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Fig. 1: Open6DOR Benchmark and Real-world Experiments. We introduce a challenging and comprehensive benchmark for Open-
instruction 6-DoF object rearrangement tasks, termed Open6DOR. Following this, we propose a zero-shot and robust method, Open6DOR-
GPT, which proves effective in demanding simulation environments and real-world scenarios.

Abstract— The integration of large-scale Vision-Language
Models (VLMs) with embodied AI can greatly enhance the
generalizability and the capacity to follow open instructions
for robots. However, existing studies on object manipulation
are not up to full consideration of the 6-DoF requirements, let
alone establishing a comprehensive benchmark. In this paper,
we propel the pioneer construction of the benchmark and
approach for Open-instruction 6-DoF Object Rearrangement
(Open6DOR). Specifically, we collect a synthetic dataset of
200+ objects and carefully design 5400+ Open6DOR tasks.
These tasks are divided into the Position-track, Rotation-track,
and 6-DoF-track for evaluating different embodied agents in
predicting the positions and rotations of target objects.

Besides, we also propose a VLM-based approach for
Open6DOR, named Open6DOR-GPT, which empowers GPT-
4V with 3D-awareness and simulation-assistance while exploit-
ing its strengths in generalizability and instruction-following.
We compare the existing embodied agents with our Open6DOR-
GPT on the proposed Open6DOR benchmark and find that
Open6DOR-GPT achieves the state-of-the-art performance.
We further show the impressive performance of Open6DOR-
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GPT in diverse real-world experiments.

I. INTRODUCTION

The advent of large-scale embodied models, exemplified
by the RT series [1, 2, 4] and VoxPoser [5], has demonstrated
considerable progress in mobile or fixed-station pick-and-
place operations. While these models are capable of rear-
ranging the object positions following human instructions,
they fall short of satisfying full 6-DoF object placement
instructions that involve specified 3D rotations. This limi-
tation renders them incompetent at many practical robotic
applications, where both object position and orientation are
essential. For instance, in our daily life we often need a
water bottle to be placed upright, while on the shelves in
retail stores, goods should face the same direction. Moreover,
previous works [2, 4, 5] are often evaluated on their own
robots in their own scenes with self-reported performance
and nonstandard evaluation metrics. The absence of a stan-
dard evaluation protocal condone cherry-picking, obstruct
comparative assessment, and thus, hinder the iterative en-
hancement of effective approaches.

In this paper, we target the task of Open-instruction
6-DoF Object Rearrangement, referred to as Open6DOR,



Sim.-assisted Filtering

Large-scale Sampling

Mesh Reconstruction

Simulation-assisted
Rotation Module

3D-aware
Position Module

GPT-4V Selection

GPT-4V PredictionRGB-D Image

Place the capybara on top of the
paper labeled “Open6DOR”, with the 

capybara facing frontwards.

Grounded
SAM

Task Preprocessing Module

GPT-4V

Inputs

Instruction

cuRobo
Motion Planner

Object Masks

Target Object
RGB Image

Object Centroids & Bboxes
3D Object Point Clouds

Goal Rotation

Goal Position

Sim.-assisted
Planning Module

Scene Point Cloud

Generated Traj.

…

[ paper ]
[ red bowl ]
[ capybara ]

Fig. 2: Method Overview. Open6DOR-GPT takes the RGB-D image and instruction as input and outputs the corresponding robot motion
trajectory. Firstly, the preprocessing module extracts the object names and masks. Then, two modules simultaneously predict the position
and rotation of the target object in a decoupled way. Finally, the planning module generates a trajectory for execution.

which requires embodied agents to move the target objects
according to open instructions that specify its 6-DoF pose.
Open6DOR represents a fundamental skill for robotic manip-
ulation tasks, presenting significant challenges in integrating
instruction comprehension, 3D visual perception, and motion
planning capabilities. Specifically, we promote the envelope
of Open6DOR from two perspectives:

1) Benchmark construction: We construct a standardized
benchmark, namely Open6DOR Benchmark, which com-
prises 5414 tasks designed with more than 200 objects
across diverse categories in simulation environments. For
comprehensive evaluation, we divide the Open6DOR bench-
mark into the position-track, rotation-track, and 6-DoF-
track, each providing manually configured tasks along with
comprehensive and quantitative 3D annotations. These tracks
enable independent or combined assessments of translational,
rotational, and overall performance.

