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ABSTRACT

Differential privacy limits an algorithm’s privacy loss, defined as the maximum
influence any individual data record can have on the probability of observing any
possible output. Privacy auditing identifies the worst-case input datasets and out-
put event sets that empirically maximize privacy loss, providing statistical lower
bounds to evaluate the tightness of an algorithm’s differential privacy guarantees.
However, current auditing methods often depend on heuristic or arbitrary selec-
tions of output event sets, leading to weak lower bounds. We address this critical
gap by introducing a novel framework to compute the optimal output event set
that maximizes the privacy loss lower bound in auditing. Our algorithm efficiently
computes this optimal set when closed-form output distributions are available and
approximates it using empirical samples when they are not. Through extensive
experiments on both synthetic and real-world datasets, we demonstrate that our
method consistently tightens privacy lower bounds for auditing differential pri-
vacy mechanisms and black-box DP-SGD training. Our approach outperforms
existing auditing techniques, providing a more accurate analysis of differentially-
private algorithms.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2014) is regarded as the gold standard for quantitatively
assessing an algorithm’s privacy guarantee. It ensures that the presence or absence of any record
will not be heavily revealed from the outcome of the mechanism. Formally, consider a randomized
algorithm M : D → Θ. If for any neighbouring datasets D,D′ ∈ D that differ by only one entry,
i.e., D′ = D ∪ {x} or D′ = D \ {x}, and for any measurable (output event) sets O, it satisfies that

P[M(D) ∈ O] ≤ eε · P[M(D′) ∈ O] + δ,

then the algorithm M is said to satisfy (ε, δ)-DP. Differential privacy mathematically certifies that
the information leakage of a randomized algorithm is bounded (by ε and δ) even under the worst-
case datasets D,D′ and the worst-case output event set O.

Computing the exact differential privacy loss ε and δ for an algorithm requires tracking its output
distribution over all possible input datasets and output event sets, which is challenging for com-
plex algorithm (e.g., iterative learning algorithms with a large number of non-linear updates). To
circumvent this challenge, existing privacy analysis for machine learning algorithms (Abadi et al.,
2016; Kairouz et al., 2015; Mironov, 2017) often make simplifying assumptions that the adversary
observes not only the final output, but also other information (such as intermediate updates) in a
learning algorithm, and prove upper bounds for ε and δ instead. Understanding whether the DP up-
per bound is correct and tight is critical, since underestimating privacy upper bounds leads to privacy
leaks (Tramer et al., 2022), while any underestimation results in unnecessarily large modifications
to the learning algorithms which decreases the utility of the trained model. To measure the tightness
of the DP upper bound, it is crucial to identify the worst-case datasets and output event sets where
the privacy loss is maximized. The success of inference attack under such worst-case scenarios then
provides a statistical lower bound on the exact differential privacy loss of the algorithm. If the lower
bound is close to the DP upper bound, then the privacy analysis is tight. This process is known as
privacy auditing (Jagielski et al., 2020; Nasr et al., 2021; Zanella-Beguelin et al., 2023; Nasr et al.,
2023; Steinke et al., 2023).
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Existing privacy auditing literature largely focuses on designing the worst-case input datasets D,D′
via poisoning attacks (Jagielski et al., 2020; Nasr et al., 2021) or via searching for the data with
the highest risks against inference attacks in the training dataset via computationally expensive in-
ference attacks (Ye et al., 2022; Zanella-Beguelin et al., 2023; Aerni et al., 2024). By contrast, the
question of how to choose the worst-case output event setO to enable a better auditing lower bound
is largely underexplored. This is due to several reasons. (1) Standard learning algorithms consist of
a large number of iterative non-linear updates, which makes it challenging to track the complex
distribution of the final output in a closed-form manner. Consequently, it is infeasible to perform
exact optimization of output event set for complex iterative learning algorithms. (2) If we relax
ourselves to approximate optimization of output set, prior works (Bichsel et al., 2021; Lu et al.,
2022) have proposed several approaches based on approximating the output distributions via their
empirical Monte Carlo samples. However, such approximations require a large number of Monte
Carlo samples to be accurate, which requires computationally expensive (re)runs of the training al-
gorithm. Alternatively, given a small finite number of Monte Carlo samples, such methods suffer
from non-negligible approximation error, which in turn affects the auditing performance. Thus, it
is crucial to take the approximation error into account when formulating the objective of maximal
privacy loss in privacy auditing. However, to the best of our knowledge, there is no existing con-
sensus regarding the optimal way to incorporate the approximation error into the outpupt set
selection objective for privacy auditing. (3) Prior works (Steinke et al., 2023; Bichsel et al., 2021;
Lu et al., 2022) have empirically observed that the effect of output event set choice on the privacy
auditing power is distribution-dependent. For example, in certain mechanisms like randomized re-
sponse, the choice of output event set does not significantly affect the audited lower bound ((Steinke
et al., 2023, Figure 10)). In contrast, for some other mechanisms (such as the Laplace mechanism),
the choice of output event set substantially affects the audited lower bound Bichsel et al. (2021); Lu
et al. (2022). Despite these observations, a comprehensive understanding of whether and when
optimizing the output event set yields a gain remains elusive (i.e., how does the amount of gain
change for different mechanisms).

In this paper, we aim to address the question of optimal output set selection for privacy auditing.
Specifically, we ask the following research questions.

1. What is the optimal output event set for auditing differentially private mechanisms? How
does the optimal output event set change for different mechanisms?

2. How much gain for privacy auditing can we achieve by optimizing the output set? How
does the amount of gain depend on the mechanism and the number of auditing examples?

3. How to compute the optimal output event set when only given empirical output sam-
ples, rather than closed-form output distributions? Does this enable tighter auditing lower
bounds for practical DP learning mechanisms, such as black-box DP-SGD?

Summary of Results. Our results for addressing the above research questions are as follows.

• We proposed a novel framework for choosing the optimal output set in privacy auditing,
that incorporates the error of sampling auditing examples from output distributions. Specif-
ically, our optimization objective (4) captures the expectation of advantage-based auditing
lower bound (Steinke et al., 2023; Jayaraman & Evans, 2019) over random sampling.

• We prove that our proposed optimization problem incurs closed-form solutions, that consist
of output sets constructed by thresholding the likelihood ratio between member and non-
member score distributions in privacy auditing (Definition 4.2). Importantly, we prove
(Theorem 4.3) that our constructed output set enables the maximum auditing objective
among all possible choices of output event set, i.e., is optimal.

• We numerically validate that for auditing DP mechanisms with closed-form output distri-
butions, using the optimal output set consistently enables tighter lower bounds than prior
methods. Our improvement is especially significant under a small number of auditing ex-
amples (Figure 2), or when the output distribution is asymmetric or multi-modal (Figure 1).

