
GraphMatch: Fusing Language and Graph
Representations in a Dynamic Two-Sided Work

Marketplace

Mikołaj Sacha1∗ Hammad Jafri1 Mattie Terzolo1 Ayan Sinha1 Andrew Rabinovich1

1Upwork Inc.
∗mikolajsacha@cloud.upwork.com

Abstract

Recommending matches in a text-rich, dynamic two-sided marketplace presents
unique challenges due to evolving content and interaction graphs. We introduce
GraphMatch, a new large-scale recommendation framework that fuses pre-trained
language models with graph neural networks to overcome these challenges. Unlike
prior approaches centered on standalone models, GraphMatch is a comprehensive
recipe built on powerful text encoders and GNNs working in tandem. It employs
adversarial negative sampling alongside point-in-time subgraph training to learn
representations that capture both the fine-grained semantics of evolving text and the
time-sensitive structure of the graph. We evaluated extensively on interaction data
from Upwork, a leading labor marketplace, at large scale, and discuss our approach
towards low-latency inference suitable for real-time use. In our experiments, Graph-
Match outperforms language-only and graph-only baselines on matching tasks
while being efficient at runtime. These results demonstrate that unifying language
and graph representations yields a highly effective solution to text-rich, dynamic
two-sided recommendations, bridging the gap between powerful pretrained LMs
and large-scale graphs in practice.

1 Introduction

Real-world recommendation systems, from e-commerce platforms and job or talent marketplaces to
academic citation networks and news feeds, can be naturally described as Temporal Text-Attributed
Graphs (TTAGs). In such TTAGs, nodes possess rich textual descriptions that evolve over time, while
edges capture interactions like purchases, endorsements, or replies. Learning representations that
effectively integrate both the fine-grained semantics of text and the global, time-dependent structure
of the graph is crucial for tasks such as matching, recommendation, and retrieval. This remains a
significant open research challenge.

Recent advances in contrastive pretraining have led to language models (LM) such as Sentence-
BERT [28] and E5 [39]. These models distill documents into single embeddings and excel at
measuring local semantic similarity. However, two important signals are usually missing when LMs
are applied to TTAGs. First, the decision to link two items often depends on the neighborhood they
inhabit within the graph, an aspect that pure text encoders cannot see. Secondly, in TTAGs, the
meaning of a node and the evidence for linking can change rapidly. For e.g., the rise of generative
AI transformed "AI Writing" jobs posts suggesting editorial skills to prompt engineering ones.
Furthermore, geopolitical events continuously influence the freelancer-client matching dynamics
in the global work marketplace. Treating text snapshots as static features risks serious information
leakage from future states.
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Figure 1: Flowchart of the multi-stage training of TextMatch and GraphMatch, with models and
datasets at different stages.

Why graph neural networks alone are not enough? Graph neural networks (GNNs) and their
temporal variants are designed to capture long-range dependencies and temporal patterns. However,
applying them directly to large-scale TTAGs is challenging. Each node might contain thousands of
tokens, and the graph itself can have millions of time-stamped edges, with both text and structure
evolving continuously. Jointly updating an LM and a GNN to handle this complexity often exceeds
the memory and latency constraints of realistic applications [46, 17]. Staged approaches, such as first
fine-tuning a language model and then using its embeddings as static node features for a GNN [5],
can reduce computational overhead. However, they risk losing critical temporal signals, since static
embeddings fail to capture evolving textual semantics and interaction patterns. This limitation
is further amplified in two-sided marketplaces, where matching quality depends on continuously
balancing interests from distinct user groups.

Our contributions. We introduce GraphMatch, a framework designed to address these challenges.
GraphMatch integrates three key design elements:

1. Scalable fusion of LMs and GNNs. We begin by fine-tuning a Language Model
(TextMatch) to derive domain-specific sentence embeddings. Then, GraphMatch employs
these sentence embeddings using a lightweight residual projector. This strategy maintains a
constant memory overhead per layer, enabling the GNN to iteratively refine representations
by incorporating structural and temporal cues with rich textual semantics, thus enhancing
scalability.

