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Abstract

Temporal-difference (TD) learning is widely regarded as one of the most popular algorithms
in reinforcement learning (RL). Despite its widespread use, it has only been recently that
researchers have begun to actively study its finite time behavior, including the finite time
bound on mean squared error and sample complexity. On the empirical side, experience
replay has been a key ingredient in the success of deep RL algorithms, but its theoretical
effects on RL have yet to be fully understood. In this paper, we present a simple decomposi-
tion of the Markovian noise terms and provide finite-time error bounds for tabular on-policy
TD-learning with experience replay. Specifically, under the Markovian observation model,
we demonstrate that for both the averaged iterate and final iterate cases, the error term
induced by a constant step-size can be effectively controlled by the size of the replay buffer
and the mini-batch sampled from the experience replay buffer.

1 Introduction
The pioneering Deep Q-network (DQN) (Mnih et al., 2015) has demonstrated the vast potential of reinforce-
ment learning (RL) algorithms, having achieved human-level performances in numerous Atari games (Belle-
mare et al., 2013). Such successes have fueled extensive research efforts in the development of RL algorithms,
e.g., Sewak (2019); Mnih et al. (2016); Schulman et al. (2015); Badia et al. (2020) to name just a few. Beyond
video games, RL has showcased notable performances in various fields, including robotics (Singh et al., 2020;
Saleh et al., 2022) and finance (Liu et al., 2020; Shahbazi & Byun, 2021).

On the other hand, temporal-difference (TD) learning (Sutton, 1988) is considered one of the most funda-
mental and well-known reinforcement learning (RL) algorithms. Its objective is to learn the value function,
which represents the expected sum of discounted rewards following a particular policy. While asymptotic
convergence of TD-learning (Jaakkola et al., 1993; Bertsekas & Tsitsiklis, 1996) has been extensively studied
and is now well-understood, such asymptotic analysis cannot measure how efficiently the estimation pro-
gresses towards a solution. Recently, the convergence rate of TD-learning has gained much attention and
has been actively investigated (Lee & Kim, 2022; Bhandari et al., 2018; Chen et al., 2020; Srikant & Ying,
2019; Dalal et al., 2018; Hu & Syed, 2019). These studies aim to understand the efficiency of the estimation
process, and provide theoretical guarantees on the rate of convergence.

First appeared in Lin (1992), experience replay memory can be viewed as a first-in-first-out queue and is
one of the principal pillars of DQN (Mnih et al., 2015). Learning through uniformly random samplings from
the experience replay memory, the strategy is known to reduce correlations among experience samplings,
and improve the efficiency of the learning. Despite its empirical successes (Mnih et al., 2015; Fedus et al.,
2020; Wang et al., 2016; Zhang & Sutton, 2017; Hong et al., 2022; Kumar & Nagaraj, 2022), theoretical
side of the experience replay memory techniques remains largely an open yet challenging question. Only
recently, Di-Castro et al. (2022; 2021) studied asymptotic convergence of actor-critic algorithm (Konda &
Tsitsiklis, 1999) with experience replay memory. To the authors’ knowledge, its non-asymptotic analysis has
not been thoroughly investigated in sense of TD-learning so far.

The aim of this paper is to investigate the impact of experience replay memory on standard TD-learning (Sut-
ton, 1988), with the goal of shedding light on the question at hand. Our primary theoretical contribution
is the derivation of the convergence rate of tabular on-policy TD-learning with experience replay memory
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under Markovian observation models. This analysis reveals connections between the sizes of the mini-batch
and experience replay memory, and the convergence rate. Specifically, we show that the error term, resulting
from correlations among the samples from the Markovian observation models, can be effectively controlled
by the sizes of the mini-batch and experience replay memory, for both the averaged iterate and final iterate
cases. We expect that our findings can provide further insights into the use of experience replay memory in
RL algorithms.

Lastly, although our analysis only considers the fundamental TD-learning case, our presented arguments can
be extended to more general scenarios, such as TD-learning with linear function approximation (Srikant &
Ying, 2019; Bhandari et al., 2018), standard Q-learning (Watkins & Dayan, 1992), periodic Q-learning (Lee
& He, 2019), and DQN (Mnih et al., 2015).

1.1 Related works

Experience replay. We begin by providing an overview of the existing theoretical results on experience
replay. The recent work by Nagaraj et al. (2020) leverages the experience replay memory to address the least-
squares problem under the Gaussian auto-regressive model. However, there are several notable differences
between their approach and the proposed TD-learning with experience replay memory:

1. The approach in Nagaraj et al. (2020) assumes i.i.d. Gaussian noises, whereas the proposed TD-
learning with experience replay memory covers Markovian and specific non-Gaussian noises.

2. The overall algorithmic structures are significantly different. The approach in Nagaraj et al. (2020)
deals with an offline learning problem, while the proposed TD-learning framework is an online
learning approach.

3. When operating the experience replay buffer, they maintain a sufficiently large gap between the
separate samples inside the buffer to ensure the samples are almost identical and independently
distributed.

4. The approach by Nagaraj et al. (2020) uses an inner loop to iterate over the samples in the buffer,
whereas the proposed framework updates the weights using mini-batch style updates, which is widely
used in practice.

Kowshik et al. (2021) presented an algorithm that employs the reverse experience memory approach pro-
posed in Rotinov (2019); Whelan et al. (2022) to tackle linear system identification problems. This algorithm
guarantees non-asymptotic convergence, and the reverse experience replay technique (Rotinov, 2019) involves
using transitions in reverse order, rather than uniformly and randomly, without introducing any stochas-
ticity, which distinguishes it from the original experience replay method introduced in Mnih et al. (2015).
Kowshik et al. (2021) assumes auto-regressive model with i.i.d. noise. Following the spirit of Nagaraj et al.
(2020), Kowshik et al. (2021) also maintains a gap between separate samples to enforce independence between
the samples.

Using the super-martingale structure of the reverse experience replay memory, Agarwal et al. (2021) derives
sample complexity of Q-learning, which also maintains a gap between samples. Moreover, the works, Kowshik
et al. (2021) and Agarwal et al. (2021) both exploit full samples from each experience replay memory rather
than applying uniformly sampled mini-batch to maintain the reverse order property.

Lazic et al. (2021) presented a regret bound analysis for regularized policy iteration with a replay buffer in
the context of averaged reward Markov decision processes (MDPs). The authors assume that an accurate
estimate of the action-value function is available, which is obtained via Monte Carlo methods (Singh &
Sutton, 1996), as opposed to the TD-learning algorithm (Sutton, 1988). The use of experience replay
memory is modified from Mnih et al. (2015). One approach suggested in Lazic et al. (2021) involves storing
all data from each phase, with a limit on the size of the replay buffer. When the buffer size exceeds the
limit, a subset of the data is eliminated uniformly at random.

Fan et al. (2020) established a non-asymptotic convergence of fitted Q-learning (Ernst et al., 2005), which
assumes i.i.d. sampling of transitions from a fixed distribution. This assumption is stronger compared to
the Markovian observation models used with the replay buffer.
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A closely related approach to our work is presented in Di-Castro et al. (2022), which establishes the asymp-
totic convergence of the actor-critic algorithm (Konda & Tsitsiklis, 1999) using a mini-batch that is uniformly
and randomly sampled from the replay buffer. The proof relies on treating the replay buffer and mini-batch
indices as random variables, which together form an irreducible and aperiodic Markov chain. Following
the O.D.E. approach outlined in Borkar & Meyn (2000) and the natural actor-critic algorithm described
in Bhatnagar et al. (2009), Di-Castro et al. (2022) establishs the convergence of the actor-critic algorithm
using the replay buffer. While Di-Castro et al. (2022) demonstrates a decrease in auto-correlation and co-
variance among samples in the experience replay, their proof of asymptotic convergence does not explicitly
address the impact of these factors on the convergence behavior. However, the study provides important
insights into the convergence properties of actor-critic algorithms using the replay buffer and highlights the
potential benefits of using mini-batches to improve the convergence rate.

Non-asymptotic analysis of TD-learning We highlight several recent studies on finite time behavior of
TD-learning (Lee & Kim, 2022; Bhandari et al., 2018; Chen et al., 2020; Srikant & Ying, 2019; Dalal et al.,
2018; Hu & Syed, 2019). Under i.i.d. observation model and linear function approximation setting, Dalal
et al. (2018) derived O

( 1
kσ

)
bound on the mean squared error with diminishing step-size 1

(k+1)σ where
σ ∈ (0, 1) and k is the number of iterations. Under i.i.d. observation model and tabular setup, from the
discrete-time stochastic linear system perspective, Lee & Kim (2022) provided geometric convergence rate
with constant error at the order of O(α) of TD-learning for both averaged iterate and final iterate using
constant step-size α. Bhandari et al. (2018) provided convergence rate of TD-learning with linear function
approximation under the Markovian noise following the spirit of convex optimization literature (Nemirovski
et al., 2009). With the help of Moreau envelope (Parikh et al., 2014), Chen et al. (2020) derived convergence
rate of TD-learning with respect to an arbitrary norm. Mainly based on Lyapunov approach (Khalil, 2015)
for continuous time O.D.E. counterpart of TD-learning, Srikant & Ying (2019) derived a finite time bound
on the mean squared error of TD-learning under Markovian noise with linear function approximation.

In contrast to the existing studies that have focused on the finite time behavior of TD-learning (Lee & Kim,
2022; Bhandari et al., 2018; Chen et al., 2020; Srikant & Ying, 2019; Dalal et al., 2018; Hu & Syed, 2019),
our work investigates the finite time behavior of TD-learning with experience replay, which has not been
thoroughly studied to date. Specifically, we demonstrate that the use of experience replay can be an effective
means of reducing the constant error term that arises from employing a constant step-size. Our findings
may provide valuable insights into the effectiveness of experience replay in RL, shedding new light on the
benefits of this widely-used technique. Further research in this area could yield important research topics,
with implications for the development of more efficient and effective reinforcement learning algorithms.

2 Preliminaries
2.1 Markov chain
In this section, basic concepts of Markov chain are briefly introduced. To begin with, the so-called total
variation distance defines distance between two probability measures as follows.

Definition 2.1 (Total variation distance (Levin & Peres, 2017)). The total variation distance between two
probability distributions, µ1 and µ2, on S is given by

dTV(µ1, µ2) = sup
A⊆S
|µ1(A)− µ2(A)|.

