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Abstract

Online reinforcement learning (RL) with complex function approximations such
as transformers and deep neural networks plays a significant role in the modern
practice of artificial intelligence. Despite its popularity and importance, balancing
the fundamental trade-off between exploration and exploitation remains a long-
standing challenge; in particular, we are still in lack of efficient and practical
schemes that are backed by theoretical performance guarantees. Motivated by
recent developments in exploration via optimistic regularization, this paper pro-
vides an interpretation of the principle of optimism through the lens of primal-dual
optimization. From this fresh perspective, we set forth a new value-incentivized
actor-critic (VAC) method, which optimizes a single easy-to-optimize objective
integrating exploration and exploitation — it promotes state-action and policy es-
timates that are both consistent with collected data transitions and result in higher
value functions. Theoretically, the proposed VAC method has near-optimal regret
guarantees under linear Markov decision processes (MDPs) in both finite-horizon
and infinite-horizon settings, which can be extended to the general function ap-
proximation setting under appropriate assumptions.

1 Introduction

In online reinforcement learning (RL) [Sutton et al., 1998], an agent learns to update their policy in
an adaptive manner while interacting with an unknown environment to maximize long-term cumu-
lative rewards. In conjunction with complex function approximation such as large neural networks
and foundation models to reduce dimensionality, online RL has achieved remarkable performance in
a wide variety of applications such as game playing [Silver et al., 2017], control [Mnih et al., 2015],
language model post-training [OpenAI, 2023, Team et al., 2023] and reasoning [Guo et al., 2025],
and many others.

Despite its popularity, advancing beyond current successes is severely bottlenecked by the cost and
constraints associated with data collection. While simulators can subsidize data acquisition in cer-
tain domains, many real-world applications—such as clinical trials, recommendation systems and
autonomous driving—operate under conditions where gathering interaction data is expensive, time-
consuming or potentially risky. In these high-stake scenarios, managing the fundamental yet delicate
trade-off between exploration (gathering new information about the environment) and exploitation
(leveraging existing knowledge to maximize rewards) requires paramount care. Naive exploration
schemes, such as the ϵ-greedy method, are known to be sample-inefficient as they explore randomly
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without strategic information gathering [Dann et al., 2022]. Arguably, it is still an open challenge
to develop practical online RL algorithms that come with provable sample-efficiency guarantees,
especially in the presence of function approximation.

Addressing this limitation, significant research attempts have been made to develop statistically effi-
cient approaches, often guided by the principle of optimism in the face of uncertainty [Lattimore and
Szepesvári, 2020]. Prominent approaches include constructing optimistic estimates with data-driven
confidence sets [Auer et al., 2008, Agarwal et al., 2023, Chen et al., 2025, Foster et al., 2021], as
well as employing Bayesian methods like Thompson sampling [Russo et al., 2018] and its optimistic
variants [Agrawal and Jia, 2017, Zhang, 2022]. While appealing theoretically, translating them into
practical algorithms compatible with general function approximators often proves difficult. Many
such theoretically-grounded approaches either suffer from prohibitive computational complexity or
exhibit underwhelming empirical performance when scaled to complex problems.

Recently, Liu et al. [2024] introduced an intriguing framework termed Maximize to Explore (MEX)
for online RL, which optimizes a single objective function over the state-action value function (i.e.,
Q-function), elegantly unifying estimation, planning and exploration in one framework. In addition,
MEX comes with appealing sub-linear regret guarantees under function approximation. However,
the practical optimization of the MEX objective presents significant challenges due to its inherent
bi-level structure. Specifically, it incorporates the optimal value function derived from the target
Q-function as a regularizer [Kumar and Becker, 1982], which is not directly amenable to first-order
optimization toolkits. As a result, nontrivial modifications are introduced in the said implementation
of MEX, making it challenging to ablate the benefit of the MEX framework. This practical hurdle
raises a crucial question:

Can we design a sample-efficient model-free online RL algorithm that optimizes a unifying
objective function, but without resorting to complex bilevel optimization?

1.1 Our contribution

In this paper, we answer this question in the affirmative, introducing a novel actor-critic method that
achieves near-optimal regret guarantees by optimizing a single non-bilevel objective. Our contribu-
tions are summarized as follows.

• Incentivizing exploration from the primal-dual perspective. We start by offering a new interpre-
tation of MEX, where optimistic regularization—central to MEX—arises naturally from a La-
grangian formulation within a primal-dual optimization perspective [Dai et al., 2018, Nachum and
Dai, 2020]. Specifically, we demonstrate that the seemingly complex MEX objective function can
be derived as the regularized Lagrangian of a canonical value maximization problem, subject to
the constraint that the Q-function satisfies the Bellman optimality equation. This viewpoint allows
deeper understanding of the structure of the MEX objective and its exploration mechanism.

• VAC: Value-incentivized actor-critic method. Motivated by this Lagrangian interpretation, we de-
velop the value-incentivized actor-critic (VAC) method for online RL, which jointly optimizes the
Q-function and the policy under function approximation over a single objective function. Different
from MEX, VAC optimizes a regularized Lagrangian constructed with respect to the Bellman con-
sistency equation as the constraint, naturally accommodating the interplay between the Q-function
and the policy. This formulation preserves the crux of optimistic regularization, while allowing
differentiable optimization of the Q-function and the policy simultaneously under general function
approximation.

• Theoretical guarantees of VAC. We substantiate the efficacy of VAC with rigorous theoretical anal-
ysis, by proving it achieves a rate of Õ(dH2

√
T ) regret under the setting of episodic linear Markov

decision processes (MDPs) [Jin et al., 2020], where d is the feature dimension, H is the horizon
length, and T is the number of episodes. We further extend the analysis to the infinite-horizon
discounted setting and the general function approximation setting under similar assumptions of
prior art [Liu et al., 2024].

In summary, our work bridges the gap between theoretically efficient exploration principles and
practical applicability in challenging online RL settings with function approximation.
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1.2 Related work

We discuss a few lines of research that are closely related to our setting, focusing on those with
theoretical guarantees under function approximation.

Regret bounds for online RL under function approximation. Balancing the exploration-
exploitation trade-off is of fundamental importance in the design of online RL algorithms. Most
existing methods with provable guarantees rely on the construction of confidence sets and perform
constrained optimization within the confident sets, including model-based [Wang et al., 2025, Fos-
ter et al., 2023b, Chen et al., 2025], value-based [Agarwal et al., 2023, Jin et al., 2021, Xie et al.,
2023], policy optimization [Liu et al., 2023], and actor-critic [Tan et al., 2025] approaches, to name
a few. Regret guarantees for approaches based on posterior sampling [Osband and Van Roy, 2017]
are provided in [Zhong et al., 2022, Li and Luo, 2024, Agarwal and Zhang, 2022] under function
approximation. Regret analysis under the linear MDP model [Jin et al., 2020] has also been actively
established for various methods, e.g., for the episodic setting [Zanette et al., 2020, Jin et al., 2020,
Papini et al., 2021] and for the infinite-horizon setting [Zhou et al., 2021, Moulin et al., 2025]. How-
ever, the confident sets computation and posterior estimation are usually intractable with general
function approximator, making the algorithm difficult to be applied.

Exploration via optimistic estimation. Exploration via optimistic estimation has been actively
studied recently due to its promise in practice, which has been examined over a wide range of
settings such as bandits [Kumar and Becker, 1982, Liu et al., 2020, Hung et al., 2021], RL with
human feedback [Cen et al., 2024, Xie et al., 2024, Zhang et al., 2024], single-agent RL [Mete et al.,
2021, Liu et al., 2024, Chen et al., 2025], and Markov games [Foster et al., 2023a, Xiong et al.,
2024, Yang et al., 2025]. Tailored to online RL, most of the optimistic estimation algorithms are
model-based, with a few exceptions such as the model-free variant of MEX in [Liu et al., 2020], but
still with computationally challenges.

Primal-dual optimization in RL. Primal-dual formulation has been exploited in RL for handling
the “double-sampling" issue [Dai et al., 2017, 2018] from an optimization perspective. By con-
necting through the linear programming view of MDP [De Farias and Van Roy, 2004, Puterman,
2014, Wang, 2017, Neu et al., 2017, Lakshminarayanan et al., 2017, Bas-Serrano et al., 2021], a
systematic framework [Nachum et al., 2019b] has been developed for offline RL, which induces
concrete algorithms for off-policy evaluation [Nachum et al., 2019a, Uehara et al., 2020, Yang et al.,
2020], confidence interval evaluation [Dai et al., 2020], imitation learning [Kostrikov et al., 2019,
Zhu et al., 2020, Ma et al., 2022, Sikchi et al., 2023], and policy optimization [Nachum et al., 2019b,
Lee et al., 2021]. However, how to exploit the primal-dual formulation in online RL setting has not
been investigated formally to the best of our knowledge.

Paper organization and notation. The rest of this paper is organized as follows. We describe
the background, and illuminate the connection between exploration and primal-dual optimization
in Section 2. We present the proposed VAC method, and state its regret guarantee in Section 3.
Section 4 provide numerical experiments to corroborate the effectiveness of the proposed method.
Finally, we conclude in Section 5. The proofs and generalizations to the infinite-horizon and general
function approximation settings are deferred to the appendix.

Notation. Let ∆(A) be the probability simplex over the set A, and [n] denote the set {1, . . . , n}.
For any x ∈ Rn, we let ‖x‖p denote the ℓp norm of x, where p ∈ [1,∞]. The d-dimensional ℓ2 ball
of radius R is denoted by Bd

2(R), and the d× d identity matrix is denoted by Id.

2 Background and Motivation

2.1 Background

Episodic Markov decision processes. LetM = (S,A, P, r,H) be a finite-horizon episodic MDP,
where S and A denote the state space and the action space, respectively, H ∈ N+ is the horizon
length, and P = {Ph}h∈[H] and r = {rh}h∈[H] are the inhomogeneous transition kernel and the
reward function: for each time step h ∈ [H], Ph : S × A 7→ ∆(S) specifies the probability
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distribution over the next state given the current state and action at step h, and rh : S × A 7→ [0, 1]
is the reward function at step h. We let π = {πh}h∈[H] : S × [H] 7→ ∆(A) denote the policy of the
agent, where πh(·|s) ∈ ∆(A) specifies an action selection rule at time step h.

For any given policy π, the value function at step h, denoted by V π
h : S 7→ R, is given as

∀s ∈ S, h ∈ [H] : V π
h (s) := E

[∑H
i=h ri(si, ai)|sh = s

]
, (1)

which measures the expected cumulative reward starting from state s at time step h until the end
of the episode. The expectation is taken over the randomness of the trajectory generated following
ai ∼ πi(·|si) and the MDP dynamics si+1 ∼ Pi(·|si, ai) for i = h, . . . ,H . We define V π

H(s) := 0
for all s ∈ S . The value function at the beginning of the episode, when h = 1, is often denoted
simply as V π(s) := V π

1 (s). Given an initial state distribution s1 ∼ ρ over S , we also define
V π(ρ) := Es1∼ρ [V

π
1 (s1)].

Similarly, the Q-function of policy π at step h, denoted by Qπ
h : S ×A 7→ R, is defined as

∀(s, a) ∈ S ×A, h ∈ [H] : Qπ
h(s, a) := E

[∑H
i=h ri(si, ai)|sh = s, ah = a

]
, (2)

which measures the expected discounted cumulative reward starting from state s and taking action
a at time step h, and following policy π thereafter, according to the time-dependent transitions. We
define Qπ

H+1(s, a) := 0 and Qπ(s, a) := Qπ
1 (s, a) for all (s, a) ∈ S ×A. They satisfy the Bellman

consistency equation, given by, for all (s, a) ∈ S ×A, h ∈ [H]:

Qπ
h(s, a) = rh(s, a) + Esh+1∼Ph(·|s,a),ah+1∼πh+1(·|sh+1)[Q

π
h+1(sh+1, ah+1)]. (3)

It is known that there exists at least one optimal policy π⋆ = (π⋆
1 , . . . , π

⋆
H) that maximizes the

value function V π(s) for all initial states s ∈ S [Puterman, 2014]. The corresponding optimal
value function and Q-function are denoted as V ⋆ and Q⋆, respectively. In particular, they satisfy the
Bellman optimality equation, given by, for all (s, a) ∈ S ×A, h ∈ [H]:

Q⋆
h(s, a) = rh(s, a) + Esh+1∼Ph(·|s,a),ah+1∼π⋆

h+1(·|sh+1)[Q
⋆
h+1(sh+1, ah+1)]. (4)

Goal: regret minimization in online RL. In this paper, we are interested in the online RL setting,
where the agent interacts with the episodic MDP sequentially for T episodes, where in the t-th
episode (t ⩾ 1), the agent executes a policy πt = {πt,h}Hh=1 learned based on the data collected up
to the (t− 1)-th episode. To evaluate the performance of the learned policy, our goal is to minimize
the cumulative regret, defined as

Regret(T ) =
∑T

t=1 (V
⋆(ρ)− V πt(ρ)) , (5)

which measures the sub-optimality gap between the values of the optimal policy and the learned
policies over T episodes. In particular, we would like the regret to scale sub-linearly in T , so the
sub-optimality gap is amortized over time.

2.2 Motivation: revisiting MEX from primal-dual lens

Recently, MEX [Liu et al., 2024] emerges as a promising framework for online RL, which balances
exploration and exploitation in a single objective while naturally enabling function approximation.
Consider a function class Q =

∏H
h=1Qh of the Q-function. For any f = {fh}h∈[H] ∈ Q, we

denote the corresponding Q-function Qf = {Qf,h}h∈[H] with Qf,h = fh. At the beginning of the
t-th episode, given the collectionDt−1,h of transition tuples (sh, ah, sh+1) at step h up to the (t−1)-
th episode, MEX [Liu et al., 2024] (more precisely, its model-free variant) updates the Q-function
estimate as

ft = arg sup
f∈Q

Es1∼ρ

[
max
a∈A

Qf,1(s1, a)
]
− αLt(f), (6)

where α ⩾ 0 is some regularization parameter, and Lt(f) is

Lt(f) =

H∑
h=1

[ ∑
ξh∈Dt−1,h

(
rh(sh, ah) + max

a∈A
Qf,h+1(sh+1, a)−Qf,h(sh, ah)

)2
(7)
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− inf
gh∈Qh

∑
ξh∈Dt−1,h

(
rh(sh, ah) + max

a∈A
Qf,h+1(sh+1, a)− gh(sh, ah)

)2]
,

where ξh = (sh, ah, sh+1) is the transition tuple. The first term in (6) promotes exploration by
searching for Q-functions with higher values, while the second term ensures the Bellman consistency
of the Q-function with the collected data transitions. The policy is then updated greedily from Qft
to collect the next batch of data. While Liu et al. [2024] offered strong regret guarantees of MEX,
there is little insight provided into the design of (6), which is deeply connected to the reward-biased
framework in Kumar and Becker [1982].

Interpretation from primal-dual lens. We offer a new interpretation of MEX, where optimistic
regularization arises naturally from a regularized Lagrangian formulation of certain constrained
value maximization problem within a primal-dual optimization perspective. As a brief detour to
build intuition, we consider a value maximization problem over the Q-function with the exact (i.e.,
population) Bellman optimality equation as the constraints:

sup
f∈Q

Es1∼ρ

[
max
a∈A

Qf,1(s1, a)
]

(8)

s.t. Qf,h(s, a) = rh(s, a) + Es′∼Ph(·|s,a)

[
max
a∈A

Qf,h+1(s
′, a)

]
, ∀(s, a, h) ∈ S ×A× [H],

with the boundary condition Qf,H+1 = 0. When the optimal Q-function is realizable, i.e., Q⋆ ∈ Q,
the unique solution of (8) recovers the true optimal Q-function Q⋆.

How is this connected to the MEX objective? Introducing the dual variables {λh}h∈[H], the regular-
ized Lagrangian of (8) can be written as

sup
f∈Q

Es1∼ρ

[
max
a∈A

Qf,1(s1, a)
]

(9)

+ inf
{λh}h∈[H]

H∑
h=1

E
(s,a,s′)∼Dh

{
λh(s, a)

(
rh(s, a) + max

a∈A
Qf,h+1(s

′, a)−Qf,h(s, a)
)
+

β

2
λh(s, a)

2
}
,

where β > 0 is the regularization parameter of the dual variable,5 and Dh denotes a properly de-
fined joint distribution over the transition tuples that covers the state-action space over (s, a). We
invoke the trick in Dai et al. [2018], Baird [1995], which deals with the double-sampling issue, and
reparameterize the dual variable

λh(s, a) =
Qf,h(s, a)− gh(s, a)

β
, (10)

which satisfies

∀δh(s, a) : λh(s, a)
(
δh(s, a)−Qf,h(s, a)

)
+

β

2
λh(s, a)

2

=
1

2β

[(
δh(s, a)−Qf,h(s, a)

)2 − (δh(s, a)− gh(s, a)
)2]

. (11)

Consequently, by setting δh(s, a) := rh(s, a) + maxa∈A Qf,h+1(s
′, a) in (11), the Lagrangian

objective (9) becomes

sup
f∈Q

Es1∼ρ

[
max
a∈A

Qf,1(s1, a)
]
−

H∑
h=1

1

2β
sup

gh∈Qh

E
(s,a,s′)∼Dh

[(
rh(s, a) + max

a∈A
Qf,h+1(s

′, a)−Qf,h(s, a)
)2

−
(
rh(s, a) + max

a∈A
Qf,h+1(s

′, a)− gh(s, a)
)2]

. (12)

By replacing the population distribution Dh with its samples in Dt−1,h at each round, then we
recover the model-free MEX algorithm in (7).