2. Adversarial negative sampling. We propose a novel approach to fine-tuning GNN with
negative samples adversarial toward the LM embedding model. More specifically, after
training TextMatch, we generate a training dataset for GraphMatch, which comprises
recommendations generated by TextMatch with medium to high confidence. This sharpens
the learning signal for GraphMatch, facilitating faster convergence toward improving the
representations learned by TextMatch.

3. A practical recipe for TTAGs for two-sided user recommendation. Drawing on ef-
fective strategies for large textual graphs, our training approach combines (i) temporally
matched positive pairs from observed interactions, (ii) adversarially mined negatives using
TextMatch, and (iii) large in-batch negatives for efficient learning. We adapt our recipe
for a two-sided marketplace recommendation system using task-homogeneous learning on
mutually interesting objectives for both sides and effective handling of cold-start nodes.
This comprehensive approach promotes stable convergence on graphs with tens of millions
of nodes.

In this work, we present an extensive evaluation on a large-scale dataset derived user interaction data
from Upwork [37], a leading work marketplace platform, demonstrating that GraphMatch consistently
outperforms strong LM-only and GNN-only baselines, as well as LM-and-GNN fusion without
temporal aspect. By offering a conceptually clear yet empirically powerful solution, GraphMatch
advances representation learning on temporal, text-rich graphs in two sided marketplaces and provides
a practical blueprint for future systems that need to reason about both language and evolving structure.

2



2 Related Work

Our research builds upon and extends several key areas within graph-based machine learning and
recommendation systems. These include the application of Graph Neural Networks (GNNs) to
recommendation tasks, techniques for learning representations from temporal and text-attributed
graphs, the use of contrastive learning for graph representation, and the specific challenges of
recommendation in two-sided marketplaces.

Graph Neural Networks for Recommendation. Graph Neural Networks (GNNs) have become
a cornerstone in modern recommender systems due to their inherent ability to model complex
relationships and capture collaborative signals within user-item interaction graphs [11]. By iteratively
passing and aggregating messages between nodes, GNNs can learn rich, structure-aware embeddings
for users and items, effectively leveraging higher-order connectivity [10, 38]. This structural modeling,
combined with the ability to learn from node attributes, is beneficial for addressing challenges such
as data sparsity and the cold-start problem within a recommendation ecosystem [27]. Seminal works
like GraphSAGE [10] and its variants have demonstrated the power of neighborhood sampling and
aggregation for inductive representation learning on large graphs. Our work leverages these principles
to learn representations within the context of a two-sided marketplace.

Learning on Temporal and Text-Attributed Graphs. Real-world graphs, especially in domains
like online marketplaces, are often temporal, with evolving structures and node attributes, and text-
attributed, where nodes carry rich semantic information. Learning effectively from such Temporal
Text-Attributed Graphs (TTAGs) requires models that can jointly process structural, textual, and
temporal dimensions [41, 44]. Common approaches to represent structure and text together involve
using LMs to generate initial node features, which are then refined by a GNN that captures graph
structure [5, 4]. Other methods explore deeper fusion mechanisms between LMs and GNNs to better
synergize semantic understanding with structural reasoning [42, 46, 19]. In contrast, GraphMatch
proposes a scalable method to fuse LM-derived embeddings with a GNN that processes temporally-
aware subgraphs while respecting textual semantics, an area of active research [45, 44].

Contrastive Learning for Graph Representations. Self-supervised learning, particularly through
contrastive methods, has emerged as a powerful paradigm for learning graph representations without
explicit labels [43, 13, 18]. Graph Contrastive Learning (GCL) typically involves generating multiple
views of a graph (or nodes) through augmentations [33]. The choice of augmentation strategies and
the selection of negative samples are critical for the success of GCL [36, 26, 9]. Techniques such
as hard negative mining [29, 14] and adaptive negative sampling [40] aim to improve the quality of
negative samples and thus the learned representations. GraphMatch utilizes contrastive objective in
which empirically observed interactions are used as positive pairs, while TextMatch is used to mine
adversarial hard negatives; this supply of temporally relevant positives and challenging negatives
equips the GNN with precise signals that sharpen its representation learning.

