, and

maxc{[|Cly , 14(S) 5} < V. forall (s,a,5') € § x Ax S.

Similar as for the finite case, under Assumption B, we only need to set the Q-function class to be
linear and the policy class P to be the set of log-linear policies.

Assumption 9 (linear Q-function class (infinite-horizon)). The function class Q is defined as

Vd 1
T
= =¢(,-) 00, < —, < — 0.
0 {fa B0 10l < T2 ollas < 7=
Assumption 10 (log-linear policy class (infinite-horizon)). The policy class P is defined as
T
) BvVd
P = {ﬂw tTu(s,a) = exp (0(s,) ) 7 vd

ith < 2Vve
Yweacxp(o(s,a’) w) with |lw|ly < }
with some constant B > (.

gl

We give the regret bound of Algorithm B in Theorem [4.

Theorem 14 (infinite-horizon). Suppose Assumptions B- hold. We let B =
Assumption [0 and set

T1 1—7) .
oglvy( Y in

1/2

(1-)? 732
= 1 14 —— . 161
= (71 ety o (1 T o7 teb
Then for any ¢ € (0,1), with probability at least 1 — ¢, the regret of Algorithm D satisfies

o VT | Ces(ADTY 79/
Regret(T)(9<(1_,y)2\/1g< 5 >1g<1+d(1—7>2>>' (162)
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Note that

. Regret(T")
* _ U <
min (V*(p) =V™(p)) < —7

thus Theorem M4 guarantees that the iteration complexity to reach e-accuracy w.r.t. value sub-
optimality for any € > 0 is o (%), and the total sample complexity is o (%)

C.3 Proof of Theorem I4

Notation. For notation simplicity, we let f* := Q* be the optimal Q-function. We let IT := A(A)®
denote the set of all policies. We also define transition tuples

§=(s,a,8) €S XxAxS and & = (st,ar,8;) €S xAxXS. (163)

Given any policy 7 and f : S x A — R, we define P™ f as
V(s,a) e Sx A: P"f(s,a) :=r(s,a) + YEyp(|s,a),a~r(-|s) (s, 0")]. (164)

We let

(165)

O={0:foeQ}, Q= {w;||w||2<m}

L=y
be the parameter space of Q and P, respectively.

We’ll repeatedly use the following lemma, which is a standard consequence of linear MDP.

Lemma 15 (Linear MDP = Bellman completeness + realizability (infinite-horizon)). Under As-
sumption 8, we have

* (realizability) Q* € Q;
* (Bellman completeness)Vm € lland f € Q, P™ f € Q.

We’ll also use the following lemma, which bounds the difference between the optimal value function
V*(p) and max,ep V™ (p) — the optimal value over the policy class P, where we let

T = ~(p). 1
T arg max Vi (p) (166)

Lemma 16 (model error with log linear policies (infinite-horizon)). Under Assumptions B-I[0, we
have

log | A|
B b

VseS: 0<V*(s)—VE (s) < (167)

where B is defined in Assumption .

We omit the proofs of the above two lemmas due to similarity to that of the finite-horizon setting.

Main proof of Theorem 4. Given the regret decomposition in (B), we will bound the two terms
separately.

Step 1: bounding term (i). Similar to the argument in the finite-horizon setting, invoking
Lemma [d, we have

a log | A

1_W(Et(f*ﬁ*)fﬁt(ft,vrt)w - (168)

Thus to bound (i), we only need to bound L.(f*,7*) — L(f:,m) for each t € [T]. Define ¢ :
OxSxAxIlas

2
U(f,s,a,m) = (Egp(|s,a),armn(|s) T(s,a) + 7 f(s',a") = f(s,a)])”. (169)
We give the following lemma, whose proof is deferred to Appendix T4l

V*(p) = V' (p) <
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Lemma 17. Suppose Assumption B-U0 hold. For any § € (0, 1), with probability at least 1 — 6, for
any t € [T, we have

t—1

~ 1
Lo(f*,7) = Le(fem) < =5 ZE(si,ai)ngi [€(fes 55, a5, 70)]

C BdT T'log | Al
+ 5 (dlog((1 7)5)+(1—'7)B ) (170)

for some absolute constant C' > 0.

