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Abstract

Dense retrieval is a basic building block of in-001
formation retrieval applications. One of the002
main challenges of dense retrieval in real-world003
settings is the handling of queries contain-004
ing misspelled words. A popular approach005
to handling misspelled queries is minimizing006
the representations discrepancy between mis-007
spelled queries and their pristine ones. Un-008
like the existing approaches which only focus009
on the alignment between misspelled and pris-010
tine queries, our method also improves the con-011
trast between each misspelled query and its sur-012
rounding queries. To assess the effectiveness013
of our proposed method, we compare it against014
the existing competitors using two benchmark015
datasets and two base encoders. Our method016
outperforms the competitors in all cases with017
misspelled queries.018

1 Introduction019

Dense retrieval is a fundamental component in020

many information retrieval applications, such as021

open-domain question answering and ad-hoc re-022

trieval. The objective is to score and rank a large023

collection of candidate passages based on their sim-024

ilarity to a given query. The performance of dense025

retrieval relies on sentence representation learning.026

A popular approach is to finetune a pre-trained lan-027

guage model to create an embedding space that028

puts each query closer to its corresponding pas-029

sages (Zhan et al., 2020; Karpukhin et al., 2020;030

Khattab and Zaharia, 2020; Xiong et al., 2021; Qu031

et al., 2021; Ren et al., 2021a,b).032

One of the major challenges of dense retrieval033

is the handling of misspelled queries which in-034

duces representations of the misspelled queries to035

be closer to irrelevant passages than their corre-036

sponding passages. Several studies have demon-037

strated that misspellings in search queries can sub-038

stantially degrade retrieval performance (Zhuang039

and Zuccon, 2021; Penha et al., 2022), specifically040

when informative terms, such as entity mentions, 041

are misspelled (Sidiropoulos and Kanoulas, 2022). 042

To create a retrieval model that is capable of 043

handling misspelled queries, researchers have pro- 044

posed different training methods to align repre- 045

sentations of misspelled queries with their pris- 046

tine ones. Zhuang and Zuccon (2021, 2022) de- 047

vise augmentation methods to generate misspelled 048

queries and propose training methods, Typos-aware 049

Training and Self-Teaching (ST), to encourage con- 050

sistency between outputs of misspelled queries 051

and their non-misspelled counterparts. Alterna- 052

tively, Sidiropoulos and Kanoulas (2022) apply 053

contrastive loss to enforce representations of mis- 054

spelled queries to be closer to their corresponding 055

non-misspelled queries. Although these methods 056

can improve the performance of retrieval models 057

for misspelled queries, there is still a substantial 058

performance drop for misspelled queries. 059

In this paper, we propose a training method to 060

improve dense retrieval for handling misspelled 061

queries based on the following desired properties: 062

• Alignment: the method should be able to align 063

queries with their corresponding passages. 064

• Robustness: the method should be able to align 065

misspelled queries with their pristine queries. 066

• Contrast: the method should be able to sepa- 067

rate queries that refer to different passages and 068

passages that correspond to different queries. 069

In contrast to the existing methods that only sat- 070

isfy the Alignment and Robustness properties, our 071

method also aims to satisfy the Contrast property. 072

Increasing the distance between dissimilar queries 073

should help distinguish misspelled queries from 074

other distinct queries. We design the following 075

components for our training method: (i) Dual Self- 076

Teaching (DST) incorporates the ideas of Dual 077

Learning (Xia et al., 2017; Li et al., 2021) and 078

Self-Teaching (Zhuang and Zuccon, 2022) to train 079

robust dense retrieval in a bidirectional manner: 080

passage retrieval and query retrieval. (ii) Query 081
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Expansion generates a large number of misspelling082