2) VLM-based approach: We propose a VLM-based
approach for Open6DOR tasks. Due to the aforementioned
challenges of Open6DOR, all prior works, such as VoxPoser
[5] and Dream2Real [7], fail to fulfill Open6DOR’s 6-DoF
requirements adequately. Among these efforts, Dream2Real
[7] attempts to consider position and rotation dimensions
simultaneously by imagining randomly rearranged scenes
and leveraging VLM as an evaluator. This leads to almost
intolerable time costs resulted from numerous renderings
and VLM inferences, as well as unsatisfactory results due
to the VLM’s limited 3D perception, which renders it an
incompetent critic. In contrast, we propose Open6DOR-GPT,
which explicitly integrates 3D information from the initial
scene into GPT-4V with equipped auxiliary modules and de-
composes the translational and rotational determinations. In
this way, we augment GPT-4V with 3D understanding capa-
bilities and improve efficiency by reducing the determination
space with decoupled modeling and simulation-assistance.
Open6DOR-GPT achieves state-of-the-art performance in
both benchmark evaluation and real-world experiments.

II. OPEN6DOR BENCHMARK

A. Open6DOR Task Formulation

We aim to identify a shared, fundamental component
within complex embodied problems and, based on that,

concisely formulate a elementary task, which we name
Open6DOR. Open-instruction object rearrangement refers to
the process wherein an embodied agent repositions objects
within a scene from an initial state, following specific
instructions. Specifically, a 6-DoF (Degrees of Freedom)
object rearrangement task focuses on repositioning objects
in a 6-DoF space, which includes both orientational and
translational movement. We define each of these pick-and-
place processes as an Open6DOR task, where a single target
object is moved from its initial pose to a goal pose, guided by
an open-vocabulary instruction. The input includes a single-
view RGB-D image of the initial scene, denoted as Irgbd,
alongside a task instruction Ĩ that specifies the desired pose
of a target object in the scene. Based on these, the model is
required to output the goal position Pgoal and goal rotation
Rgoal of the target object. The Open6DOR task lies at the
core of various long-horizon or complex-scene problems, si-
multaneously evaluating a model’s capabilities in instruction
following, 3D perception, and semantic understanding.

B. Open6DOR Benchmark Overview

The Open6DOR Benchmark is specifically designed for
Open6DOR tasks grounded in simulation environment. To
ensure comprehensive evaluation, we provide three special-
ized tracks of benchmark: Rotation-track Br, Position-track
Bp, and 6-DoF-track B6DOR.

Overall, the Open6DOR Benchmark consists of 5k+ tasks,
featuring intricate configurations, realistic scenes, compre-
hensive annotations, and interactive environment.
Asset collection. The synthetic object dataset Os comprises
200+ items spanning 70+ distinct categories.
Task configuration. Each task in the Open6DOR Bench-
mark is set within a table-top environment, where multiple
objects are placed randomly. Initial object poses are carefully
configured to avoid issues such as model clipping, range
exceeding or unstable placement. Moreover, we manually de-
sign diverse instructions based on the target object, including
positional and rotational requirements. The tasks are further
reviewed to prevent occlusion or infeasible settings, ending
with a total of 5k+ tasks.
Annotation and evaluation. For rotational assessment, we
manually annotate each goal pose of a specific object



Fig. 3: Simulation-assisted Rotation Module. Firstly, a textured mesh is reconstructed from the single-view image of the target object.
Then, we employ large-scale sampling to obtain multiple rotation samples. This sample set is then narrowed down through a simulation-
assisted filtering process to derive several stable pose categories. Finally, we generate rendered images of the pose candidates, from which
GPT-4V selects the optimal goal rotation.