Recommendation in Two-Sided Marketplaces. Two-sided marketplaces, such as freelance plat-
forms [37] or e-commerce sites, present unique recommendation challenges that go beyond standard
user-item matching [15, 20]. These platforms must balance the preferences and constraints of two
distinct groups of users, such as clients and freelancers. Effective matching in such marketplaces re-
quires training methodologies that can capture the nuances of both sides [8]. GraphMatch tackles this
challenge with a lightweight, three-part strategy: (i) temporal subgraph sampling to track evolving
interaction patterns (ii) task-homogeneous mini-batches that isolate client-side and freelancer-side
signals during training and (iii) a contrastive loss centered on “mutual-interest” events, such as hires
or interviews, which aligns the two sides, while we use TextMatch for adversarial hard negatives to
improve discrimination.

3 TextMatch

We first use TextMatch to compute initial domain-adapted node representation denoted as Φtext_emb :
(V × R)→ RdTM , which returns an embedding for any node v ∈ V at any timestamp t ∈ R, using
only the textual content associated with the node. TextMatch embeddings serve as the initial semantic
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input for the heterogeneous graph processed by GraphMatch. Its core objective is to generate powerful
vector representations for entities of any type.

3.1 Model Architecture

We employ a Sentence-BERT style [28] encoder-only architecture. The parameters are shared between
the query and candidate encoder, yielding a Symmetric Dual Encoder (SDE) model. This configura-
tion is a common choice for top-performing text representation models on retrieval benchmarks such
as BEIR [34] or MTEB [23].

3.2 Two-Stage Domain Adaptation and Fine-Tuning

To ensure that TextMatch embeddings are both generalizable and highly relevant to our specific
domain, we adopt a two-stage training procedure (Figure 1) based on established multi-stage recipes
prevalent in state-of-the-art embedding models [25, 39].

Stage 1: Weakly Supervised Pre-fine-tuning. Initially, the model is adapted using naturally occur-
ring textual pairs and weak relevance signals sourced from the platform. Examples include profile-title
↔ profile-body associations and dense signals from user interactions within the marketplace, such
as click or save events. Consistent with findings that such weak supervision, combined with large
batch sizes and in-batch negatives, yields robust generic embeddings for retrieval [39], we optimize
temperature-scaled InfoNCE loss. In this stage, we prioritize large batch sizes and do not employ ex-
plicit hard-negative mining, allowing the model to learn broad semantic relationships while adapting
to domain-specific vocabulary.

Stage 2: Supervised Fine-Tuning. We refine the model’s representations using stronger explicit
events as the primary supervisory signal. We use signals that show strong mutual interest between both
sides of the marketplace, such as interviews or hires. For each positive pair, we incorporate a nuanced
set of negaftives: (i) hard negatives, identified as chronologically adjacent impressions that have not
converted into a meaningful interaction, thus representing plausible yet rejected alternatives [29],
and (ii) random negatives sampled from the entire corpus to maintain distributional awareness. The
InfoNCE loss is utilized again at this stage.

Training Stability and Two-Sided Marketplace Optimization. To optimally train for a two-sided
marketplace, we construct task-homogeneous mini-batches. Each batch contains examples exclusively
from either the client side or the freelancer side of the marketplace. This strategy addresses challenges
reported in contrastive learning where mixing heterogeneous tasks within a batch can degrade retrieval
quality [12]; specialized batching, such as the formation of single-task mini-batches, has been shown
to mitigate this and improve the overall quality for model [21].

Outcome. The TextMatch pipeline produces domain-adapted and semantically rich node embed-
dings. These embeddings serve as the initial features for GraphMatch. This allows GraphMatch to
dedicate its capacity to modeling temporal and global graph structure instead of learning basic textual
similarity, forming an essential step in the overall system. We present the quantitative improvements
attributable to this approach in Section 5.