• We also extend our framework to algorithms without closed-form output distributions (Sec-
tion 4.3), and approximately compute the optimal output set by thresholding the KDE esti-
mation of likelihood ratio from empirical output samples. We experimentally demonstrate
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(Section 6) that our algorithm is effective and enables tighter privacy auditing of black-box
DP SGD training on synthetic (canary) and real-world (CIFAR-10) datasets.

2 RELATED WORKS

Score-based membership inference attacks and connections to output set selection. Membership
inference attacks (MIAs) aim to infer whether a given data record was used for training a given target
model. Intuitively, a higher performance of MIA indicates higher privacy risks, and thus MIAs serve
as crucial tools for auditing DP mechanisms (Shokri et al., 2017). MIAs in the literature generally
follow a fixed template: compute a membership inference attack score (such as loss (Sablayrolles
et al., 2019; Yeom et al., 2018; Ye et al., 2022), confidence (Salem et al., 2018), entropy (Song &
Mittal, 2021), loss trajectory (Liu et al., 2022) and likelihood ratio (Carlini et al., 2022)) on the
target model and target data, and then perform attack via thresholding the MIA score. That is,
predict member if the MIA score is above the threshold, and predict non-member if the MIA score
is below the threshold. To this end, performing score-based membership inference attacks (on the
output distributions in privacy auditing) is equivalent to heuristically selecting the output event set
to be the interval (Z,∞) by a threshold Z, as utilized in the auditing experiment in Jagielski et al.
(2020). This strategy, as we will show in Section 4, 5 and 6, is strictly suboptimal for certain DP
mechanisms compared to our proposed optimization-based output event set selection.

Optimization of output event set in privacy auditing. Bichsel et al. (2021) optimizes the posterior
over output event set, while ensuring that the probability of output event set is larger than a heuristi-
cally selected threshold (e.g., 0.05). Lu et al. (2022) further trains a ML model to learn the posterior
of training data given trained model, and selects the output set that maximizes the posterior. Steinke
et al. (2023) considers a series of output event sets constructed by a fixed strategy. Their constructed
output event set takes the form of two intervals (−∞, c−) and (c+,∞), where c− and c+ are real-
valued thresholds for the MIA scores. They then search over the entire output domain (i.e., the set
of values for discrete Monte Carlo samples) to identify a choice of c− and c+ that enables maxi-
mum empirical auditing performance. However, prior works do not reach a consensus regarding the
optimal output set for privacy auditing. By contrast, our work proposes a novel objective (4) that
captures the expectation of auditing lower bound and serves as the key ingredient for us to prove an
optimality guarantee for selecting output set in privacy auditing given finite auditing samples.

Evaluating worst-case success of membership inference attacks. A connected direction of re-
search is on measuring privacy risk of machine learning algorithms by the success of membership
inference attack over a small set of (worst-case) data samples, rather than the entire dataset. To this
end, Carlini et al. (2022) propose to evaluate the true positive rate (TPR) at a low false positive rate
(FPR) as an indicator of privacy loss as worst-case data records. This is equivalent to evaluating
MIA only on a selected output set at the bottom tail of the MIA score distributions on all training
and test data (as this constrains the FPR to be small), rather than the whole output domain.

3 PROBLEM STATEMENT

Let T : D 7→ θ be an (ε, δ)-differentially private algorithm, that maps an input datasetD to a trained
model with parameters θ. Let Score(θ, x) be a MIA score function, that maps the algorithm’s
output model parameters θ and any data record x to a real-valued score o. An auditing experiment
E takes in an randomized algorithm T , a confidence tolerance β, and an approximate differential
privacy tolerance δ as inputs, and returns a high-confidence statistical lower bound ε̂ := E(T ) for
the ground-truth differential privacy parameter ε that satisfies

Pr[ε̂ := E(T ) < ε] ≥ 1− β (1)
where the probability is over randomness of the auditing experiment E and the training algorithm
T . Generally speaking, existing auditing experiments (Jagielski et al., 2020; Nasr et al., 2021; 2023;
Zanella-Beguelin et al., 2023; Bichsel et al., 2021; Lu et al., 2022) (see Appendix A and Table 1 for
more details) can be decomposed into the following three components.

1. Compute a set of member scores S+ and non-member scores S−. This involves sam-
pling the input dataset, training output models, and computing MIA scores on the trained
model(s) and its member and non-member data record(s) respectively.
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2. Subselect the scores by a output set O ⊆ R. Intuitively, this is to increase the distin-
guishability between subselected member and non-member scores (that lie in O), so as to
enable a higher auditing lower bound.

3. Design auditing function L such that L(S+, S−,O; δ, β) ≤ ε with high probability.
Typically, L is a function of the performance of membership inference in auditing. 1 To
prove L satisfies (1), prior works generally rely on the constraints of (ε, δ)-DP on the power
of binary membership hypothesis test (Wasserman & Zhou, 2010; Kairouz et al., 2015).

Our objective We aim to design a general framework for computing the optimal output set, so
as to enable the highest possible lower bound ε̂ in privacy auditing. Formally speaking, for any
fixed distribution of member scores S+ and non-member scores S− (specified by the data sampling
and training protocols in the auditing experiment), any approximate DP tolerance δ, any confidence
tolerance β, and any auditing function L, we aim to solve the below optimization problem.

arg max
O

ε̂ = L(S+, S−,O; δ, β) (2)

By fixing S+, S−, δ, β, and L, we are essentially fixing the first and third components of the auditing
experiment. For simplicity of presentation, and for fair comparison with prior works (Bichsel et al.,
2021; Lu et al., 2022) that solely focus on pure DP settings, in the paper, we only optimize and
report auditing lower bounds for δ = 0 and β = 0.05. To compute the member and non-member
scores S+, S−, we focus on two representative ways in the literature (Jagielski et al., 2020; Steinke
et al., 2023) as summarized by Table 1. For auditing function, we will use generalized variants
(Proposition 4.1) of the advantage-based auditing function in (Steinke et al., 2023, Theorem 5.2). 2

However, we emphasize that we aim to design a general framework for optimizing the output set that
can be combined with any member and non-member scores and auditing functions in the literature.

4 COMPUTING THE OPTIMAL OUTPUT SET FOR PRIVACY AUDITING

In this section, we introduce our optimization objective for selecting the output set to enable higher
advantage-based privacy auditing lower bound. We focus on the setting where the member and non-
member scores S+ and S− are i.i.d. samples from two output distributions p and q respectively. This
is indeed the case for prototypical auditing experiments (Jagielski et al., 2020; Nasr et al., 2021) –
see Appendix A and Table 1 for details. We then analyze the structure of the optimal output set and
propose an algorithm to approximate the optimal output set from empirical samples.