However, (6) is a bilevel optimization problem where in the lower level, another optimization prob-
lem maxa∈A Qf,h (s, a) needs to be computed in (7). This can be can be computationally intensive
if not intractable. In this paper, inspired from this primal-dual view, we derive a more implementable
algorithm.

5It is possible to use an (s, a, h)-dependent regularization too.
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3 Value-incentivized Actor-Critic Method

3.1 Algorithm development

We now develop the proposed value-incentivized actor-critic method. In contrast to the model-free
MEX for (12), we consider a value maximization problem over both the Q-function and the policy
with the exact (i.e., population) Bellman consistency equation as the constraints:

sup
f∈Q, π∈P

Es1∼ρ, a1∼π1(·|s1)
[
Qf,1(s1, a1)

]
(13)

s.t. Qf,h(s, a) = rh(s, a) + E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)

[
Qf,h+1(s

′, a′)
]
, ∀ (s, a, h) ∈ S ×A× [H],

where P =
∏H

h=1 Ph is the policy class. This formulation explicits the joint optimization over
the Q-function (critic) and the policy (actor), and uses the Bellman’s consistency equation as the
constraint, rather than the Bellman’s optimality equation, which is key to obtain a more tractable
optimization problem.

Similar as (9), we can write the regularized Lagrangian of (13) as

sup
f∈Q, π∈P

Es1∼ρ, a1∼π1(·|s1)
[
Qf,1(s1, a1)

]
(14)

+ inf
{λh}H

h=1

H∑
h=1

E
(s,a,s′)∼Dh

a′∼πh+1(·|s′)

{
λh(s, a)

(
rh(s, a) +Qf,h+1(s

′, a′)− Qf,h(s, a)
)
+

β

2
λh(s, a)

2
}
.

Similar to earlier discussion, we also consider the reparameterization (10) which gives

sup
f,π∈P

{
V π
f (ρ)−

H∑
h=1

1

2β
sup

gh∈Qh

E
(s,a,s′)∼Dh

a′∼πh+1(·|s′)

[(
rh(s, a) +Qf,h+1(s

′, a′)−Qf,h(s, a)
)2

−
(
rh(s, a) +Qf,h+1(s

′, a′)− gh(s, a)
)2]}

, (15)

where we define

V π
f (s) := Ea∼π1(·|s) [Qf,1(s, a)] , and V π

f (ρ) := Es∼ρ

[
V π
f (s)

]
. (16)

Note that, the objective function (15) is easier to optimize over both Qf and π. Replacing the
population distributionDh of ξ = (s, a, s′) by its empirical samples leads to the proposed algorithm,
which is termed value-incentivized actor-critic (VAC) method; see Algorithm 1 for a summary.

Algorithm 1 Value-incentivized Actor-Critic (VAC) for finite-horizon MDPs
1: Input: regularization coefficient α > 0.
2: Initialization: dataset D0,h := ∅ for all h ∈ [H].
3: for t = 1, · · · , T do
4: Update Q-function estimation and policy:

(ft, πt)← arg sup
f∈Q,π∈P

{
V π
f (ρ)− αLt(f, π)

}
. (17)

5: Data collection: run πt to obtain a trajectory {st,1, at,1, st,2, . . . , st,H+1}, and update the
dataset Dt,h ← Dt−1,h ∪ {(st,h, at,h, st,h+1)} for all h ∈ [H].

6: end for

In Algorithm 1, at t-th iteration, given dataset Dt−1,h of transitions (sh, ah, sh+1) collected from
the previous iterations for all h ∈ [H], and use the current policy πt to collect new action a′ for each
tuples, we define the loss function as follows:

Lt(f, π) =

H∑
h=1

{ ∑
ξh∈Dt−1,h

E a′∼πh+1(·|sh+1)

(
rh(sh, ah) +Qf,h+1(sh+1, a

′)−Qf,h(sh, ah)
)2

− inf
gh∈Qh

∑
ξh∈Dt−1,h

E a′∼πh+1(·|sh+1)

(
rh(sh, ah) +Qf,h+1(sh+1, a

′)− gh(sh, ah)
)2}

,

(18)
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where ξh = (sh, ah, sh+1) is the transition tuple. To approximately solve the optimization prob-
lem (17), which is the sample version of (15), we can, in practice, employ first-order method, i.e.,

• Critic evaluation: Given the policy πt−1 fixed, we solve the saddle-point problem for ft as biased
policy evaluation for πt−1, i.e.,

ft = argmax
f∈Q

V
πt−1

f (ρ)− αLt(f, πt−1). (19)

• Policy update: Given the critic f is fixed, we can update the policy π through policy gradient
following the gradient calculation in Nachum et al. [2019b].

Clearly, the proposed VAC recovers an actor-critic style algorithm, therefore, demonstrating the
practical potential of the proposed algorithm. However, we emphasize the critic evaluation step
is different from the vanilla policy evaluation, where we have V π

f (ρ) to bias the policy value. In
contrast, MEX only admits an actor-critic implementation for α = 0 (corresponding to vanilla actor-
critic when there is no exploration) since their data loss term requires the optimal value function,
while the data loss term Lt(f, π) is policy-dependent in VAC.

3.2 Theoretical guarantees

The design of VAC is versatile and can be implemented with arbitrary function approximation. To
corroborate its efficacy, however, we focus on understanding its theoretical performance in the linear
MDP model, which is popular in the literature [Jin et al., 2020, Lu et al., 2021].
Assumption 1 (linear MDP, Jin et al. [2020]). There exist unknown vectors ζh ∈ Rd and unknown
(signed) measures µh = (µ

(1)
h , · · · , µ(d)

h ) over S such that

rh(s, a) = ϕh(s, a)
⊤ζh and Ph(s

′|s, a) = ϕh(s, a)
⊤µh(s

′), (20)

where ϕh : S × A 7→ Rd is a known feature map satisfying ‖ϕh(s, a)‖2 ⩽ 1, and
max{‖ζh‖2 , ‖µh(S)‖2} ⩽

√
d, for all (s, a, s′) ∈ S ×A× S and all h ∈ [H].

We also need to specify the function classQ for the Q-function and the policy class P for the policy.
Under the linear MDP, it suffices to represent Q-function linearly w.r.t. ϕh (s, a), i.e., Qh (s, a) =

ϕh (s, a)
⊤
θh, and the log-linear function approximation for the policy derived from the max-entropy

policy [Ren et al., 2022], with the following two regularization assumptions on the weights.

Assumption 2 (linear Q-function class). The function class Q =
∏H

h=1Qh is

∀h ∈ [H] : Qh :=
{
fθ,h := ϕh(·, ·)⊤θ : ‖θ‖2 ⩽ (H + 1− h)

√
d, ‖fθ,h‖∞ ⩽ H + 1− h

}
.

Assumption 3 (log-linear policy class). The policy class P =
∏H

h=1 Ph is

∀h ∈ [H] : Ph :=

{
πω,h : πω,h(a|s) =

exp
(
ϕh(s, a)

⊤ω
)∑

a′∈A exp (ϕh(s, a′)⊤ω)
with ‖ω‖2 ⩽ BH

√
d

}
with some constant B > 0.

Under these assumptions, we first state the regret bound of Algorithm 1 in Theorem 1.

Theorem 1. Suppose Assumptions 1-3 hold. We let B = T log |A|
dH in Assumption 3, and set

α =

(
1

H2T log (log |A|T/δ)
log

(
1 +

T 3/2

d

))1/2

. (21)

Then for any δ ∈ (0, 1), with probability at least 1− δ, the regret of VAC (cf. Algorithm 1) satisfies

Regret(T ) = O

(
dH2
√
T

√
log

(
log(|A|)T

δ

)
log

(
1 +

T 3/2

d

))
. (22)

Theorem 1 shows that by choosing B = Õ(T/dH) and α = Õ
(

1
H

√
T

)
, the regret of VAC is

no larger than the order of Õ(dH2
√
T ) up to log-factors. Compared to the minimax lower bound

Ω̃(d
√
H3T ) [He et al., 2023], this suggests that our bound is near-optimal up to a factor of

√
H , but

with practical implementation generalizable to arbitrary function approximator.
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Extension to the infinite-horizon setting. Our algorithm and theory can be extended to the
infinite-horizon discounted setting leveraging the sampling procedure in Yuan et al. [2023, Algo-
rithm 3]. We demonstrate that the sample complexity of VAC is no larger than Õ

(
d2

(1−γ)5ε2

)
to

return an ε-optimal policy, where γ is the discount factor. This rate is near-optimal up to polynomial
factors of 1

1−γ and logarithmic factors. We leave the details to the appendix.

Extension to the general function approximation. Our theoretical analysis can also be extended
to general function approximation, under standard assumptions for general function approximation
such as low generalized Eluder coefficient (GEC) [Zhong et al., 2022, Liu et al., 2024]. The cor-
responding tight regret bound is provided in Appendix B.3, which matches the bound given in Liu
et al. [2024, Corollary 5.2] under similar assumptions.

Extension to KL-regularized MDPs. Recently, MDPs regularized by the Kullback-Leibler (KL)
divergence KL(π‖πref), with respect to a reference policy πref = {πref,h}h∈[H] : S × [H] 7→ ∆(A),
has attracted much attention for preventing over-optimization and increasing stability of the learning
process [Ouyang et al., 2022, Yang et al., 2025]. Our framework of VAC can be extended straight-
forwardly, by invoking the soft Bellman consistency equation in the derivation:

Qπ
τ,h(s, a) := rh(s, a) + E sh+1∼Ph(·|s,a)

ah+1∼πh+1(·|sh+1)

[
Qπ

τ,h+1(sh+1, ah+1)− τ log πh+1(ah+1|sh+1)
πref,h+1(ah+1|sh+1)

]
,

(23)
where τ > 0 is the regularization parameter. We omit the details for conciseness.

4 Experiments

We provide numerical experiments to demonstrate the efficacy of the value-incentivized regulariza-
tion in the actor-critic framework.

Setup. We evaluate on two challenging continuous-control benchmarks in MuJoCo [Todorov et al.,
2012]: Ant-v4 and Walker2d-v4. For the base learner, we adopt Soft Actor-Critic (SAC) imple-
mented in Stable-Baselines3 [Raffin et al., 2021] and add a simple sample-based value-incentivized
term to its critic objective.

Critic update. With two critics {Qθj}2j=1 and target networks {Qθ−
j
}2j=1, the SAC target is

y = r(s, a) + γ
(
min
j

Qθ−
j
(s′, a′) − τent log π(a

′ | s′)
)
, a′ ∼ π(· | s′),

Here, r(s, a) denotes the one-step reward, and π denotes the current stochastic policy used by SAC
for target evaluation (i.e., a′ ∼ π(· | s′)). Our modified critic objective uses minibatch sample
averages (replacing population expectations) and reads

L̂Q({θj}) =
∑

(s,a,s′)∈B
∑2

j=1

(
Qθj (s, a)− y

)2 − 1
|B|α

∑
s∈B

∑2
j=1

1
N

∑N
i=1 Qθj (s, ai).

Here we use a single Monte Carlo sample 1
N

∑N
i=1 Qθj (s, ai) to approximate V π

f (s) =

Ea∼π(·|s)[Qf (s, a)]. We found that setting N = 1, i.e., using a single policy sample is good enough.
We use a minibatch B of size 256 sampled uniformly from a replay buffer of size 106. The buffer
stores the historical data: during the first 100 steps we act uniformly at random (warm-up). After
warm-up, the current policy selects one action at each step, and the resulting (s, a, r(s, a), s′) is
appended to the replay buffer. We optimize the critic with Adam (learning rate 3× 10−4), perform
one gradient step, and update target networks every step via Polyak averaging with τpolyak = 0.005.
Training starts after collecting 100 steps. The entropy coefficient is tuned automatically by optimiz-
ing a learnable log-temperature to match a target entropy.

Policy update. The actor is updated with the standard SAC loss

L̂π(ω) =
1

|B|
∑
s∈B

Ea∼πω(·|s)

[
τent log πω(a | s) − min

j∈{1,2}
Qθj (s, a)

]
,
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(a) Ant-v4: best return over 3 seeds (b) Ant-v4: average return over 3 seeds

Figure 1: Ant-v4 with 1/α ∈ {0, 2000}. Shaded area indicates standard deviation across 3 seeds.

(a) Walker2d-v4: best return over 3 seeds (b) Walker2d-v4: average return over 3 seeds

Figure 2: Walker2d-v4 with 1/α ∈ {0, 1000}. Shaded area indicates standard deviation across 3
seeds.

estimated with one reparameterized sample per state using the Tanh-squashed Gaussian policy; we
optimize the actor with Adam (learning rate 3 × 10−4) in lockstep with the critic. VAC modifies
only the critic objective above, leaving the actor update identical to SAC.

Network architecture. Both critics are separate MLPs with two hidden layers of 256 ReLU units
each (“twin Q”), and the actor is an MLP with the same hidden sizes producing a Gaussian policy
with Tanh-squashed actions.

Results. We run both experiments for 106 iterations over 3 seeds. Figures 1 and 2 summarize
performance. For each task, we plot the best return across the three seeds and the average return
over seeds; shaded regions denote standard deviation. The VAC regularization improves sample
efficiency compared to SAC.

5 Conclusion

In this paper, we develop a provably sample-efficient actor-critic method, called value-incentivized
actor-critic (VAC), for online RL with a single easy-to-optimize objective function that avoids com-
plex bilevel optimization in the presence of complex function approximation. We theoretically es-
tablish VAC’s efficacy by proving it achieves Õ(

√
T )-regret in both episodic and discounted settings.

Our work suggests that a unified Lagrangian-based objective offers a promising direction for prin-
cipled and practical online RL, allowing many venues for future developments. Further, we empiri-
cally validate VAC’s performance on MuJoCo tasks. Follow-up efforts will focus on more empirical
validation, and extending the algorithm design to multi-agent settings.
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(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new pro-
posed method and baselines. If only a subset of experiments are reproducible, they should
state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the details necessary to understand the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run experiments over 3 seeds and report the standard deviation of the
returns.

Guidelines:

16



• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or fig-
ures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The experiments are simple and can be run on a single CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a foundational research paper and does not have any societal impact.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a foundational research paper and does not have any societal impact.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit and mention the license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limi-
tations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We have no crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data collec-
tor.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We have no crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in the core methods.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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A Technical Lemmas

We provide some technical lemmas that will be used in our proofs.
Lemma 2 (Freedman’s inequality, Lemma D.2 in Liu et al. [2024]). Let {Xt}t⩽T be a real-valued
martingale difference sequence adapted to filtration {Ft}t⩽T . If |Xt| ⩽ R almost surely, then for
any η ∈ (0, 1/R) it holds that with probability at least 1− δ,

T∑
t=1

Xt ⩽ O
(
η

T∑
t=1

E[X2
t |Ft−1] +

log(1/δ)

η

)
.

Lemma 3 (Covering number of ℓ2 ball, Lemma D.5 in Jin et al. [2020]). For any ϵ > 0 and d ∈ N+,
the ϵ-covering number of the ℓ2 ball of radius R in Rd is bounded by (1 + 2R/ϵ)d.
Lemma 4 (Lemma 11 in Abbasi-Yadkori et al. [2011]). Let {xs}s∈[T ] be a sequence of vectors
with xs ∈ V for some Hilbert space V . Let Λ0 be a positive definite matrix and define Λt =
Λ0 +

∑t
s=1 xsx

⊤
s . Then it holds that

T∑
s=1

min
{
1, ‖xs‖Λ−1

s−1

}
⩽ 2 log

(
det(ΛT )

det(Λ0)

)
.

Lemma 5 (Lemma F.3 in Du et al. [2021]). Let X ⊂ Rd and supx∈X ‖x‖2 ⩽ BX . Then for any
n ∈ N+, we have

∀λ > 0 : max
x1,··· ,xn∈X

log det

(
Id +

1

λ

n∑
i=1

xix
⊤
i

)
⩽ d log

(
1 +

nB2
X

dλ

)
.

Lemma 6 (Corollary A.7 in Edelman et al. [2022]). Define the softmax function as softmax(·) :

Rd → ∆d by softmax(x)i =
exp(xi)∑d

j=1 exp(xj)
for all i ∈ [d] and x ∈ Rd. Then for any x, y ∈ Rd, we

have

‖softmax(x)− softmax(y)‖1 ⩽ 2‖x− y‖∞.