4 GraphMatch

Graph definition. Similarly to TextMatch, GraphMatch learns numerical embeddings of entities in
a user interaction graph. Let

G = (V,E,R, T ,A,Φtext_emb,Φfeat,Ψ) (1)

denote the user interaction graph where V is the set of all nodes, R is the set of possible interaction
types, and E ⊆ V × V ×R is the set of all edges. We define T as the set of node types (for example,
freelancers, job posts, clients). Each node v ∈ V has a type τ(v) ∈ T . Each edge is associated with
a timestamp with Ψ : E → R.

We define A : V → P(R× R) as the activity periods function that maps each node v ∈ V to a set
of activity periods, where we represent each activity period as a tuple (tstart, tend) with tstart ≤ tend.
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Figure 2: GraphMatch embeds freelancers, clients or job posts using a sampled text-attributed graph
representing their work history. In the illustration, we predict the embeddings of the emboldened
job post (left) and freelancer (right) nodes using the surrounding graph. We compare GraphMatch
embedding vectors using cosine similarity to predict the match probability between two entities.

The set A(v) can be empty (indicating no recorded activity periods) or contain one or more non-
overlapping time intervals during which node v was active. Activity period may pertain to when a
freelancer was open for work or when a job post was requesting applications.

Φtext_emb : (V ×R)→ RdTM maps every node and timestamp to its TextMatch embedding vector. We
assume that TextMatch embedding is set to a zero vector for nodes without textual content. We store
temporal TextMatch embedding versions per node in a sorted table as depicted in Figure 3. For each
node type τ ∈ T , we define a type-specific feature function Φτ

feat : {(v, t) ∈ V ×R|τ(v) = τ} → Rdτ ,
where dτ is the dimension of numerical features for nodes of type τ. GraphMatch leverages this
heterogeneous graph structure to learn an embedding function f : V → RdGM that captures both
textual similarity and interaction patterns to enhance matching performance.

Subgraph sampling. In practice, using the full graph to compute node embeddings is computation-
ally prohibitive. In Figure 2, we show how GraphMatch utilizes neighborhood subgraphs to compute
entity embeddings. To construct the input graph for GraphMatch, given target node v ∈ V and query
timestamp T ∈ R, we sample a temporal subgraph up to K hops away from the target node. At each
hop, for each edge type r ∈ R, we retain up to N edges e ∈ E such that Ψ(e) ≤ T , selecting the
N most recent such edges if more than N exist. Node features are also sampled as of timestamp T ,
using binary search over time-indexed feature snapshots to retrieve the most recent features prior to T
(see Figure 3). This temporal subgraph construction enables GraphMatch to reason over temporally
relevant interactions while maintaining efficiency.

4.1 Model Architecture

In this section, we describe the GraphMatch model. The GraphMatch framework is agnostic to some
modeling choices such as the implementation of graph convolutional layer. We describe the key
elements of our approach.

Initial Node Representation. The initial representation of a node v ∈ V depends on its type
τ(v) ∈ N and timestamp t ∈ R. For each node type n ∈ N , we have a type-specific encoder network
Encodern that processes the node features:

h
(0)
v,t = Encoderτ(v)

[
Φtext_emb(v, t) ∥Φτ(v)

feat (v, t)
]

(2)

Each encoder network Encodern is a small feed-forward neural network that maps the node type-
specific input features to a common embedding space.

Graph Convolution. GraphMatch applies multiple layers of heterogeneous graph convolution
to learn interaction-aware representations of nodes. Each heterogeneous graph convolution layer
calculates

h
(l+1,r)
v,t = CONVr

(
h
(l)
v,t, {h

(l)
u,t | u ∈ Nr(v, t,K)}

)
,
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Figure 3: We store dynamic node features in two tables. The main table (left) contains a single row
per node, with its history start index and the number of versions. The node history table (right) stores
all available versions of features per each node, grouped by node and sorted by timestamp within
each node. Given any timestamp, node type, and node ID, we first query the main table to retrieve the
history index and the number of versions. Next, we run a binary search over the relevant rows in the
feature history table, finding the point-in-time correct feature values in O(log2n) time.

where h
(l)
v,t denotes the representation of node v at layer l, Nr(v, t,K) is the set of the K most recent

neighbors of v connected by relation type r with edge timestamp < t, and CONVr is a relation-
specific aggregation function. The representations from each relation are aggregated (for example,
by averaging) to obtain h

(l+1)
v,t . This process is repeated for multiple layers to capture higher-order

interactions.