4.1 OPTIMIZATION OBJECTIVE FOR OUTPUT SET SELECTION

Given black-box access to i.i.d. samples from the output distributions of the DP mechanism, we first
prove a new auditing function that has explicit dependence on the choice of output set O as follows.
Proposition 4.1 (Our Output-set-dependent Auditing Function). Let p and q be two probability
distributions over R that satisfies e−ε ≤ p(o)

q(o) ≤ eε for any o ∈ R. Let β = 0.05 be the confidence
tolerance. Let O ⊂ R be a fixed output set. Let S+ be m i.i.d. samples from p, and let S− be m
i.i.d. samples from q. Then ε̂(S+, S−,O; p, q) defined as follows is a valid auditing function.

ε̂(S+, S−,O; p, q) = φ

(∫
o∈Omax{p(o), q(o)}do

p(O) + q(O)
−

√
2 · ln (2/β)

|S+ ∩ O|+ |S− ∩ O|

)
(3)

where φ(y) = log
(

y
1−y

)
is the logit function. That is, Pr[ε̂(S+, S−,O; p, q) ≤ ε] ≥ 1− β.

Proof. The proof is in Appendix B.3. This generalizes prior auditing functions Yeom et al. (2018);
Steinke et al. (2023) from specific output sets to anyO, and enjoys the benefit of explicit dependence
on the output set – see Remark B.4 and B.5 for details.

1Other auditing functions include the ones based on attribute inference Guo et al. (2023), reconstruction Guo
et al. (2022); Balle et al. (2022), and empirical divergence estimation Domingo-Enrich & Mroueh (2022); Kong
et al. (2024). It is interesting to invetigate the effect of output set optimization for them as future works.

2That is, the design ofL is based on bounding the advantage of membership inference with the DP guarantee
(ε, δ). Extending our framework to other performance metrics of MIA is an interesting future work.
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By taking expectation of the denominator |S+ ∩ O| + |S− ∩ O| in (3) across random sampling of
S+ and S−, we obtain an objective for selecting the optimal output set O in privacy auditing.

arg max
O

ε̂(O; p, q) := φ


∫
o∈Omax{p(o), q(o)}do

p(O) + q(O)︸ ︷︷ ︸
inference accuracy

−

√
2 · ln(1/β)

m · (p(O) + q(O))︸ ︷︷ ︸
sampling error

 (4)

where φ(y) = log
(

y
1−y

)
. Note that the objective (4) is specified by distributions p and q, indicating

that the optimalO is mechanism-dependent. We now analyze the structure of the optimal output set.

4.2 IDENTIFYING OPTIMAL OUTPUT SET FOR AUDITING

We first define a series of output set Oτ by thresholding the likelihood ratio between distributions.
Definition 4.2 (τ -log-likelihood-ratio-set). Let p and q be two continuous distributions over R,
indicating member and non-member score distributions in the auditing experiment respectively. For
each τ > 0, we define the τ -log-likelihood-ratio-set for p and q as the following set Oτ .

Oτ =

{
x ∈ R :

∣∣∣∣ln(p(x)

q(x)

)∣∣∣∣ ≥ τ} (5)

We now prove the optimality guarantee for Oτ , i.e., Oτ enables the largest lower bound among all
possible output sets S that satisfy the same size constraint p(O) + q(O) = p(Oτ ) + q(Oτ ).
Theorem 4.3. Let p and q be two continuous distributions over R. Let ε̂(·; p, q) be our auditing
objective (4). Given any feasible output set O, there exists τ ∈ R such that p(Oτ ) + q(Oτ ) =
p(O) + q(O), where Oτ be the τ -log-likelihood-ratio-set (5) for p and q. Further, it satisfies that

ε̂(Oτ ; p, q) = max
O⊆R:p(O)+q(O)=p(Oτ )+q(Oτ )

ε̂(O; p, q) (6)

The proof technique (Appendix B.2) is similar to the Neyman-Pearson Lemma (Neyman & Pearson,
1933) (Remark B.6). Theorem 4.3 proves that for any output set O, there exists a τ -log-likelihood-
ratio-set Oτ that satisfies p(Oτ ) + q(Oτ ) = p(O) + q(O) such that Oτ enables higher auditing
lower bound objective (4) than O. Thus the family of {Oτ}τ≥0 contains the optimal output set.

4.3 APPROXIMATING THE OPTIMAL OUTPUT SET FROM EMPIRICAL SAMPLES

In practice, we are only given empirical samples from the output distributions p and q, rather than
the closed-form densities. We now propose a method to approximate the optimal output set Oτ
from empirical samples. The idea is to estimate the probability densities of distributions p and q
from their empirical samples (e.g., via kernel density estimation), and then compute the likelihood
ratio function and its level set as optimal output set. See Algorithm 1 for the pseudocode.

Algorithm 1 Approximating the Optimal Optimal Output Set from Empirical Samples

Require: m+ samples S+ and m− samples S− from unknown distributions p, q respectively, with
m+ +m− = 2m. DP tolerance δ. Confidence β. Auditing function L(S+, S−,O; δ, β).

1: Kernel density estimation (KDE) from samples: p̂← KDE(S+), q̂ ← KDE(S−)
2: Sort the empirical samples: õ0 = −∞; õ1 ≤ · · · ≤ õ2m ← sort(S+ ∪ S−); õ2m+1 = +∞

3: Estimate absolute log likelihood ratio: {τ0, · · · , τ2m} :=

{∣∣∣∣log

∫ õi+1
õi

p̂(o)do∫ õi+1
õi

q(o)do

∣∣∣∣}2m

i=0
4: for each level τ ∈ {τ0, · · · , τ2m} do
5: approximate the τ -log-likelihood-ratio set: Oτ = ∪2m

i=0:τi≥τ (õi, õi+1).

6: Search the optimal level τ̂ := arg maxτ∈{τ0,··· ,τ2m} L(S+, S−,Oτ ; δ, β).
7: return output set Oτ̂ .

On reducing the instability of KDE and likelihood ratio estimation Motivated by Bichsel et al.
(2021), we only perform likelihood ratio estimation on the regions where the estimated densities
are non-negligible (with probability density function p̂(o) and q̂(o) that is larger than 0.01). This is
because the likelihood ratio estimation involves division over probability density, and thus the error
can be arbitrarily large when the estimated densities are small.

5
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On searching for the optimal leve τ̂ Theorem 4.3 proves that the family of τ -log-likelihood-ratio-
set contains the optimal output set. To choose one single output set over the family of Oτ , in Line
6 of Algorithm 1, we evaluate the auditing performance of Oτ for different values τ and return one
output set with the best performance. This is a one-dimensional optimization problem over τ ∈ R,
which is significantly easier and incurs significantly less computation cost than the original output
set optimization problem over all possible output sets O ⊆ R. Although this search for optimal
threshold requires additional output samples, it is a common practice in the literature (Bichsel et al.,
2021; Lu et al., 2022; Zanella-Beguelin et al., 2023) to boost the auditing performance.