B Proofs for Episodic MDPs

B.1 Proof of Theorem 1

Notation and preparation. For notation simplicity, we let f⋆ := Q⋆ be the optimal Q-function.
We let Π := ∆(A)S denote the whole policy space. We have Ph ⊂ Π for all h ∈ [H]. We also
define the transition tuples

ξ := (s, a, s′) ∈ S ×A× S and ξh := (sh, ah, sh+1) ∈ S ×A× S. (24)

Given any policy profile π = {πh}h∈[H] and f = {fh : S ×A 7→ R}, we define Pπ
hf as

∀(sh, ah) ∈ S ×A : Pπ
hf(sh, ah) := rh(sh, ah) + E sh+1∼Ph(·|sh,ah),

ah+1∼πh+1(·|sh+1)

[fh+1(sh+1, ah+1)] ,

(25)

and let Pπf := {Pπ
hf}h∈[H]. Let

Θh := {θ : fθ,h ∈ Qh}, Ω :=
{
ω : ‖ω‖2 ⩽ BH

√
d
}

(26)

be the parameter space of Qh and Ph, respectively for all h ∈ [H]. We also define

V π
f,h(s) := Ea∼π(·|s) [Qf,h(s, a)] and V π

f,h(ρ) := Es∼ρ

[
V π
f,h(s)

]
, ∀f ∈ Q, π ∈ P , s ∈ S, h ∈ [H].

(27)

We’ll repeatedly use the following lemma, which guarantees that under Assumption 1, the optimal
Q-function Q⋆ is in Q, and Pπf ∈ Q for any f ∈ Q and π ∈ ΠH . Similar results can be found
in the literature, e.g., Jin et al. [2020]. For completeness, we include the proof of Lemma 7 in
Appendix B.2.1.
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Lemma 7 (Linear MDP⇒ Bellman completeness + realizability). Under Assumption 1, we have

• (realizability) Q⋆ ∈ Q;

• (Bellman completeness) ∀π ∈ Π and f ∈ Q, Pπf ∈ Q.

We also use the following lemma, which bounds the difference between the optimal value function
V ⋆ and maxπ∈P V π — the optimal value over the policy class P , where we let

π̃⋆
h := arg max

πh∈Ph

V π
f⋆,h(ρ), ∀h ∈ [H], (28)

and π̃⋆ = {π̃⋆
h}h∈[H] be the optimal policy within the policy class P . The proof of Lemma 8 is

deferred to Appendix B.2.2.

Lemma 8 (model error with log-linear policies). Under Assumptions 1-3, we have

∀s ∈ S, h ∈ [H] : 0 ⩽ V ⋆
h (s)− V π̃⋆

f⋆,h(s) ⩽
log |A|

B
, (29)

where B is defined in Assumption 3.

Main proof. We first decompose the regret (cf. (5)) as follows:

Regret(T ) =
T∑

t=1

(V ⋆(ρ)− V πt(ρ)) =

T∑
t=1

(
V ⋆(ρ)− V πt

ft
(ρ)
)

︸ ︷︷ ︸
(i)

+

T∑
t=1

(
V πt

ft
(ρ)− V πt(ρ)

)
︸ ︷︷ ︸

(ii)

, (30)

where recall we define V π
f = V π

f,1 in (16). We will bound the two terms separately.

Step 1: bounding term (i). The linear MDP assumption guarantees that Q⋆ ∈ Q by Lemma 7,
and by definition (28), π̃⋆ is in P . Thus by our update rule (17), we have

∀t ∈ N+ : V π̃⋆

f⋆ (ρ)− αLt(f
⋆, π̃⋆) ⩽ V πt

ft
(ρ)− αLt(ft, πt),

which gives

V π̃⋆

f⋆ (ρ)− V πt

ft
(ρ) ⩽ α (Lt(f

⋆, π̃⋆)− Lt(ft, πt)) .

Invoking Lemma 8, we have

V ⋆(ρ)− V πt

ft
(ρ) ⩽ α (Lt(f

⋆, π̃⋆)− Lt(ft, πt)) +
log |A|

B
. (31)

Thus to bound (i), it suffices to bound Lt(f
⋆, π̃⋆) − Lt(ft, πt) for each t ∈ [T ]. To introduce our

lemmas, we define ℓh : Qh × S ×A× Π 7→ R for all h ∈ [H] as

ℓh(f, s, a, π) :=

(
E s′∼Ph(·|s,a),

a′∼πh+1(·|s′)
[rh(s, a) + fh+1(s

′, a′)− fh(s, a)]

)2

. (32)

We give the following lemma that bounds (i), whose proof is given in Appendix B.2.3.

Lemma 9. Suppose Assumptions 1-3 hold. For any δ ∈ (0, 1), with probability at least 1 − δ, for
any t ∈ [T ], we have

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]

+CH3

(
d log

(
BHdT

δ

)
+

T log |A|
BH

)
(33)

for some absolute constant C > 0. Here, dπi

ρ,h is the state-action visitation distribution induced by
policy πi at step h.
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By (31) and Lemma 9, we have

V ⋆(ρ)− V πt

ft
(ρ) ⩽ α

{
− 1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)] + CH3d log

(
BHdT

δ

)}

+
(
CH2αT + 1

) log |A|
B

,

which gives

(i) ⩽ α

{
− 1

2

T∑
t=1

t−1∑
i=1

H∑
h=1

(
E(si,h,ai,h)∼d

πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]
)
+ CTH3d log

(
BHdT

δ

)}

+
(
CH2αT + 1

) T log |A|
B

. (34)

Step 2: bounding term (ii). For any λ > 0, we define

d(λ) := d log

(
1 +

T

dλ

)
. (35)

We use the following lemma to bound (ii), whose proof is in Appendix B.2.4.
Lemma 10. Under Assumption 1, for any η > 0, we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣ ⩽ η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt) + (6H2 +H/η)d(λ) +H2λdT.

By Lemma 10, we have

(ii) ⩽ η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt) + (6H2 +H/η)d(λ) +H2λdT. (36)

Step 3: combining (i) and (ii). Substituting (34) and (36) into (30), and letting η = α
2 , we have

Regret(T ) ⩽ αCTH3d log

(
BHdT

δ

)
+
(
CH2αT + 1

) T log |A|
B

+ (6H2 + 2H/α)d(λ) +H2λdT. (37)

Setting λ = 1√
T

, α =
(

1
H2T log(log |A|T/δ) log

(
1 + T 3/2

d

))1/2
, and B = T log |A|

dH in the above
bound, we have with probability at least 1− δ,

Regret(T ) ⩽ C ′dH2
√
T

√
log

(
log(|A|)T

δ

)
log

(
1 +

T 3/2

d

)
for some absolute constant C ′ > 0. This completes the proof of Theorem 1.

B.2 Proof of key lemmas

B.2.1 Proof of Lemma 7

Assumption 1 guarantees that

Q⋆
h(sh, ah) = rh(sh, ah) + Esh+1∼Ph(·|sh,ah)

[
V ⋆
h+1(sh+1)

]
= ϕh(sh, ah)

⊤ζh +

∫
S
Ph(sh+1|sh, ah)V ⋆

h+1(sh+1)dsh+1

= ϕh(sh, ah)
⊤
(
ζh +

∫
S
V ⋆
h+1(sh+1)dµh(sh+1)︸ ︷︷ ︸

:=ν⋆
h

)
, (38)
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where ν⋆h ∈ Rd satisfies

‖ν⋆h‖2 =

∥∥∥∥ζh +

∫
S
V ⋆
h+1(sh+1)dµh(sh+1)

∥∥∥∥
2

⩽ ‖ζh‖2 +
∥∥V ⋆

h+1

∥∥
∞ ‖µh(S)‖2 ⩽

√
d+ (H − h)

√
d =
√
d(H − h+ 1).

We also have ‖Q⋆
h‖∞ ⩽ H + 1− h for all h ∈ [H]. Thus Q⋆ ∈ Q.

Moreover, for any f ∈ Q, we have

Pπ
hf(sh, ah) = rh(sh, ah) + E sh+1∼Ph(·|sh,ah)

ah+1∼πh+1(·|sh+1)

[fh+1(sh+1, ah+1)]

= ϕh(sh, ah)
⊤ζh +

∫
S
Ph(sh+1|sh, ah)Eah+1∼πh+1(·|sh+1) [fh+1(sh+1, ah+1)] dsh+1

= ϕh(sh, ah)
⊤
(
ζh +

∫
S

(
Eah+1∼πh+1(·|sh+1)fh+1(sh+1, ah+1)

)
dµh(sh+1)︸ ︷︷ ︸

:=ζh

)
,

where ζh ∈ Rd satisfies

‖ζh‖2 =

∥∥∥∥ζh +

∫
S

(
Eah+1∼πh+1(·|sh+1)fh+1(sh+1, ah+1)

)
dµh(sh+1)

∥∥∥∥
2

⩽ ‖ζh‖2 + ‖fh+1‖∞ ‖µh‖2 ⩽
√
d+ (H − h)

√
d =
√
d(H − h+ 1).

In addition, we have

‖Pπ
hf‖∞ ⩽ ‖rh‖∞ ‖fh+1‖∞ ⩽ H − h+ 1, ∀h ∈ [H].

Thus Pπf ∈ Q.

B.2.2 Proof of Lemma 8

From Lemma 7, it is known that for all h ∈ [H], there exists ν⋆h ∈ Θh such that

Q⋆
h(s, a) = ϕh(s, a)

⊤ν⋆h, ∀(s, a) ∈ S ×A. (39)

Let

πh(a|s) :=
exp(Bϕh(s, a)

⊤ν⋆h)∑
a′∈A exp(Bϕh(s, a′)⊤ν⋆h)

, ∀(s, a) ∈ S ×A, (40)

where B is defined in Assumption 3. It follows that πh ∈ Ph, and for all s ∈ S , πh(·|s) is the
solution to the following optimization problem [Beck, 2017, Example 3.71]:

max
p∈∆(A)

〈p,Q⋆
h(s, a)〉+

1

B
H (p) , where H(p) := −

∑
a∈A

p(a) log p(a). (41)

Here,H(·) is the entropy function satisfying

0 ⩽ H(p) ⩽ log |A|, ∀p ∈ ∆(A). (42)

The optimality of πh for (41), together with (42), implies

∀s ∈ S : V π
f⋆,h(s) +

log |A|
B

⩾ 〈πh(·|s), Q⋆
h(s, a)〉+

1

B
H (πh(·|s))

⩾ 〈π⋆
h(·|s), Q⋆

h(s, a)〉+
1

B
H (π⋆

h(·|s))

= V ⋆
h (s) +

1

B
H (π⋆

h(·|s)) ⩾ V ⋆
h (s), (43)

which further indicates

max
π′
h∈Ph

V
π′
h

f⋆,h(s) ⩾ V ⋆
h (s)−

log |A|
B

. (44)

The desired bound (29) follows from the above inequality and the fact that V ⋆
h (s) =

maxa∈A Q⋆(s, a) ⩾ V π′

f⋆,h(s) for any policy profile π′, s ∈ S and h ∈ [H].
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B.2.3 Proof of Lemma 9

We bound the two terms Lt(f
⋆, π̃⋆) and −Lt(ft, πt) on the left-hand side of (33) separately.

Step 1: bounding −Lt(ft, πt). Given f, f ′ ∈ Q, data tuple ξ = (s, a, s′) and policy profile
π = {πh}Hh=1 ∈ ΠH , we define the random variable

lh(f, f
′, ξ, π) := rh(s, a) + fh+1(s

′, a′)− f ′
h(s, a), ∀h ∈ [H], (45)

where a′ ∼ πh+1(·|s′). Then we have (recall we define Pπf in (25))

lh(f,Pπf, ξ, π) = fh+1(s
′, a′)− E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[fh+1(s

′, a′)] , (46)

which indicates that for any f, f ′ ∈ Q, ξ and π,

lh(f, f
′, ξ, π)− lh(f,Pπf, ξ, π) = E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f

′, ξ, π)] . (47)

For any f ∈ Q, π ∈ ΠH and t ∈ [T ], we define Xt
f,π,h as

Xt
f,π,h := Ea′∼πh+1(·|st,h+1)

[
lh(f, f, ξt,h, π)

2 − lh(f,Pπf, ξt,h, π)
2
]
, (48)

where ξt,h := (st,h, at,h, st,h+1) is the transition tuple collected at time t and step h. Then we have
for any f ∈ Q:

t−1∑
i=1

Xi
f,π,h =

t−1∑
i=1

Ea′∼πh+1(·|si,h+1)lh(f, f, ξi,h, π)
2 −

t−1∑
i=1

Ea′∼πh+1(·|s′i,h+1)
lh(f,Pπf, ξi,h, π)

2

⩽
t−1∑
i=1

Ea′∼πh+1(·|s′i,h+1)
lh(f, f, ξi,h, π)

2 − inf
g∈Q

t−1∑
i=1

Ea′∼πh+1(·|s′i,h+1)
lh(f, g, ξi,h, π)

2 = Lt,h(f, π),

(49)

where the inequality uses the fact that Pπf ∈ Q, which is guaranteed by Lemma 7. Here, we define

Lt,h(f, π) :=

t−1∑
i=1

Ea′∼πh+1(·|si,h+1)

[(
rh(si,h, ai,h) + fh+1(si,h+1, a

′)− fh(si,h, ai,h)
)2]

− inf
g∈Q

t−1∑
i=1

Ea′∼πh+1(·|si,h+1)

[(
rh(si,h, ai,h) + fh+1(si,h+1, a

′)− g(si,h, ai,h)
)2]

.

(50)

Therefore, to upper bound −Lt(ft, πt) = −
∑H

h=1 Lt,h(ft, πt), it suffices to bound
−
∑t−1

i=1 X
i
ft,πt,h

for all h ∈ [H]. In what follows, we use Freedman’s inequality (Lemma 2) and a
covering number argument similar to that in Yang et al. [2025] to give the desired bound.

Step 1.1: building the covering argument. We start with some basic preparation on the covering
argument. For any X ⊂ Rd, let N (X , ϵ, ‖·‖) be the ϵ-covering number of X with respect to the
norm ‖·‖. Assumption 2 and Assumption 3 guarantee that (cf. (26)) Θh ⊂ Bd

2

(
H
√
d
)

and Ω =

Bd
2

(
BH
√
d
)

for all h, where we use Bd
2(R) to denote the ℓ2 ball of radius R in Rd. Thus by

Lemma 3 we have

logN (Θh, ϵ, ‖·‖2) ⩽ logN
(
Bd
2

(
H
√
d
)
, ϵ, ‖·‖2

)
⩽ d log

(
1 +

2H
√
d

ϵ

)
, (51a)

logN (Ω, ϵ, ‖·‖2) = logN
(
Bd
2

(
BH
√
d
)
, ϵ, ‖·‖2

)
⩽ d log

(
1 +

2BH
√
d

ϵ

)
(51b)
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for any ϵ > 0. This suggests that for any ϵ > 0, there exists an ϵ-net Θh,ϵ ⊂ Θh and an ϵ-net Ωϵ ⊂ Ω
such that

log |Θh,ϵ| ⩽ d log

(
1 +

2H
√
d

ϵ

)
, and log |Ωϵ| ⩽ d log

(
1 +

2BH
√
d

ϵ

)
. (52)

For any fh = fθ,h ∈ Qh with θh ∈ Θh, there exists θh,ϵ ∈ Θh,ϵ such that ‖θh − θh,ϵ‖2 ⩽ ϵ, and we
let fh,ϵ := fθh,ϵ

and define

Qh,ϵ := {fh,ϵ : θh,ϵ ∈ Θh,ϵ}, Qϵ =

H∏
h=1

Qh,ϵ (53)

In addition, for any πh ∈ Ph, there exists ωh ∈ Ω and ωh,ϵ ∈ Ωϵ such that ‖ωh − ωh,ϵ‖2 ⩽ ϵ, such
that

πh(a|s) =
exp(ϕh(s, a)

⊤ωh)∑
a′∈A exp(ϕh(s, a′)⊤ωh)

, πh,ϵ(a|s) :=
exp(ϕh(s, a)

⊤ωh,ϵ)∑
a′∈A exp(ϕh(s, a′)⊤ωh,ϵ)

, ∀(s, a) ∈ S×A.

We define

Ph,ϵ := {πh,ϵ : ωh,ϵ ∈ Ωϵ}, Pϵ =

H∏
h=1

Ph,ϵ. (54)

We claim that for any f ∈ Q and π ∈ P , there exists fϵ ∈ Qϵ and πϵ ∈ Pϵ such that∣∣Xt
fϵ,πϵ,h −Xt

f,π,h

∣∣ ⩽ 24H2ϵ. (55)

The proof of (55) is deferred to the end of this proof.