Final Embedding Fusion. After the final graph convolution layer, the model applies a residual
connection to the original TextMatch embedding:

f(v, t) =
hfinal
v,t + Project(Φtext_emb(v, t))∥∥hfinal
v,t + Project(Φtext_emb(v, t))

∥∥
2

, (3)

where Project is a small feed-forward module that maps the TextMatch embedding to the final embed-
ding space. This design ensures that the final embedding can benefit from TextMatch embeddings,
numerical node features, and the graph-based learned representations.

4.2 Training Procedure

We train GraphMatch using a contrastive learning framework. The goal is to learn embeddings that
place relevant query-candidate pairs closer in the embedding space while pushing away irrelevant
pairs.

Positive Training Labels. We train GraphMatch for a temporal link prediction task. The set of
training labels

C = {(qi, v+i , Tstart, Tend)} ⊆ V × V × R× R (4)

is derived from observed matches, where each match is associated with a relevance time span
(Tstart, Tend). For example, if a match represents a contract between a job post and a freelancer, the
associated Tstart is the timestamp when the job offer was created, and Tend is the timestamp when the
contract was started. Note that this time span does not have to be equal to an activity time span from
A. For example, some job posts may request many freelancers and remain open for applications after
a contract is initiated. For each sample during training, we randomly select a timestamp t+i uniformly
between Tstart and Tend and make a prediction based on the version of the graph at t+i .

Adversarial Negative Mining. We want GraphMatch to improve upon TextMatch embeddings
by taking advantage of the user interaction graph. To achieve this, we employ negative samples
generated adversarially toward TextMatch. For each positive sample (qi, v

+
i , t

+
i ), we generate up to

N adversarial negative samples by first building separate Approximate Nearest Neighbor search [31]
indices for each node type using their respective activity periods, then performing similarity-based
filtering to select challenging negatives. We present the algorithm pseudocode in Algorithm 1. In our
experiments, we use σlow = 0.5, σhigh = 0.85, K = 2000, and N = 20.

Additionally, per each positive sample (qi, v+i , t
+
i ), we generate a random negative candidate (v−i , t

−
i )

such that τ(v−i ) = τ(v+i ) and ∃(tstart, tend) ∈ A(v−i ) : tstart ≤ t−i ≤ tend. This ensures that the space
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Algorithm 1 Adversarial Negative Mining via TextMatch.

Require: Positive dataset (qi, v+i , t
+
i ) ∈ C ⊆ V × V × R

Require: TextMatch embedding function Φtext_emb : (V × R)→ RdTM

Require: Activity periods function A : V → P(R× R)
Require: Node type function τ : V → T
Require: Parameters: K, N , σlow, σhigh

1: Build ANN indices IT ← {It : t ∈ T } where each It contains embeddings of nodes v with
τ(v) = t and active periods in A(v)

2: Dtrain ← ∅
3: for each (qi, v

+
i , t

+
i ) ∈ C do

4: eqi ← Φtext_emb(qi, t
+
i )

5: CK ← ANN(eqi ,K, Iτ(v+
i )) ▷ Nearest K within same node type

6: F ← ∅
7: for each (v−j , t

−
start, t

−
end) ∈ CK do

8: t−j ← RandomUniform(t−start, t
−
end)

9: ev−
j
← Φtext_emb(v

−
j , t

−
j )

10: s−j ← sim(eqi , ev−
j
)

11: if σlow < s−j < σhigh and v−j ̸= v+i then
12: F ← F ∪ {(v−j , t

−
j )}

13: end if
14: end for
15: Ni ← RandomSample(F ,min(N, |F|))
16: for each (v−j , t

−
j ) ∈ Ni do

17: Dtrain ← Dtrain ∪ {(qi, v+i , t
+
i , v

−
j , t

−
j )}

18: end for
19: end for
20: return Dtrain

of negative samples covers all potential active nodes. In Section 5, we show that the combination of
random and adversarial negatives is required to surpass the performance of TextMatch.