By (I6X) and Lemma [, we have

t—1

VHp) = Vi) < o { 5 Bt (o)) + <1—Cw>2 o ((f—dfw) }

i=1
CaT ) log | A|
(1—7)? B

which gives

t—1

T
1 CT BdT
] < — —_ = i 7y Yy 1 N2 1=~
() < - { 5 E ]E(& ai)~ds [0(fe,8i,ai,m)] + e dlog((l’y)5) }

t=1 i=1
CaT T'log | A
1) —————. (171
+ <(1 ) + ) 5 (171)
Step 2: bounding term (ii). For any A > 0, we define
dy(\) =dlog | 1+ _r (172)
TR T aa =)
We use the following lemma to bound (ii), whose proof is deferred to Appendix 472
Lemma 18. Under Assumption B, for any n > 0, we have
\vm &
T t—1
7 1 3Td\
]Ega,NWi€f7si,ai,7r +( —+ >d )\+7
1—v ;Zzl ozt U DTS =) YW sy
(173)
By Lemma [8, we have
T t—1
7 1 3Td\
(i) < —— stsaiy~dri L fts S0 @iy ( + )d()\)-l--
;; (sp,00)dp T DT ) W ey
(174)

Step 3: combining (i) and (ii). Substituting (ICZT) and (CZ4) into (Bd), and letting n = %, we have

T BdT T T1
Regret(T') < CTa -dlog((l_d >+< Ca +1) og | Al

(1—7)3 )8 (1—7)? B

7 2 3TdA
+ + dy(\) + ————. 175
(17 a(lv)> 7Y 2(1—7) (7

Setting
a2 \\ 12
(1—7)%1og (1 + 7= _

A= —, a= (1+ i) and = TREMAIETA) g

VT T'log (log |A|T/5) d
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in the above bound, we have with probability at least 1 — 9,

Regret(T)gC(l_v)Q\/1 g< 5 )1 g<1+d(1—7)2>'

for some absolute constant C’ > 0. This completes the proof of Theorem [4.

C.4 Proof of key lemmas

C.4.1 Proof of Lemma I'Z

We bound the two terms L (f*, 7*) and —L( f¢, m¢) in the left-hand side of (IZ0) separately. Given
fif': S x A— R, data tuple £ = (s, a,s’) and policy 7, we define the random variable

1, .6 m) =r(s,a) + (') = (s, 0), (177)

where a’ ~ m(-|s"). Then we have (recall we define P™ f in (I54))

l(f, P7f,¢&, 77) = 'Y(f(s/a a/) - Ei/fi&ﬁjf [f(3/> a/)] ) . (178)
Combining (CZ2) and ([ZR), we deduce that for any f, /' : S x A — R, £ and m,
l(f7f,7§’ﬂ')—l(f7pﬂf,€7 ) E;'ZW;(\‘SSG) [ (.fvf 57 )] (179)

Bounding —L,(f;,7;). Forany f € Q,mandt € [T, we define X} as

X r = Barun(lspy U F, & m)2 = LS P f 60 m)? (180)
Then we have for any f € Q:

t—1
ZXJZ", Z]Ea’r\aﬂ'( [s}) fvagu ZEa’Nﬂ'( [s}) f7IP f@u )
i=1

t—1

Z]Ea’wﬂ'( |8 )l(fv f> gla - lnf ZEGINTI'( |s] )l(f,gaglv )

2 @&

= Li(f,m), (181)

where the inequality uses the fact that P™ f € Q, which is guaranteed by Lemma 3. Therefore, to
upper bound —L,( f;, 7;), we only need to bound — Zf;i ‘

frome”

Below we use Freedman’s inequality (Lemma [X) and a covering number argument to give the desired
bound. Repeating a similar argument as the finite-horizon setting, for any € > 0, there exists an e-net
©. C © and an e-net 2, C ) such that

log |0.] < dlog< (12:/3)6) and  log || < dlog( (i]i\g‘i). (182)