Step 1.2: bounding the mean and variance. Assumption 1 ensures Xt
f,πh

is bounded:

∀f ∈ Q, π ∈ P , h ∈ [H] : |Xt
f,π,h| ⩽ 4H2. (56)

We now bound Est,h+1∼Ph(·|st,h,at,h)

[
Xt

f,π,h

]
. Notice that

lh(f, f, ξ, π)
2 = (lh(f, f, ξ, π)− lh(f,Pπf, ξ, π) + lh(f,Pπf, ξ, π))

2

(47)
=

(
E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f, ξ, π)] + lh(f,Pπf, ξh, π)

)2

=

(
E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f, ξ, π)]

)2

+ lh(f,Pπf, ξ, π)2 + 2E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f, ξ, π)] lh(f,Pπf, ξ, π),

(57)

where the expectation of the last term satisfies

E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)

[
E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f, ξ, π)] lh(f,Pπf, ξ, π)

]
= E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f, f, ξ, π)]E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[lh(f,Pπf, ξ, π)]

(46)
= 0. (58)

Combining (48), (57) and (58), we have

Est,h+1∼Ph(·|st,h,at,h)

[
Xt

f,π,h

]
=
(
E st,h+1∼Ph(·|st,h,at,h)

a′∼πh+1(·|st,h+1)

[lh(f, f, ξt,h, π)]
)2 (32)

= ℓh(f, st,h, at,h, π).

(59)

Now we consider the martingale variance term. Define the filtration Ft := σ(Dt) (the σ-algebra
generated by the dataset Dt := ∪Hh=1Dt,h). We have

∀f ∈ Q, h ∈ [H] : E
[
Xt

f,π,h|Ft−1

]
= E

[
Est,h+1∼Ph(·|st,h,at,h)

[
Xt

f,π,h

]
|Ft−1

]
(59)
= E(st,h,at,h)∼d

πt
ρ,h

[ℓh(f, st,h, at,h, π)] , (60)
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where we define dπρ,h to be the state-action visitation distribution at step h and time t under policy
profile π and initial state distribution ρ, i.e.,

dπρ,h(s, a) := Es1∼ρPπ(sh = s, ah = a|s1). (61)

Furthermore, we have

Var
[
Xt

f,π,h|Ft−1

]
⩽ E

[(
Xt

f,π,h

)2 |Ft−1

]
= E

[(
Ea′∼πh+1(·|st,h+1)

[
(rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h))
2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2])2∣∣∣∣Ft−1

]
⩽ E

[(
rh(st,h, at,h) + 2fh+1(st,h+1, a

′)− fh(st,h, at,h)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2

·
(
rh(st,h, at,h) + E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]− fh(st,h, at,h)

)2∣∣∣∣Ft−1

]
⩽ 16H2E(st,h,at,h)∼d

πt
ρ,h

[ℓh(f, st,h, at,h, π)] , ∀f ∈ Q, (62)

where the first equality follows from (45) and (46), and the second inequality follows from Jenson’s
inequality.

Step 1.3: applying Freedman’s inequality and finishing up. By Lemma 2, (56), (60) and (62),
and noticing that ℓh(f, s, a, π) is only related to fh, fh+1 and πh+1, we have with probability at
least 1− δ, for all t ∈ [T ], h ∈ [H], fϵ ∈ Qϵ and πϵ ∈ Pϵ,

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)]−
t−1∑
i=1

Xi
fϵ,πϵ,h

⩽ 1

2

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C1H
2 log(TH|Θh,ϵ||Θh+1,ϵ||Ωϵ|/δ)

(52)
⩽ 1

2

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C ′
1H

2

(
d log

(
BHd

ϵ

)
+ log(T/δ)

)
, (63)

where C1, C
′
1 > 0 are absolute constants. From (63) we deduce that for all t ∈ [T ], fϵ ∈ Qϵ, and

πϵ ∈ Pϵ, we have with probability at least 1− δ,

−
t−1∑
i=1

H∑
h=1

Xi
fϵ,πϵ,h ⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C ′
1H

3

(
d log

(
BHd

ϵ

)
+ log(T/δ)

)
.

(64)

Note that for any t ∈ [T ] and h ∈ [H], there exist θt,h ∈ Θh and ωt,h ∈ Ω such that ft,h =
fθt,h ∈ Qh and πt,h = πωt,h

∈ Ph. We can choose θt,h,ϵ ∈ Θh,ϵ and ωt,h,ϵ ∈ Ωϵ such that
‖θt,h − θt,h,ϵ‖2 ⩽ ϵ and ‖ωt,h − ωt,h,ϵ‖2 ⩽ ϵ. We let ft,ϵ := {fθt,h,ϵ

}h∈[H] ∈ Qϵ and πt,ϵ :=
{πωt,h,ϵ

}h∈[H] ∈ Pϵ. Then by (64) we have for all t ∈ [T ],

− Lt(ft, πt)

(49)
⩽ −

t−1∑
i=1

H∑
h=1

Xi
ft,πt,h

(55)
⩽ −

t−1∑
i=1

H∑
h=1

Xi
ft,ϵ,πt,ϵ,h + 24H3ϵT

(64)
⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft,ϵ, si,h, ai,h, πt,ϵ)] + C ′
1H

3

(
d log

(
BHd

ϵ

)
+ log(T/δ)

)
+ 24H3ϵT
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⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)] + C ′
1H

3

(
d log

(
BHd

ϵ

)
+ log(T/δ)

)
+ 36H3ϵT,

(65)

where the last line follows from (55) and (59).

Step 2: bounding Lt(f
⋆, π̃⋆). For any f ∈ Q and t ∈ [T ], we define

Y t
f,h := Ea′∼π̃⋆

h+1(·|st,h)

[
lh(f

⋆, f, ξt,h, π̃
⋆)2 − lh(f

⋆, f̃⋆, ξt,h, π̃
⋆)2
]

where f̃⋆ := Pπ̃⋆

f⋆.

(66)

Note that for any tuple ξ = (s, a, s′), we have∣∣∣lh(f⋆, f⋆, ξ, π̃⋆)2 − lh(f
⋆, f̃⋆, ξ, π̃⋆)2

∣∣∣
=
∣∣∣lh(f⋆, f⋆, ξ, π̃⋆) + lh(f

⋆, f̃⋆, ξ, π̃⋆)
∣∣∣ ∣∣∣lh(f⋆, f⋆, ξ, π̃⋆)− lh(f

⋆, f̃⋆, ξ, π̃⋆)
∣∣∣

⩽ 4H
∣∣∣E s′∼Ph(·|s,a)

a′∼π̃⋆
h+1

(·|s′)
[lh(f

⋆, f⋆, ξ, π̃⋆)]
∣∣∣, (67)

where the last line follows from (47). Furthermore, we have

E s′∼Ph(·|s,a)

a′∼π̃⋆
h+1

(·|s′)
[lh(f

⋆, f⋆, ξ, π̃⋆)]
(45)
= E s′∼Ph(·|s,a)

a′∼π̃⋆
h+1

(·|s′)

[
rh(s, a) + f⋆

h+1(s
′, a′)− f⋆

h(s, a)
]

= rh(s, a) + Es′∼Ph(·|s,a)

[
V π̃⋆

f⋆,h+1(s
′)
]
− f⋆

h(s, a)

= Es′∼Ph(·|s,a)

[
V π̃⋆

f⋆,h+1(s
′)
]
− Es′∼Ph(·|s,a)

[
V ⋆
h+1(s

′)
]
, (68)

where the last line follows from Bellman’s optimality equation:

rh(s, a) + Es′∼Ph(·|s,a)
[
V ⋆
h+1(s

′)
]
− f⋆

h(s, a) = 0.

Note that by Lemma 8, we have

Es′∼Ph(·|s,a)
[
V ⋆
h+1(s

′)
]
− log |A|

B
⩽ Es′∼Ph(·|s,a)

[
V π̃⋆

f⋆,h+1(s
′)
]
⩽ Es′∼Ph(·|s,a)

[
V ⋆
h+1(s

′)
]
.

(69)

Plugging the above inequality into (67) and (68) leads to∣∣∣lh(f⋆, f⋆, ξ, π̃⋆)2 − lh(f
⋆, f̃⋆, ξ, π̃⋆)2

∣∣∣ ⩽ 4H
log |A|

B
. (70)

The above bounds (70) and (50) imply that

Lt,h(f
⋆, π̃⋆) =

t−1∑
i=1

Ea′∼π̃⋆
h+1(·|s

′
i)
lh(f

⋆, f⋆, ξi,h, π̃
⋆)2 − inf

g∈Q

t−1∑
i=1

Ea′∼π̃⋆
h+1(·|s

′
i)
lh(f

⋆, g, ξi,h, π̃
⋆)2

⩽ sup
f∈Q

t−1∑
i=1

(
−Y i

f,h

)
+

4HT log |A|
B

, (71)

where we also use the definitions of Y t
f,h (c.f. (66)) and f̃⋆ (c.f. (66)). Thus to bound Lt(f

⋆, π̃⋆),
below we bound the sum

∑t−1
i=1 Y

i
f,h for any f ∈ Q, t ∈ [T ] and h ∈ [H] by applying Freedman’s

inequality and the covering argument. By a similar argument as earlier, we have for any f ∈ Q ,
there exists fϵ ∈ Qϵ such that

Y t
fϵ,h − Y t

f,h ⩽ 4Hϵ, (72)

whose proof is deferred to the end. We next compute the key quantities required to apply Freedman’s
inequality.
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• Repeating a similar derivation of (59), we have

Es′∼Ph(·|s,a)
[
Y t
f,h

]
=
(
E s′∼Ph(·|s,a)

a′∼π̃⋆
h+1

(·|s′)
[lh(f

⋆, f, ξt, π̃
⋆)]
)2

, (73)

which implies

∀f ∈ Q : E
[
Y t
f,h|Ft−1

]
= E(st,h,at,h)∼d

πt
ρ,h

[(
E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[lh(f
⋆, f, ξt,h, π̃

⋆)]
)2]

.

(74)

• We have

Var
[
Y t
f,h|Ft−1

]
⩽ E

[(
Y t
f,h

)2 |Ft−1

]
= E

[(
Ea′∼π̃⋆

h+1(·|st,h)

[(
rh(st,h, at,h) + f⋆

h+1(st,h+1, a
′)− fh(st,h, at,h)

)2
−
(
f⋆
h+1(st,h+1, a

′)− E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[
f⋆
h+1(st,h+1, a

′)
])2])2∣∣∣∣Ft−1

]

⩽ E

[(
rh(st,h, at,h) + 2f⋆

h+1(st,h+1, a
′)− fh(st,h, at,h)− E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[
f⋆
h+1(st,h+1, a

′)
])2

·
(
rh(st,h, at,h) + E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[
f⋆
h+1(st,h+1, a

′)
]
− fh(st,h, at,h)

)2∣∣∣∣Ft−1

]

⩽ 16H2E(st,h,at,h)∼d
πt
ρ,h

(E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[lh(f
⋆, f, ξt,h, π̃

⋆)]

)2
 , (75)

where the first line uses (by (46))

lh(f
⋆, f̃⋆, ξt,h, π

⋆) = f⋆
h+1(st,h+1, a

′)− E st,h+1∼Ph(·|st,h,at,h)

a′∼π̃⋆
h+1

(·|st,h+1)

[
f⋆
h+1(st,h+1, a

′)
]

(76)

where a′ ∼ π̃⋆
h+1(·|st,h+1) and the second inequality uses Jenson’s inequality.

• Last but not least, it’s easy to verify that

|Y t
f | ⩽ 4H2. (77)

Invoking Lemma 2, and setting η as

η = min

 1

4H2
,

√√√√ log(|Θh,ϵ||Θh+1,ϵ|HT/δ)∑t−1
i=1 Var

[
Y i
f,h|Fi−1

]
 ,

we have with probability at least 1− δ, for all fϵ ∈ Qϵ, t ∈ [T ], h ∈ [H],

t−1∑
i=1

−Y i
fϵ,h + E(si,h,ai,h)∼d

πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f
⋆, fϵ, ξi,h, π̃

⋆)]

)2


≲ H

√√√√√log(|Θh,ϵ||Θh+1,ϵ|HT/δ)

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f⋆, fϵ, ξi,h, π̃⋆)]

)2


+H2 log(|Θh,ϵ||Θh+1,ϵ|HT/δ). (78)

Reorganizing the above inequality, we have for any fϵ ∈ Qϵ, t ∈ [T ]:
t−1∑
i=1

(
−Y i

fϵ,h

)
29



≲ −
t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f
⋆, fϵ, ξi,h, π̃

⋆)]

)2
+H2 log(|Θh,ϵ||Θh+1,ϵ|HT/δ)

+H

√√√√√log(|Θh,ϵ||Θh+1,ϵ|HT/δ)

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f⋆, fϵ, ξi,h, π̃⋆)]

)2


≲ H2 log(|Θh,ϵ||Θh+1,ϵ|HT/δ), (79)

where the last line makes use of the fact that −x2 + bx ⩽ b2/4.

Combining (79) and (72), we have with probability at least 1− δ, for any t ∈ [T ] and f ∈ Q,

t−1∑
i=1

H∑
h=1

(
−Y i

f,h

)
⩽

t−1∑
i=1

H∑
h=1

(
−Y i

fϵ,h

)
+ 4H2ϵT

(52)
⩽ C2H

3

(
d log

(
Hd

ϵ

)
+ log(T/δ)

)
+ 4H2ϵT, (80)

where C2 > 0 is an absolute constant. Plugging this into (71), we have

Lt(f
⋆, π̃⋆) ⩽ C2H

3

(
d log

(
Hd

ϵ

)
+ log(T/δ)

)
+ 4H2ϵT +

4H2T log |A|
B

. (81)

Step 3: combining the two bounds. Combining (65) and (81), we have for any t ∈ [T ],

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]

+ CH3

(
d log

(
BHd

ϵ

)
+ log(T/δ) + ϵT +

T log |A|
BH

)
(82)

for some absolute constant C > 0. Letting ϵ = 1
T , we obtain the desired result.

Proof of (55) and (72). By Assumption 1, we have

∀(s, a) ∈ S ×A : |fh(s, a)− fh,ϵ(s, a)| ⩽ ‖ϕh(s, a)‖2 ‖θh − θh,ϵ‖2 ⩽ ϵ, (83)

and thus for any f ∈ Q and π ∈ P , we have∣∣Xt
fϵ,π,h −Xt

f,π,h

∣∣
=

∣∣∣∣Ea′∼πh+1(·|st,h+1)

[
(rh(st,h, at,h) + fh+1,ϵ(st,h+1, a

′)− fh,ϵ(st,h, at,h))
2

−
(
fh+1,ϵ(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]
− Ea′∼πh+1(·|st,h+1)

[
(rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h))
2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]∣∣∣∣
=

∣∣∣∣Ea′∼πh+1(·|st,h+1)

[
(2rh(st,h, at,h) + fh+1,ϵ(st,h+1, a

′)− fh,ϵ(st,h, at,h) + fh+1(st,h+1, a
′)− fh(st,h, at,h))

·
(
fh+1,ϵ(st,h+1, a

′)− fh+1(st,h+1, a
′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)− fh+1,ϵ(s

′, a′)]
)]

+ Ea′∼πh+1(·|st,h+1)

[(
fh+1(st,h+1, a

′)− fh+1,ϵ(st,h+1, a
′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)− fh+1,ϵ(s

′, a′)]
)

·
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)] + fh+1,ϵ(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1,ϵ(s
′, a′)]

)]∣∣∣∣
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⩽ 8Hϵ+ 8Hϵ = 16Hϵ, (84)

where in the last inequality we use (83).

Similarly, by Lemma 6, we have

∀s ∈ S, h ∈ [H] : ‖πh(·|s)− πh,ϵ(·|s)‖1 ⩽ 2max
s,a
‖ϕh(s, a)‖2 ‖ωh − ωh,ϵ‖2 ⩽ 2ϵ. (85)

Therefore, we have∣∣Xt
f,πϵ,h −Xt

f,π,h

∣∣ = ∣∣∣∣Ea′∼πh+1(·|st,h+1)

[(
rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h)
)2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]
− Ea′∼πh+1,ϵ(·|st,h+1)

[(
rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h)
)2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1,ϵ(·|s′)

[fh+1(s
′, a′)]

)2]∣∣∣∣
⩽ 4H2 ‖πh+1(·|st,h+1)− πh+1,ϵ(·|st,h+1)‖1

(85)
⩽ 8H2ϵ, (86)

where the first inequality follows from Hölder’s inequality and the fact that∣∣∣∣∣(rh(s, a) + fh+1(s
′, a′)− fh(s, a))

2 −
(
fh+1(s

′, a′)− E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[fh+1(s

′, a′)]

)2
∣∣∣∣∣ ⩽ 4H2

for all (s, a) ∈ S ×A, f ∈ Q and π ∈ P .