In-Batch Negative Sampling. To enhance computational efficiency and exposure to diverse neg-
ative examples, we leverage in-batch negatives, similar to TextMatch. Assume our batch consists
of queries {(qi, t+i )}, positive candidates {(v+i , t

+
i )} per each query and the set of all random and

adversarial negative candidates generated for the batch {(v−j , t
−
j )}. We compute the similarities

between each query qi and all positive and negative candidate entities in the batch:

s+i,j = f(qi, t
+
i )

T f(v+j , t
+
j ) (5)

s−i,j = f(qi, t
+
i )

T f(v−j , t
−
j ) (6)

where f(·) denotes the GraphMatch embedding function.

Contrastive Loss. We formulate the training objective as a cross-entropy loss where, for each
query, the model must identify its corresponding positive candidate among all candidates in the batch:

L = − 1

B

B∑
i=1

log
exp(s+i,i/τ)∑

j∈C+ exp(s+i,j/τ) +
∑

j∈C− exp(s−i,j/τ)
(7)

where B is the batch size, i+ is the index of the positive candidate for query i, C+ and C−,
respectively, represent the sets of all positive and negative candidate indices in the batch, and τ > 0
is the temperature hyperparameter.
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Model Adv Neg NDCG@10
FL→ JP JP→ FL

snowflake-arctic-embed-l 7.4 % 6.1 %
mxbai-embed-large-v1 11.2 % 6.7 %

TextMatch-small 21.6 % 10.6 %
TextMatch-large 22.4 % 11.4 %

GraphMatch-no-text × 7.4 % 3.3 %
✓ 12.8 % 7.4 %

GraphMatch-no-feat × 21.1 % 10.4 %
✓ 22.4 % 11.8 %

GraphMatch-full × 21.4 % 10.3 %
✓ 24.2 % 12.4 %

Table 1: Performance comparison on FL→ JP and JP→ FL retrieval, including GraphMatch trained
with or without adversarial negatives.

5 Experiments

We train TextMatch and GraphMatch on two-sided work marketplace data. The training objective
is to predict contracts between freelancers and job posts based on freelancer profile overview and
job description, and user interaction graph in the case of GraphMatch. We train TextMatch and
GraphMatch in a multitask fashion, using training labels for predicting job posts for a query freelancer
(FL→ JP) or a freelancer for a query job post (JP→ FL) with 50%/50% sampling probabilities. We
depict the full training flowchart in Figure 1.

5.1 TextMatch Training

The encoder is initialized from publicly available E5-unsupervised checkpoints (small: 33M and
large: 330M parameters), which are themselves results of advanced contrastive pretraining [39]. We
use the same encoder weights for queries and candidates. The pre-fine-tuning stage utilizes dense in-
teraction data of 110M samples based on weak signals such as clicks or saves and naturally occurring
pairs of titles and descriptions. The fine-tuning stage uses more sparse but strong interactions, which
show mutual interest between both sides of the marketplace, like interviews or a hires, combined with
hard negatives based on the impressed but not interacted items mined from interaction logs.

5.2 GraphMatch Training

Training dataset. The dataset for GraphMatch contains one year of user interaction data from
Upwork [37], with a 10/1/1 month temporal split for training, validation, and evaluation. The dataset
consists of nodes representing freelancers, clients and job posts, and edges representing interactions
such as posting a job by a client, job application, freelancer invitation, job interview, or contract start
(see Figure 2). Freelancer and job post nodes are associated with textual features: profile overview
and job description, respectively. All nodes contain additional numerical features specific to their
type, such as freelancer hourly rate, client location, job post category, etc. Both text and numerical
features can change over time. In total, there are approximately 9 million nodes with 32 million
temporal versions of features and 62 million edges. We train GraphMatch on strong labels derived
from contracts between freelancers and job posts.