5 NUMERICAL EXPERIMENTS: ONE-EPOCH OF SHUFFLED NOISY SGD

In this section, we perform numerical experiments on two fundamental differentially private mech-
anisms: Lapalace mechanism (which is pure DP), and Gaussian mechanism (which is approx-
imate DP), that are building blocks for the iterative update in the celebrated DP-SGD learning
algorithm (Abadi et al., 2016). We consider composition of both mechanisms for one shuffled epoch
of noisy stochastic gradient descent udpates (Bassily et al., 2014), under simple loss functions con-
struction. We then investigate whether our output set optimization method enables tighter privacy
auditing lower bound than prior works (Jagielski et al., 2020; Bichsel et al., 2021; Lu et al., 2022;
Steinke et al., 2023), and how various factors affect the amount of gain.
Experiment setting Consider a simplified setting of learning on dataset D = (x1, x2) with two
records x1, x2 ∈ R, where the loss function is `1(x, θ) = 〈θ, x〉 for the first record, and is `2(x, θ) =
1
2 (θ−x)2 for the second record. Assuming different loss function for different records of the dataset
is realistic, for example, in a multi-task learning setting, where the first record is used for learning
task one (e.g., classify between cats and dogs) and the second record is used for learning task two
(e.g., classify between sketch and photo). In terms of learning algorithm, we consider running one
epoch of shuffled noisy stochastic gradient descent algorithm with the following updates:

θ1 = θ0 − η (∇`1(θ0, xs1) + Z1) where Z1 ∼ Lap(0, b1) or N (0, σ2
1)

θ2 = θ1 − η (∇`2(θ1, xs2) + Z2) where Z2 ∼ Lap(0, b0.5) or N (0, σ2
2) (7)

where θ0 is the initialization parameters of the model (assumed to be zero for simplicity), η is the
learning rate, b1, b0.5, σ1 and σ2 are the noise scales, and s uniform←−−−− {(1, 2), (2, 1)} is a randomly
shuffled dataset order. Under the assumption of bounded data domain, the gradient of both loss
functions `1(θ, x) and `2(θ, x) have finite sensitivity, thus the algorithm satisfies differential privacy
by standard DP guarantees of Laplace mechanism (Dwork et al., 2006, Theorem 1) and Gaussian
mechanism (Balle & Wang, 2018, Theorem 8). (See Appendix C for the details.) Conditioned on a
fixed order s, the final output θ2 of this mechanism follows a closed-form distribution as follows.

θ|s d
= θ0 − η · (1− η) · xs1 + η · xs2 + Z where Z = −η(1− η)Z1 − ηZ2 (8)

For simplicity, assume that θ0 = 0 and η = 1
2 (note that both terms do not affect the DP guarantee

of the mechanism in Proposition C.1). By averaging over the two possible orders s, we could obtain
the closed-form output distributions p(θ) and q(θ) for model θ trained on dataset D = (x1, x2)
and D′ = (x′1, x

′
2) respectively. For example, for Gaussian mechanism, when Z1 ∼ N (0, σ2) and

Z2 ∼ N (0, σ2), we have that p(θ) and q(θ) follows the below mixture distributions.

p(θ) =
1

2
· N

(
−1

4
x1 +

1

2
x2,

5

16
σ2

)
+

1

2
· N

(
−1

4
x2 +

1

2
x1,

5

16
σ2

)
(9)

q(θ) =
1

2
· N

(
−1

4
x′1 +

1

2
x′2,

5

16
σ2

)
+

1

2
· N

(
−1

4
x′2 +

1

2
x′1,

5

16
σ2

)
(10)

Similarly, for Laplace mechanism, when Z1 = 0 ∼ Lap(0, 0) and Z2 ∼ Lap(0, b), we have that
p(θ) and q(θ) follows the below mixture distributions.

p(θ) =
1

2
· Lap

(
−1

4
x1 +

1

2
x2,

1

2
b

)
+

1

2
· Lap

(
−1

4
x2 +

1

2
x1,

1

2
b

)
(11)

q(θ) =
1

2
· Lap

(
−1

4
x′1 +

1

2
x′2,

1

2
b

)
+

1

2
· Lap

(
−1

4
x′2 +

1

2
x′1,

1

2
b

)
(12)
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Equation (9), 10, 11 and 12 are the forms of output distribution p and q that we will use for auditing
one-epoch shuffled noisy SGD in this section. That is, to compute member and non-member scores
S+ and S−, we perform Monte Carlo sampling from the output distributions of the mechanism. This
is equivalent to the auditing experiment via retraining in Jagielski et al. (2020).

Comparison Baselines For our method, we approximate the optimal output set by applying Al-
gorithm 1 on top of black-box Monte Carlo samples from the output distributions( (9), 10, 11 and
12) and auditing function add ref for i.i.d. samples given by prior works . To validate the optimality
guarantee (Theorem 4.3), we compare with the following methods.

1. Whole domain: A naive strategy is to choose O as R, i.e., the whole score domain.

2. Top (bottom) score heuristic: (Steinke et al., 2023, Algorithm 1) uses a strategy of ‘ab-
staining’ by only performing MIAs on the top k+ and bottom k− scores in the auditing
experiment, which is equivalent to the output set spanned by top α+-percentile and bottom
α−-percentile of the mixture of member and non-member scores. This selection intuitively
restricts the guesses to scores that are most likely to be members or non-members, thus
boosting the attack accuracy and the auditing lower bound. Experimentally, (Steinke et al.,
2023, Figure 11) observes that the choice of k+ and k− has a significant impact on the
auditing lower bound, indicating that this heuristic outperforms the naive baseline of using
the whole score domain. In our experiments, we follow (Steinke et al., 2023) and brute-
force search over all possible values to find the best k+ and k−, and then report the auditing
performance of the best k+ and k− in fresh evaluation trials.

3. DP-sniper (Bichsel et al., 2021) and Lu et al. (2022): Bichsel et al. (2021) propose to
compute output set by thresholding the posterior probability of training dataset conditional
on mechanism output. Lu et al. (2022) further makes the method more flexible by searching
for the optimal threshold that enables the largest auditing lower bound. In experiments, we
use the implementation 3 released by Bichsel et al. (2021) and additionally follow Lu et al.
(2022) to search for the optimal threshold for fair comparison.

For all methods, we directly use the one-dimensional output of the DP mechanisms as the MIA score
and subsequently perform the optimal advantage-based MIA with rejection region A = {o : p̂(o) ≥
q̂(o)} (benefited from the KDE estimators of the output distributions p and q). To evaluate the final
auditing lower bound, we use the auditing function in (Steinke et al., 2023, Section D) for δ = 0.
For all methods, we use a separate set of output samples in evaluation, compared to the set of output
samples used for searching for one optimal output set.

5.1 SHAPE OF OPTIMAL OUTPUT SET

We now investigate the shape of Oτ for the shuffled noisy SGD under Laplace mechanism and
Gaussian mechanism ((11), 12, 9, 10). Our observations are as follows.