as quaternions. The axis of symmetry, if present, is also
specified to represent rotational equivalence. These annota-
tions enable calculation of deviations between predicted and
ground-truth rotations. For positional evaluation, we design
heuristic functions to judge whether the spatial arrangement
conforms to the instruction.
Simulation setting. The Open6DOR Benchmark is based
on Isaac Gym [8], offering an interactive environment and
executable platform. All tasks can be directly loaded into
the simulator, in which users may control a robotic arm to
complete the tasks. We also provide motion-planning APIs
that generate actions based on a goal pose, implemented with
cuRobo [10] and IsaacGym Motion Planing Library [8].
Rendering augmentation. To enhance observation realism,
we propose a rendering API based on Blender [3]. Using
such high-quality rendering, we generate a single-vew RGB-
D image dataset, which serves as observation input for mod-
els. Additionally, the API enables customization of camera
positions, lighting conditions, and background textures to
accomodate personalized observation settings.

III. OPEN6DOR-GPT
A. Method Overview

As shown in Fig. 2, we enhance GPT-4V [9]’s capabilities
to address the challenges of the Open6DOR task in a
decomposed way. Initially, the Task Preprocessing Module
deciphers Ĩ based on the Irgbd and feeds the resulting images
to the Position Module and Rotation Module respectively.
Within the two modules, we empower GPT-4V with 3D
awareness and simulation assistance, thereby effectively out-
putting the predicted goal position Pgoal and rotation Rgoal.
Finally, the Simulation-assisted Planning Module identifies
a suitable grasping pose and plans out an optimal action
trajectory to accomplish the task. We will first introduce each
module of our proposed system in subsections B-E to explain
how an Open6DOR task is accomplished. We then elaborate
on how the system tackles long-horizon tasks with multiple
rounds of operations.

B. Task Preprocessing Module
With the single-view RGB-D Image Irgbd and the task

instruction Ĩ as input, this module leverages GPT-4V to

interpret the instruction and identifies object namestOname
i u,

which in turn triggers GroundedSAM [6] to generate a set of
labeled masks. Based on the masked Image Imask, the RGB
image of the target object Iobject is extracted. These images
are used in subsequent modules.

C. 3D-aware Position Module

Taking the masked RGB-D image Imask and task in-
struction Ĩ as input, the 3D-aware Position Module Mp

determines and outputs the goal position.
To incorporate three-dimensional (3D) data into GPT-4V’s

understanding, our approach utilizes back-projection based
on Imask to generate a 3D masked point cloud, symbolized
as PC3d

i . This computation includes determining the centroid
Center3di and bounding box Bbox3di of the point cloud
associated with the queried object.

These spatial attributes are then integrated back into the
prompt for GPT-4V, facilitating the model to accurately
ascertain the goal position for the target object Pgoal.

D. Simulation-assisted Rotation Module

As illustrated in Fig. 3, with the single-view RGB image
of the target object Iobject and the task instruction Ĩ as input,
the rotation module would output the goal rotation Rgoal for
the object. We first reconstruct the target object from Iobject
using InstantMesh [11] , resulting in a textured mesh denoted
as M . The reconstruction process is followed by four phases:
(1) large-scale sampling (2) simulation-assisted filtering (3)
rotation categorization (4) GPT-4V selection.

E. Simulation-assisted Planning Module

Utilizing the predicted goal position Pgoal and goal rotation
Rgoal, the planning module formulates an effective execution
strategy with simulation assistance.

IV. EXPERIMENTS

A. Results on Position-track Benchmark

We evaluate the performance of our position module and
several baselines on the Position-track Benchmark. As shown
in Table I, Comparatively, our approach markedly surpasses
all these baselines by over 30 percent, demonstrating superior
and consistent performance on the Position-track Benchmark.
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Fig. 4: Real-world Experiments. We ground Open6DOR-GPT in real-world settings and conduct various tasks including long-horizon
ones, demonstrating its zero-shot generalization potential across challenging tasks.