Let us consider a Markov chain with the set of states S := {1, 2, . . . , |S|} and the state transition probability
P. For instance, a state s ∈ S transits to the next state s′ with probability P(s, s′). A stationary distribution
of the Markov chain is defined as a distribution µ ∈ R|S| on S such that µ⊤P = µ⊤ where P ∈ R|S|×|S| is
the transition matrix of Markov chain, i.e., [P ]ij = P(i, j) for i, j ∈ S.

Let {Sk}k≥0 be a trajectory of a Markov chain. Then, an irreducible and aperiodic Markov chain is known
to admit a unique stationary distribution µ such that the total variation distance between the stationary
distribution and the current state distribution decreases exponentially (Levin & Peres, 2017) as follows:

sup
s∈S

dTV(P[Sk = · | S0 = s], µ) ≤ mρk
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for some ρ ∈ (0, 1) and some positive m ∈ R. Moreover, the mixing time (Levin & Peres, 2017) of a Markov
chain is defined as

tmix(ϵ) := min
{

k ∈ Z+ : sup
s∈S

dTV(P[Sk = · | S0 = s], µ) ≤ ϵ

}
for any ϵ ∈ R+. Throughout the paper, we will use tmix to denote tmix ( 1

4
)

for simplicity.

2.2 Markov decision process
A Markov decision process is described by the tuple (S,A, γ,P, r), where S := {1, 2, . . . , |S|} is the set of
states, A := {1, 2, . . . , |A|} is the set of actions, γ ∈ (0, 1) is the discount factor, r : S × A × S → R is the
reward function, and P : S × A × S → [0, 1] is the state transition probability, i.e., P(s, a, s′) means the
probability of the next state s′ ∈ S when taking action a ∈ A at the current state s ∈ S. For example, at
state sk ∈ S at time k, if an agent selects an action ak, then the state transits to the next state sk+1 with
probability P(sk, ak, sk+1), and incurs the reward r(sk, ak, sk+1), where the reward generated by the action
at time k, r(sk, ak, sk+1), will be denoted by rk+1 := r(sk, ak, sk+1). In this paper, we adopt the standard
assumption on the boundedness of the reward function.

Assumption 2.2. There exists some positive Rmax ∈ R such that |r(s, a, s′)| ≤ Rmax for all (s, a, s′) ∈
S ×A× S.

Let us consider a Markov decision process with the policy, π : S × A → [0, 1]. Then, the corresponding
state trajectory, {Sk}k≥0, is a Markov chain induced by the policy π, and the corresponding state transition
probability is given by Pπ : S×S → [0, 1], i.e., Pπ(s, s′) :=

∑
a∈A P(s, a, s′)π(a | s) for s, s′ ∈ S. Throughout

the paper, we assume that the induced Markov chain with transition kernel Pπ is irreducible and aperiodic
so that it admits a unique stationary distribution denoted by µπ

S∞
, and satisfies the exponential convergence

property

sup
s∈S

dTV(P[Sk = · | S0 = s], µπ
S∞

) ≤ m1ρk
1 , k ≥ 0.

for some positive m1 ∈ R and ρ1 ∈ (0, 1).

Let (Sk, Sk+1) ∈ O be a tuple of states at time step k and its next state Sk+1 ∼ Pπ(Sk, ·), which will be
frequently used in this paper to analyze TD-learning, and O denotes the realizable set of tuples consisting
of state and the next state, i.e., for (x, y) ∈ S × S, we have (x, y) ∈ O if and only if Pπ(x, y) > 0. Then,
the tuple forms another induced Markov chain. The transition probability of the induced Markov chain
{(Sk, Sk+1)}k≥0 is

P[Sk+2, Sk+1 | Sk+1, Sk] = P[Sk+2 | Sk+1],

which follows from the Markov property. The next lemma states that the Markov chain {(Sk, Sk+1)}k≥0 is
also irreducible and aperiodic provided that {Sk}k≥0 is irreducible and aperiodic.

Lemma 2.3. If {Sk}k≥0 is an irreducible and aperiodic Markov chain, then so is {(Sk, Sk+1)}k≥0.

The proof is in Appendix Section A.3. Now, let us denote µπ
S∞,S′

∞
as the stationary distribution of the

Markov chain {(Sk, Sk+1)}k≥0, which satisfies the relation between µπ
S∞

and µπ
S∞,S′

∞
:∑

a∈A
π(a | s)P(s, a, s′)µπ

S∞
(s) = Pπ(s, s′)µπ

S∞
(s) = µπ

S∞,S′
∞

(s, s′). (1)

Then, from Lemma 2.3, we have

sup
(s,s′)∈S×S

dTV

(
P[(Sk, Sk+1) = · | (S0, S1) = (s, s′)], µπ

S∞,S′
∞

)
≤ m2ρk

2

for some positive m2 ∈ R and ρ2 ∈ (0, 1). Similar to the original Markov chain, the mixing time can be
defined for this new Markov chain. Throughout this paper, we adopt the notations, tmix

1 and tmix
2 , to denote

the mixing time of the Markov chain {Sk}k≥0 and the mixing time of {(Sk, Sk+1)}k≥0, respectively. For
simplicity of the notation, we will denote τmix := max{tmix

1 , tmix
2 }.

4



Under review as submission to TMLR

2.3 Temporal difference learning
To begin with, several matrix notations are introduced. Let us define

Dπ :=


µπ

S∞
(1)

µπ
S∞

(2)
. . .

µπ
S∞

(|S|)

 ∈ R|S|×|S|, Rπ =


E[r(s, a, s′)|s = 1]
E[r(s, a, s′)|s = 2]

...
E[r(s, a, s′)|s = |S|]

 ∈ R|S|,

where Rπ defined above is a vector of expected rewards when action is taken under π. From Assumption 2.2,
one can readily prove that Rπ is bounded as well.

Lemma 2.4. We have ||Rπ||∞ ≤ Rmax.

Moreover, in this paper, P π ∈ R|S|×|S| denotes the transition matrix under the policy π, i.e., [P π]ij = Pπ(i, j)
for i, j ∈ S, where [P π]ij denotes the element in the i-th column and j-th row. The minimum probability in
the stationary state distribution is denoted by µπ

min := mins∈S µπ
S∞

(s).

Proposed in Sutton (1988), TD-learning aims to estimate the value function V π(s) :=∑∞
k=0 E

[
γkrk | S0 = s, π

]
, s ∈ S through the following stochastic recursion:

Vk+1 = Vk + αδ(Ok, Vk) (2)

for k ≥ 0, where α ∈ (0, 1) is a constant step-size, Ok := (sk, rk+1, sk+1) , and δ is called the TD-error
defined as

δ(Ok, Vk) := esk
rk + γesk

e⊤
sk+1

Vk − esk
e⊤

sk
Vk. (3)

3 Main results
3.1 TD-learning with experience replay
In this subsection, we introduce the proposed TD-learning method, which employs the original experience
replay memory technique from Mnih et al. (2015) with no significant modifications. Experience replay
memory, commonly referred to as the replay buffer, is a first-in-first-out (FIFO) queue that facilitates the
adoption of mini-batch techniques in machine learning for online learning scenarios. Specifically, the replay
buffer stores the state-action-reward transitions in a FIFO manner, serving as the training set. At each
step, a mini-batch is uniformly sampled from the replay buffer and utilized to update the learning parameter
Vk, k ≥ 0. This approach presents dual advantages. Firstly, it enables the application of the batch update
scheme, thereby reducing variance and accelerating learning. Secondly, through uniform sampling, it may
reduce correlations among different samples in the Markovian observation models and consequently reduce
extra biases in the value estimation. Despite its empirical benefits, theoretical investigations on the effects
of the replay buffer have been limited.

In this paper, we employ the notation Bπ
k and Mπ

k to represent the replay buffer and mini-batch, respectively,
at time step k. They are formally defined as follows:

Mπ
k := {Ok

1 , Ok
2 . . . , Ok

L}, Bπ
k := {Ok−N+1, Ok−N+2 . . . , Ok},

where the replay buffer’s size is N , the mini-batch’s size is L, and Ok
i , 1 ≤ i ≤ L stands for the i-th sample

of the mini-batch Mπ
k . The overall scheme is depicted in Figure 1.

For each time step k ≥ 0, the agent selects an action ak following the target policy π, and observes next
state sk+1. The oldest sample (sk−N , ak−N , sk−N+1) is dropped from the replay buffer Bπ

k−1, and the new
sample (sk, ak, sk+1) is added to the replay buffer, which becomes Bπ

k .

Next, a mini-batch of size L, Mπ
k , is sampled uniformly from the replay buffer Bπ

k at time step k, and the
k + 1-th iterate of TD-learning is updated via

Vk+1 = Vk + αk
1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(es)(r + γe⊤
s′Vk − e⊤

s Vk), (4)
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which is a batch update version of the standard TD-learning. Note that when |Bπ
k | = |Mπ

k | = 1 for all k ≥ 0,
the update in (4) matches that of the standard TD-learning in (2). In this paper, we consider a constant
step-size α ∈ (0, 1), and the Markovian observation model, which means that transition samples are obtained
from a single trajectory of the underlying Markov decision process.

Figure 1: Diagram of TD-learning using experience replay

Algorithm 1 TD-learning with replay buffer

1: Initialize V0 ∈ R|S| such that ||V0||∞ ≤ Rmax
1−γ .

2: Collect N samples : B−1 := {O−N , O−N+1, . . . , O−1}.
3: for k ≤ T do
4: Select action ak ∼ π(·|sk).
5: Observe sk+1 ∼ P(·|sk, ak) and recieve reward rk+1 := r(sk, ak, sk+1).
6: Update replay buffer : Bπ

k ← Bπ
k−1 \ {(sk−N , rk−N+1, sk−N+1)} ∪ {(sk, rk+1, sk+1)}.

7: Uniformly sample Mπ
k ∼ Bπ

k .
8: Update Vk+1 = Vk + αk

1
|Mπ

k
|
∑

(s,r,s′)∈Mπ
k

(es)(r + γe⊤
s′Vk − e⊤

s Vk).
9: end for

To proceed with our analysis, we should establish the boundedness of the iterate resulting from the up-
date in (4), assuming that ||V0||∞ ≤ Rmax

1−γ and that αk ∈ (0, 1). This assumption is crucial to our main
developments, and thus requires rigorous proof.