Optimal set contains more than two intervals for multimodal distributions p and q In Figure 1,
we observe that for mixture of Laplace or Gaussian distributions, the optimal output set contains
more than two intervals. This means that the prior heuristic (Steinke et al., 2023) for selecting
the top and bottom scores is strictly suboptimal. Specifically, the optimal output set Oτ in Figure
1b contains the union of three disjoint intervals, one for the top-valued scores, one for bottom-
valued scores, and the other for medium-valued scores. The deeper reason is that the likelihood
ratio p(o)/q(o) is not monotonic in score domain o for distinguishing between general choices of
distributions p and q that are multi-modal. See Appendix D for more examples of other distributions.

Optimal set is asymmetric for general mechanisms Motivated by Wilk’s theorem (Wilks, 1938)
(which proves that the log-likelihood ratio statistics converges asymptotically to chi-squared dis-
tribution under the null hypothesis in binary hypothesis testing), we additionally experiment on
Chi-squared distributions p and q in Appendix D and observe that the optimal output set is asym-
metric. This is because the likelihood ratio p(o)/q(o) is not symmetric in score domain o due to
the asymmetric tails of chi-squared distributions p and q. This confirms the reason for the effective-
ness of the “abstaining” strategy in Steinke et al. (2023), and indicates the necessity of output set
optimization for privacy auditing. See Appendix D for more examples of other output distributions.

3https://github.com/eth-sri/dp-sniper
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(a) Mixture of Laplace Mechanism (b) Mixture of Gaussian Mechanism

Figure 1: Examples where the theoretical optimal output set (purple intervals) for the auditing ob-
jective (4) (given m = 100 output samples) contains multiple intervals. This is because the function
max{p(o),q(o)}
p(o)+q(o) (red curves), which is indicative of the likelihood ratio, is non-monotonic and con-

tains peaks in the central part of the axis. We experiment for the output distributions p and q in shuf-
fled noisy SGD under (1) Laplace mechanism with p = 0.5 · Lap(−1, 1) + 0.5 · Lap(2, 1) and q =
0.5·Lap(−2, 1)+0.5·Lap(1, 1), i.e., (11) and 12 with x1 = 4, x′1 = −4, x2 = x′2 = 0 and b = 2; (2)
Gaussian mechanism with p = 0.5 ·N (−2, 1)+0.5 ·N (1, 1) and q = 0.5 ·N (−1, 1)+0.5 ·N (0, 1),
i.e., (9) and 10 with x1 = −4, x2 = 0, x′1 = − 4

3 , x′2 = − 8
3 and σ2 = 16

5 . We also show the best-
performing top and bottom output set (green intervals) that is selected according to Steinke et al.
(2023), which fails to cover the central regions of the axis that have high values of max{p(o),q(o)}

p(o)+q(o) .

5.2 GAIN OF OPTIMIZING THE OUTPUT SET O

We now experimentally investigate whether choosing the optimal output set enables gain for auditing
differential privacy lower bound, compared to prior (suboptimal) strategies (Bichsel et al., 2021;
Lu et al., 2022; Steinke et al., 2023) for selecting the output set. Our results are summarized in
Figure 2. We first observe that our output set optimization method consistently enables tighter
privacy auditing lower bound than prior methods (in terms of higher mean and smaller standard
deviation) across different specified guarantees ε, as observed in Figure 2 (left).

We also observe in Figure 2 (right) that our method is the most advantageous (compared to prior
methods) given a small number of auditing samples from the output distributions p and q. This is
intuitive because when the number of samples is small, the second stochastic variance term in our
optimization objective (4) is dominating. In such scenarios, it is crucial to subselect more auditing
samples with the highest absolute log-likelihood ratio statistics, thus making the effect of output set
optimization significant. By contrast, prior output set optimization objectives (Bichsel et al., 2021;
Lu et al., 2022) do not capture such a sampling variance term, thus leading to suboptimal output sets.

Finally, we observe that the amount of auditing gain from the optimal output set is mechanism-
dependent. Specifically, when the number of auditing samples is large enough, all the methods
lead to matching privacy lower bounds (to the upper bound ε = 1) in Figure 2b, thus indicating
that existing auditing techniques are tight for the mixture of Laplace mechanism. However, for the
mixture of Gaussian mechanism (Figure 2d), the auditing gain from our method (compared to other
methods) is significant even when the number of auditing samples is large. We hypothesize that this
is because mixture of Gaussian distributions incurs lighter tails than mixture of Laplace distributions,
thus inducing a higher likelihood ratio in the center of the score domain and necessitating the output
set selection beyond the tails. It is an interesting open problem as to what general properties of the
mechanisms would make output set optimization more effective in privacy auditing.

6 APPLICATION: TIGHTER BLACK-BOX AUDITING OF DP-SGD

In this section, we apply our approximation method (Section 4.3) to compute the optimal output
set for auditing black-box differentially private stochastic gradient descent (DP-SGD (Abadi et al.,

8
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(d) Mixture of Gaussian (ε = 24.39, δ = 10−5)

Figure 2: Auditing performance of our method (red) compared with prior methods (Steinke
et al., 2023; Bichsel et al., 2021; Lu et al., 2022) (as discussed in Section 5). All evalua-
tion performances are averaged across five random auditing trials. We experiment given m ∈
{100, 200, 400, 800, 1600, 3200, 6400, 12800, 51200} auditing samples from the following output
distributions (a) mixture of Laplace mechanism given by (11) and (12) with x1 = 4, x′1 = −4,
x2 = x′2 = 0 and b ∈ {0.25, 0.5, 1, 2, 4, 8} and (b) mixture of Gaussian mechanism given by (9)
and (10) with x1 = −4, x2 = 0, x′1 = − 4

3 , x′2 = − 8
3 and σ ∈ 4√

5
· {0.25, 0.5, 1, 2, 4, 8}. We

compute the DP guarantees ε specified by different noise scale b and σ following (Dwork et al.,
2006, Theorem 1) and (Balle & Wang, 2018, Theorem 8) (see Proposition C.1 for the details).

2016)). To reduce the computation cost, we focus on the one-run auditing experiment as introduced
by Steinke et al. (2023). To ensure the validity of the auditing lower bound, we use the auditing
function in [Steinke et al., 2023, Theorem 5.2] in our output selection Algorithm 1 (Line 6). We
show that our method provides a tighter auditing lower bound than existing methods.