Combining (84) and (86), we have the desired bound in (55):∣∣Xt
fϵ,πϵ,h −Xt

f,π,h

∣∣ ⩽ ∣∣Xt
fϵ,πϵ,h −Xt

fϵ,π,h

∣∣+ ∣∣Xt
fϵ,π,h −Xt

f,π,h

∣∣ ⩽ 16Hϵ+ 8H2ϵ = 24H2ϵ.

Similarly, we have (72) follows by

Y t
fϵ,h − Y t

f,h = Ea′∼π̃⋆
h+1(·|st,h)

[ (
rh(st,h, at,h) + f⋆

h+1(st,h+1, a
′)− fϵ,h(st,h, at,h)

)2
−
(
rh(st,h, at,h) + f⋆

h+1(st,h+1, a
′)− fh(st,h, at,h)

)2 ]
= Ea′∼π̃⋆

h+1(·|st,h)

[ (
2rh(st,h, at,h) + 2f⋆

h+1(st,h+1, a
′)− fϵ,h(st,h, at,h)− fh(st,h, at,h)

)
· (fh(st,h, at,h)− fϵ,h(st,h, at,h))

]
⩽ 4Hϵ,

where the last inequality uses (83).

B.2.4 Proof of Lemma 10

First note that for any policy profile π ∈ ΠH , any f ∈ Q and h ∈ [H], we have (note that Vf,H+1 =
0)

V π
fh
(ρ) = E s1∼ρ,ah∼πh+1(·|sh)

sh+1∼Ph(·|sh,ah),∀h∈[H]

[
H∑

h=1

(
V π
f,h(sh)− V π

f,h+1(sh+1)
)]

= E s1∼ρ,ah∼πh+1(·|sh)

sh+1∼Ph(·|sh,ah),∀h∈[H]

[
H∑

h=1

(
Qf,h(sh, ah)− V π

f,h+1(sh+1)
)]

, (87)

and

V π(ρ) = E s1∼ρ,ah∼π(·|sh)

sh+1∼Ph(·|sh,ah),∀h∈[H]

[
H∑

h=1

rh(sh, ah)

]
. (88)
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The above two expressions (87) and (88) together give that

V π
f (ρ)− V π(ρ) = E s1∼ρ,ah∼πh+1(·|sh)

sh+1∼Ph(·|sh,ah),∀h∈[H]

[
H∑

h=1

(
Qf,h(sh, ah)− rh(sh, ah)− V π

f,h+1(sh+1)
)]

=

H∑
h=1

E(sh,ah)∼dπ
ρ,h

[ (
Qf,h(sh, ah)− rh(sh, ah)− PhV

π
f (sh, ah)

)︸ ︷︷ ︸
=:Eh(f,sh,ah,π)

]
, (89)

where we define

PhV
π
f (s, a) := Es′∼Ph(·|s,a)

[
V π
f,h+1(s

′)
]
, (90)

and

Eh(f, s, a, π) := Qf,h(s, a)− rh(s, a)− PhV
π
f (s, a). (91)

By Assumption 1, for any f ∈ Q, there exists θf ∈ Θ such that fh(s, a) = 〈θf,h, ϕh(s, a)〉. Thus
we have

Eh(f, s, a, π) = ϕh(s, a)
⊤
(
θf,h − ζh −

∫
S
V π
f,h+1(s

′)dµh(s
′)︸ ︷︷ ︸

=:Wh(f,π)

)
, (92)

where Wh(f, π) satisfies

∀f ∈ Q, π ∈ Π, h ∈ [H] : ‖Wh(f, π)‖2 ⩽ 2H
√
d (93)

under Assumption 1. We define

xh(π) := E(s,a)∼dπ
ρ,h

[ϕh(s, a)] . (94)

Then we have

V π
f (ρ)− V π(ρ) =

H∑
h=1

E(s,a)∼dπ
ρ,h

[Eh(f, s, a, π)] =
H∑

h=1

〈xh(π),Wh(f, π)〉 . (95)

For all t ∈ [T ] and h ∈ [H], we define

Λt,h(λ) := λId +

t−1∑
i=1

xh(πi)xh(πi)
⊤, ∀λ > 0, (96)

where Id is the d× d identity matrix. Then by Lemma 4, we have

t∑
i=1

min
{
‖xh(πi)‖Λi,h(λ)−1 , 1

}
⩽ 2 log

(
det

(
Id +

1

λ

t−1∑
i=1

xh(πi)xh(πi)
⊤

))
. (97)

Further, we could use Lemma 5 to bound the last term in (97), and obtain

∀t ∈ [T ] :

t∑
i=1

min
{
‖xh(πi)‖Λi,h(λ)−1 , 1

}
⩽ 2d(λ), (98)

where in the last line, we use the definition of d(λ) (c.f. (35)) and the fact that

‖xh(π)‖2 ⩽ 1, (99)

which is ensured by Assumption 1.

Observe that
T∑

t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣ (95)
⩽

T∑
t=1

H∑
h=1

|〈xh(πt),Wh(ft, πt)〉|
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=

T∑
t=1

H∑
h=1

|〈xh(πt),Wh(ft, πt)〉|1
{
‖xh(πt)‖Λt,h(λ)−1 ⩽ 1

}
︸ ︷︷ ︸

(a)

+

T∑
t=1

H∑
h=1

|〈xh(πt),Wh(ft, πt)〉|1
{
‖xh(πt)‖Λt,h(λ)−1 > 1

}
︸ ︷︷ ︸

(b)

, (100)

where 1{·} is the indicator function.

To give the desired bound, we will bound (a) and (b) separately.

Bounding (a). We have for any λ > 0,

(a) ⩽
T∑

t=1

H∑
h=1

‖Wh(ft, πt)‖Λt,h(λ)
‖xh(πt)‖Λt,h(λ)−1 1

{
‖xh(πt)‖Λt,h(λ)−1 ⩽ 1

}
⩽

T∑
t=1

H∑
h=1

‖Wh(ft, πt)‖Λt,h(λ)
min

{
‖xh(πt)‖Λt,h(λ)−1 , 1

}
. (101)

Note that ‖Wh(ft, πt)‖Λt,h(λ)
can be bounded as follows:

‖Wh(ft, πt)‖Λt,h(λ)
⩽
√
λ · 2H

√
d+

(
t−1∑
i=1

|〈xh(πi),Wh(ft, πt)〉|2
)1/2

, (102)

where we use (93), (96) and the fact that
√
a+ b ⩽ √a+

√
b for any a, b ⩾ 0.

The above two bounds (101) and (102) together give

(a) ⩽
T∑

t=1

H∑
h=1

√λ · 2H√d+(t−1∑
i=1

|〈xh(πi),Wh(ft, πt)〉|2
)1/2

min
{
‖xh(πt)‖Λt,h(λ)−1 , 1

}

⩽
(

T∑
t=1

H∑
h=1

λ · 4dH2

)1/2( T∑
t=1

H∑
h=1

min
{
‖xh(πt)‖Λt,h(λ)−1 , 1

})1/2

︸ ︷︷ ︸
(a-i)

+

(
T∑

t=1

t−1∑
i=1

H∑
h=1

|〈xh(πi),Wh(ft, πt)〉|2
)1/2( T∑

t=1

H∑
h=1

min
{
‖xh(πt)‖Λt,h(λ)−1 , 1

})1/2

︸ ︷︷ ︸
(a-ii)

,

(103)

where in the second inequality we use Cauchy-Schwarz inequality and the fact that

∀t ∈ [T ] : min
{
‖xh(πt)‖Λt,h(λ)−1 , 1

}2

⩽ min
{
‖xh(πt)‖Λt,h(λ)−1 , 1

}
. (104)

The first term (a-i) in (103) could be bounded as follows:

(a-i)
(98)
⩽ 2H2

√
2λdTd(λ). (105)

To bound (a-ii), note that for any π, π′ ∈ ΠH , we have

| 〈xh(π
′),Wh(f, π)〉 |2 =

∣∣∣E(s,a)∼dπ′
ρ,h

[
Qf,h(s, a)− rh(s, a)− PhV

π
f (s, a)

]∣∣∣2
⩽ E(s,a)∼dπ′

ρ,h
[ℓh(f, s, a, π)] , (106)
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where the inequality follows from Jenson’s inequality, and recall ℓh(f, s, a, π) is defined in (32).
Combining (106) and (98), we could bound (a-ii) in (103) as follows:

(a-ii) ⩽
(
2Hd(λ)

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt)

)1/2

(107)

Plugging (105) and (107) into (103), we have

(a) ⩽ 2H2
√
2λdTd(λ) +

(
2Hd(λ)

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt)

)1/2

. (108)

Bounding (b). By Assumption 1 and (95), we have

∀π ∈ Π : |〈xh(π),Wh(f, π)〉| ⩽ 2H. (109)

Combining the above inequality with (98), we have

(b) ⩽ 4H2d(λ). (110)

Combining (a) and (b). Plugging (108) and (110) into (100), we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣
⩽ 2H2

√
2λdTd(λ) +

(
2Hd(λ)

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt)

)1/2

+ 4H2d(λ).

(111)

The first term in the right hand side of (111) could be bounded as

2H2
√

2λdTd(λ) ⩽ H2 (λdT + 2d(λ)) , (112)

and the second term in the right hand side of (111) could be bounded as(
2Hd(λ)

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt)

)1/2

⩽ Hd(λ)

η
+ η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt)

(113)

for any η > 0, where in both (112) and (113), we use the fact that
√
ab ⩽ a+b

2 for any a, b ⩾ 0.

Substituting (112) and (113) into (111) and reorganizing the terms, we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣ ⩽ η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt) + (6H2 +H/η)d(λ) +H2λdT.

(114)

This gives the desired result.

B.3 Extension to general function approximation

We now extend the analysis to finite-horizon MDPs with general function approximation. We first
state our assumptions in this section.

Assumption 4 (Q-function class). The Q-function class Q =
∏H

h=1Qh satisfies

• (realizability) Q⋆ ∈ Q.

• (Bellman completeness) ∀π ∈ P and f ∈ Q, Pπf ∈ Q.

• (boundedness) ∀fh ∈ Qh, ‖fh‖∞ ⩽ H + 1− h.
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Assumption 4 is a standard condition in prior literature involving general function approxima-
tion [Liu et al., 2024, Assumption 3.1], [Jin et al., 2021, Assumption 2.1]. In particular, Assump-
tion 4 holds under linear MDPs (c.f. Assumption 1), as established inLemma 7. Under Assumption 4,
we set the policy class P as follows.

Assumption 5 (Policy class). The policy class P =
∏H

h=1 Ph is

∀h ∈ [H] : Ph :=

{
πh : πh(s, a) =

exp (BQh(s, a))∑
a′∈A exp (BQh(s, a′))

, ∀Qh ∈ Qh

}
(115)

with some constant B > 0.

Moreover, drawing upon the work of Zhong et al. [2022], Liu et al. [2024], we require the MDP
to feature a low generalized Eluder coefficient (GEC). This characteristic is essential for ensuring
that the minimization of in-sample prediction error, based on historical data, also effectively limits
out-of-sample prediction error.
Assumption 6 (Generalized Eluder coefficient, Assumption 4.2 in Liu et al. [2024]). Given any
λ̃ > 0, there exists d̃(λ̃) ∈ R+ such that for any sequence {ft}Tt=1 ⊂ Q, {πt}Tt=1 ⊂ P , we have
T∑

t=1

(
V πt

ft
(ρ)− V πt(ρ)

)
⩽ inf

η>0
η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt) +
d̃(λ̃)

η
+

√
d̃(λ̃)HT + λ̃HT.

(116)

For each λ̃ > 0, we denote the smallest d̃(λ̃) ∈ R+ that makes (116) hold as dGEC(λ̃).

From Lemma 10 we can see that under linear MDPs (c.f. Assumption 1), Assumption 6 holds with
dGEC(λ̃) ≲ Hd

(
λ̃
dH

)
, where d(·) is defined in (35). Moreover, as demonstrated by Zhong et al.

[2022], RL problems characterized by a low Generalized Eluder Coefficient (GEC) constitute a
significantly broad category, such as linear MDPs [Yang and Wang, 2019, Jin et al., 2020], linear
mixture MDPs [Ayoub et al., 2020], MDPs of bilinear classes [Du et al., 2021], MDPs with low
witness rank [Sun et al., 2019], and MDPs with low Bellman Eluder dimension [Jin et al., 2021], see
Zhong et al. [2022] for a more detailed discussion.

We let N (Qh, ϵ, ‖·‖∞) denote the ϵ-covering number of Qh w.r.t. the ℓ∞ norm, and assume the
ϵ-nets Qh,ϵ are finite.
Assumption 7 (Finite ϵ-nets). N (ϵ) := maxh∈[H]N (Qh, ϵ, ‖·‖∞) < +∞.

The following theorem gives the regret bound under the above more general assumptions.
Theorem 11 (Regret under general function approximation). Suppose Assumptions 4, 5, 6, 7 hold.
We let B = T log |A|

H in Assumption 5, and set

α =

 1

TH3 log
(

N (ϵ/B)HT
δ

)dGEC

(√
H

T

)1/2

. (117)

Then for any δ ∈ (0, 1), with probability at least 1− δ, the regret of Algorithm 1 satisfies

Regret(T ) = O

H3/2
√
T

√√√√(log(HT

δ

)
+ log

(
N
(

Hϵ

T log |A|

)))
dGEC

(√
H

T

) . (118)

Under linear MDPs, (118) reduces to (22) given in Theorem 1. Besides, this bound also matches (is
slightly tighter than) the bound given in Corollary 5.2 of Liu et al. [2024] under similar assumptions.

B.4 Proof of Theorem 11

In this proof, we use the same notations as in the proof of Theorem 1 in Appendix B.1. First, we
define

π̃⋆
h := arg max

πh∈Ph

V π
f⋆,h(ρ), ∀h ∈ [H], (119)

and π̃⋆ = {π̃⋆
h}h∈[H]. Using the same argument as Lemma 8, we have the following lemma.
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Lemma 12 (model error with log linear policies). Under Assumption 4 and 5, we have

∀s ∈ S, h ∈ [H] : 0 ⩽ V ⋆
h (s)− V π̃⋆

f⋆,h(s) ⩽
log |A|

B
, (120)

where B is defined in Assumption 5.

We bound the two terms in the regret decomposition (30) separately.

Bounding term (i). Following the same analysis as (31), we have

V ⋆(ρ)− V πt

ft
(ρ) ⩽ α (Lt(f

⋆, π̃⋆)− Lt(ft, πt)) +
log |A|

B
. (121)

It boils down to bound Lt(f
⋆, π̃⋆)−Lt(ft, πt) for each t ∈ [T ]. Recall the definition of ℓh(f, s, a, π)

in (32), we give the following lemma, whose proof is deferred to Appendix B.2.3.

Lemma 13. Suppose Assumption 4, 5, 7 hold. For any δ ∈ (0, 1), with probability at least 1 − δ,
for any t ∈ [T ], we have

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]

+ CH3

(
log (N (ϵ/B)) + log(TH/δ) +

T log |A|
BH

)
(122)

for some absolute constant C > 0.

By (121) and Lemma 13, we have

(i) ⩽ α

{
− 1

2

T∑
t=1

t−1∑
i=1

H∑
h=1

(
E(si,h,ai,h)∼d

πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]
)
+ CTH3 log

(
N (ϵ/B)HT

δ

)}

+
(
CH2αT + 1

) T log |A|
B

.

(123)

Bounding term (ii). By Assumption 6, we have for any λ̃ > 0, η > 0,

(ii) ⩽ η

T∑
t=1

t−1∑
i=1

H∑
h=1

E(si,ai)∼d
πi
ρ,h

ℓh(ft, si, ai, πt) +
d̃(λ̃)

η
+

√
d̃(λ̃)HT + λ̃HT. (124)

Combining (i) and (ii). Substituting (123) and (124) into (30), and letting η = α
2 , we have

Regret(T ) ⩽ αCTH3 log

(
N (ϵ/B)HT

δ

)
+
(
CH2αT + 1

) T log |A|
B

+
2dGEC(λ̃)

α
+

√
dGEC(λ̃)HT + λ̃HT.

Setting

λ̃ =

√
H

T
, α =

 dGEC

(√
H
T

)
TH3 log

(
N (ϵ/B)HT

δ

)


1/2

, and B =
T log |A|

H
(125)

in the above bound, we have with probability at least 1− δ,

Regret(T ) ⩽ C ′H3/2
√
T

√√√√(log(HT

δ

)
+ log

(
N
(

Hϵ

T log |A|

)))
dGEC

(√
H

T

)

for some absolute constant C ′ > 0. This completes the proof of Theorem 11.
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B.4.1 Proof of Lemma 13

The proof is similar to the proof of Lemma 9 given in Appendix B.2.3. We use the same notations as
in Appendix B.2.3, and also bound the two terms Lt(f

⋆, π̃⋆) and −Lt(ft, πt) in the left-hand side
of (122) separately.