Training details. We train GraphMatch using TextMatch-small embeddings for Φtext_emb. The
output embedding dimension for GraphMatch is dGM = 1024. We freeze the weights of TextMatch
and only update the weights of the GraphMatch-specific layers. We train GraphMatch for 24 hours,
with hourly checkpointing, and for the final evaluation, select the checkpoint with the lowest validation
loss. We use GATv2Conv [3] as the graph convolutional layer. In total, our model has approximately
64M weights, including 33M weights of TextMatch-small. We use a cluster of 8xNVIDIA A100
80GB GPUs for all training and evaluation.
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Model NDCG@10

FL → JP JP → FL

GraphMatch-full 24.2 % 12.4 %

GraphMatch-full
(no temporal nodes) 15.1 % 8.5 %

GraphMatch-full
(no temporal graph) 13.3 % 6.9 %

Table 2: Ablation study on disabling tem-
poral sampling during training.

Model NDCG@10 (FL → JP)

Query
CS

Cand
CS

Both
CS

TextMatch-small 21.6 % 23.4 % 23.3 %
TextMatch-large 21.7 % 24.1 % 22.7 %

GraphMatch-no-text 5.7 % 6.9 % 5.8 %
GraphMatch-no-feat 24.1 % 23.2 % 21.9 %
GraphMatch-full 25.3 % 23.0 % 22.8 %

Table 3: Evaluation on samples where query,
ground truth candidate or both of these entities
are cold start (CS) nodes.

5.3 Evaluation

Evaluation data. The evaluation set comprises contracts between freelancers and job posts from
14 consecutive days within the evaluation part of the graph. For each evaluation day, as the set of
candidates, we gather all active freelancers and all job posts open for hire as of 12:00 GMT that
day. Out of these, we select as positive pairs the pairs of freelancers and job posts that engaged in
a mutual contract with the contract start date after 12:00 GMT on that day. We evaluate for two
mirrored retrieval tasks: retrieving the correct job post based on a query freelancer (FL→ JP), and
retrieving the correct freelancer based on a job post (JP → FL). For the JP → FL task, we only
consider candidate freelancers who have completed their profile (profile completion > 80%) and were
active on the website within 48 hours prior to the considered timestamp. The dataset contains∼15000
positive labels, with ∼13000 job posts per day and ∼24000 freelancers per day as the candidate pool.

Retrieval metrics. In Table 1, we show the aggregated NDCG@10 metric values for retrieval tasks
FL→ JP and JP→ FL on the evaluation set. We compare TextMatch and GraphMatch with two
state-of-the-art open-source embeddings models: snowflake arctic-embed-l [22] and mxbai-embed-
large-v1 [16]. We use the open-source model weights without any fine-tuning in a zero-shot fashion.
We see that fine-tuning on the work marketplace dataset improves the accuracy of the text embedding
model, exemplified by the high NDCG@10 of TextMatch compared to the open-source embedding
models. The performance gap is significant despite the large size and generalized pre-training of the
open source baselines, highlighting the importance of fine-tuning on the target dataset.

For GraphMatch, we observe that the combination of random and hard negatives is crucial for
good performance. GraphMatch versions trained only with random negatives achieve performance
comparable to TextMatch-small. We ablate over node features used by GraphMatch: no-feat uses only
TextMatch node embeddings, no-text uses numerical node features without text embeddings, and full
uses the concatenation of TextMatch node embeddings and numerical node features. GraphMatch-full,
trained with adversarial negatives, achieves the best performance, while GraphMatch-no-feat performs
comparably to TextMatch-large, despite having a much smaller model size. We observe that textual
context is crucial for accurate predictions, showcased by the low accuracy of GraphMatch-no-text.