Let Qc = {fc = fo. : b € Oc}, and P := {mc(als) = s ,‘:j)gi;(;()s Z)f))Tw 5+ we € Qe}. For any

f € Qand 7 € P, there exists f. € Q. and 7 € P, such that
24€

| XF, m = Xfn| < T (183)
To invoke Freedman’s inequality, we calculate the following quantities.
* Assumption B ensures that X} _ is bounded:
VieQ: |Xi < — . (184)
(1=7)
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» Repeating the argument for (BY), we have

2
(IB9)
ESQNPHSt’at) [X;‘JJ = (ESQNE’('IShat) [l(fv f> ft,ﬂ')]> = €<f7 5t7at77r)' (185)

ol (-]sh)
Define the filtration F; := o (D;), then we have (recall Algorithm B ensures (s¢, a;) ~ dpt))

Vf S Q : E [X}m—']:t—l] =E [ESQNPHS“M) [thc)ﬂ] |]:t—1} = E(st,at)Nd;:t [f(f, st,at,w)] .
(186)
¢ Furthermore, we have

Var [ X} | Fi_1]
<E[(X}.)" 1Fia]

’

= [ (Burmrcrp [0 26500 = Fo000)° =261 ) =By [0 ])] )

]1—1}

al~m(-|sh)

N

E [(r<st7at> 2y f(s)a) — F(51a1) — Boprirons [F(shna')])?

a’~w(-]s})

al

(P50 @1) + VB rcrenmy [f(sha)] = f(st,aa)z’\ft_l]

~m(c]sh)

16
< WE(st,at)wdgt [U(f, st,a,m)], VfeQ. (187)

where the first equality follows from ([Z4) and (IZ8), and the second inequality follows from
Jenson’s inequality.

Therefore, by Lemma [, we have with probability at least 1 — §, for all ¢ € [T, fc € Qc, me € Pe:

=t t—1
S Fiey st e 1,007 = 30 X
=t i=1
1 t—1 c
1
< 5 2 By [Uersir a0, 7)) + =5 0g(T1Oc10l/6)
i=1
A Ch 4Bd
< = E . L €y 91y Wi, Nle T o 1 - 1 T , 1
2 ; (susan)~dri [E(fe; siyai, me)] + (e (d og ((1 _7)262) + log( /6)) (188)

where C; > 0 is an absolute constant. From (I¥8) we deduce that for all ¢ € [T] f. € Q,, and
ﬂ-E e 7)63

-1 t—1
S X >3 C 4Bd
i:1Xf€,m S22 E(spamags [fersiran )] + 73 (dlog <(1 _7)2€2> +10g(T/6)>

(189)

Note that for any ¢ € [T'], there exist ; € © and w; € §2 such that f; = fy, € Q and 7; = 7, € P.
We can choose 0; . € O, and w; . € Q, such that ||§; — 0 |2 < € and ||w; — wy|]2 < €. We let
ft.e = fo,. € Qc. Then by (IX¥Y) we have for all ¢ € [T,

= Li(fe, )

t—1
(=W .
2 i
g - Xft,ﬂ't
i=1

s =L 24T

< -3 XG

= ft e e _ 2
— (1=1)
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t—1

1 Ch 4Bd 24Te
< E i e 8iy @iy Te)| + ———5 | dlog | ——5—5 | +1og(T/d
2 2B Um0+ 1= (0 (= )+ wtr7)) + 7205
4

z:l
t—1
1 (o Bd T 36T e
\ ~ E i b 19 19 1 T N9 o9 1 ra 9
"5 2 Bsvapmaps e sicaimo)) £ (d Og(<1—v>2e2>+ Og<5)>+(1—7)2
(190)

(1—79)?

=1
where the last line follows from (I&3) and (IX3).