Lemma 3.1. Under the recursion in (4), Vk remains bounded : ||Vk||∞ ≤ Rmax
1−γ .

The proof is given in Appendix Section A.4.

3.2 Analysis framework
In the previous subsection, the algorithm underlying our analysis was introduced. In this subsection, we
provide the preliminary frameworks for our main analysis. Specifically, we analyze TD-learning based par-
tially on the linear dynamical system viewpoint, as presented in the recent work by Lee & Kim (2022). In
particular, using the Bellman equation (Bertsekas & Tsitsiklis, 1996), DπV π = γDπP πV π + DπRπ, we can
express the TD-learning update (4) as follows:

Vk+1 − V π := A(Vk − V π) + αw(Mπ
k , Vk), (5)

where

A := I − αDπ + αγDπP π (6)
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is the system matrix, and

w(Mπ
k , Vk) := 1

|Mπ
k |

∑
(s,r,s′)∈Mπ

k

(es)(r + γe⊤
s′Vk − e⊤

s Vk)−DπRπ + γDπP πVk −DπVk (7)

is the noise, which is the difference between the empirical mean of the TD-error via samples in mini-batch
and the expected TD-error with respect to the stationary distribution µπ

S∞
.

Some useful properties of the system matrix A (boundedness of A, and related Lyapunov theory (Chen,
1984)) are introduced in the next lemma, which play central roles in establishing the convergence rate.

Lemma 3.2 (Properties of matrix A (Lee & Kim, 2022)). 1) ||A||∞ ≤ 1− α(1− γ)µπ
min holds.

2) There exists a positive definite matrix M ≻ 0 such that

A⊤MA−M = −I, (8)

where ||M ||2 ≤ 2|S|
α(1−γ)µπ

min
.

For completeness of presentation, we provide the proof in Appendix Section A.5. To proceed, let us define
the empirical distributions for i, j ∈ S,

µ
Bπ

k

S (i) :=

∑
(s,r,s′)∈Bπ

k

1{s = i}

|Bπ
k |

, µ
Bπ

k

S,S′(i, j) :=

∑
(s,r,s′)∈Bπ

k

1{(s, s′) = (i, j)}

|Bπ
k |

,

which denote the empirical distributions of the state s and the tuple (s, s′) in the replay buffer Bπ
k , respec-

tively. Moreover, for an event A, the notation 1{A} denotes an indicator function that returns one if the
event A occurs and otherwise zero.

Moreover, let us introduce the following matrix notations for i, j ∈ S:

[DBπ
k ]ij :=

{
µ

Bπ
k

S (i) if i = j
0 otherwise

, [P Bπ
k ]ij :=


∑

(s,r,s′)∈Bπ
k

1{(s,s′)=(i,j)}∑
(s,r,s′)∈Bπ

k

1{s=i}
if |Bπ(i)| ≥ 1

0 otherwise

,

which define the empirical distribution of the state in the replay buffer and Bπ
k (s) := {(s̃, r̃, s̃′) ∈ Bπ

k : s̃ =
s} ⊆ Bπ. With above definitions, we can readily verify the relation [DBπ

k P Bπ
k ]ij = µ

Bπ
k

S,S′(i, j) for i, j ∈ S.

Likewise, let us define the empirical estimation of the expected return calculated from the samples of the
replay buffer as follows for i ∈ S

[RBπ
k ]i =


∑

(s,r,s′)∈Bπ
k

1{s=i}r∑
(s,r,s′)∈Bπ

k

1{s=i}
if |Bπ

k (i)| ≥ 1

0 otherwise

.

3.3 Bounds on noise
Our aim in this subsection is to bound the first and second moment of ∥w(Mπ

k , Vk)∥2 where w(Mπ
k , Vk) is

defined in (7), which will play important role in deriving the convergence rate. For simplicity, let us further
define the functions, ∆k : R|S| → R|S| and ∆π : R|S| → R|S|, as follows:

∆k(V ) = DBπ
k RBπ

k + γDBπ
k P Bπ

k V −DBπ
k V, (9)

∆π(V ) = DπRπ + γDπP πV −DπV. (10)
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Note that the functions, ∆k and ∆π, can be viewed as expected TD-errors, respectively, in terms of the
distribution of the replay buffer and the stationary distribution of the Markov chain with transition kernel
Pπ. Moreover, note that ∆π(V π) = 0.

Based on the notations introduced, the noise term, w(Mπ
k , Vk), can be decomposed into the two parts

w(Mπ
k , Vk) = 1

|Mπ
k |

|Mπ
k |∑

i=1
δ(Ok

i , Vk)−∆k(Vk)− (∆π(Vk)−∆k(Vk)), (11)

where

1. 1
|Mπ

k
|
∑|Mπ

k |
i=1 δ(Ok

i , Vk) − ∆k(Vk): the difference between the empirically expected TD-error with
respect to the distribution of mini-batch and empirically expected TD-error with respect to the
replay buffer.

2. ∆π(Vk) − ∆k(Vk): the difference between the expected TD-error with respect to the stationary
distribution and the empirically expected TD-error with respect to the distribution of replay buffer.

The high level idea for bounding the first and second moment of ∥w(Mπ
k , Vk)∥2 is summarized below.

1. 1
|Mπ

k
|
∑|Mπ

k |
i=1 δ(Ok

i , Vk)−∆k(Vk), the error between the empirical distribution of the mini-batch and
the empirical distribution of the replay buffer, can be bounded by Bernstein inequality (Tropp et al.,
2015) because the mini-batch samples are independently sampled from the replay buffer with the
uniform distribution.

2. ∆π(Vk) − ∆k(Vk), the error between the stationary distribution and distribution of replay buffer,
can be bounded using the property of irreducible and aperiodic Markov chain (Levin & Peres, 2017).

Next, we introduce several lemmas to derive a bound on the the first moment of ∥w(Mπ
k , Vk)∥2, which can

be bounded at the order of O
(√

1
|Mπ

k
|

)
.

To bound ∆π(Vk)−∆k(Vk), we introduce the coupled process {S̃k}k≥−N , which starts from the stationary
distribution of the Markov chain with transition kernel Pπ, i.e., S̃−N ∼ µπ

S∞
. Let B̃π

k be the corresponding
replay buffer of such a Markov chain. We will first derive the expected error bounds in terms of the coupled
process {S̃k}k≥−N , and the desired result will be obtained using the total variation distance between the
distribution of S̃k and Sk. The detailed proof is given in Appendix Section A.6.

Now, combining with the bound on 1
|Mπ

k
|
∑|Mπ

k |
i=1 δ(Ok

i , Vk) − ∆k(Vk), which follows from concentration in-
equalities, we obtain the following result:

Lemma 3.3. For k ≥ 0, E[||w(Mπ
k , Vk)||2] can be bounded as follows:

E[||w(Mπ
k , Vk)||2] ≤

4
√
|S|Rmax

1− γ

(
2

√
2 log(2|S|)
|Mπ

k |
+ 3|S|2|A|

√
τmix

|Bπ
k |

+ 16|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

.

The detailed proof is given in Appendix Section A.7. Using similar arguments to bound the first moment of
∥w(Mπ

k , Vk)∥2, we can bound the second moment, which is given in the following lemma.

Lemma 3.4 (Second moment of ∥w(Mπ
k , Vk)∥2). Let us consider the noise term, w(Mk, Vk), is defined

in (7). For k ≥ 0, the second moment of ||w(Mk, Vk)||2 is bounded as follows:

E
[
∥w(Mπ

k , Vk)∥2
2

]
≤ 4|S|(Rmax + 1)2

(1− γ)2

(
120(log(2|S|)2

|Mπ
k |

+ 4|S|4|A|2 τmix

|Bπ
k |

+ 8|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

.

The proof is deferred to Appendix Section A.8 for compactness of the presentation.

8
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3.4 Averaged iterate convergence
In the previous subsection, we derived a bound on the noise term. Based on it, in this subsection, we analyze
the convergence of the averaged iterate of TD-learning with experience replay. In the next theorem, we
present the main result for the convergence rate on the average iterate.

Theorem 3.5 (Convergence rate on average iterate of TD-learning). Suppose N > τmix.

1) For T ≥ 0, the following inequality holds:

1
T

T −1∑
k=0

E[||Vk − V π||22] ≤ 1
T

2|S|
α(1− γ)E[||V0 − V π||22] + 32|S|2R2

max
(1− γ)3µπ

min

√
8 log(2|S|)

L︸ ︷︷ ︸
Eavg

1 : Concentration error in the first moment

+ 32|S|2R2
max

(1− γ)3µπ
min

(
2|S| 32 |A|

√
τmix

N
+ 64tmix

1
T

)
︸ ︷︷ ︸

Eavg
2 : Markovian noise in the first moment

(12)

+ α
4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
120(log 2(|S|))2

L

)
︸ ︷︷ ︸

Eavg
3 : Concentration error in the second moment

+ α
4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
4|S|4|A|2 τmix

N
+ 32tmix

1
T

)
︸ ︷︷ ︸

Eavg
4 : Markovian noise in the second moment

.

2) For T ≥ 0, the following inequality holds:

E

[∥∥∥∥∥ 1
T

T∑
k=0

Vk − V π

∥∥∥∥∥
2

]
≤ 1√

T

√
2|S|

α(1− γ) ||V0 − V π||2 +

√
32|S|2R2

max
(1− γ)3µπ

min

√
8 log(2|S|)

L

+

√√√√ 32|S|2R2
max

(1− γ)3µπ
min

(
2|S| 32 |A|

√
τmix

N
+ 64tmix

1
T

)

+

√
α

4|S|2(Rmax + 1)2

(1− γ)3µπ
min

120(log(2|S|))2

L

+

√
α

4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
4|S|4|A|2 τmix

N
+ 32tmix

1
T

)
.

The proof is given in Appendix Section A.9.