Importance of temporally accurate sampling. Sampling point-in-time correct subgraphs and
node features is necessary to train a model that generalizes well to unseen nodes. To verify this, we
train GraphMatch in two setups. The no-temporal-nodes version does not use temporally relevant
node features during training (Figure 3) but always utilizes the newest feature version in the training
set. The no-temporal-graph version additionally does not sample temporally relevant subgraphs but
has access to all the graph edges during training. In Table 2, we show that such sampling leads to
poor generalization to the evaluation set, with much lower NDCG@10 values.

Retrieval accuracy on cold start nodes. The cold start problem is a critical challenge for
recommender systems. In our setting, a cold start node can be a freelancer who has not yet interacted
with other users or job posts, or a job post posted by a client who has not had any other interactions so
far.We evaluate the performance of TextMatch and GraphMatch (trained with adversarial negatives)
on the evaluation samples where the query or ground truth candidate entity is a cold start node.
Table 3 presents the evaluation results on samples for which query or ground truth candidate is a
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cold start node. We see that the performance of GraphMatch on cold start nodes is comparable
to TextMatch, indicating the model’s ability to default to using text embeddings where no graph
information is available, mitigating the cold start problem.

6 Real-time Deployment of GraphMatch

The real-time deployment architecture of GraphMatch consists of three main components: feature
store, inference service, and graph database. This separation supports a shared, universal graph
structure across various use cases while allowing individual GNN models to leverage customized
node features. We implement node sampling using Cypher [7], letting callers define the node and
edge types needed at inference.

Feature Store. Node features are primarily aggregated statistics (counts, averages, etc.). Our data
warehouse, Snowflake [30], stores clones of production relational databases and assorted business
data. Feature tables are generated via hourly SQL Mesh [32] ETL jobs and maintained in Feast [6].
Since features update hourly, we define smart default values to handle missing features for entities
present in the graph but not yet in the feature store.

Graph Database. We host graph using Neo4j Aura [24] graph database. Two ETL pipelines update
the graph: a near real-time Kafka [2] pipeline for highly dynamic entities like job posts and an hourly
Airflow [1] batch pipeline for other entities. In the graph database, we store minimal node properties
(type, ID, creation timestamp) to enable accurate subgraph sampling for inference.

Inference Service. Model inference runs on a Python/FastAPI [35] microservice. We deploy
the model on EC2 instances with Nvidia A10G GPUs (24GB RAM). Requests per second drive
autoscaling, as GPU/CPU utilization is less predictive of latency degradation as usage increases. To
optimize model inference, we compute and cache TextMatch embeddings for nodes every time a
freelancer profile or job post description is updated, effectively limiting online inference to only the
GNN layers. This enables achieving average embedding generation latencies of less than 70 ms per
embedding across all entity types, supporting horizontal scalability and unlocking near real-time use
cases.

7 Conclusion

In this work, we introduced GraphMatch, a framework for learning entity representations in a
two-sided marketplace by integrating textual attributes and evolving user-interaction patterns using
Temporal Text Attributed Graphs (TTAGs). Our experiments on a large-scale dataset from a real-
world labor marketplace demonstrate that GraphMatch significantly outperforms text-only embedding
approaches for matching freelancers with job posts. We show that effectively fusing textual and graph
embeddings, with appropriate temporal sampling, achieves optimal performance. Additionally, we
provided practical guidelines for deploying GraphMatch as a real-time, graph-based recommendation
system.

Although GraphMatch is effective in recommendation tasks, it has few limitations. Its deployment
complexity exceeds that of text-only embeddings, primarily because it requires real-time access to
TTAGs during inference. Furthermore, the multi-stage training process of TextMatch and GraphMatch,
while computationally expensive, is essential for accurately capturing textual, temporal, and structural
features inherent to TTAGs.

Several directions for future research could enhance our approach. Firstly, incorporating a more
sophisticated fusion mechanism, as suggested in [46, 42], may further improve the integration of
textual and graph embeddings. Secondly, exploring multi-stage training for GraphMatch akin to
TextMatch could enhance embedding quality. Lastly, deeper investigations into node and edge type
definitions or subgraph sampling strategies is interesting. Ultimately, although we focused on work
marketplace, the principles and methodologies underpinning GraphMatch are broadly applicable to
any two-sided marketplace.
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