Bounding £;(f*,7*). Forany f € Qandt € [T], we define
Vi = B gy [US5 S 6072 =00 F 60702 where =BT 7 (191)

Note that for any tuple £ = (s, a, s"), we have

USSR = U 6 72 = U, .6 m) + U T 6 7)

< 2B sian [ 5, 67)]

1=y | armwri)sh

U 67 = U 7

. (192)

where the last line follows from (Z9). Furthermore, we have

E oo [ 076 7)] D E s [1(s,0) + (5, a) = [*(s,0)]

al ~ix(+]s) al ~(-]s)

= T(S,CL) + ’y]Es/N]P’(~|s,a) {Vf;{;* (8/)} - f*(&a)

=VEswp(|s.0) {Vfi*(sl)] —VEy p(|s,0) {V”

where the last line uses Bellman’s optimality equation
7(5,0) + YEg p(|s,a) {V”*(s’)} — f*(s,a) =0. (194)

By Lemma [, we have
Es’w]P’(-|s,a) |:V7T* (S/):| - < Es’wP(-\s,a) [V];ﬁ** (Sl):| < IEs’w]P’(-|s,a) |:V7r

Plugging the above inequality into (I'73) and (IY2), we have
’l(f*a f*7 fa %*)2 - l(f*7 f*v ga %*)2‘ <

*

)], (93

*

log |A| /
e (s )} o (195)

(196)

The above bound ([9A) implies that
t—1 t—1

LI 7) = 3 B gl 66T = 13 B a7, 607°)

=1

. 44T log|A
<sup 3 (-Y)) + OgB| : (197)

where we also use the definitions of th, f* (c.f. (I4W)), and L; (c.f. (I39)). Thus to bound

Li(f*,7*), below we bound the sum Zf;i Yfi forany f € Q and ¢t € [T]. To invoke Freedman?s
inequality, we calculate the following quantities.

» Repeating the argument for (BY), we have

2
Egjnp(lse,a0) [YF] = <E<> L(f*, £, m*)]) : (198)
a’~7~r*(-\s;)
which implies
2
Vi€ Q: E[Yi|Fa] =Eq, aymar <E P Cloa) [(f*,f,ftﬁ*)]) . (199)
al ~F*(-|s})
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¢ We have
Var [V/|F, 1] <E {(Y})Q |]-"t,1}

=E (an;*(.s;) [(T(St,at) + (st al) = f(se,ar))?
2 2
() By o) ) ]
a7 (12
2
<8 (rlon ) + 207 (5100) = Flo1:00) = Eogorcr o 1751
ol (] 8))
2
: ( (86,01) +VE of o opap) [F* (55 0")] — f(8t7at)) ]:t—l‘|
ol mF (15
2
16 * ~%
S QE(Staat)Nd::t ESQND”('\%,G:) [l(f 7f7§77T )] ) (200)
) al ~T* (o] 5})

where the first line uses (by (I’ZX))
al mFE(]sh)

l(f*,f*,ft,ﬂ'*) =7 (f*(sg?a/) - E%NP('lb‘pat) [f*(séaa/)]> ) (201)

where a’ ~ 7*(+|s}), and the second inequality uses Jenson’s inequality.

* Last but not least, it’s easy to verify that

4
YiH < —s. (202)
Mils o
Invoking Lemma D, and setting 7 in Lemma D as
(1-19) log(|©|T/9)

7 = min

4 7 Et 1Var {Y;|fi_1}

for each f. € Q., we have with probability at least 1 — 6,

t—1 2
Vfe€Qet e [T] : Z _Yfi + E(Si,ai)""d;i (ESQNPCI%ﬂi) [l(f*’fevgia%*)]>
=1 ol (5]
1 t—1 2
S Ty 1Og(|®€|T/6)ZE(si,ai)Nd;i [(Es;w«si,an [l(f*vfea€i77~r*)]) }
i—1 ol ~ T (1)
1
4+ ——— log(|©|T/9d). (203)
o (€70
Reorganizing the above inequality, we have for any f. € Q.,t € [T]:
t—1 ‘ 1 2
Z (_Yfe) S ﬁlog ©|T/5) — ZE(sl a;)~dyt (Es;~n’><-5i,ai> [l(f*»fea&ﬁ*)o
i=1 al ~FH(-]sh)
1 t—1 2
+ m log(|©c|T/9) ZE(Si,ai)Nd;i [(ESQNH”(-%%) [L(f* ff’giﬂ%*)]) :|
i=1 W 1))
1
< ——log(|0.|T/5), (204)
=y o€/
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where the last line makes use of the fact that —z2 + bz < b2 /4.
Moreoever, for any ¢ € [T'], we have
t t
Yi =Yy
= Ea’~%*(»|s;) |:(T(3t7 at) + ’Yf*(sga a/) - f6(8t7 at))2 - (’/‘(St, at) + ’Yf*(527 a/) - f(sta at))2:|