Several comments can be made about the results obtained in Theorem 3.5. The term (12) arises because
E[(Vk − V π)⊤A⊤Mw(Mπ

k , Vk)] is not zero in comparison to the i.i.d. sampling update in (2). This is due
to the Markovian noise and correlation between Vk and the samples in the replay buffer. As discussed in
Section 3.3, the bound on the term E[(Vk − V π)⊤A⊤Mw(Mπ

k , Vk)] can be decomposed into two parts: the
concentration error corresponding to the mini-batch uniformly sampled from the replay buffer, denoted as
Eavg

1 , and the Markovian noise term, denoted as Eavg
2 . The first part, Eavg

1 , can be controlled by the size of
the mini-batch and can be decreased at the order of O

(
1√
L

)
, as shown in Lemma 3.3. On the other hand,

the Markovian noise term, Eavg
2 , can be controlled by the size of the replay buffer, and can be decreased

at the order of O
(

1√
N

)
. The terms, Eavg

3 and Eavg
4 , arise from the second moment of E[||w(Mk, Vk)||22].

These terms are non-zero in both i.i.d. sampling and Markovian noise cases under the standard TD-learning
update (2). However, the errors can be controlled by the size of the mini-batch and replay buffer, as shown
in Lemma 3.4. Specifically, Eavg

3 and Eavg
4 can be decreased at the order of O

( 1
L

)
and O

( 1
N

)
, respectively.

9



Under review as submission to TMLR

Table 1: Comparitive analysis on results of root mean squared error of averaged iterate convergence using
constant step-size.

Method Experience replay Observation
model Step-size Feature Initial

distribution
Ours Markovian α ∈ (0, 1) Tabular Arbitrary

Bhandari et al.
(2018) Markovian 1√

T
Linear Stationary

Lee & Kim
(2022) i.i.d. α ∈ (0, 1) Tabular Arbitrary

Lakshmi-
narayanan &

Szepesvari (2018)
i.i.d. Universal Linear Arbitrary

The paper (Bhandari et al., 2018) adopted the assumption that the initial state distribution is already the
stationary distribution for simplicity of the proof. Moreover, Lakshminarayanan & Szepesvari (2018) derives
a convergence rate of O( 1

T ) for general linear stochastic approximation problems. In Lakshminarayanan
& Szepesvari (2018), the universal step-size means that the step-size is dependent on the general linear
stochastic approximation problems.

3.5 Comparative analysis
Table 1 presents a comprehensive comparison of the finite-time analysis of TD-learning. In the context of on-
policy linear function approximation, and under the assumption of starting from the stationary distribution,
the work presented in Bhandari et al. (2018) derives the following convergence rate of 1√

T
for the averaged

iterate of TD-learning with a constant step-size, where T ∈ N represents the final time of the iterate:

E

[∥∥∥∥∥ 1
T

T∑
k=0

Vk − V π

∥∥∥∥∥
2

]
≤ O

(√
log T

2(1− γ)3µπ
min
√

T

)
.

Notably, our result does not impose any condition on the step-size α ∈ (0, 1), indicating that the use of
experience replay memory can ease the strict requirements for selecting a constant step-size. Moreover, we
can achieve fast convergence rate while maintaining small constant error by controlling the size of mini-batch
and replay buffer instead of controlling the step-size. The result in Lee & Kim (2022) also holds for general
step-size condition, but to obtain smaller bias, it requires small step-size yielding slower convergence rate.

Under i.i.d. observation model and linear function approximation, Theorem 1 in Lakshminarayanan &
Szepesvari (2018) provides O

(
1√
T

)
convergence rate for the root mean squared error using a specific step-

size depending on the model parameters, which cannot be known beforehand in TD-learning.

3.6 Final iterate convergence
In the preceding subsection, we presented a finite-time analysis of the averaged iterate. In this subsection,
we extend our analysis to investigate the convergence of the final iterate in TD-learning with a replay buffer,
following a similar approach to the one used in the previous section. Instead of using Lyapunov arguments,
we utilize the recursive formulas and the fact that ||A||∞ < 1 as given in Lemma 3.2. In contrast to the
averaged iterate analysis, we assume that the initial distribution corresponds to the stationary distribution
of the Markov chain, a common assumption in the literature (Bhandari et al., 2018; Nagaraj et al., 2020;
Jain et al., 2021). By employing this assumption, we are able to derive the convergence rate of the final
iterate.

Theorem 3.6. Suppose S−N ∼ µπ
S∞

.

1) For any k ≥ 0, we have

E
[
∥Vk − V π∥2

2

]
10



Under review as submission to TMLR

≤||V0 − V π||22∥S|(1− α(1− γ)µπ
min)2k+2

+ 64|S|2R2
max

(1− γ)3µπ
min

√
8 log(2|S|)

L︸ ︷︷ ︸
Efinal

1 : Concentration error in the first moment

+ 64|S| 72 |A|R2
max

(1− γ)3µπ
min

√
τmix

N︸ ︷︷ ︸
Efinal

2 : Markovian noise in the first moment

(13)

+ α
4|S|(Rmax + 1)2

(1− γ)3µπ
min

120(log 2|S|)2

L︸ ︷︷ ︸
Efinal

3 : Concentration error in the second moment

+ α
16|S|5|A|2(Rmax + 1)2

(1− γ)3µπ
min

τmix

N︸ ︷︷ ︸
Efinal

4 : Markovian noise in the second moment

.

2) For any k ≥ 0, we have

E [∥Vk − V π∥2] ≤
√
|S| ∥V0 − V π∥2 (1− α(1− γ)µπ

min)k+1

+ 8|S|Rmax

(1− γ) 3
2 (µπ

min) 1
2

√√
8 log(2|S|)

L
+ 2|S| 32 |A|

√
τmix

N
(14)

+
√

α
2|S| 12 (Rmax + 1)
(1− γ) 3

2 (µπ
min) 1

2

√
120(log(2|S|)2

L
+ 4|S|4|A|2 τmix

N
.

The proof is given in Appendix Section A.10. In a manner similar to the case of the averaged iterate,
the term (13) arises due to the non-zero value of E[(Vk − V π)⊤A⊤Mw(Mπ

k , Vk)] as compared to the i.i.d.
sampling update with (2). This non-zero value is caused by Markovian noise and correlation between
Vk and the samples in the replay buffer. As explained in Section 3.3, the bound on the term E[(Vk −
V π)⊤A⊤Mw(Mπ

k , Vk)] can be decomposed into two parts: Efinal
1 , which is the concentration error of uniform

random sampling, and Efinal
2 , which is the Markovian noise term. As can be seen from Lemma 3.3, Efinal

1

can be controlled by the size of mini-batch, where it can be decreased at the order of O
(

1√
L

)
. Moreover,

the Markovian noise Efinal
2 can be controlled by the replay buffer size, which can be decreased at the order

of O
(

1√
N

)
.

3.7 Comparative analysis
The overall comparative analysis is given in Table 2. Under the Markovian assumption and on-policy linear
function approximation, Bhandari et al. (2018) provided a final iterate convergence under the constant
step-size α smaller than 1

µπ
min(1−γ) , which is

E [∥VT − V π∥2] ≤
(

e−α(1−γ)µπ
minT

)
∥V π − V0∥2 +

√
α

(
(9 + 12tmix(α))
2(1− γ)2µπ

min

)
︸ ︷︷ ︸
Error from constant step-size

.

Although the constant step-size is a commonly used approach, it introduces constant error terms. However,
the use of experience replay can reduce these errors. Specifically, as stated in the second statement of
Theorem 3.6, the term (14) decreases at the order of O

(
1

L
1
4

+ 1
N

1
4

)
. Furthermore, as in the averaged

iterate case, since we do not impose any condition on the step-size, we can achieve fast convergence rate
while maintaining small constant error by controlling the size of mini-batch and replay buffer instead of
controlling the step-size.

The approach in Lee & Kim (2022) provided a final iterate convergence of tabular TD-learning with a constant
step-size and i.i.d. observation models, where the constant step-size induces constant errors proportional to
O(
√

α).

The approach in Srikant & Ying (2019) provided a mean squared bound of TD-learning with linear function
approximation and Markovian observation models, which is given by

E
[
∥VT − V π∥2

2

]
≤ O

(
(1− αc1)T −τ + c2ατ

)
,

11
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Table 2: Comparitive analysis on results of root mean squared error of final iterate convergence using constant
step-size

Method Experience
replay

Observation
model Step-size Feature Constant error term

Ours Markovian α ∈ (0, 1) Tabular O
(

1
L

1
4

+ τmix

N
1
4

)
Bhandari

et al. (2018) Markovian Model
dependent Linear O

(√
α log(α)

)
Lee & Kim

(2022) i.i.d. α ∈ (0, 1) Tabular O(
√

α)

Srikant &
Ying (2019) Markovian Model

dependent Linear O(
√

α)

Dalal et al.
(2018) i.i.d.

1
(k+1)σ , σ ∈

(0, 1) Linear O( 1
T σ ), σ ∈ (0, 1)

Model dependent step size implies that the step size depends on model parameters, e.g., maximum eignevalue
of matrix A, discount factor γ, mixing time.

where c1, c2 are model dependent parameters, and τ is the mixing time such that∥∥γDπP π −Dπ − (E
[
γe⊤

sk
esk+1 − e⊤

sk
esk

]
)
∥∥

2 ≤ δ, ∀k ≥ τ,∥∥DπRπ − E
[
e⊤

sk
Rπ
]∥∥

2 ≤ δ, ∀k ≥ τ.

However, the choice of the step-size depends on the mixing time and the model parameters.

Under the i.i.d. assumption and using linear function approximation, Dalal et al. (2018) derived
O
( 1

T σ

)
, σ ∈ (0, 1) bounds on the mean squared error bound, which is worse than O

( 1
T

)
convergence

rate. Since we used constant step-size, the result is not directly comparable.

4 Conclusion
In this work, we have undertaken an analysis of the behavior of TD-learning utilizing experience replay
memory under a Markovian observation model, which has thus far been unexplored despite the prevalence
of experience replay memory in reinforcement learning algorithms. By leveraging a simple matrix concen-
tration inequality and the geometric mixing property of irreducible and aperiodic Markov chains, we have
demonstrated that the expected root mean squared error of the averaged iterate of TD-learning can be
reduced at the order of O

(
1

L
1
4

+ 1
N

1
4

)
under the constant step-size. Similarly, for the final iterate case, we

have established that the root mean squared error can be effectively reduced at the order of O
(

1
L

1
4

+ 1
N

1
4

)
.