examples in a variety of misspelling variations for083

each query to supply our training objective.084

Experimental studies were conducted to assess085

the efficiency of the proposed method in compar-086

ison to existing approaches. We conduct experi-087

ments based on two different pre-trained language088

models. We evaluate using two passage retrieval089

benchmark datasets, a standard one and a special-090

ized one for misspellings robustness evaluation.091

For each dataset, we measure performance on both092

misspelled and non-misspelled queries, where the093

misspelled queries are both generated and real094

queries. The experimental results show that the095

proposed method outperforms the best existing096

methods for enhancing the robustness of dense097

retrieval against misspellings without sacrificing098

performance for non-misspelled queries.099

We summarize our contributions as follow:100

• We propose a novel training method to enhance101

the robustness of dense retrieval against mis-102

spellings by incorporating three desired proper-103

ties: Alignment, Robustness, and Contrast.104

• We introduce Dual Self-Teaching (DST) which105

adopts the idea of Dual Learning and Self-106

Teaching to learn robust sentence representations.107

In addition, we propose Query Expansion to gen-108

erate multiple views of a particular query under109

different misspelling scenarios.110

• We evaluate our method on misspelled and non-111

misspelled queries from two passage retrieval112

datasets. The results show that our method out-113

performs the previous state-of-the-art methods114

by a significant margin on misspelled queries.115

2 Methodology116

We propose a training pipeline to enhance the dense117

retrieval capability for handling spelling variations118

and mistakes in queries. As shown in Figure 1, the119

training pipeline comprises three steps. (i) Query120

Expansion: we augment each query in the training121

set into multiple misspelled queries using the typo122

generators provided by Zhuang and Zuccon (2021).123

(ii) Similarity Score Calculation: we compute sim-124

ilarity score distributions using in-batch negative125

queries and passages, with additional hard negative126

passages. (iii) Dual Self-Teaching Loss Calcula-127

tion: we compute the DST loss using the similarity128

score distributions.129

2.1 Query Expansion 130

The purpose of this step is to guide the learn- 131

ing with a broad array of possible misspelling 132

patterns. Let Q denote a set {q1, q2, ..., qN} 133

of N queries. From all queries in Q, we 134

generate a set of K × N misspelled queries 135

Q′ = {⟨q′1,k, q′2,k, ..., q′N,k⟩}Kk=1, where K is the 136

misspelling variations. We use five typo generators 137

proposed by Zhuang and Zuccon (2021), including: 138

RandInsert, RandDelete, RandSub, SwapNeighbor, 139

and SwapAdjacent. Please refer to Appendix A.3 140

for examples of the misspelled queries. 141

2.2 Similarity Score Calculation 142

The goal of this step is to compute similarity score 143

distributions between queries and passages for pas- 144

sage retrieval and query retrieval tasks. 145

Let S(·, ·) denote the score distribution function: 146

S(a,B) =

{
bi ∈ B

∣∣∣∣∣ exp(a · bi)∑
bj∈B exp(a · bj)

}
(1) 147

148where P = {p1, p2, ..., pM} is a set of M passages 149

and Q′
k = {q′1,k, q′2,k, ..., q′N,k} is the kth set of mis- 150

spelled queries in Q′. We compute two groups of 151

score distributions as follow: 152

• Passage retrieval: we calculate score distributions 153

in a query-to-passages direction for each origi- 154

nal query sp = S(qn,P) and misspelled query 155

s′kp = S(q′n,k,P). 156

• Query retrieval: we calculate score distribu- 157

tions in a passage-to-queries direction for orig- 158

inal queries sq = S(pm,Q) and each set of mis- 159

spelled queries s′kq = S(pm,Q′
k). 160

In this way, we produce four different score distri- 161

butions (sp, s′kp , sq, s′kq ) for our training objective. 162

2.3 Dual Self-Teaching Loss Calculation 163

We design the Dual Self-Teaching loss (LDST) to 164

capture the three desired properties: Alignment, 165

Robustness, and Contrast. 166

LDST = (1− β)LDCE︸ ︷︷ ︸
Dual Cross-Entropy

+ βLDKL︸ ︷︷ ︸
Dual KL-Divergence

(2) 167

168Dual Cross-Entropy loss (LDCE) satisfies the 169

Alignment and Contrast properties by utilizing 170

cross-entropy losses to learn score distributions of 171

the original queries for passage retrieval (sp) and 172

query retrieval (sq) given labels yp and yq. 173

LDCE = (1− γ)L(P )
CE (sp, yp)︸ ︷︷ ︸

Passage Retrieval

+ γL(Q)
CE (sq, yq)︸ ︷︷ ︸

Query Retrieval
(3) 174
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Figure 1: The proposed training pipeline consists of three steps: (a) Query Expansion, (b) Similarity Score
Calculation, and (c) Dual Self-Teaching Loss Calculation.