~ By | (2rs,0) + 201 (o1 = ulstsa) = fssan)) - (o) = Flonsan)) | < 25

(205)

where the last inequality uses |f(s,a) — fc(s,a)| < ||o(s,a)ll, |0 — Oc]|, < e. Combining (Z04)
and (I3), we have with probability at least 1 — ¢, forany ¢ € [T] and f € O,

t—1
) Cy 4€T
-Y/) < ———=1 JT/0
@) O, 2V/d 4€T
< —— |dlog |1+ ——+ | +1og(T/6) | + , (206)
(1—7)2< ( (1—7)6> T+ =
where C5 > 0 is an absolute constant.
By (IY4) we have
- Cy 2Vd 4T log |A|
Li(f, 7)< —— | dl 1 log(T/6 —_ —— ). (07
Combining the two bounds. Combining (I90) and (Z04), we have for any ¢ € [T,
=
Lo(f*,77) = Lafeome) < =5 D B anymazt [E(fo 51y a5, m1)]
i=1
C Bd T Tlog | A|
—— [ dl —_— 1 — T 1—y)—=———
F e (s (255 ) s (5) +rer a0
(208)
for some absolute constant C' > 0. Letting € = %, we obtain the desired result.
C.4.2 Proof of Lemma I8
First note that for any policy 7 and f : S x A — R, we have
VE(p) =E  sompap~rcisy lz (Y"VF (sn) — 7h+1vf(5h+l))]
Spy1~P(lsp,ap),VhEN h=0
=E sonpapmnlon) [Z A" (Qy (snran) — WVf”(ShH))] ; (209)
sp41~P(lsp,ap),VhEN Py
and
VTi(p) =E  sompan~ntisn) [Z Whr(sh,ah)] . (210)
Sh1~P(lsp,ap),VheN h=0

The above two expressions (Z09) and (PI0) together give that

Vi(p) =V (p) =E  comoap~mcion [Z o (Qf(sh, an) = 1(sn,an) — ’YVf(ShH))]
h=0

Sha1~P(|sp,ap),YheEN

1 T
= ﬁE(s,a)wlg {Qf(s, a) —r(s,a) — YPVy (s,a)|, (211)

=E(f,s,a,m)
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where we define
PV (s,a) = Egmp(s.a) [VF (5], (212)
and
E(fys,a,m) = Qp(s,a) —r(s,a) —yPV{(s,a). (213)

By Assumption B, for any f € Q, there exists 8y € © such that f(s,a) = (05, (s, a)). Thus we
have

E(fs.a.m) = o(s.0)" (8= C= [ VP, @14)
W (f.m)
where W (f, ) satisfies
VieQmel: [W(fiml, < =V 215)
under Assumption B. We define
() = =Bt [9(5,0)]. 16)
Then we have
VF (0) = V" (p) = T Bteapma [E(f,5.0.)] = (alm) W(F, ) @17)
For all t € [T, we define
_)\Id+z (m)a(m) ", VA >0, (218)

where 1 is the d x d identity matrix. Then by Lemma g, we have

L =
i_zlmln{l'(ﬂ'i)HAi()\)l 71} < 2log (det (Id + 3 Zm(ﬁi)x(m)T>> ' 219)

i=1
Further, we could use Lemma B to bound the last term in (Z19), and obtain

vt e | me{ux 7l (-1 } < 2d,(N), (220)

where in the last line, we use the definition of dv( ) (c.f. (C22)) and the fact that
1
lz(mlls < T— — (221)
which is ensured by Assumption B.
Observe that
T
™ @ 1
Z‘V -V )’ = fZ‘E(s,a)w’;t [5(ft»8aa77ft)]‘

(M)Z| z(me), W(fe,me))]

T
= Y l@(m), Wi ) 11 {a(mo)lly - < 1}
t=1
(a)
T
+ > el W ml o) a0 > 1} @22
t=1

(b)
where 1{-} is the indicator function.