Bounding −Lt(ft, πt). Same as in (48), here we also define

Xt
f,π,h := Ea′∼πh+1(·|st,h+1)

[
lh(f, f, ξt,h, π)

2 − lh(f,Pπf, ξt,h, π)
2
]
, (126)

then for any f ∈ Q:
t−1∑
i=1

Xi
f,π,h =

t−1∑
i=1

Ea′∼πh+1(·|si,h+1)lh(f, f, ξi,h, π)
2 −

t−1∑
i=1

Ea′∼πh+1(·|s′h,i)
lh(f,Pπf, ξi,h, π)

2

⩽
t−1∑
i=1

Ea′∼πh+1(·|s′h,i)
lh(f, f, ξi,h, π)

2 − inf
g∈Q

t−1∑
i=1

Ea′∼πh+1(·|s′h,i)
lh(f, g, ξi,h, π)

2 = Lt,h(f, π),

(127)

where we use the fact that Pπf ∈ Q guaranteed by Assumption 4. Therefore, to upper bound
−Lt(ft, πt) = −

∑H
h=1 Lt,h(ft, πt), it suffices to bound −

∑t−1
i=1 X

i
ft,πt,h

for all h ∈ [H].

For all h ∈ [H], there exists an ϵ-net Qh,ϵ of Qh w.r.t. the ℓ∞ norm such that

|Qh,ϵ| ⩽ N (ϵ) < +∞, (128)

where the last relation is due to Assumption 4. Then for any f ∈ Qh, there exists fh,ϵ ∈ Qh,ϵ such
that

‖f − fh,ϵ‖∞ ⩽ ϵ, (129)

and thus for any f ∈ Q and π ∈ P , we have∣∣Xt
fϵ,π,h −Xt

f,π,h

∣∣
=

∣∣∣∣Ea′∼πh+1(·|st,h+1)

[
(rh(st,h, at,h) + fh+1,ϵ(st,h+1, a

′)− fh,ϵ(st,h, at,h))
2

−
(
fh+1,ϵ(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]
− Ea′∼πh+1(·|st,h+1)

[
(rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h))
2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]∣∣∣∣
=

∣∣∣∣Ea′∼πh+1(·|st,h+1)

[
(2rh(st,h, at,h) + fh+1,ϵ(st,h+1, a

′)− fh,ϵ(st,h, at,h) + fh+1(st,h+1, a
′)− fh(st,h, at,h))

·
(
fh+1,ϵ(st,h+1, a

′)− fh+1(st,h+1, a
′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)− fh+1,ϵ(s

′, a′)]
)]

+ Ea′∼πh+1(·|st,h+1)

[(
fh+1(st,h+1, a

′)− fh+1,ϵ(st,h+1, a
′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)− fh+1,ϵ(s

′, a′)]
)

·
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)] + fh+1,ϵ(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1,ϵ(s
′, a′)]

)]∣∣∣∣
⩽ 8Hϵ+ 8Hϵ = 16Hϵ, (130)

where in the last inequality we use (129) and the boundedness of fh and fh+1 assumed in Assump-
tion 4.

In addition, there exists Qh,ϵ/B of Qh w.r.t. the ℓ∞ norm such that∣∣Qh,ϵ/B

∣∣ ⩽ N (ϵ/B) < +∞. (131)
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We define

Ph,ϵ :=

{
πh : πh(s, a) =

exp (BQh(s, a))∑
a′∈A exp (BQh(s, a′))

, ∀Qh ∈ Qh,ϵ/B

}
, (132)

then we have

|Ph,ϵ| =
∣∣Qh,ϵ/B

∣∣ ⩽ N (ϵ/B), (133)

and by Assumption 5, for any πh ∈ Ph, there exists Qh ∈ Qh,ϵ/B such that

πh(s, a) =
exp (BQh(s, a))∑

a′∈A exp (BQh(s, a′))
. (134)

There also exists Qh,ϵ/B ∈ Qh,ϵ/B such that∥∥Qh −Qh,ϵ/B

∥∥
∞ ⩽ ϵ/B. (135)

We let

πh,ϵ(s, a) =
exp

(
BQh,ϵ/B(s, a)

)∑
a′∈A exp

(
BQh,ϵ/B(s, a′)

) . (136)

Then by Lemma 6, we have

‖πh − πh,ϵ‖1 ⩽ 2ϵ. (137)

In other words, we have shown that Ph,ϵ is an 2ϵ-net of Ph w.r.t. the ℓ1 norm.

Therefore, we have∣∣Xt
f,πϵ,h −Xt

f,π,h

∣∣ = ∣∣∣∣Ea′∼πh+1(·|st,h+1)

[(
rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h)
)2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1(·|s′)

[fh+1(s
′, a′)]

)2]
− Ea′∼πh+1,ϵ(·|st,h+1)

[(
rh(st,h, at,h) + fh+1(st,h+1, a

′)− fh(st,h, at,h)
)2

−
(
fh+1(st,h+1, a

′)− E s′∼Ph(·|st,h,at,h)

a′∼πh+1,ϵ(·|s′)

[fh+1(s
′, a′)]

)2]∣∣∣∣
⩽ 4H2 ‖πh+1(·|st,h+1)− πh+1,ϵ(·|st,h+1)‖1

(137)
⩽ 8H2ϵ, (138)

where the first inequality follows from Hölder’s inequality and the fact that∣∣∣∣∣(rh(s, a) + fh+1(s
′, a′)− fh(s, a))

2 −
(
fh+1(s

′, a′)− E s′∼Ph(·|s,a)

a′∼πh+1(·|s′)
[fh+1(s

′, a′)]

)2
∣∣∣∣∣ ⩽ 4H2

for all (s, a) ∈ S ×A, f ∈ Q and π ∈ P , which is ensured by Assumption 4.

Combining (130) and (138), we have∣∣Xt
fϵ,πϵ,h −Xt

f,π,h

∣∣ ⩽ ∣∣Xt
fϵ,πϵ,h −Xt

fϵ,π,h

∣∣+ ∣∣Xt
fϵ,π,h −Xt

f,π,h

∣∣ ⩽ 16Hϵ+ 8H2ϵ = 24H2ϵ.
(139)

On the other hand, Assumption 4 ensures Xt
f,πh

is bounded:

∀f ∈ Q, π ∈ P , h ∈ [H] : |Xt
f,π,h| ⩽ 4H2. (140)

Thus following the same argument as in Appendix B.2.3 that leads to (63), here we could obtain that
for any δ ∈ (0, 1), with probability at least 1 − δ, for all t ∈ [T ], h ∈ [H], fϵ ∈ Qϵ =

∏H
h=1Qh,ϵ

and πϵ ∈ Pϵ =
∏H

h=1 Ph,ϵ,

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)]−
t−1∑
i=1

Xi
fϵ,πϵ,h
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⩽ 1

2

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C1H
2 log(TH|Qh,ϵ||Qh+1,ϵ||Ph,ϵ|/δ)

⩽ 1

2

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C ′
1H

2 (log (N (ϵ/B)) + log(TH/δ)) , (141)

where C1, C
′
1 > 0 are absolute constants.

From (141) we deduce that for all t ∈ [T ], fϵ ∈ Qϵ, and πϵ ∈ Pϵ, we have with probability at least
1− δ,

−
t−1∑
i=1

H∑
h=1

Xi
fϵ,πϵ,h ⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(fϵ, si,h, ai,h, πϵ)] + C ′
1H

3 (log (N (ϵ/B)) + log(TH/δ)) .

(142)

By (137), for any t ∈ [T ] and h ∈ [H], we can choose ft,h,ϵ ∈ Qh,ϵ and πt,h,ϵ ∈ Ph,ϵ such that

‖ft,h − ft,h,ϵ‖∞ ⩽ ϵ, ‖πt,h − πt,h,ϵ‖1 ⩽ 2ϵ. (143)

Then by (142) we have for all t ∈ [T ],

− Lt(ft, πt)

(127)
⩽ −

t−1∑
i=1

H∑
h=1

Xi
ft,πt,h

(139)
⩽ −

t−1∑
i=1

H∑
h=1

Xi
ft,ϵ,πt,ϵ,h + 24H3ϵT

(142)
⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft,ϵ, si,h, ai,h, πt,ϵ)] + C ′
1H

3 (log (N (ϵ/B)) + log(TH/δ)) + 24H3ϵT

⩽ −1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)] + C ′
1H

3 (log (N (ϵ/B)) + log(TH/δ)) + 36H3ϵT,

(144)

where the last line follows from (139) and (59).

Bounding Lt(f
⋆, π̃⋆). Same as in (66), for any f ∈ Q and t ∈ [T ], we define

Y t
f,h := Ea′∼π̃⋆

h+1(·|st,h)

[
lh(f

⋆, f, ξt,h, π̃
⋆)2 − lh(f

⋆, f̃⋆, ξt,h, π̃
⋆)2
]
, (145)

where we define

f̃⋆ := Pπ̃⋆

f⋆. (146)

Then following the same argument that leads to (79), setting η in Lemma 2 as

η = min

 1

4H2
,

√√√√ log(|Qh,ϵ||Qh+1,ϵ|HT/δ)∑t−1
i=1 Var

[
Y i
f,h|Fi−1

]


we have with probability at least 1− δ, for any fϵ ∈ Qϵ, t ∈ [T ]:

t−1∑
i=1

(
−Y i

fϵ,h

)
≲ −

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f
⋆, fϵ, ξi,h, π̃

⋆)]

)2
+H2 log(|Qh,ϵ||Qh+1,ϵ|HT/δ)
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+H

√√√√√log(|Qh,ϵ||Qh+1,ϵ|HT/δ)

t−1∑
i=1

E(si,h,ai,h)∼d
πi
ρ,h

(E si,h+1∼Ph(·|si,h,ai,h)

a′∼π̃⋆
h+1

(·|si,h+1)

[lh(f⋆, fϵ, ξi,h, π̃⋆)]

)2


≲ H2 log(N (ϵ)HT/δ), (147)

where the last line makes use of the fact that −x2 + bx ⩽ b2/4.

Moreoever, for any t ∈ [T ], h ∈ [H], we have

Y t
fϵ,h − Y t

f,h = Ea′∼π̃⋆
h+1(·|st,h)

[ (
rh(st,h, at,h) + f⋆

h+1(st,h+1, a
′)− fϵ,h(st,h, at,h)

)2
−
(
rh(st,h, at,h) + f⋆

h+1(st,h+1, a
′)− fh(st,h, at,h)

)2 ]
= Ea′∼π̃⋆

h+1(·|st,h)

[ (
2rh(st,h, at,h) + 2f⋆

h+1(st,h+1, a
′)− fϵ,h(st,h, at,h)− fh(st,h, at,h)

)
· (fh(st,h, at,h)− fϵ,h(st,h, at,h))

]
⩽ 4Hϵ. (148)

Combining (147) and (148), we have with probability at least 1− δ, for any t ∈ [T ] and f ∈ Q,

t−1∑
i=1

H∑
h=1

(
−Y i

f,h

)
⩽

t−1∑
i=1

H∑
h=1

(
−Y i

fϵ,h

)
+ 4H2ϵT

(52)
⩽ C2H

3 log(N (ϵ)HT/δ) + 4H2ϵT, (149)

where C2 > 0 is an absolute constant.

By (71) we have

Lt(f
⋆, π̃⋆) ⩽ C2H

3 log(N (ϵ)HT/δ) + 4H2ϵT +
4H2T log |A|

B
. (150)

Combining the two bounds. Combining (144) and (150), we have for any t ∈ [T ],

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

H∑
h=1

E(si,h,ai,h)∼d
πi
ρ,h

[ℓh(ft, si,h, ai,h, πt)]

+ CH3

(
log (N (ϵ/B)) + log(TH/δ) + ϵT +

T log |A|
BH

)
(151)

for some absolute constant C > 0. Letting ϵ = 1
T , we obtain the desired result.

C Value-incentivized Actor-Critic Method for Discounted MDPs

Infinite-horizon MDPs. LetM = (S,A, P, r, γ) be an infinite-horizon discounted MDP, where
S and A denote the state space and the action space, respectively, γ ∈ [0, 1) denotes the discount
factor, P : S × A 7→ ∆(S) is the transition kernel, and r : S × A 7→ [0, 1] is the reward function.
A policy π : S 7→ ∆(A) specifies an action selection rule, where π(a|s) specifies the probability
of taking action a in state s for each (s, a) ∈ S × A. For any given policy π, the value function,
denoted by V π : S 7→ R, is given as

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
, (152)

which measures the expected discounted cumulative reward starting from an initial state s0 = s,
where the randomness is over the trajectory generated following at ∼ π(·|st) and the MDP dynamic
st+1 ∼ P (·|st, at). Given an initial state distribution s0 ∼ ρ over S , we also define V π(ρ) :=
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Es∼ρ [V
π(s)] with slight abuse of notation. Similarly, the Q-function of policy π, denoted by Qπ :

S ×A 7→ R, is defined as

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (153)

which measures the expected discounted cumulative reward with an initial state s0 = s and an initial
action a0 = a, with expectation taken over the randomness of the trajectory. It is known that there
exists at least one optimal policy π⋆ that maximizes the value function V π(s) for all states s ∈ S
[Puterman, 2014], whose corresponding optimal value function and Q-function are denoted as V ⋆

and Q⋆, respectively. We also define the state-action visitation distribution dπρ ∈ ∆(S ×A) induced
by policy π and initial state distribution ρ as

dπρ (s, a) := (1− γ)Es0∼ρ

[ ∞∑
h=0

γh Pr (sh = s, ah = a|s0)

]
. (154)

C.1 Algorithm development

Similar as (13), we start with an optimization problem:

max
f∈Q,π

(1− γ)Es0∼ρ,a∼π(·|s0) [Qf (s0, a)] (155)

s.t. Qf (s, a) = r (s, a) + γ · Es′∼P (·|s,a),a′∼π(·|s′)[Qf (s
′, a′)], ∀ (s, a) ∈ S ×A.

Writing the regularized Lagrangian system of (155) as

max
f,π

(1− γ)Es0∼ρ,a∼π(·|s0) [Qf (s0, a)]

+ min
λ

∫
λ(s, a)

(
r(s, a) + γ · Es′∼P (·|s,a),a′∼π(·|s′)[Qf (s

′, a′)]−Qf (s, a)
)
+

β(s, a)

2
λ(s, a)2dsda.

(156)

Similar to the finite-horizon case, we use the reparameterization (10) which gives

max
f,π

{
(1− γ)Es0∼ρ,a∼π(·|s0)[Qf (s0, a)]−

∫
1

2β(s, a)
Es′∼P (·|s,a),a′∼π(·|s′)

[(
r(s, a) + γQf (s

′, a′)−Qf (s, a)
)2

(157)

−min
ρ

(
r(s, a) + γQf (s

′, a′)− g(s, a)
)2]

dsda

}
,

which is easier to optimize over both Qf and π. The population primal-dual optimization problem
(157) prompts us to design the proposed algorithm, by computing the sample version of (157), see
Algorithm 2, where we let

V π
f (s) := Ea∼π(·|s) [Qf (s, a)] , and V π

f (ρ) := Es∼ρ

[
V π
f (s)

]
. (158)

In Algorithm 2, at iteration t, given dataset Dt−1 collected from the previous iterations, we define
the loss function as follows:

Lt(f, π) =
∑

(s,a,s′)∈Dt−1

Ea′∼π(·|s′) (r(s, a) + γQf (s
′, a′)−Qf (s, a))

2

− inf
g∈Q

∑
(s,a,s′)∈Dt−1

Ea′∼π(·|s′) (r(s, a) + γQf (s
′, a′)− g(s, a))

2
. (159)

We compute (160) in each iteration, which is the sample version of (157), and use the current policy
πt to collect new data following the sampling procedure in Algorithm 3, which is also used in Yuan
et al. [2023, Algorithm 3], Yang et al. [2024, Algorithm 5], and Yang et al. [2025, Algorithm 7].
Algorithm 3 has an expected iteration number E[h + 1] = 1

1−γ , and it guarantees P(sh = s, ah =

a) = dπρ (s, a) [Yuan et al., 2023] for any (s, a) ∈ S ×A and any policy π.
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Algorithm 2 Value-incentivized Actor-Critic (VAC) for infinite-horizon discounted MDPs.
1: Input: regularization coefficient α > 0.
2: Initialization: dataset D0 := ∅.
3: for t = 1, · · · , T do
4: Update Q-function estimation and policy:

(ft, πt)← arg max
f∈Q,π∈P

{
(1− γ)V π

f (ρ)− αLt(f, π)
}
. (160)

5: Data collection: sample (st, at, s
′
t) ← Sampler(πt, ρ), and update the dataset Dt = Dt−1 ∪

{(st, at, s′t)}.
6: end for

Algorithm 3 Sampler for (s, a) ∼ dπρ and s′ ∼ P(·|s, a)
1: Input: policy π, initial state distribution ρ, player index n.
2: Initialization: s0 ∼ ρ, a0 ∼ π(·|s0), time step h = 0, variable X ∼ Bernoulli(γ).
3: while X = 1 do
4: Sample sh+1 ∼ P (·|sh, ah)
5: Sample ah+1 ∼ π(·|sh+1)
6: h← h+ 1
7: X ∼ Bernoulli(γ)
8: end while
9: Sample sh+1 ∼ P (·|sh, ah)

10: return (sh, ah, sh+1).