Potential avenues for future research include extending the proposed analysis frameworks to off-policy and
linear function approximation settings, as well as investigating the applicability of these results to Q-learning.
Overall, this work highlights the importance of analyzing the behavior of experience replay in reinforcement
learning algorithms in a systematic and rigorous manner. By doing so, we can gain deeper insights into the
underlying mechanisms of the impact of experience replay, and based on them, develop more efficient and
effective RL techniques.
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A Appendix
A.1 Notations
Throughout the paper, the following notations will be adopted: R: set of real numbers; Rn: set of all n-
dimensional vectors; Rn×m: set of all n×m real matrices; Z+: set of all non-negative integers; R+ : set of
non-negative real numbers; R+ : set of non-negative real numbers; for matrix A ∈ Rn×m, [A]ij , 1 ≤ i ≤
n, 1 ≤ j ≤ m denotes i-th row and j-th column element of A; es ∈ Rn for 1 ≤ s ≤ n : s-th basis vector of
R|S| space, i.e., only the s-th element of es is one and other elements are zero; ||A||∞ for A ∈ Rn×m denotes
the infininty norm ||A||∞ := max1≤i≤n

∑m
j=1 |[A]ij | ; |S|: cardinality of a finite set S; O(·) denotes the big

O notation.

A.2 Technical Lemmas

Lemma A.1. [Concentration bound for i.i.d. matrix random variables (Tropp et al. (2015),Corollary 6.2.1)]
Let X ∈ Rd1×d2 , where d1 and d2 are some positive integers. Moreover, assume that the sequence of random
matrices {Xk}n

k=1 are i.i.d. samples from a distribution such that E[Xk] = X and ||Xk||2 ≤ Xmax for all
1 ≤ k ≤ n. Let σ = ||E[XkX⊤

k ]||2. Then, we get

P

[∥∥∥∥∥ 1
n

n∑
k=1

Xk −X

∥∥∥∥∥
2

≥ t

]
≤ (d1 + d2) exp

(
−nt2/(σ + 2Xmaxt/3)

)
,

and

E

[∥∥∥∥∥ 1
n

n∑
k=1

Xk −X

∥∥∥∥∥
2

]
≤
√

2σ log(d1 + d2)
n

+ 2L log(d1 + d2)
3n

.

With the above result, a bound on the second moment E
[∥∥ 1

n

∑n
k=1 Xk −X

∥∥2
2

]
can be obtained as follows.
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Corollary A.2. Let X ∈ Rd1×d2 . Assume that the sequence of random matrices {Xk}n
k=1 are i.i.d. samples

from a distribution such that E[Xk] = X and ||Xk||2 ≤ Xmax for all 1 ≤ k ≤ n. Letting ||E[XkX⊤
k ]||2 ≤ σ,

the corresponding second moment can be bounded as follows:

E

∥∥∥∥∥ 1
n

n∑
k=1

Xk −X

∥∥∥∥∥
2

2


≤2σ

n
log(d1 + d2) + 2σ

n
+ 16X2

max
9n2 (log(d1 + d2))2 + 32X2

max
9n2 log(d1 + d2) + 8Xmax

3n
.

Proof. The proof is completed by the inequalities

E

∥∥∥∥∥ 1
n

n∑
k=1

Xk −X

∥∥∥∥∥
2

2


=
∫ ∞

0
P

[∥∥∥∥∥ 1
n

n∑
k=1

Xk −X

∥∥∥∥∥
2

≥
√

t

]
dt

≤
∫ ∞

0
min

{
(d1 + d2) exp(−nt/(σ + 2Xmax

√
t/3)), 1

}
dt

≤
∫ ∞

0
min {1, (d1 + d2) exp(−nt/(2σ))} dt +

∫ ∞

0
min

{
1, (d1 + d2) exp(−3n

√
t/(4Xmax))

}
dt

≤2σ

n
log(d1 + d2) + 2σ

n
+ 16X2

max
9n2 (log(d1 + d2))2 +

∫ ∞

16X2
max

9n2 (log(d1+d2))2
(d1 + d2) exp(−3n

√
t/(4Xmax))dt

≤2σ

n
log(d1 + d2) + 2σ

n
+ 16X2

max
9n2 (log(d1 + d2))2 +

∫ ∞

4Xmax
3n log(d1+d2)

2(d1 + d2)u exp(−3nu/(4Xmax))du

≤2σ

n
log(d1 + d2) + 2σ

n
+ 16X2

max
9n2 (log(d1 + d2))2 + 32X2

max
9n2 log(d1 + d2) + 8Xmax

3n
,

(15)

where the first equality follows from the inequality, E[Y ] =
∫∞

0 P [Y ≥ t] dt for non-negative random variable
Y , which can be found in Exercise 2.14 in Casella & Berger (2021).

Moreover, the first inequality follows from applying Lemma A.1, and the last inequality follows from applying
change of variables

√
t = x and integration by parts.

Lemma A.3 (Variance of empirical distribution, Paulin (2015), Proposition 3.21). Let {Sk}n
k=0 be a Markov

chain following transition kernel Pπ with the state space S and starting from its stationary distribution µπ
S∞

,
i.e., S0 ∼ µπ

S∞
. The empirical distribution is defined as µem(s) :=

∑n
k=1 1{Sk = s}/n, s ∈ S. Then,

1)
∑

s∈S E
[
(µπ

S∞
(s)− µem(s))2] ≤ |S| tmix

n ,

2) E
[
dTV(µπ

S∞
, µem) ≤

]
≤ |S|

√
tmix

n .

Lemma A.4 (Bound on total variation distance, Chapter 4.5 and Exercise 4.2 in Levin & Peres (2017)).
Let {Sk}n

k=0 be a Markov chain following transition kernel Pπ with the state space S. Denote its stationary
distribution µπ

S∞
and mixing time as tmix. Then, the following holds:

1) For a non-negative integer l, we have sups∈S dTV(P[Sltmix | S0 = s], µπ
S∞

) ≤ 2−l.

2) sups∈S dTV(P[Sk | S0 = s], µπ
S∞

) is non-increasing in terms of k.
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A.3 Proof of Lemma 2.3
Before the main proof, the formal definition of irreducible and aperiodic Markov chain is reviewed first.

Definition A.5 (Irreducible and aperiodic Markov chain (Levin & Peres, 2017)). A Markov chain is called
irreducible if for any two states x, y ∈ X , e⊤

x P key > 0 for some k ≥ 0. Let T (x) := {k ≥ 1 | e⊤
x P kex > 0}

be the set of time instances such that the probability of returning back to the initial state x is positive. The
period of state x is the greatest common divisor of T (x). A Markov chain is said to be aperiodic if all states
have period one.

The proof of Lemma 2.3 is given below.

Proof. First of all, we prove that the extended Markov chain is irreducible. By hypothesis, the Markov chain,
(Sk)∞

k=0, with transition kernel Pπ is irreducible. Then, one can prove that starting from any (Sk, Sk+1) =
(x, y) ∈ O, there exists a positive probability that any (Sk+T , Sk+1+T ) = (w, z) ∈ O can be reached for some
T ≥ 0. This is because by hypothesis, P[Sk+T = w | S0 = x] > 0 for some T ≥ 0, and since (w, z) ∈ O
is a realizable pair, (Sk+T , Sk+1+T ) = (w, z) ∈ O is visited with a positive probability. This proves the
irreducibility.

Next, we prove the aperiodicity. By hypothesis, the Markov chain, (Sk)∞
k=0, is aperiodic. To prove that

the induced Markov chain (Sk, Sk+1)∞
k=0 is aperiodic by contradiction, let us suppose that (Sk, Sk+1)∞

k=0 is
periodic with some period T > 1. Then, it implies that for any realizable pair (x, y) ∈ O and m ∈ Z+,
P[SmT = x, SmT +1 = y | S0 = x, S1 = y] = P[SmT = x, SmT +1 = y | S1 = y] = P[SmT +1 = y | SmT =
x]P[SmT = x | S1 = y] > 0. Since (x, y) ∈ O is realizable, P[SmT +1 = y | SmT = x] > 0, and hence, P[SmT =
x | S1 = y] > 0 holds. Moreover, P(SmT = x | S0 = x) ≥ P[SmT = x | S1 = y]P[S1 = y | S0 = x] > 0.

Next, by the definition of periodic Markov chain in Definition A.5, we have P[SmT +i = x, SmT +i+1 = y | S0 =
x, S1 = y] = P[SmT +i = x, SmT +i+1 = y | S1 = y] = 0 for 1 ≤ i ≤ T − 1. Since P[SmT +i = x, SmT +i+1 = y |
S1 = y] = P[SmT +i+1 = y | SmT +i = x]P[SmT +i = x | S1 = y] = 0, and P[SmT +i+1 = y | SmT +i = x] > 0
(because (x, y) ∈ O), it follows that P[SmT +i = x | S1 = y] = 0. Considering P[SmT +i = x | S1 = y] =∑
z∈S

P[SmT +i = x | SmT = z]P[SmT = z | S1 = y], we should have P[SmT +i = x | SmT = x] = 0 because

P[SmT = x | S1 = y] > 0. Hence for m ∈ Z, 1 ≤ i ≤ T − 1 we have P[SmT +i = x | S0 = x] = 0 and
P[SmT = x | S0 = x] > 0 i.e., the Markov chain, (Sk)∞

k=0, is periodic, which is a contradiction. Therefore,
(Sk, Sk+1)∞

k=0 is aperiodic. This concludes the proof.

A.4 Proof of Lemma 3.1
Proof. The proof proceeds by induction. Suppose ||Vk||∞ ≤ Rmax

1−γ holds for k ≥ 0. Rewriting (4), we have

Vk+1 =

I + α
1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(γese⊤
s′ − ese⊤

s )

Vk + α
1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

esr.

We can prove that for s ∈ S, if (s, r, s′) /∈Mπ
k , then e⊤

s Vk+1 is identical to e⊤
s Vk. If (s, r, s′) ∈Mπ

k for some
s ∈ S, then the update of e⊤

s Vk+1 can be expressed as follows:

e⊤
s Vk+1 = e⊤

s


I + α

1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(γese⊤
s′ − ese⊤

s )

Vk + α
1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

esr

 .