175 Minimizing the L(P )
CE term will increase the sim-176

ilarity scores between queries and their relevant177

passages to be higher than other irrelevant passages178

by separating the relevant and irrelevant passages179

from one another. Minimizing the L(Q)
CE term will180

increase the similarity scores between passages181

and their relevant queries to be higher than other182

irrelevant queries by separating the relevant and183

irrelevant queries from one another. In this man-184

ner, minimizing one of the two terms will align185

queries with their corresponding passages, satisfy-186

ing the Alignment property. Moreover, minimizing187

both terms will separate queries that refer to differ-188

ent passages and passages that belong to different189

queries, satisfying the Contrast property.190

Dual KL-Divergence loss (LDKL) aims to ful-191

fill the Robustness property by using KL losses192

to match score distributions of misspelled queries193

{s′1p , s′2p , ..., s′Kp } and {s′1q , s′2q , ..., s′Kq } to the194

score distributions of the original query sp and sq.195

LDKL =
1

K

K∑
k=1

(1− σ)L(P )
KL (s′kp , sp)︸ ︷︷ ︸

Passage Retrieval Consistency

+ σL(Q)
KL (s′kq , sq)︸ ︷︷ ︸

Query Retrieval Consistency

(4)196

197
Minimizing L(P )

KL and L(Q)
KL will reduce the dis-198

crepancy between misspelled and non-misspelled199

queries for both query-to-passages and passage-to-200

queries score distributions. This way, we implicitly201

align representations of the misspelled queries to202

the original queries, satisfying the Robustness prop-203

erty. To stabilize training, we apply stop-gradient204

to the score distributions of the original queries (sp205

and sq) in the LDKL. The β, γ, and σ are the balanc-206

ing coefficients selected by hyper-parameter tuning207

on a development set. With this loss combination, 208

we achieve all three desired properties. 209

3 Experimental Settings 210

3.1 Training Details 211

We experiment on two pre-trained language mod- 212

els, BERT (Devlin et al., 2019) and Character- 213

BERT (El Boukkouri et al., 2020). We train both 214

models only on the training set of MS MARCO 215

dataset (Nguyen et al., 2016). Moreover, the train- 216

ing data, provided by the Tevatron toolkit (Gao 217

et al., 2022), also contains hard negative pas- 218

sages. We include the training set details and hyper- 219

parameter settings in Appendix A.1. 220

3.2 Competitive Methods 221

To show the effectiveness of our method, we com- 222

pare our work with the following baseline and com- 223

petitive training methods. 224

• DPR (Karpukhin et al., 2020) is a baseline train- 225

ing method which trains dense retrieval merely 226

on non-misspelled queries using L(P )
CE loss. 227

• DPR+Aug (Zhuang and Zuccon, 2021) is the 228

Typos-aware Training method which trains dense 229

retrieval on both misspelled and non-misspelled 230

queries using L(P )
CE loss. 231

• DPR+Aug+CL (Sidiropoulos and Kanoulas, 232

2022) employs additional contrastive loss to train 233

the misspelled queries. 234

• DPR+ST (Zhuang and Zuccon, 2022) is the Self- 235

Teaching method which trains dense retrieval on 236

both misspelled and non-misspelled queries us- 237

ing L(P )
CE and L(P )

KL losses. 238

Note that, their query augmentation method is iden- 239

tical to the Query Expansion with K = 1. We re- 240

train all models using the same setting described in 241

the previous section. 242
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BERT-based CharacterBERT-based

MS MARCO DL-typo MS MARCO DL-typo

Methods MRR@10 R@1000 nDCG@10 MRR MAP MRR@10 R@1000 nDCG@10 MRR MAP

DPR .143 (.331) .696 (.954) .276 (.682) .431 (.873) .175 (.563) .162 (.321) .726 (.945) .268 (.643) .376 (.832) .212 (.503)

+ Aug .227 (.334) .857 (.950) .398 (.682) .530 (.806) .286 (.565) .258 (.326) .883 (.946) .414 (.631) .578 (.783) .318 (.512)

+ Aug + CL .234 (.335) .867 (.951) .387 (.668) .536 (.864) .267 (.544) .263 (.330) .894 (.947) .466 (.677) .635 (.819) .360 (.544)

+ ST .237 (.333) .874 (.950) .392 (.677) .525 (.852) .283 (.557) .274 (.332) .900 (.947) .469 (.650) .619 (.810) .359 (.517)

+ DST (our) .260†(.336) .894†(.954) .432 (.673) .558 (.833) .343†(.568) .288†(.332) .918†(.949) .529†(.673) .742†(.854) .403 (.537)

Table 1: Results of different training methods on misspelled and non-misspelled queries. We report the results
in the format of "misspelled query performance (non-misspelled query performance)".
We emphasize the best score with bold text and the second-best score with underlined text. We use † to denote DST
results that significantly outperform the second-best result (p < 0.05).