Experiment Setting We start with a state-of-the-art DP training setting from (Sander et al., 2023):
running DP-SGD on the CIFAR-10 dataset with a fixed privacy budget (ε = 8, δ = 10−5), with
16-4-WideResNet (Zagoruyko, 2016). When given the full CIFAR-10 as training dataset, our exper-
iment reaches 76% test accuracy which matches the state-of-the-art performance reported in Sander
et al. (2023); De et al. (2022). Following the setting of black-box input space auditing experiment in
Steinke et al. (2023, 6.2), we use loss as the MIA score, and consider the setting where the auditor
only has control over the what images to use for training, cannot tweak any intermediate part (e.g.,
gradient) of the DP-SGD training procedure, and observes only the final trained model. Following
Steinke et al. (2023), we experiment on both natural in-distribution data records (actual CIFAR-
10 records) and canary data records (mislabelled CIFAR-10 records) as training datasets used for
auditing. For simplicity, we focus on the setting where all records used for training are used for au-
diting, i.e., each record is independently included in the training dataset with half probability. This
is consistent with the setting of (Steinke et al., 2023, Figure 8).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We then perform output set selection by our method and compare it with the techniques in prior
works (as discussed in Section 5). To ensure that the comparison is fair, we either used the code
released by the authors (for DP-sniper (Bichsel et al., 2021)) or ensured that our implementations
of prior baselines enabled matching auditing performance as reported in the prior work (e.g., our
observed performance for Steinke et al. (2023) in Figure 3b matches (Steinke et al., 2023, Figure 8)
given m = 10000 auditing examples).
Gain of choosing the optimal output set Figure 3 summarizes our results. We show the auditing
lower bounds enabled by output sets Oτ constructed by our method Algorithm 1 as well as the by
the heuristic intervals in Steinke et al. (2023). To rule out the effect of estimated intervals overfitting
to the empirical Monte Carlo samples from output distributions, for both our method and prior
methods, we used a set of fresh samples (that are disjoint from the samples used for estimating the
output set) to evaluate the auditing lower bounds. We observe that our method generally provides
a better (or comparable) auditing lower bound than the heuristic method in Steinke et al. (2023), in
terms of higher mean or smaller variance. This shows that our method is able to approximate the
optimal output set that maximizes the privacy loss lower bound, while the heuristic top (bottom)
selection method in Steinke et al. (2023) may not be able to achieve this in certain settings.
Effect of auditing data examples on the privacy lower bound We observe that the auditing
lower bound is higher for the canary dataset (Figure 3b) than the natural dataset (Figure 3a), under
the same fixed specified DP guarantee. This is consistent with the intuition that the canary dataset
is closer to the worst-case data record which induces high information leakage. This also suggests
that the auditing lower bound is sensitive to the dataset used for auditing, and the choice of dataset
can significantly affect the auditing performance. We also observe that the gain of our method is
higher in the setting with 1000 records (Figure 3b) compared to the setting with 10000 records
(Figure 3c). This is consistent with the intuition that the effect of selecting the optimal output set is
more significant when the number of MC samples is small, as discussed in Section 5.2.

DP sniper + Threshold Search Top (Bottom) Heuristic Ours

4 6 8 10 12

−2

−1

0

1

Specified DP guarantee ε

L
ow

er
bo

un
d
ε̂

(a) Natural (1000 records)

4 6 8 10 12

−0.5

0

0.5

1

Specified DP guarantee ε

(b) Canary (1000 records)

5 10
−0.5

0

0.5

1

Specified DP guarantee ε

(c) Canary (10000 records)

Figure 3: Auditing performance versus specified DP guarantee ε for our method (red) compared
prior methods (Steinke et al., 2023; Bichsel et al., 2021; Lu et al., 2022) (as discussed in Section 5).
We run DP-SGD on both natural in-distribution actual images and mislabelled canary images in the
CIFAR-10 dataset. All performance are averaged across five random auditing trials.

7 CONCLUSION

In this paper, we proposed a framework to compute the optimal output event set that maximizes the
privacy lower bound in privacy auditing. We derive optimality guarantee for the output set formed
by thresholding likelihood ratio statistics between member and non-member score distributions in
the auditing experiment. Through experiments, we show that optimizing the output set effectively
tightens the privacy lower bound estimate compared to existing auditing techniques, and provides
a more accurate analysis of differentially-private learning algorithms (such as subsampled Laplace
and Gaussian mechanisms as well as black-box DP-SGD training). Interestingly, we find that output
set optimization is the most effective when given a restricted number of auditing examples, or when
the likelihood ratio function is non-monotonic or assymetric (e.g., for mechanisms with asymmetric
or multi-modal output distributions). Future work includes extending our framework to other per-
formance metrics of inference attacks, and exploring more accurate approximations of the output set
when only given empirical samples from the output distributions.
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A DETAILS REGARDING AUDITING EXPERIMENTS IN THE LITERATURE

In this section, we explain the three components (as described in Section 3) for privacy auditing
experiments in more detail.

Computing Member and Non-member Scores S+ and S− Typically, the set of member scores
S+ and non-member scores S− consists of independent Monte Carlo samples Jagielski et al. (2020);
Nasr et al. (2021; 2023); Zanella-Beguelin et al. (2023); Bichsel et al. (2021); Lu et al. (2022) from
the member and non-member score distributions p and q specified by the auditing experiment (i.e.,
via computing the MIA scores on trained model in the auditing experiment and their training and test
data record respectively). An exception is the recent literature of efficient privacy auditing Steinke
et al. (2023); Pillutla et al. (2023), where S+ and S− only consists of weakly independent samples
due to the restricted number of trained models (one Steinke et al. (2023) or a few Pillutla et al.
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Ref Inputs Member
scores S+

Non-
member
scores S−

Output set
O

Auditing
function
L

Jagielski
et al.
(2020);
Nasr
et al.
(2021)

Datasets D, D′ with
k differing (poisoned)
data records Dp. Mod-

els θ1, · · · , θT
i.i.d.T←−−−−

D, θ′1, · · · , θ′T
i.i.d.T←−−−−

D′.

Score(θt, x) :
x ∈ Dp

for t =
1, · · · , T

Score(θ′t, xi) :
x ∈ Dp

for t =
1, · · · , T

(Z,∞) for
threshold Z

(Jagielski
et al.,
2020,
Algorithm
2)

Steinke
et al.
(2023)

Datasets Dpop and
Dcan. Model
θ

T←− Dpop ∪ D,

D
i.i.d. inclusion←−−−−−−− Dcan.

Score(θ, xi) :
xi ∈ D

Score(θ, xi) :
xi ∈
Dcan \D

Top k+ and
bottom k−
values of
S+ ∪ S−

(Steinke
et al.,
2023,
Theorem
5.2), also
restated
in Corol-
lary B.3
and E.2

Ours - - - Algorithm 1 -

Table 1: Comparison between auditing experiments in the literature and our auditing experiment.
Our method only modifies the construction of output set O, and can be generally applied on top of
any existing auditing experiment.

(2023)) in the auditing experiments. In this paper, we will use two standard ways to compute S+

and S− in the literature Jagielski et al. (2020); Steinke et al. (2023). Our framework is general and
can be applied on top of any way of computing member and non-member scores in existing auditing
experiments.