To give the desired bound, we will bound (a) and (b) separately.
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Bounding (a). We have for any A > 0,

T

@ < Y IW (Formo)lla, o 2wy, g1 L {2y, s < 1}

1

o~
Il

M=

<SSy, oy min {2 (m) 11} (223)

~
Il

1

(W (fe, ) ||At(/\) can be bounded as follows:

1/2
W (fe,m)lla, (n) < <Z| ft777t)>2> ; (224)

where we use (Z13), (ZIR) and the fact that va + b < /a + Vb for any a,b > 0.
(23) and (Z24)) together give

T 1/2
@< |V (Zl fmrt)>|> min { () 5,111}

. 9d 172 , r 1/2
ot ot

(a-i)

T t-1 12 , 7 1/2
+ (ZZ (2 (i), W(ft77ft)>|2> <Zmin {||x(77t)”/\t(,\)—1 71}> ;o (225
t=1 i=1

t=1

(a-ii)

where in the second inequality we use Cauchy-Schwarz inequality and the fact that

2
vt € [T : min{||x(7rt)||mm,l,1} <min{||x(7rt)||At(>\),1,1}. (226)

(a-1) in (Z23) could be bounded as follows:

(a-i) = 3\/ Lﬁ -2d.,(N). (227)

To bound (a-ii), note that for any 7, 7" € II, we have

1 2
o), W) P = = By [@1(5,0) = (s, @) = 1PV7 (s, a) |

o1
S (1—9)?

where the inequality follows from Jenson’s inequality, and recall £(f, s, a, ) is defined in (I&Y).
Combining (ZZ8) and (1), we could bound (a-ii) in (Z23) as follows:

) 1 T t-1 1/2
(a-ii) < i— 2d7()\)ZZ]E(Si,ai)ngiﬁ(ft,si,ai,m) . (229)

t=1 i=1

E(say~az [E(f58,0,m)] (228)

Plugging (IZX17) and (P29) into (I23), we have

T -1 1/2
(a) < 3 AT - 2d., () + . <2d7(A)ZZE (ss.aymaz £ ft,sl,az,m)> . (230)
- L—v i

t=1 i=1
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Bounding (b). By Assumption 8 and (ET4), we have

2
Vrell: |(z(n), W(f,n))| < T (231)
Combining the above inequality with (ZZ0), we have
4
(®) < ——d, (V). (232)

1—xv

Combining (a) and (b). Plugging (230) and (Z32) into (Z27), we have

-y
3 1 T t-1 1/2 4
< ——\/MT - 2d,(\) + 2dy(N) Y D By, aymar U1 sis i ) + ——d,(N).
1=v 1=v == 1-7
(233)
The first term in the right hand side of (Z33) could be bounded as
3 3
— /AT - 2d(N) K =— (AdT +2d,(N)), 234
and the second term in the right hand side of (Z33) could be bounded as
T t-1 1/2
< ZZE(S“ )~d7r1 ftasuauﬂ-t))
t=1 i1=1
T t—1
d'y()‘ n
< i — ;m (s, aiymazs ((fes 81y ai, ), (235)

for any n > 0, where in both (Z34)) and (Z33), we use the fact that vab < “TH’ for any a,b > 0.
Substituting (Z34) and (233) into (Z33) and reorganizing the terms, we have

Z‘V v )’
n T t—1
j-Z

t=1 i=1

7 1 3Td\

+ dy(N) + ———.

) B sy
(236)

]E (si,a3)~dp? fhshawﬂ—t) + (

This gives the desired result.
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