Consider a subset of the mini-batch Mπ
k such that the first element of the tuple is s, i.e., Mπ

k (s) := {(s̃, r̃, s̃′) ∈
Mπ

k : s̃ = s} ⊆Mπ
k . Then, we can bound e⊤

s Vk+1 as follows:

|e⊤
s Vk+1| ≤

∣∣∣∣∣∣e⊤
s

I + α
1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(s)

(γese⊤
s′ − ese⊤

s )

Vk

∣∣∣∣∣∣+ α
|Mπ

k (s)|
|Mπ

k |
Rmax
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≤

∥∥∥∥∥∥∥
I + α

1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(s)

(γese⊤
s′ − ese⊤

s )

⊤

es

∥∥∥∥∥∥∥
1

||Vk||∞ + α
|Mπ

k (s)|
|Mπ

k |
Rmax

≤
(

1 + α
|Mπ

k (s)|
|Mπ

k |
(γ − 1)

)
||Vk||∞ + α

|Mπ
k (s)|
|Mπ

k |
Rmax

≤ Rmax

1− γ
,

where the first inequality follows from the application of the triangle inequality and the assumption that
the reward is bounded, as given in Assumption 2.4. The second inequality is due to the Cauchy-Schwartz
inequality, and the last inequality comes from the induction hypothesis. This completes the proof.

A.5 Proof of Lemma 3.2
Proof. First of all, to prove the first statement, ||A||∞ is bounded as

||A||∞ = max
1≤i≤|S|

1− α[Dπ]ii + αγ[Dπ]
|S|∑
j=1

[P π]ij

 = min
s∈S

(1− α(1− γ)µπ(s)),

where the last equality is obtained by expanding A according to the definition (6) from the fact that P π is
a stochastic matrix, i.e., the row sum of the matrix equals one.

Next, for the second statement, one can readily prove that M :=
∑∞

k=0(Ak)⊤(A)k is a solution of (8) by
simply plugging it into M in (8). It remains to prove that M is bounded. In particular, ||M ||2 is bounded
as

||M ||2 ≤ ∥I∥2
2 + ∥A∥2

2 + ∥A∥4
2 + · · ·

≤ 1 + |S|||A||2∞ + |S| ∥A∥4
∞ + · · ·

≤ 1 + |S|(1− α(1− γ)µπ
min)(1 + (1− α(1− γ)µπ

min)2 + (1− α(1− γ)µπ
min)4 + · · ·

≤ 1 + |S|
α(1− γ)µπ

min
,

where the first inequality follows from applying triangle inequality and the fact that ||A⊤||2 = ||A||2. The
second inequality is due to the relation ||A||2 ≤

√
|S|||A||∞, and the third inequality comes from Lemma 3.2.

A.6 Auxiliary lemmas to prove Lemma 3.3

Let µ
B̃π

k

S̃
and µ

B̃π
k

S̃,S̃′ be the empirical distributions of the state s and the consecutive state pair (s, s′) in the

replay buffer, B̃π
k , respectively, which are defined in the same manner as µ

Bπ
k

S and µ
Bπ

k

S,S′ , respectively.

Lemma A.6. For k ≥ 0, we have the following bounds:

1) E
[∥∥∥Dπ −DB̃π

k

∥∥∥
2

]
≤
√
|S|
√

tmix
1

|B̃π
k

| ,

2) E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥
2

]
≤ |S|

√
tmix

2
|B̃π

k
| ,

3) E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥
2

]
≤ |S| 52 |A|Rmax

√
tmix

2
|B̃π

k
| .

Proof. First of all, the expected value of Dπ −DB̃π
k can be bounded as follows:

E
[∥∥∥Dπ −DB̃k

∥∥∥
2

]
≤ E

[√∑
s∈S

(
µπ

S∞
(s)− µ

B̃π
k

S̃
(s)
)2
]
≤
√
|S|

√
tmix
1
|B̃π

k |
,
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which proves the first statement. In the above inequalities, the first inequality follows from the fact that
||A||2 ≤ ||A||F , where A ∈ R|S|×|S| and || · ||F stands for Frobenius norm. The last inequality follows from
Jensen’s inequality and Lemma A.3 in Appendix.

The second statement can be proved using the following similar arguments:

E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥
2

]
≤ E

√√√√ ∑
(s,s′)∈S×S

(
µπ

S∞,S′
∞

(s, s′)− µ
B̃π

k

S̃,S̃′(s, s′)
)2
 ≤ |S|√ tmix

2
|B̃π

k |
,

where the first inequality follows from the fact that ||A||2 ≤ ||A||F , where A ∈ R|S|×|S| and || · ||F , the second
inequality is due to Lemma A.3 in Appendix, and follows from applying Jensen’s inequality.

For the third statement, we can bound E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥
2

]
in a similar sense as follows:

E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥
2

]
≤E

[√∑
s∈S

(
E [r(S, A, S′) | S = s, π] µπ

S∞
(s)− µ

B̃π
k

S̃
(s)[RB̃π

k ]s
)2
]

≤|S||A|RmaxE


√√√√∑

s∈S

(∑
s′∈S

µπ
S∞,S′

∞
(s, s′)− µ

B̃π
k

S̃,S̃′(s, s′)
)2


≤|S| 52 |A|Rmax

√
tmix
2
|B̃π

k |
,

where the second inequality applies the inequality (
∑n

k=0 akbk) ≤ (
∑n

k=0 ak)(
∑n

k=0 bk) for ak, bk ∈ R, k ≥ 0,
and the relation between µπ

S∞
and µπ

S∞,S′
∞

in (1), and

∑
a∈A

N∑
l=k−N+1

1{sl, al, sl+1 = (s, a, s′)}

N∑
l=k−N+l

1{sl = i}
µ

B̃π
k

S̃
(s) = µ

B̃π
k

S̃,S̃′(s, s′).

Moreover, the last inequality follows the same logic as that used for bounding E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥
2

]
.

This completes the proof.

Lemma A.7. For k ≥ 0, we have

1) E
[∥∥Dπ −DBπ

k

∥∥
2

]
≤
√
|S|
√

tmix
1

|Bπ
k

| + 4dTV(µπ
S∞

, µπ
Sk−N

),

2) E
[∥∥DπP π −DBπ

k P Bπ
k

∥∥
2

]
≤ |S|

√
tmix

2
|Bπ

k
| + 4

√
|S|dTV(µπ

S∞
, µπ

Sk−N
),

3) E
[∥∥DπRπ −DBπ

k RBπ
k

∥∥
2

]
≤ |S| 52 |A|Rmax

√
tmix

2
|Bπ

k
| + 2

√
|S|RmaxdTV(µπ

S∞
, µπ

Sk−N
).

Proof. Let {S̃k}k≥−N be the stationary Markov chain defined in Section 3.3. The expected value of ||Dπ −
DBπ

k ||2 can be bounded using irreducible and aperiodic property of the Markov chain as follows:

E
[∥∥∥Dπ −DBπ

k

∥∥∥
2

]
=
∑
s∈S

E
[∥∥∥Dπ −DBπ

k

∥∥∥
2

∣∣∣Sk−N = s
]
P[Sk−N = s]

=
∑
s∈S

E
[∥∥∥Dπ −DB̃π

k

∥∥∥
2

∣∣∣S̃k−N = s
]
P[S̃k−N = s]

19



Under review as submission to TMLR

+
∑
s∈S

E
[∥∥∥Dπ −DB̃π

k

∥∥∥
2

∣∣∣S̃k−N = s
] (

P[Sk−N = s]− P[S̃k−N = s]
)

≤E
[∥∥∥Dπ −DB̃π

k

∥∥∥
2

]
+ 2

∑
s∈S
|P[Sk−N = s]− P[S̃k−N = s]|

≤
√
|S|

√
tmix
1
|Bπ

k |
+ 4dTV(µπ

S∞
, µπ

Sk−N
).

In the above inequalities, the first equality follows from the law of total expectation, and the second equality
is due to the fact that P[Sk−N+1, Sk−N+2, . . . , Sk | Sk−N ] = P[S̃k−N+1, S̃k−N+2, . . . , S̃k | S̃k−N ] because the
transition probabilities of both Markov chains are identical. Next, the first inequality follows from the fact
that ||Dπ||2 and ||DB̃π

k ||2 are both smaller than one, and the last equality follows from the definition of the
total variation distance in (2.1), and applying Lemma A.6.

In the second statement, the expected value of
∥∥DπP π −DBπ

k P Bπ
k

∥∥
2 can be bounded using the same argu-

ment as in the first statement. In particular, we have

E
[∥∥∥DπP π −DBπ

k P Bπ
k

∥∥∥
2

]
=
∑
s∈S

E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥
2

∣∣∣S̃k−N = s
]
P[S̃k−N = s]

+
∑
s∈S

E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥
2

∣∣∣S̃k = s
]

(P[Sk−N = s]− P[S̃k−N = s])

≤
√
|S|
√

tmix
2
N

+ 4
√
|S|dTV(µπ

S∞
, µπ

Sk−N
).

The same logic holds for E
[∥∥DπRπ −DBπ

k RBπ
k

∥∥
2

]
. In particular, it follows from

E
[∥∥∥DπRπ −DBπ

k RBπ
k

∥∥∥
2

]
=
∑
s∈S

E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥
2

∣∣∣S̃k−N = s
]
P[S̃k−N = s]

+
∑
s∈S

E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥
2

∣∣∣S̃k−N = s
] (

P[Sk−N = s]− P[S̃k−N = s]
)

≤|S| 52 |A|Rmax

√
tmix
2
|B̃π

k |
+ 2
√
|S|RmaxdTV(µπ

S∞
, µπ

Sk−N
).

This completes the proof.