Determining the output event setO To obtain higher auditing lower bound, it is crucial to choose
an appropriate output set O for subselecting the member and non-member scores. Intuitively, this
is because we would like to avoid inferring membership for outputs that are equally likely to be
observed under member distribution p and non-member distribution q. For example, when p(o) ∼
N (0, 1) and q(o) ∼ N (1, 1) follow Gaussian distributions, the output o = 1

2 is equally likely to be
observed under p and q. By contrast, the output o = 0 is significantly more likely to be observed
under p than q. Thus, intuitively we select a subsetO of member scores S+ and non-member scores
S− to increase their distinguishability (i.e., we would like O to include o = 0 but not o = 1

2 in the
Gaussian distribution example). To this end, prior works Bichsel et al. (2021); Lu et al. (2022) have
proposed to train a neural network model to learn the optimal output set O for subselecting member
and non-member scores by maximizing the likelihood difference.

However, such strategies miss an important aspect of privacy auditing experiment: S+ and S− are
empirical samples (rather than closed-form densities) from the output distribution. Consequently,
the lower bound estimate (which is a random variable) for privacy auditing suffers from a significant
sampling error when the number of selected samples from S+ and S− is small. Thus, to reduce
the sampling error, we would like the output set O to contain as many samples from S+ and S− as
possible.

Designing auditing functionL To design an auditing functionL such that Equation (1) is satisfied
under ε̂ :− L(S+, S−,O; δ, β), prior works generally relies on the constraints of (ε, δ)-differential
privacy on the performance of a binary membership inference hypothesis test Wasserman & Zhou
(2010); Kairouz et al. (2015). In this paper, we focus on an advantage-based auditing experiment,
i.e., the design of the function L is based on bounding the advantage of membership inference with
the differential privacy guarantee (ε, δ). Extending our framework to other performance metrics of
binary membership inference hypothesis tests such as true positive rate (TPR) and false positive rate
(FPR) is an interesting future work.
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B DEFERRED PROOFS FOR SECTION 4

B.1 NOTATIONS AND RESULTS FROM PRIOR WORKS

We first define the following experiment for distinguishing between two distributions p and q, while
performing membership inference on i.i.d. samples from p and q that fall into a fixed output set O.
Definition B.1 (Experiment for distinguishing between distributions p and q). Let S+ be m i.i.d.
Monte Carlo samples from distribution p, and let S− be m i.i.d. samples from distribution q. Let O
be a fixed output set.

For an arbitrary inference agorithm M : R → {−1,+1} that maps an output sample o ∈ R to
a binray guess in {−1, 1} for whether the sample is drawn from p (guesses 1) or q (guesses −1),
define the following experiment.

1. For i = 1, · · · ,m

(a) Challenger samples bi
uniform←−−−−−− {1,−1}. If bi = 1, the challenger sets oi to be the

i-th example in S+. Otherwise, the challenger sets oi to be the i-th example in S−.
(b) Challenger then sends oi to the adversary.

(c) Adversary performs inference b̂i = A(oi) :=

{
M(oi) if oi /∈ O
0 if oi ∈ O

∈ {−1, 0, 1}.

2. Return (bi)
m
i=1 and (b̂i)

m
i=1.

The above experiment is similar to the membership infererence experiment in Yeom et al. (2018,
Experiment 1), except for the following differences.

1. We used two distributions p and q to astract the distributions for member and non-member
scores in the auditing experiment respectively. The randomness of distributions p and q
come from many sources, such as the randomness from the dataset sampling and the output
sampling of the DP mechanism. See Table 1 row one for examples of i.i.d. samples from p
and q in prototypical auditing experiments (Jagielski et al., 2020; Nasr et al., 2021).

2. We incorporated an output set O to subselect the output samples for subsequent inference.
This changed the guess b̂i from binary (as in Yeom et al. (2018)) to ternary, where the guess
0 indicates that the output sample oi is not in the output set O.

To use the returned values bi and b̂i from Definition B.1 to audit approximate DP, we will use the
auditing bound from Steinke et al. (2023, Theorem 5.2) that generally holds for inference results in
the range of [−1, 1] (rather than standard auditing bounds that only holds for binary guesses, such as
Yeom et al. (2018); Jagielski et al. (2020); Nasr et al. (2021)). For the simplicity of the presentation,
here we restate and prove a variant of Steinke et al. (2023, Theorem 5.2) that is specialized for the
output-set-dependent experiment in Definition B.1 under pure DP and i.i.d. samples.
Lemma B.2 (Variant of Steinke et al. (2023, Proposition) under i.i.d. Monte Carlo samples). Let
p and q be two probability distributions over R that satisfies e−ε ≤ p(o)

q(o) ≤ eε for any o ∈ R. Let

O ⊂ R be a fixed output set. Let bi, b̂i be defined as in experiment Definition B.1. Then conditioned
on any fixed value t ∈ {−1, 0, 1}m for (b̂i)

m
i=1, it satisfies that

Pr

[
m∑
i=1

max{bi · b̂i, 0} ≥ v|b̂ = t

]
≤ Pr
S←Bernoulli( eε

eε+1 )
m

[Si · |ti| ≥ v] (13)

Proof. Observe that bi · b̂i for i = 1, · · · ,m are independent random variables, due to the i.i.d.

sampling of S+, S− and bi
uniform←−−−−−− {−1, 1} across i = 1, · · · ,m in Definition B.1. Thus to prove

Equation (13), we only need to prove that

1

1 + eε
≤ Pr[bi = 1|b̂i = ti] ≤

eε

1 + eε
(14)
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Denote A1 = {o ∈ R : A(o) = 1}, A0 = {o ∈ R : A(o) = 0} and A−1 = {o ∈ R : A(o) = −1}
to be the preimage set of guess 1, 0 and −1 respectively, given membership inference strategy A.
Then by definition, we have that

Pr[bi = 1|b̂i = ti] =
Pr[bi = 1, b̂i = ti]

Pr[bi = −1, b̂i = ti] + Pr[bi = 1, b̂i = ti]
(15)

=
Pr[bi = 1] · Pr[b̂i = ti|bi = 1]

Pr[bi = −1] · Pr[b̂i = ti|bi = −1] + Pr[bi = 1] · Pr[b̂i = ti|bi = 1]
(16)

=
0.5 · q(Ati)

0.5 · p(Ati) + 0.5 · q(Ati)
(17)

=
1

1 +
p(Ati )

q(Ati )

∈
[

1

1 + eε
,

1

1 + e−ε

]
(18)

where the last inequality is due to the assumed condition e−ε ≤ p(o)
q(o) ≤ e

ε for any o ∈ R.

On the one hand, Lemma B.2 can be seen as a simplified variant of Steinke et al. (2023, Proposition
5.1) for auditing i.i.d. Monte Carlo samples. On the other hand, this Lemma generalizes Steinke
et al. (2023, Proposition 5.1) from special designs of output set (fixed number of “abstentions”) to
any fixed choice of output set. This generalization then serves as the basis for proving our auditing
lower bound Proposition 4.1 that is specific to the choice of output set.