C.2 Theoretical guarantees

Same as the finite-horizon setting, we assume the following d-dimensional linear MDP model.
Assumption 8 (infinite-horizon linear MDP). There exists unknown vector ζ ∈ Rd and unknown
(signed) measures µ = (µ(1), · · · , µ(d)) over S such that

r(s, a) = ϕ(s, a)⊤ζ and P (s′|s, a) = ϕ(s, a)⊤µ(s′),

where ϕ : S × A → Rd is a known feature map satisfying ‖ϕ(s, a)‖2 ⩽ 1, and
max{‖ζ‖2 , ‖µ(S)‖2} ⩽

√
d, for all (s, a, s′) ∈ S ×A× S .

Similar as for the finite case, under Assumption 8, we only need to set the Q-function class to be
linear and the policy class P to be the set of log-linear policies.
Assumption 9 (linear Q-function class (infinite-horizon)). The function class Q is defined as

Q :=

{
fθ := ϕ(·, ·)⊤θ : ‖θ‖2 ⩽

√
d

1− γ
, ‖fθ‖∞ ⩽ 1

1− γ

}
.

Assumption 10 (log-linear policy class (infinite-horizon)). The policy class P is defined as

P :=

{
πω : πω(s, a) =

exp
(
ϕ(s, a)⊤ω

)∑
a′∈A exp (ϕ(s, a′)⊤ω)

with ‖ω‖2 ⩽ B
√
d

1− γ

}
with some constant B > 0.

We give the regret bound of Algorithm 2 in Theorem 14.

Theorem 14 (infinite-horizon). Suppose Assumptions 8-10 hold. We let B = T log |A|(1−γ)
d in

Assumption 10 and set

α =

(
(1− γ)2

T log (log |A|T/δ)
log

(
1 +

T 3/2

d(1− γ)2

))1/2

. (161)

Then for any δ ∈ (0, 1), with probability at least 1− δ, the regret of Algorithm 2 satisfies

Regret(T ) = O

(
d
√
T

(1− γ)2

√
log

(
log(|A|)T

δ

)
log

(
1 +

T 3/2

d(1− γ)2

))
. (162)

42



Note that

min
t∈[T ]

(V ⋆(ρ)− V πt(ρ)) ⩽ Regret(T )

T
,

thus Theorem 14 guarantees that the iteration complexity to reach ϵ-accuracy w.r.t. value sub-
optimality for any ϵ > 0 is Õ

(
d2

(1−γ)4ϵ2

)
, and the total sample complexity is Õ

(
d2

(1−γ)5ϵ2

)
.

C.3 Proof of Theorem 14

Notation. For notation simplicity, we let f⋆ := Q⋆ be the optimal Q-function. We let Π := ∆(A)S
denote the set of all policies. We also define transition tuples

ξ := (s, a, s′) ∈ S ×A× S and ξt := (st, at, s
′
t) ∈ S ×A× S. (163)

Given any policy π and f : S ×A → R, we define Pπf as

∀(s, a) ∈ S ×A : Pπf(s, a) := r(s, a) + γEs′∼P(·|s,a),a′∼π(·|s′) [f(s
′, a′)] . (164)

We let

Θ := {θ : fθ ∈ Q}, Ω :=

{
ω : ‖ω‖2 ⩽ B

√
d

1− γ

}
(165)

be the parameter space of Q and P , respectively.

We’ll repeatedly use the following lemma, which is a standard consequence of linear MDP.
Lemma 15 (Linear MDP ⇒ Bellman completeness + realizability (infinite-horizon)). Under As-
sumption 8, we have

• (realizability) Q⋆ ∈ Q;

• (Bellman completeness) ∀π ∈ Π and f ∈ Q, Pπf ∈ Q.

We’ll also use the following lemma, which bounds the difference between the optimal value function
V ⋆(ρ) and maxπ∈P V π(ρ) — the optimal value over the policy class P , where we let

π̃⋆ := argmax
π∈P

V π
f⋆(ρ). (166)

Lemma 16 (model error with log linear policies (infinite-horizon)). Under Assumptions 8-10, we
have

∀s ∈ S : 0 ⩽ V ⋆(s)− V π̃⋆

f⋆ (s) ⩽ log |A|
B

, (167)

where B is defined in Assumption 10.

We omit the proofs of the above two lemmas due to similarity to that of the finite-horizon setting.

Main proof of Theorem 14. Given the regret decomposition in (30), we will bound the two terms
separately.

Step 1: bounding term (i). Similar to the argument in the finite-horizon setting, invoking
Lemma 16, we have

V ⋆(ρ)− V πt

ft
(ρ) ⩽ α

1− γ
(Lt(f

⋆, π̃⋆)− Lt(ft, πt)) +
log |A|

B
. (168)

Thus to bound (i), we only need to bound Lt(f
⋆, π̃⋆) − Lt(ft, πt) for each t ∈ [T ]. Define ℓ :

Q× S ×A× Π as

ℓ(f, s, a, π) :=
(
Es′∼P(·|s,a),a′∼π(·|s′) [r(s, a) + γf(s′, a′)− f(s, a)]

)2
. (169)

We give the following lemma, whose proof is deferred to Appendix C.4.1.
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Lemma 17. Suppose Assumption 8-10 hold. For any δ ∈ (0, 1), with probability at least 1− δ, for
any t ∈ [T ], we have

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft, si, ai, πt)]

+
C

(1− γ)2
·
(
d log

(
BdT

(1− γ)δ

)
+ (1− γ)

T log |A|
B

)
(170)

for some absolute constant C > 0.

By (168) and Lemma 17, we have

V ⋆(ρ)− V πt

ft
(ρ) ⩽ α

1− γ

{
− 1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft, si, ai, πt)] +

C

(1− γ)2
· d log

(
BdT

(1− γ)δ

)}

+

(
CαT

(1− γ)2
+ 1

)
log |A|

B
,

which gives

(i) ⩽ α

1− γ

{
− 1

2

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft, si, ai, πt)] +

CT

(1− γ)2
· d log

(
BdT

(1− γ)δ

)}

+

(
CαT

(1− γ)2
+ 1

)
T log |A|

B
. (171)

Step 2: bounding term (ii). For any λ > 0, we define

dγ(λ) := d log

(
1 +

T

dλ(1− γ)2

)
. (172)

We use the following lemma to bound (ii), whose proof is deferred to Appendix C.4.2.
Lemma 18. Under Assumption 8, for any η > 0, we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣
⩽ η

1− γ
·

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt) +

(
7

1− γ
+

1

η(1− γ)

)
dγ(λ) +

3Tdλ

2(1− γ)
.

(173)

By Lemma 18, we have

(ii) ⩽ η

1− γ
·

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt) +

(
7

1− γ
+

1

η(1− γ)

)
dγ(λ) +

3Tdλ

2(1− γ)
.

(174)

Step 3: combining (i) and (ii). Substituting (171) and (174) into (30), and letting η = α
2 , we have

Regret(T ) ⩽ CTα

(1− γ)3
· d log

(
BdT

(1− γ)δ

)
+

(
CαT

(1− γ)2
+ 1

)
T log |A|

B

+

(
7

1− γ
+

2

α(1− γ)

)
dγ(λ) +

3Tdλ

2(1− γ)
. (175)

Setting

λ =
1√
T
, α =

 (1− γ)2 log
(
1 + T 3/2

d(1−γ)2

)
T log (log |A|T/δ)

1/2

, and B =
T log |A|(1− γ)

d
(176)

44



in the above bound, we have with probability at least 1− δ,

Regret(T ) ⩽ C ′ d
√
T

(1− γ)2

√
log

(
log(|A|)T

δ

)
log

(
1 +

T 3/2

d(1− γ)2

)
.

for some absolute constant C ′ > 0. This completes the proof of Theorem 14.

C.4 Proof of key lemmas

C.4.1 Proof of Lemma 17

We bound the two terms Lt(f
⋆, π̃⋆) and−Lt(ft, πt) in the left-hand side of (170) separately. Given

f, f ′ : S ×A → R, data tuple ξ = (s, a, s′) and policy π, we define the random variable

l(f, f ′, ξ, π) := r(s, a) + γf(s′, a′)− f ′(s, a), (177)

where a′ ∼ π(·|s′). Then we have (recall we define Pπf in (164))

l(f,Pπf, ξ, π) = γ
(
f(s′, a′)− E s′∼P(·|s,a)

a′∼π(·|s′)
[f(s′, a′)]

)
. (178)

Combining (177) and (178), we deduce that for any f, f ′ : S ×A → R, ξ and π,

l(f, f ′, ξ, π)− l(f,Pπf, ξ, π) = E s′∼P(·|s,a)

a′∼π(·|s′)
[l(f, f ′, ξ, π)] . (179)

Bounding −Lt(ft, πt). For any f ∈ Q, π and t ∈ [T ], we define Xt
f,π as

Xt
f,π := Ea′∼π(·|s′t)

[
l(f, f, ξt, π)

2 − l(f,Pπf, ξt, π)
2
]
. (180)

Then we have for any f ∈ Q:

t−1∑
i=1

Xi
f,π =

t−1∑
i=1

Ea′∼π(·|s′i)l(f, f, ξi, π)
2 −

t−1∑
i=1

Ea′∼π(·|s′i)l(f,P
πf, ξi, π)

2

⩽
t−1∑
i=1

Ea′∼π(·|s′i)l(f, f, ξi, π)
2 − inf

g∈Q

t−1∑
i=1

Ea′∼π(·|s′i)l(f, g, ξi, π)
2 (159)

= Lt(f, π), (181)

where the inequality uses the fact that Pπf ∈ Q, which is guaranteed by Lemma 15. Therefore, to
upper bound −Lt(ft, πt), we only need to bound −

∑t−1
i=1 X

i
ft,πt

.

Below we use Freedman’s inequality (Lemma 2) and a covering number argument to give the desired
bound. Repeating a similar argument as the finite-horizon setting, for any ϵ > 0, there exists an ϵ-net
Θϵ ⊂ Θ and an ϵ-net Ωϵ ⊂ Ω such that

log |Θϵ| ⩽ d log

(
1 +

2
√
d

(1− γ)ϵ

)
, and log |Ωϵ| ⩽ d log

(
1 +

2B
√
d

(1− γ)ϵ

)
. (182)

Let Qϵ := {fϵ = fθϵ : θϵ ∈ Θϵ}, and Pϵ := {πϵ(a|s) = exp(ϕ(s,a)⊤ωϵ)∑
a′∈A exp(ϕ(s,a′)⊤ωϵ)

: ωϵ ∈ Ωϵ}. For any
f ∈ Q and π ∈ P , there exists fϵ ∈ Qϵ and πϵ ∈ Pϵ such that∣∣Xt

fϵ,πϵ
−Xt

f,π

∣∣ ⩽ 24ϵ

(1− γ)2
. (183)

To invoke Freedman’s inequality, we calculate the following quantities.

• Assumption 8 ensures that Xt
f,π is bounded:

∀f ∈ Q : |Xt
f,π| ⩽

4

(1− γ)2
. (184)
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• Repeating the argument for (59), we have

Es′t∼P(·|st,at)

[
Xt

f,π

]
=

(
E s′t∼P(·|st,at)

a′∼π(·|s′t)

[l(f, f, ξt, π)]

)2

(169)
= ℓ(f, st, at, π). (185)

Define the filtration Ft := σ(Dt), then we have (recall Algorithm 3 ensures (st, at) ∼ dπt
ρ ))

∀f ∈ Q : E
[
Xt

f,π|Ft−1

]
= E

[
Es′t∼P(·|st,at)

[
Xt

f,π

]
|Ft−1

]
= E(st,at)∼d

πt
ρ

[ℓ(f, st, at, π)] .

(186)

• Furthermore, we have

Var
[
Xt

f,π|Ft−1

]
⩽ E

[(
Xt

f,π

)2 |Ft−1

]
= E

[(
Ea′∼π(·|s′t)

[(
r(st, at) + γf(s′t, a

′)− f(st, at)
)2 − γ2

(
f(s′t, a

′)− E s′t∼P(·|st,at)

a′∼π(·|s′t)

[
f(s′t, a

′)
])2])2∣∣∣∣Ft−1

]
⩽ E

[(
r(st, at) + 2γf(s′t, a

′)− f(st, at)− E s′t∼P(·|st,at)

a′∼π(·|s′t)

[f(s′t, a
′)]
)2

·
(
r(st, at) + γE s′t∼P(·|st,at)

a′∼π(·|s′t)

[f(s′t, a
′)]− f(st, at)

)2∣∣∣∣Ft−1

]
⩽ 16

(1− γ)2
E(st,at)∼d

πt
ρ

[ℓ(f, st, at, π)] , ∀f ∈ Q. (187)

where the first equality follows from (177) and (178), and the second inequality follows from
Jenson’s inequality.

Therefore, by Lemma 2, we have with probability at least 1− δ, for all t ∈ [T ], fϵ ∈ Qϵ, πϵ ∈ Pϵ:

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(fϵ, si, ai, πϵ)]−

t−1∑
i=1

Xi
fϵ,πϵ

⩽ 1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(fϵ, si, ai, πϵ)] +

C1

(1− γ)2
log(T |Θϵ||Ωϵ|/δ)

(182)
⩽ 1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(fϵ, si, ai, πϵ)] +

C1

(1− γ)2

(
d log

(
4Bd

(1− γ)2ϵ2

)
+ log(T/δ)

)
, (188)

where C1 > 0 is an absolute constant. From (188) we deduce that for all t ∈ [T ] fϵ ∈ Qϵ, and
πϵ ∈ Pϵ,

−
t−1∑
i=1

Xi
fϵ,πϵ

⩽ −1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(fϵ, si, ai, πϵ)] +

C1

(1− γ)2

(
d log

(
4Bd

(1− γ)2ϵ2

)
+ log(T/δ)

)
.

(189)

Note that for any t ∈ [T ], there exist θt ∈ Θ and ωt ∈ Ω such that ft = fθt ∈ Q and πt = πωt ∈ P .
We can choose θt,ϵ ∈ Θϵ and ωt,ϵ ∈ Ωϵ such that ‖θt − θt,ϵ‖2 ⩽ ϵ and ‖ωt − ωt,ϵ‖2 ⩽ ϵ. We let
ft,ϵ := fθt,ϵ ∈ Qϵ. Then by (189) we have for all t ∈ [T ],

− Lt(ft, πt)

(181)
⩽ −

t−1∑
i=1

Xi
ft,πt

(183)
⩽ −

t−1∑
i=1

Xi
ft,ϵ,πt

+
24Tϵ

(1− γ)2
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(189)
⩽ −1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft,ϵ, si, ai, πt,ϵ)] +

C1

(1− γ)2

(
d log

(
4Bd

(1− γ)2ϵ2

)
+ log(T/δ)

)
+

24Tϵ

(1− γ)2

⩽ −1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft, si, ai, πt)] +

C1

(1− γ)2

(
d log

(
4Bd

(1− γ)2ϵ2

)
+ log

(
T

δ

))
+

36Tϵ

(1− γ)2
,

(190)

where the last line follows from (183) and (185).