3.3 Dataset and Evaluation243

Datasets. We evaluate the effectiveness of DST on244

two passage retrieval datasets, MS MARCO and245

DL-typo (Zhuang and Zuccon, 2022), each with246

misspelled and non-misspelled queries. There are247

8.8 million candidate passages for both datasets.248

The development set of MS MARCO contains249

6,980 non-misspelled queries. To obtain misspelled250

queries, we use the typos generator method pro-251

posed by Zhuang and Zuccon (2021) to generate252

10 misspelled variations for each original query.253

The DL-typo provides 60 real misspelled queries254

and 60 corresponding non-misspelled queries that255

are corrected manually.256

Evaluation. We use the standard metrics originally257

used by each dataset’s creators. For MS MARCO,258

each misspelled query performance is the average259

of 10 measurements. We employ Ranx evaluation260

library (Bassani, 2022) to measure performance261

and statistical significance. Specifically, we use a262

two-tailed paired t-test with Bonferroni correction263

to measure the statistical significance (p < 0.05).264

4 Experimental Results265

4.1 Main Results266

As shown in Table 1, the results indicate that267

DST outperforms competitive methods for mis-268

spelled queries in every cases without sacrific-269

ing performance for non-misspelled queries in270

eight out of ten cases. We observe some perfor-271

mance trade-offs for the BERT-based model in non-272

misspelling scores (nDCG@10 and MRR) of the273

DL-typo dataset. Aside from that, there is no per-274

formance trade-off for the CharacterBERT-based275

model. These outcomes conform with the observa-276

tion in Figure 2 (Appendix A.4) that DST improves277

the Robustness and Contrast of misspelled queries.278

4.2 Loss Ablation Study 279

In this experiment, we study the benefit of each 280

term in DST by training dense retrieval models on 281

variant loss combinations with K = 40.

L(P )
CE L(Q)

CE L(P )
KL L(Q)

KL MRR@10

✓ ✓ ✓ ✓ .260 (.336)

✓ ✓ ✓ .257 (.335)

✓ ✓ ✓ .228 (.326)

✓ ✓ ✓ .251 (.337)

✓ ✓ ✓ .087 (.114)

✓ ✓ .249 (.336)

✓ ✓ .120 (.158)

Table 2: Loss ablation study results on MS MARCO.
282

The results in Table 2 reveal that robustness terms 283

(L(P )
KL and L(Q)

KL ) positively contribute to the perfor- 284

mance of misspelled and non-misspelled queries, 285

with the L(P )
KL being more important. The pas- 286

sage retrieval loss (L(P )
CE ) is very important for re- 287

trieval performance, whereas the query retrieval 288

loss (L(Q)
CE ) improves performance for misspelled 289

queries. Disabling query retrieval terms (L(Q)
CE and 290

L(Q)
KL ) greatly reduces performances for misspelled 291

queries. The passage retrieval terms (L(P )
CE and 292

L(P )
KL ) remain the most essential and irreplaceable 293

by the query retrieval terms. 294

5 Conclusion 295

This paper aims to address the misspelling prob- 296

lem in dense retrieval. We formulate three desired 297

properties for making dense retrieval robust to mis- 298

spellings: Alignment, Robustness, and Contrast. 299

Unlike previous methods, which only focus on the 300

Alignment and Robustness properties, Our method 301

considers all the desired properties. The empirical 302

results show that our method performs best against 303

misspelled queries, revealing the importance of the 304

Contrast property. 305
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A Appendix441