Success Rate (%) Level 0 Level 1 Level 2 Overall

GPT-4V [9] 46.8 39.1 50.0 45.2
Dream2Real* [7] 17.2 11.0 - 15.9

VoxPoser* [5] 35.6 21.7 0.0 32.6
VoxPoser(VLM)* [5] 37.2 19.9 0.0 33.5

Open6DOR-GPT 78.6 60.3 80.0 74.9
TABLE I: Results on Position-track Benchmark. We compared
our approach against several benchmarks for positioning proposals.
This includes: (1) GPT-4V [9], utilizing pixel input to predict object
placement and employing depth for 3D location. (2) A tailored
Dream2Real [7] baseline for our task. (3,4) VoxPoser [5] original
and adapted versions, aligning with our goals. Our tests include
GPT-4V’s Large Language Model (LLM) and Vision-Language
Model (VLM) setups, with an asterisk denoting ground-truth data
usage as reference baselines.

Success Rate(%) Level 0 Level 1 Level 2 Overall

GPT-4V [9] 9.1 6.9 11.7 9.2
Dream2Real* [7] 37.3 27.6 26.2 31.3

S-F + GPT-4V 41.1 30.7 30.4 38.4
Open6DOR-GPT 45.7 32.5 49.8 41.1

(S-F + 2-Stage 4V)
Open6DOR-GPT* 48.2 32.6 60.0 44.1

TABLE II: Results on Rotation-track Benchmark. Quantitative
comparison with a refined version of Dream2Real [7] method
(replacing CLIP Model with GPT-4V), and ablation studies of
different phases in the Rotation Module. ’S-F’ stands for ’Sampling-
Filtering’. ’*’ means using ground-truth mesh instead of recon-
structed ones. The first three rows ablate Phase1-4, Phase3-4, and
Stage2 in Phase 4, respectively.

B. Results on Rotation-track Benchmark

Our Rotation Module comprises four phases aimed at
enhancing GPT-4V [9] through a simulation-assisted sample-
and-filter mechanism. To evaluate the effectiveness of each
phase, we conduct ablation studies using the Rotation-track
of Open6DOR Benchmark, with results detailed in Table II.

Success Rate (%) Rotation Position Overall Time Cost(s)

Dream2Real [7] - - - ą700
Dream2Real* [7] 18.7 26.2 13.5 358.3
Open6DOR-GPT 40.0 84.8 35.6 126.3
TABLE III: Results on 6-DoF-track Benchmark. We compare our
method with an optimized version of Dream2Real [7] on the 6DoF
Benchmark. The three columns depict the quality of the goal pose
in terms of rotation, position, and overall performance.

C. Results on 6-DoF Benchmark

We evaluate our entire pipeline using the 6DoF-track
of Open6DOR Benchmark. The evaluation of rotational,
positional, and joint performance are presented in Table III.
Our approach also demonstrates better efficiency compared
to baseline approaches.

D. Real-world Experiments

As shown in Fig. 4, our zero-shot method is able to tackle
challenging Open6DOR scenarios and demonstrates strong
potential in long-horizon tasks.

V. CONCLUSION

In this paper, we pioneer the establishment of the
Open6DOR benchmark and VLM-based approach, address-
ing the need for a comprehensive evaluation and a foregoing
method exploration in open-instruction 6-DoF object rear-
rangement. Our synthetic benchmark, comprising over 200
objects and 5400 tasks, offers a standardized framework for
evaluating the capabilities of embodied agents in simulation
environments. Additionally, our Open6DOR-GPT approach
achieves state-of-the-art performance, augmenting GPT-4V
with 3D awareness and simulation assistance. As for the
current limitations, while Open6DOR-GPT significantly im-
proves position and rotation handling, it does not achieve
real-time performance, and rotation understanding remains
suboptimal. We look forward to future improvements to our
benchmarks, especially for real-world extensions.
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