A.7 Proof of Lemma 3.3
Proof. First of all, the triangle inequality applied to the noise term in (11) leads to

E[||w(Mπ
k , Vk)||2] =E

∥∥∥∥∥∥ 1
|Mπ

k |

|Mπ
k |∑

i=1
δ(Ok

i ; Vk)−∆k(Vk) + ∆k(Vk)−∆π(Vk)

∥∥∥∥∥∥
2


≤E

∥∥∥∥∥∥ 1
|Mπ

k |

|Mπ
k |∑

i=1
δ(Ok

i ; Vk)−∆k(Vk)

∥∥∥∥∥∥
2

+ E [∥∆k(Vk)−∆π(Vk)∥2] . (16)

The first term in (16) is the difference of the empirically expected TD-errors in terms of replay buffer and
mini-batch, which is bounded as

E

∥∥∥∥∥∥ 1
|Mπ

k |

|Mπ
k |∑

i=1
δ(Ok

i ; Vk)−∆k(Vk)

∥∥∥∥∥∥
2

 ≤2
√
|S|Rmax

1− γ

E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(ese⊤
s −DBπ

k )

∥∥∥∥∥∥
2
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+E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,s′)∈Mπ
k

γ(ese⊤
s′ −DBπ

k P Bπ
k )

∥∥∥∥∥∥
2


+ E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(esr −DBπ
k RBπ

k )

∥∥∥∥∥∥
2

 , (17)

where the inequality is obtained simply by expanding the terms in (9) and (3) and applying triangle inequality,
together with the boundedness of Vk and reward function in Assumption 2.4 and Lemma 3.1, respectively.

As the next step, we will upper bound the above terms using Bernstein inequality (Tropp et al., 2015). In
particular, note that for (s, r, s′) ∈Mπ

k , s can be thought as a uniform sample from DBπ
k . Hence, using the

matrix concentration inequality in Lemma A.1 in Appendix, one gets

E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(ese⊤
s −DBπ

k )

∥∥∥∥∥∥
2

 ≤√8 log(2|S|)
|Mπ

k |
,

which is obtained by letting σ = 1 and Xmax = 1 in Lemma A.9 in the Appendix because ||E[ese⊤
s ]||2 ≤ 1

and ||ese⊤
s ||2 ≤ 1.

Moreover, noting that ||E[ese⊤
s′ ]||2 ≤ E[||ese⊤

s′ ||2] ≤ 1, and ||ese⊤
s′ ||2 ≤ 1, we get the following bound on the

second term:

E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

γ(ese⊤
s′ −DBπ

k P Bπ
k )

∥∥∥∥∥∥
2

 ≤ 2γ

√
2 log(2|S|)
|Mπ

k |
.

In a similar sense, the third term can be bounded as

E

∥∥∥∥∥∥ 1
|Mπ

k |
∑

(s,r,s′)∈Mπ
k

(esr −DBπ
k RBπ

k )

∥∥∥∥∥∥
2

 ≤ 2Rmax

√
2 log(2|S|)
|Mπ

k |
,

which uses the inequalities, ||E[esr]||2 ≤ Rmax and ||E[r2ese⊤
s ]||2 ≤ R2

max. Collecting the above three
inequalities yields the upper bound on (17), which is

E

∥∥∥∥∥∥ 1
|Mπ

k |

|Mπ
k |∑

i=1
δ(Ok

i ; Vk)−∆k(Vk)

∥∥∥∥∥∥
2

 ≤4
√
|S|Rmax

1− γ

√
8 log(2|S|)
|Mπ

k |
. (18)

Now, we turn our attention to he second term, E [∥∆π(Vk)−∆k(Vk)∥2], in (16), which is the difference
between the expected TD-error with respect to the stationary distribution and the replay buffer distribution.
Plugging the definitions in (9) and (10) into (16) yields

E [∥∆π(Vk)−∆k(Vk)∥2]

≤
2
√
|S|Rmax

1− γ
E
[(∥∥∥Dπ −DBπ

k

∥∥∥
2

+
∥∥∥DπP π −DBπ

k P Bπ
k

∥∥∥
2

)]
+ E

[∥∥∥DπRπ −DBπ
k RBπ

k

∥∥∥
2

]
≤

2
√
|S|Rmax

1− γ

(
3|S|2|A|

√
τmix

|Bπ
k |

+ 16|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

. (19)

where the first inequality is due to the boundedness of Vk in Lemma 3.1, and the last inequality follows from
Lemma A.7. Collecting the terms in (18) and (19), we obtain the desired result.
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A.8 Proof of Lemma 3.4 (Bound on second moment of the noise term)
Proof. Expanding the noise term in (7) we get

E[||w(Mπ
k ; Vk)||22] ≤2

E

∥∥∥∥∥ 1
L

L∑
i=1

δ(Ok
i ; Vk)−∆k(Vk)

∥∥∥∥∥
2

2

+ E
[
∥∆π(Vk)−∆k(Vk)∥2

2

] , (20)

where the inequality follows from the fact that ||a + b||2 ≤ 2||a||2 + 2||b||2 for a, b ∈ Rn. In what follows, each

terms in the above inequality will be bounded. First of all, the term E
[∥∥∥ 1

L

∑L
i=1 δ(Ok

i ; Vk)−∆k(Vk)
∥∥∥2

2

]
in (20) is bounded as

E

∥∥∥∥∥ 1
L

L∑
i=1

δ(Ok
i ; Vk)−∆k(Vk)

∥∥∥∥∥
2

2


=E


∥∥∥∥∥∥ 1

L

∑
(s,r,s′)∈Mk

(esr −DBπ
k RBπ

k ) + (ese⊤
s −DBk )(Vk) + γ(ese⊤

s′ −DBk P Bk )Vk

∥∥∥∥∥∥
2

2


≤3|S|R2

max
(1− γ)2

E


∥∥∥∥∥∥ 1

L

∑
(s,r,s′)∈Mk

(ese⊤
s −DBπ

k )

∥∥∥∥∥∥
2

2

+ E


∥∥∥∥∥∥ 1

L

∑
(s,r,s′)∈Mk

γ(ese⊤
s′ −DBπ

k P Bπ
k )

∥∥∥∥∥∥
2

2




+ 3E


∥∥∥∥∥∥ 1

L

∑
(s,r,s′)∈Mk

(esr −DBπ
k RBπ

k )

∥∥∥∥∥∥
2

2


≤|S|(1 + Rmax)2

(1− γ)2
480
|Mπ

k |
(log(2|S|)2,

where the first equality is obtained by expanding the TD-error term in (3) and expected TD-error in terms
of replay buffer in (9). The first inequality follows from the fact that ||a + b + c||2 ≤ 3(||a||2 + ||b||2 + ||c||2)
for a, b, c ∈ Rn, and from the fact that the iterate Vk is bounded in (3.1). We use concentration inequality

in Corollary A.2 to bound the last inequality. To bound E
[∥∥∥ 1

L

∑
(s,r,s′)∈Mk

(ese⊤
s −DBπ

k )
∥∥∥2

2

]
, we let σ = 1

and Xmax = 1 in Corollary A.2 since ||E[ese⊤
s ]||2 ≤ 1 and ||ese⊤

s ||2 ≤ 1. Moreover, we can bound remaining
terms in similar sense, which yields the last inequality.

To proceed further, Lemma A.8 is needed, which is provided after this proof. Applying Lemma A.8, the
term E

[
∥∆π(Vk)−∆k(Vk)∥2

2

]
is bounded as

E
[
∥∆π(Vk)−∆k(Vk)∥2

2

]
=E

[∥∥∥(Dπ −DBπ
k )Vk + (DπRπ −DBπ

k RBπ
k ) + γ(DπP π −DBπ

k P Bπ
k )Vk

∥∥∥2

2

]
≤3|S|R2

max
(1− γ)2

(
4|S|4|A|2 max{tmix

1 , tmix
2 }

|Bπ
k |

+ 8|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

,

where the inequality follows from applying the bound on Vk in Lemma 3.1, and collecting the terms in
Lemma A.8. This completes the proof.

The following two lemmas have been used in the proof above, and they are formally introduced in the sequel.

Lemma A.8. For k ≥ 0, we have

1) E[||Dπ −DBπ
k ||22] ≤ |S| t

mix
1

|Bπ
k

| + 8dTV(µπ
S∞

, µπ
Sk−N

),
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2) E[||DπP π −DBπ
k P Bπ

k ||22] ≤ |S|2 tmix
2

|Bπ
k

| + 2|S|dTV(µπ
S∞

, µπ
Sk−N

),

3) E
[∥∥DπRπ −DBπ

k RBπ
k

∥∥2
2

]
≤ |S|5|A|2R2

max
tmix

2
|Bπ

k
| + 2|S|R2

maxdTV(µπ
S∞

, µπ
Sk−N

).

Proof. Let {S̃k}k≥−N be the stationary Markov chain defined in Section 3.3. Then, for the first statement,
we get the following bounds:

E[||Dπ −DBπ
k ||22] =

∑
s∈S

E
[
||Dπ −DB̃π

k ||22
∣∣∣S̃k−N = s

]
P[Sk−N = s]

=
∑
s∈S

E[||Dπ −DB̃π
k ||22 | S̃k−N = s]P[S̃k−N = s]

+
∑
s∈S

E[||Dπ −DB̃π
k ||22 | S̃k−N = s](P[Sk−N = s]− P[S̃k−N = s])

≤|S| t
mix
1
|Bπ

k |
+ 8dTV(µπ

S∞
, µπ

Sk−N
),

where the first equality is due to the law of total expectation, and the fact that P[Sk−N+1, Sk−N+2, . . . , Sk |
Sk−N ] and P[S̃k−N+1, S̃k−N+2, . . . , S̃k | S̃k−N ] are identical. Moreover, the second equality follows from
simple algebraic decomposition, and the inequality is due to the fact that ||A−B||22 ≤ 2(||A||22 + ||B||22) for
A, B ∈ R|S|×|S|, and applies Lemma A.9 and the definition of total variation distance in Definition 2.1. Note
that Lemma A.9 will be given after the proof.

For the second statement, it follows that

E
[∥∥DπP π −DBk P Bk

∥∥2
2

]
=
∑
s∈S

E
[∥∥DπP π −DBk P Bk

∥∥2
2 | Sk−N = s

]
P[Sk−N = s]

≤E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥2

2

]
+ 2|S|dTV(µπ

S∞
, µπ

Sk−N
)

≤|S|2 tmix
2
|B̃π

k |
+ 2|S|dTV(µπ

S∞
, µπ

Sk−N
),

where the first inequality is due to the fact that ||P π||22 ≤ |S|, ||P B̃π
k ||22 ≤ |S| since P π and P B̃π

k are stochastic
matrix, i.e., the row sum equals one. This concludes the proof of the second statement.