A.1 Training Setup and Hyperparameters442

The MS MARCO is a large scale English language443

dataset for machine reading comprehension (MRC).444

The dataset consists of anonymized queries sam-445

pled from Bing’s search query logs, each with hu-446

man generated answers. The training set we used447

contains 400,782 training samples, each of which448

consists of a query, positive passage, and a set of449

hard negative passages, which we randomly select450

7 hard negative passages for each training sample.451

We set a batch size to 16 and use in-batch negative452

sampling for each training sample, therefore, we453

obtain 7 + 8 * 15 = 127 negative passages for each454

training sample. We use the AdamW optimizer455

and learning rate of 1e−5 for 150,000 steps with a456

linear learning rate warm-up over the first 10,000457

steps, and a linear learning rate decay over the rest458

of the training steps. For our training method, we459

set the hyper-parameters β = 0.5, γ = 0.5, σ = 0.2,460

and the query expansion size K = 40. Using a Tesla461

V100 32G GPU, the BERT-based model training462

time is around 31 hours, while the CharacterBERT-463

based model training time is roughly 56 hours.464

A.2 Query Expansion Size Study465

To study the benefit of query expansion and find the466

optimal expansion size, we measure performance467

of dense retrieval models trained with DST using468

the query expansion size K of 1, 10, 20, 40, 60.469

Note that, the query augmentation method used470

in previous works is a special case of the query471

expansion when K = 1. We report the results using472

MRR@10 for the development set of MS MARCO473

dataset. We also report training time to show trade-474

offs between performance and computation.475

Queries
K

1 10 20 40 60

Original .334 .334 .335 .336 .332

Misspelled .251 .258 .260 .260 .260

Training time (hr) 18 20 23 31 39

Table 3: Results of query expansion size study. We
train all models in this experiment on Tesla V100 32G
GPU.

As shown in Table 3, the results indicate that476

increasing K improves the performance of both477

misspelled and non-misspelled queries, but only478

up to a certain point, after which the performance479

begins to decline. We observe that setting K = 40480

produces the best results, and there is no further per- 481

formance improvement after this point. In addition, 482

the K = 1 result demonstrates the performance of 483

our method when utilizing the same query augmen- 484

tation method as the previous methods. 485

A.3 Query Expansion Examples 486

Table 4 provides examples of misspelled queries 487

generated by the Query Expansion for each original 488

query. 489

Original query:
what is the goddess of agriculture in greek mythology

Misspelled queries:
what is the goddoess of agriculture in greek mythology

what is the goddess of agriulture in greek mythology

what is the goddess of agriculture in greek mythologo

what is the goddses of agriculture in greek mythology

what is the goddess of agriculture in greek myhhology

what is the goddess of agriculture in greeck mythology

what is the goddess of agriculture in greek myhology

what is the goddess of agriculture in grvek mythology

what is the goddess of agricultrue in greek mythology

what is the goddess of ahriculture in greek mythology

Table 4: The outputs of Query Expansion with
K = 10. We use different colors to indicate different
types of typo: RandInsert , RandDelete , RandSub ,
SwapNeighbor , and SwapAdjacent .

A.4 Query Distributions 490

The purpose of this section is to study the impact 491

of our training method to the Robustness and Con- 492

trast of misspelled queries. We also compare our 493

method against the baseline and competitive meth- 494

ods to show the effectiveness. The Robustness and 495

Contrast of misspelled queries are illustrated using 496

the following kernel density graphs: 497

• Original-to-Misspell: the cosine similarity distri- 498

bution between original and misspelled queries. 499

• Original-to-Neighbor: the cosine similarity dis- 500

tribution between original and neighbor queries. 501

The Robustness property is emphasized by the 502

Original-to-Misspell distribution having high co- 503

sine similarity. On the other hand, the Con- 504

trast property is emphasized by the Original-to- 505

Misspell and Original-to-Neighbor distributions 506

having small overlapping. The results in Figure 507

2 show that our method produces the best Robust- 508

ness and Contrast properties for misspelled queries, 509

in comparison to other methods. 510
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(a) Kernel density of baseline method.

(b) Kernel density of Self-Teaching method.

(c) Kernel density of Dual Self-Teaching method (our).

Figure 2: Kernel density of Original-to-Neighbor (or-
ange) and Original-to-Misspell (blue) of different train-
ing methods.

A.5 Limitations511

In the following part, we list the limitations of the512

proposed method.513

• The Query Expansion is designed for the English514

alphabet; therefore, other languages with differ-515

ent alphabets, such as Thai and Chinese, will 516

require further work. 517

• The training strategy may not be suitable for lan- 518

guages with limited resources since it relies on 519

fine-tuning a pre-trained language model using a 520

large passage retrieval dataset. 521

A.6 Licenses 522

Datasets: The MS MARCO dataset is available 523

under the MIT license, and the DL-typo dataset 524

is available under the Apache license 2.0. These 525

licenses allow users to use the datasets under non- 526

restrictive agreements. 527

Softwares: We employ Hugging Face (Wolf et al., 528

2020) and Tevatron (Gao et al., 2022) libraries 529

to train dense retrieval models. We utilize Ranx 530

library (Bassani, 2022) to evaluate retrieval per- 531

formance. These libraries are available under the 532

Apache license 2.0 which allows both academic 533

and commercial usages. For this reason, we release 534

our code under the Apache license 2.0 to make our 535

code fully accessible and compatible with the other 536

codes we use. 537
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