Bounding Lt(f
⋆, π̃⋆). For any f ∈ Q and t ∈ [T ], we define

Y t
f := Ea′∼π̃⋆(·|s′t)

[
l(f⋆, f, ξt, π̃

⋆)2 − l(f⋆, f̃⋆, ξt, π̃
⋆)2
]
, where f̃⋆ := Pπ̃⋆

f⋆. (191)

Note that for any tuple ξ = (s, a, s′), we have∣∣∣l(f⋆, f⋆, ξ, π̃⋆)2 − l(f⋆, f̃⋆, ξ, π̃⋆)2
∣∣∣ = ∣∣∣l(f⋆, f⋆, ξ, π⋆) + l(f⋆, f̃⋆, ξ, π̃⋆)

∣∣∣ ∣∣∣l(f⋆, f⋆, ξ, π̃⋆)− l(f⋆, f̃⋆, ξ, π̃⋆)
∣∣∣

⩽ 4

1− γ

∣∣∣∣E s′∼P(·|s,a)

a′∼π̃⋆(·|s′)
[l(f⋆, f⋆, ξ, π̃⋆)]

∣∣∣∣ , (192)

where the last line follows from (179). Furthermore, we have

E s′∼P(·|s,a)

a′∼π̃⋆(·|s′)
[l(f⋆, f⋆, ξ, π̃⋆)]

(177)
= E s′∼P(·|s,a)

a′∼π̃⋆(·|s′)
[r(s, a) + γf⋆(s′, a′)− f⋆(s, a)]

= r(s, a) + γEs′∼P(·|s,a)

[
V π̃⋆

f⋆ (s′)
]
− f⋆(s, a)

= γEs′∼P(·|s,a)

[
V π̃⋆

f⋆ (s′)
]
− γEs′∼P(·|s,a)

[
V π⋆

(s′)
]
, (193)

where the last line uses Bellman’s optimality equation

r(s, a) + γEs′∼P(·|s,a)

[
V π⋆

(s′)
]
− f⋆(s, a) = 0. (194)

By Lemma 16, we have

Es′∼P(·|s,a)

[
V π⋆

(s′)
]
− log |A|

B
⩽ Es′∼P(·|s,a)

[
V π̃⋆

f⋆ (s′)
]
⩽ Es′∼P(·|s,a)

[
V π⋆

(s′)
]
. (195)

Plugging the above inequality into (193) and (192), we have∣∣∣l(f⋆, f⋆, ξ, π̃⋆)2 − l(f⋆, f̃⋆, ξ, π̃⋆)2
∣∣∣ ⩽ 4γ

1− γ

log |A|
B

. (196)

The above bound (196) implies that

Lt(f
⋆, π̃⋆) =

t−1∑
i=1

Ea′∼π⋆(·|s′i)l(f
⋆, f⋆, ξi, π̃

⋆)2 − inf
g∈Q

t−1∑
i=1

Ea′∼π⋆(·|s′i)l(f
⋆, g, ξi, π̃

⋆)2

⩽ sup
f∈Q

t−1∑
i=1

(
−Y i

f

)
+

4γT

1− γ

log |A|
B

, (197)

where we also use the definitions of Y t
f , f̃⋆ (c.f. (191)), and Lt (c.f. (159)). Thus to bound

Lt(f
⋆, π̃⋆), below we bound the sum

∑t−1
i=1 Y

i
f for any f ∈ Q and t ∈ [T ]. To invoke Freedman?s

inequality, we calculate the following quantities.

• Repeating the argument for (59), we have

Es′t∼P(·|st,at)

[
Y t
f

]
=

(
E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[l(f⋆, f, ξt, π̃
⋆)]

)2

, (198)

which implies

∀f ∈ Q : E
[
Y t
f |Ft−1

]
= E(st,at)∼d

πt
ρ

(E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[l(f⋆, f, ξt, π̃
⋆)]

)2
 . (199)
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• We have

Var
[
Y t
f |Ft−1

]
⩽ E

[(
Y t
f

)2 |Ft−1

]
= E

[(
Ea′∼π̃⋆(·|s′t)

[
(r(st, at) + γf⋆(s′t, a

′)− f(st, at))
2

− γ2

(
f⋆(s′t, a

′)− E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[f⋆(s′t, a
′)]

)2])2∣∣∣∣Ft−1

]

⩽ E

[(
r(st, at) + 2γf⋆(s′t, a

′)− f(st, at)− E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[f⋆(s′t, a
′)]

)2

·
(
r(st, at) + γE s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[f⋆(s′t, a
′)]− f(st, at)

)2∣∣∣∣Ft−1

]

⩽ 16

(1− γ)2
E(st,at)∼d

πt
ρ

(E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[l(f⋆, f, ξ, π̃⋆)]

)2
 , (200)

where the first line uses (by (178))

l(f⋆, f̃⋆, ξt, π
⋆) = γ

(
f⋆(s′t, a

′)− E s′t∼P(·|st,at)

a′∼π̃⋆(·|s′t)

[f⋆(s′t, a
′)]

)
, (201)

where a′ ∼ π̃⋆(·|s′t), and the second inequality uses Jenson’s inequality.
• Last but not least, it’s easy to verify that

|Y t
f | ⩽

4

(1− γ)2
. (202)

Invoking Lemma 2, and setting η in Lemma 2 as

η = min

 (1− γ)2

4
,

√√√√ log(|Θϵ|T/δ)∑t−1
i=1 Var

[
Y i
f |Fi−1

]


for each fϵ ∈ Qϵ, we have with probability at least 1− δ,

∀fϵ ∈ Qϵ, t ∈ [T ] :

t−1∑
i=1

−Y i
fϵ + E(si,ai)∼d

πi
ρ

(E s′
i
∼P(·|si,ai)

a′∼π̃⋆(·|s′
i
)

[l(f⋆, fϵ, ξi, π̃
⋆)]

)2


≲ 1

1− γ

√√√√log(|Θϵ|T/δ)
t−1∑
i=1

E(si,ai)∼d
πi
ρ

[(
E s′

i
∼P(·|si,ai)

a′∼π̃⋆(·|s′
i
)

[l(f⋆, fϵ, ξi, π̃⋆)]

)2]
+

1

(1− γ)2
log(|Θϵ|T/δ). (203)

Reorganizing the above inequality, we have for any fϵ ∈ Qϵ, t ∈ [T ]:

t−1∑
i=1

(
−Y i

fϵ

)
≲ 1

(1− γ)2
log(|Θϵ|T/δ)−

t−1∑
i=1

E(si,ai)∼d
πi
ρ

(E s′
i
∼P(·|si,ai)

a′∼π̃⋆(·|s′
i
)

[l(f⋆, fϵ, ξi, π̃
⋆)]

)2


+
1

1− γ

√√√√log(|Θϵ|T/δ)
t−1∑
i=1

E(si,ai)∼d
πi
ρ

[(
E s′

i
∼P(·|si,ai)

a′∼π̃⋆(·|s′
i
)

[l(f⋆, fϵ, ξi, π̃⋆)]

)2]
≲ 1

(1− γ)2
log(|Θϵ|T/δ), (204)
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where the last line makes use of the fact that −x2 + bx ⩽ b2/4.

Moreoever, for any t ∈ [T ], we have

Y t
fϵ − Y t

f

= Ea′∼π̃⋆(·|s′t)

[
(r(st, at) + γf⋆(s′t, a

′)− fϵ(st, at))
2 − (r(st, at) + γf⋆(s′t, a

′)− f(st, at))
2
]

= Ea′∼π̃⋆(·|s′t)

[
(2r(st, at) + 2γf⋆(s′t, a

′)− fϵ(st, at)− f(st, at)) · (f(st, at)− fϵ(st, at))

]
⩽ 4ϵ

1− γ
,

(205)

where the last inequality uses |f(s, a) − fϵ(s, a)| ⩽ ‖ϕ(s, a)‖2 ‖θ − θϵ‖2 ⩽ ϵ. Combining (204)
and (205), we have with probability at least 1− δ, for any t ∈ [T ] and f ∈ Q,

t−1∑
i=1

(
−Y i

f

)
⩽ C2

(1− γ)2
log(|Θϵ|T/δ) +

4ϵT

1− γ

(182)
⩽ C2

(1− γ)2

(
d log

(
1 +

2
√
d

(1− γ)ϵ

)
+ log(T/δ)

)
+

4ϵT

1− γ
, (206)

where C2 > 0 is an absolute constant.

By (197) we have

Lt(f
⋆, π̃⋆) ⩽ C2

(1− γ)2

(
d log

(
1 +

2
√
d

(1− γ)ϵ

)
+ log(T/δ)

)
+

4T

1− γ

(
ϵ+

log |A|
B

)
. (207)

Combining the two bounds. Combining (190) and (207), we have for any t ∈ [T ],

Lt(f
⋆, π̃⋆)− Lt(ft, πt) ⩽ −

1

2

t−1∑
i=1

E(si,ai)∼d
πi
ρ
[ℓ(ft, si, ai, πt)]

+
C

(1− γ)2

(
d log

(
Bd

(1− γ)ϵ

)
+ log

(
T

δ

)
+ Tϵ+ (1− γ)

T log |A|
B

)
(208)

for some absolute constant C > 0. Letting ϵ = 1
T , we obtain the desired result.

C.4.2 Proof of Lemma 18

First note that for any policy π and f : S ×A → R, we have

V π
f (ρ) = E s0∼ρ,ah∼π(·|sh)

sh+1∼P(·|sh,ah),∀h∈N

[ ∞∑
h=0

(
γhV π

f (sh)− γh+1V π
f (sh+1)

)]

= E s0∼ρ,ah∼π(·|sh)

sh+1∼P(·|sh,ah),∀h∈N

[ ∞∑
h=0

γh
(
Qf (sh, ah)− γV π

f (sh+1)
)]

, (209)

and

V π(ρ) = E s0∼ρ,ah∼π(·|sh)

sh+1∼P(·|sh,ah),∀h∈N

[ ∞∑
h=0

γhr(sh, ah)

]
. (210)

The above two expressions (209) and (210) together give that

V π
f (ρ)− V π(ρ) = E s0∼ρ,ah∼π(·|sh)

sh+1∼P(·|sh,ah),∀h∈N

[ ∞∑
h=0

γh
(
Qf (sh, ah)− r(sh, ah)− γV π

f (sh+1)
)]

=
1

1− γ
E(s,a)∼dπ

ρ

[
Qf (s, a)− r(s, a)− γPV π

f (s, a)︸ ︷︷ ︸
:=E(f,s,a,π)

]
, (211)
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where we define
PV π

f (s, a) := Es′∼P(·|s,a)
[
V π
f (s′)

]
, (212)

and
E(f, s, a, π) := Qf (s, a)− r(s, a)− γPV π

f (s, a). (213)

By Assumption 8, for any f ∈ Q, there exists θf ∈ Θ such that f(s, a) = 〈θf , ϕ(s, a)〉. Thus we
have

E(f, s, a, π) = ϕ(s, a)⊤
(
θf − ζ −

∫
S
V π
f (s′)dµ(s′)︸ ︷︷ ︸

W (f,π)

)
, (214)

where W (f, π) satisfies

∀f ∈ Q, π ∈ Π : ‖W (f, π)‖2 ⩽ 3

1− γ

√
d (215)

under Assumption 8. We define

x(π) :=
1

1− γ
E(s,a)∼dπ

ρ
[ϕ(s, a)] . (216)

Then we have

V π
f (ρ)− V π(ρ) =

1

1− γ
E(s,a)∼dπ

ρ
[E(f, s, a, π)] = 〈x(π),W (f, π)〉 . (217)

For all t ∈ [T ], we define

Λt(λ) := λId +

t−1∑
i=1

x(πi)x(πi)
⊤, ∀λ > 0, (218)

where Id is the d× d identity matrix. Then by Lemma 4, we have
t∑

i=1

min
{
‖x(πi)‖Λi(λ)−1 , 1

}
⩽ 2 log

(
det

(
Id +

1

λ

t−1∑
i=1

x(πi)x(πi)
⊤

))
. (219)

Further, we could use Lemma 5 to bound the last term in (219), and obtain

∀t ∈ [T ] :

t∑
i=1

min
{
‖x(πi)‖Λi(λ)−1 , 1

}
⩽ 2dγ(λ), (220)

where in the last line, we use the definition of dγ(λ) (c.f. (172)) and the fact that

‖x(π)‖2 ⩽ 1

1− γ
, (221)

which is ensured by Assumption 8.

Observe that
T∑

t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣ (211)
=

1

1− γ

T∑
t=1

∣∣∣E(s,a)∼d
πt
ρ

[E(ft, s, a, πt)]
∣∣∣

(214)
=

T∑
t=1

|〈x(πt),W (ft, πt)〉|

=

T∑
t=1

|〈x(πt),W (ft, πt)〉|1
{
‖x(πt)‖Λt(λ)−1 ⩽ 1

}
︸ ︷︷ ︸

(a)

+

T∑
t=1

|〈x(πt),W (ft, πt)〉|1
{
‖x(πt)‖Λt(λ)−1 > 1

}
︸ ︷︷ ︸

(b)

, (222)

where 1{·} is the indicator function.

To give the desired bound, we will bound (a) and (b) separately.
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Bounding (a). We have for any λ > 0,

(a) ⩽
T∑

t=1

‖W (ft, πt)‖Λt(λ)
‖x(πt)‖Λt(λ)−1 1

{
‖x(πt)‖Λt(λ)−1 ⩽ 1

}
⩽

T∑
t=1

‖W (ft, πt)‖Λt(λ)
min

{
‖x(πt)‖Λt(λ)−1 , 1

}
. (223)

‖W (ft, πt)‖Λt(λ)
can be bounded as follows:

‖W (ft, πt)‖Λt(λ)
⩽
√
λ · 3

√
d

1− γ
+

(
t−1∑
i=1

|〈x(πi),W (ft, πt)〉|2
)1/2

, (224)

where we use (215), (218) and the fact that
√
a+ b ⩽ √a+

√
b for any a, b ⩾ 0.

(223) and (224) together give

(a) ⩽
T∑

t=1

√λ · 3√d
1− γ

+

(
t−1∑
i=1

|〈x(πi),W (ft, πt)〉|2
)1/2

min
{
‖x(πt)‖Λt(λ)−1 , 1

}

⩽
(

T∑
t=1

λ · 9d

(1− γ)2

)1/2( T∑
t=1

min
{
‖x(πt)‖Λt(λ)−1 , 1

})1/2

︸ ︷︷ ︸
(a-i)

+

(
T∑

t=1

t−1∑
i=1

|〈x(πi),W (ft, πt)〉|2
)1/2( T∑

t=1

min
{
‖x(πt)‖Λt(λ)−1 , 1

})1/2

︸ ︷︷ ︸
(a-ii)

, (225)

where in the second inequality we use Cauchy-Schwarz inequality and the fact that

∀t ∈ [T ] : min
{
‖x(πt)‖Λt(λ)−1 , 1

}2

⩽ min
{
‖x(πt)‖Λt(λ)−1 , 1

}
. (226)

(a-i) in (225) could be bounded as follows:

(a-i)
(220)
⩽ 3

√
λdT

(1− γ)2
· 2dγ(λ). (227)

To bound (a-ii), note that for any π, π′ ∈ Π, we have

| 〈x(π′),W (f, π)〉 |2 =
1

(1− γ)2

∣∣∣E(s,a)∼dπ′
ρ

[
Qf (s, a)− r(s, a)− γPV π

f (s, a)
]∣∣∣2

⩽ 1

(1− γ)2
E(s,a)∼dπ′

ρ
[ℓ(f, s, a, π)] , (228)

where the inequality follows from Jenson’s inequality, and recall ℓ(f, s, a, π) is defined in (169).
Combining (228) and (220), we could bound (a-ii) in (225) as follows:

(a-ii) ⩽ 1

1− γ

(
2dγ(λ)

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt)

)1/2

. (229)

Plugging (227) and (229) into (225), we have

(a) ⩽ 3

1− γ

√
λdT · 2dγ(λ) +

1

1− γ

(
2dγ(λ)

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt)

)1/2

. (230)
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Bounding (b). By Assumption 8 and (217), we have

∀π ∈ Π : |〈x(π),W (f, π)〉| ⩽ 2

1− γ
. (231)

Combining the above inequality with (220), we have

(b) ⩽ 4

1− γ
dγ(λ). (232)

Combining (a) and (b). Plugging (230) and (232) into (222), we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣
⩽ 3

1− γ

√
λdT · 2dγ(λ) +

1

1− γ

(
2dγ(λ)

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt)

)1/2

+
4

1− γ
dγ(λ).

(233)

The first term in the right hand side of (233) could be bounded as

3

1− γ

√
λdT · 2dγ(λ) ⩽

3

2(1− γ)
(λdT + 2dγ(λ)) , (234)

and the second term in the right hand side of (233) could be bounded as

1

1− γ

(
2dγ(λ)

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt)

)1/2

⩽ dγ(λ)

η(1− γ)
+

η

1− γ
·

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt), (235)

for any η > 0, where in both (234) and (235), we use the fact that
√
ab ⩽ a+b

2 for any a, b ⩾ 0.

Substituting (234) and (235) into (233) and reorganizing the terms, we have

T∑
t=1

∣∣∣V πt

ft
(ρ)− V πt(ρ)

∣∣∣
⩽ η

1− γ
·

T∑
t=1

t−1∑
i=1

E(si,ai)∼d
πi
ρ
ℓ(ft, si, ai, πt) +

(
7

1− γ
+

1

η(1− γ)

)
dγ(λ) +

3Tdλ

2(1− γ)
.

(236)

This gives the desired result.

52


	Introduction
	Our contribution
	Related work

	Background and Motivation
	Background
	Motivation: revisiting MEX from primal-dual lens

	Value-incentivized Actor-Critic Method
	Algorithm development
	Theoretical guarantees

	Experiments
	Conclusion
	Technical Lemmas
	Proofs for Episodic MDPs
	Proof of Theorem 1
	Proof of key lemmas
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Extension to general function approximation
	Proof of Theorem 11
	Proof of Lemma 13


	Value-incentivized Actor-Critic Method for Discounted MDPs
	Algorithm development
	Theoretical guarantees
	Proof of Theorem 14
	Proof of key lemmas
	Proof of Lemma 17
	Proof of Lemma 18