Next, similar arguments hold for E
[∥∥DπRπ −DBπ

k RBπ
k

∥∥2
2

]
as follows:

E
[∥∥∥DπRπ −DBπ

k RBπ
k

∥∥∥2

2

]
=
∑
s∈S

E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥2

2

∣∣∣∣Sk−N = s

]
P[Sk−N = s]

≤E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥2

2

]
+ 2|S|R2

maxdTV(µπ
S∞

, µπ
Sk−N

)

≤|S|5|A|2R2
max

tmix
2
|Bπ

k |
+ 2|S|R2

maxdTV(µπ
S∞

, µπ
Sk−N

).

This completes the proof.

Lemma A.9. For k ≥ 0, we have

1) E
[∥∥∥Dπ −DB̃π

k

∥∥∥2

2

]
≤ |S| t

mix
1

|B̃π
k

| ,

2) E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥2

2

]
≤ |S|2 tmix

2
|B̃π

k
| ,
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3) E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥2

2

]
≤ |S|5|A|2R2

max
tmix

2
|B̃π

k
| .

Proof. The first statement is proved via the following inequalities:

E
[∥∥∥Dπ −DB̃π

k

∥∥∥2

2

]
≤
∑
s∈S

E
[(

µπ
S∞

(s)− µ
B̃π

k

S̃
(s)
)2]
≤ |S| t

mix
1
|B̃π

k |
.

Here, the first inequality follows from the matrix norm inequality || · ||2 ≤ || · ||F , where || · ||F stands for
Frobenius norm, and the second inequality applies Lemma A.3. The proof of the second statement follows
similar lines. In particular, letting µ

B̃π
k

S̃,S̃′ stand for stationary distribution of {(S̃k, S̃k+1)}k≥−N , one gets

E
[∥∥∥DπP π −DB̃π

k P B̃π
k

∥∥∥2

2

]
≤

∑
(s,r,s′)∈O

E
[
(µπ

S∞,S′
∞

(s, s′)− µ
B̃π

k

S̃,S̃′(s, s′))2
]
≤ |S|2 tmix

2
|B̃π

k |
,

where the first inequality follows from the relation between spectral norm and Frobenius norm, and the
second inequality applies Lemma A.3.

For the third statement, one can bound E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥2

2

]
with the same logic as in the proof of

Lemma 3.3 as follows:

E
[∥∥∥DπRπ −DB̃π

k RB̃π
k

∥∥∥2

2

]
=E

[∑
s∈S

(
E [r(S, A, S′) | S = s, π] µπ

S∞
(s)− µ

B̃π
k

S̃
(s)[RB̃π

k ]s
)2
]

≤|S|3|A|2R2
maxE

[∑
s∈S

∑
s′∈S

(
µπ

S∞,S′
∞

(s, s′)− µ
B̃π

k

S̃,S̃′(s, s′)
)2
]

≤|S|5|A|2R2
max

tmix
2
|B̃π

k |
.

This completes the proof.

A.9 Proof of Theorem 3.5
Proof. We prove the first statement. Using (5), ||Vk+1 − V π||2M can be expanded as follows:

||Vk+1 − V π||2M
=(Vk − V π)⊤A⊤MA(Vk − V π) + 2α(Vk − V π)⊤A⊤Mw(Mπ

k , Vk) + α2||w(Mπ
k , Vk)||2M

=||Vk − V π||2M − ||Vk − V π||22 + 2α(Vk − V π)⊤A⊤Mw(Mπ
k , Vk) + α2||w(Mπ

k , Vk)||2M ,

where the first equality follows from (5), and the last equality uses the Lyapunov equation in (8). Taking
expectation yields

E[||Vk+1 − V π||2M ]
=E[||Vk − V π||2M ]− E[||Vk − V π||2] + 2αE[(Vk − V π)⊤A⊤Mw(Mπ

k , Vk)] + α2E[|w(Mπ
k , Vk)||2M ]

≤E[||Vk − V π||2M ]− E[||Vk − V π||2] + 8|S| 32 Rmax

(1− γ)2µπ
min

E[||w(Mπ
k , Vk)||2]

+ 2α|S|
(1− γ)µπ

min
E[|w(Mπ

k , Vk)||22]

≤E
[
||Vk − V π||2M

]
− E[||Vk − V π||22]

+ 32|S|2R2
max

(1− γ)3µπ
min

(√
8 log(2|S|)

L
+ 2|S| 32 |A|

√
τmix

N
+ 16|S|dTV(µπ

S∞
, µπ

Sk−N
)
)
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+ α
4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
120(log(2|S|))2

L
+ 4|S|4|A|2 τmix

N
+ 8|S|dTV(µπ

S∞
, µπ

Sk−N
)
)

,

where the first inequality follows from Cauchy-Schwartz inequality, and the boundedness of Vk in Lemma 3.1.
The last inequality comes from bounding the first and second moment of ∥w(Mπ

k , Vk)∥2 by Lemma 3.3 and
Lemma 3.4, respectively.

Summing the last inequality from k = 0 to k = T − 1 and dividing both sides by T , one gets

1
T

T −1∑
k=0

E[||Vk − V π||22] ≤ 1
T
E[||V0 − V π||2M ]

+ 32|S|2R2
max

(1− γ)3µπ
min

(√
8 log(2|S|)

L
+ 2|S| 32 |A|

√
τmix

N

)

+ 1
T

32|S|2R2
max

(1− γ)3µπ
min

(
T −1∑
k=0

16|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

+ α
4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
120(log(2|S|))2

L
+ 4|S|4|A|2 τmix

N

)
+ α

1
T

4|S|2R2
max

(1− γ)3µπ
min

(
T −1∑
k=0

16|S|dTV(µπ
S∞

, µπ
Sk−N

)
)

.

To bound the sum of total variation terms in the above inequality, the following relation can be used:

T −1∑
k=0

dTV(µπ
S∞

, µπ
Sk−N

) ≤ tmix
1

⌊T/tmix
1 ⌋∑

k=0
dTV(µπ

S∞
, µπ

Sktmix
1 −N

) ≤ tmix
1

⌊T/tmix
1 ⌋∑

k=0
2−k ≤ 2tmix

1 ,

where the first inequality follows from non-increasing property of total variation of irreducible and aperiodic
Markov chain in Lemma A.4 in Appendix. Moreover, the second inequality follows from the first item in
Lemma A.4 in Appendix. Combining the last two inequalities leads to

1
T

T −1∑
k=0

E[||Vk − V π||22]

≤ 1
T

2|S|
α(1− γ)E[||V0 − V π||22]

+ 32|S|2R2
max

(1− γ)3µπ
min

(√
log(8|S|)

L
+ 2|S| 32 |A|

√
τmix

N

)
+ 322|S|2R2

max
(1− γ)3µπ

min

2tmix
1
T

+ α
4|S|2(Rmax + 1)2

(1− γ)3µπ
min

(
120(log(2|S|))2

L
+ 4|S|4|A|2 τmix

N

)
+ α

128|S|2R2
max

(1− γ)3µπ
min

tmix
1
T

.

This completes the proof of first statement. The second statement can be directly obtained from applying
Jensen’s inequality.

A.10 Proof of Theorem 3.6
Proof. First of all, we prove the first statement. The term ∥Vk+1 − V π∥2

2 is expanded according to the update
in (5) as follows:

∥Vk+1 − V π∥2
2

=||Vk − V π||2A⊤A + 2α(Vk − V π)A⊤w(Mπ
k , Vk) + α2||w(Mπ

k , Vk)||22
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=(V0 − V π)⊤(A⊤)k+1Ak+1(V0 − V π) +
k∑

i=0
2α(Vi − V π)⊤A⊤(A⊤)k−iAk−iw(Mπ

i , Vi) (21)

+ α2
k∑

i=0
w(Mπ

i ; Vi)⊤(A⊤)k−iAk−iw(Mπ
i ; Vi), (22)

where the second equality follows from the fact that for 0 ≤ i ≤ k− 1, the i-th expansion results to weighted
inner product of A(Vk−i−1−V π) and w(Mπ

k−i−1, Vk−i−1) and weighted squared norm of w(Mπ
k−i−1, Vk−i−1)

which are (21) and (22), respectively.

Next, applying Cauchy–Schwartz inequality to (22) yields

∥Vk+1 − V π∥2
2

≤||V0 − V π||22|S|||A2k+2||∞ + 2α|S|
k∑

i=0
||Vi − V π||2||Ak−i+1||∞||Ak−i||∞||w(Mπ

i ; Vi)||2

+ α2
k∑

i=0
||A2k−2i||2||w(Mπ

i ; Vi)||22

≤||V0 − V π||22|S|||A||2k+2
∞ + 2α|S|

k∑
i=0
||Vi − V π||2||A||2k−2i+1

∞ ||w(Mπ
i ; Vi)||2

+ α2
√
|S|

k∑
i=0
||A||2k−2i

∞ ||w(Mπ
i ; Vi)||22,

where the first inequality follows from the matrix norm inequality ||A||2 ≤
√
|S|||A||∞, and the last inequality

is due to sub-multiplicativity of the matrix norm. After taking expectation, we get

E
[
∥Vk+1 − V π∥2

2

]
≤||V0 − V π||22∥S|||Ak+1||22

+ α
64|S|2R2

max
(1− γ)2

(√
8 log(2|S|)

L
+ |S| 32 |A|

√
τmix

N

)
k∑

i=0
||A||2k−2i+1

∞

+ α2
√
|S 4|S|(Rmax + 1)2

(1− γ)2

(
120(log(2|S|)2

|Mπ
k |

+ 4|S|4|A|2 τmix

|Bπ
k |

) k∑
i=0
||A||2k−2i

∞

≤||V0 − V π||22∥S|(1− α(1− γ)µπ
min)2k+2

+ 64|S|2R2
max

(1− γ)3µπ
min

(√
8 log(2|S|)

L
+ |S| 32 |A|

√
τmix

N

)

+ α
4|S|(Rmax + 1)2

(1− γ)3µπ
min

(
120(log(2|S|)2

|Mπ
k |

+ 4|S|4|A|2 τmix

|Bπ
k |

)
,

where the first inequality follows from Lemma 3.3, 3.4, and the fact that dTV(µπ
S∞

, µπ
Sk−N

) is zero for all
k ≥ 0 because the initial state distribution is identical to the stationary distribution. Moreover, the second
inequality comes from the bound on ||A||∞ in Lemma 3.2. This proves the first statement. Finally, applying
Jensen’s inequality to the first item which is the bound on E

[
∥Vk − V π∥2

2

]
, leads to the second statement.
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