As an corollary of Lemma B.2, we can obtain the following auditing function for pure DP, under
subselected i.i.d. output samples that fall into output set O.

Corollary B.3. Let {bi}mi=1 and {b̂i}mi=1 be returned by Definition B.1 under output setO. By apply-
ing Lemma B.2 under settingM to be the mechanism that maps {bi}mi=1 to {b̂i}mi=1 in Definition B.1,
we obtain following auditing function for approximate DP.

L (S+, S−,O; δ, β) = max

{
ε : Pr

S←Bernoulli( eε

eε+1 )
m

[
Si · |b̂i| ≥ v

]}
(19)

where v =
∑m
i=1 max{bi · b̂i, 0}.

Observe that the dependence of the above auditing function (19) on the output set O is implicit
through the dependence of {b̂i}mi=1 on O in Definition B.1. This makes it hard to understand the
optimal choice of output set for maximizing the auditing function L (S+, S−,O; δ, β). By contrast,
our paper proves new auditing function in Proposition 4.1 that has explicit dependence on the output
set O, and can be used to analyze the optimal output set for auditing DP.

B.2 PROOF FOR PROPOSITION 4.1

Proof for Proposition 4.1. Let (bi)
m
i=1 and (b̂i)

m
i=1 be the outputs of experiment Definition B.1 given

the m i.i.d. samples S+ from p and m i.i.d. samples S− from q as inputs, and under the inference
algorithmM : R→ {1,−1} in Definition B.1 defined as follows.

M(o) =

{
1 if o ∈ A
−1 if o ∈ Ac (20)

where A = {o ∈ R : p(o) ≥ q(o)} is the acceptance region for the optimal membership inference
attack that maximizes the advantage for distinguishing between p and q (see e.g., (Tan et al., 2022,
Proposition 3.1) for the optimality guarantee).

By Lemma B.2, conditioned on any fixed t ∈ {−1, 0, 1}m, the following inequality holds.

Pr

[
m∑
i=1

max{bi · b̂i, 0} ≥ v|b̂ = t

]
≤ Pr
S←Bernoulli( eε

eε+1 )
m

[Si · |ti| ≥ v] (21)
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Now by applying Hoeffding’s inequality on the right-hand-side sequence of bounded random vari-

ables S ← Bernoulli
(

eε

eε+1

)m
, we further prove that for any fixed t ∈ {−1, 0, 1}m, it satisfies

that

Pr
S←Bernoulli( eε

eε+1 )
m

[Si · |ti| ≥ v] ≤ exp

−2
(
v − eε

eε+1 ·
∑m
i=1 |ti|

)2

∑m
i=1 |ti|

 (22)

By setting v = eε

eε+1

∑m
i=1 |ti|+ ln

(
1
β

)
in (22), and by plugging the result into (13), we prove that

the following inequality holds for any t ∈ {−1, 0, 1}m.

Pr

 m∑
i=1

max{bi · b̂i, 0} ≥
eε

eε + 1

m∑
i=1

|ti|+

√√√√ m∑
i=1

|ti| ·
ln (2/β)

2

∣∣∣∣∣b̂ = t

 ≤ β

2
(23)

We now prove another high probability upper bound for
∑m
i=1 max{bi · b̂i, 0} as follows. By the

definition of b̂i = A(oi) for A as defined in (20), and by Bayes rule, we have that for any i =
1, · · · ,m, the following equality holds.

Pr[bi · b̂i = 1|b̂i 6= 0] =
Pr[bi = 1, S+(i) ∈ O ∩A] + Pr[bi = −1, S−(i) ∈ O ∩Ac]

Pr[bi = 1, S+(i) ∈ O] + Pr[bi = −1, S−(i) ∈ O]
(24)

=
p(O ∩A) + q(O ∩Ac)

p(O) + q(O)
=

∫
o∈Omax{p(o), q(o)}do

p(O) + q(O)
(25)

Thus by again using Hoeffding’s inequality on the sequence of bounded random variable bi · b̂i for
i = 1, · · · ,m, we have that

Pr

 m∑
i=1

max{bi · b̂i, 0} ≤
∫
o∈Omax{p(o), q(o)}do

p(O) + q(O)
·
m∑
i=1

|ti| −

√√√√ m∑
i=1

|ti| ·
ln (2/β)

2

∣∣∣∣∣b̂ = t

 ≤ β

2

(26)

By combining (23) and (26) using union bound, we have that

Pr

∫o∈Omax{p(o), q(o)}do
p(O) + q(O)

·
m∑
i=1

|ti| −

√√√√ m∑
i=1

|ti| ·
ln (2/β)

2
≥ eε

eε + 1

m∑
i=1

|ti|+

√√√√ m∑
i=1

|ti| ·
ln (2/β)

2

∣∣∣∣∣b̂ = t

 ≤ β
By rearranging the terms in the above inequality, we have that

Pr

[
ε ≤ φ

(∫
o∈Omax{p(o), q(o)}do

p(O) + q(O)
−

√
2 ln (2/β)∑m

i=1 |ti|

)∣∣∣∣∣b̂ = t

]
≤ β (27)

where φ(y) = log
(

y
1−y

)
for y ∈ (0, 1) is the logit function. By observing that b̂i = A(oi) 6= 0 if

any only if oi ∈ O, we have that
∑m
i=1 |ti| ≤ |S+ ∩ O|+ |S− ∩ O|. By plugging this into (27) and

taking maximum over all possible t ∈ {−1, 0, 1}m, we obtain the bound in the statement (3).
Remark B.4. Proposition 4.1 generalizes prior advantage-based auditing functions Yeom et al.
(2018); Steinke et al. (2023) from specific designs of output set to any fixed choice of output set.
For example, the advantage-based auditing function (Yeom et al., 2018, Theorem 1) is equivalent
(up to monotonic scaling) to Equation (3) under setting the whole output domain as output set, i.e.,
O = R. Similarly, by setting the output set O = (−∞, ok−) ∪ (ok+ ,+∞) where ok− and ok+ are
the bottom-k− score and top-k+ score in S− ∪ S+, we recover the auditing function used under the
abstention strategy in Steinke et al. (2023, Algorithm 1, Proposition 5.1).
Remark B.5. Proposition 4.1 proves an auditing function that explicitly depends on the output set
O, rather than implicitly depending on the output set as in prior works Steinke et al. (2023) (as
discussed after Lemma B.2). This then allows us to analyze the optimal output set for auditing DP.
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B.3 PROOF FOR THEOREM 4.3

Proof for Theorem 4.3. We first prove the existence ofOτ such that p(Oτ )+q(Oτ ) = p(O)+q(O),
for any feasible output set O.

By observing that p and q are continuous output distributions on R, we prove that the following
function is continuous with respect to τ ≥ 0.

E(τ) = p(Oτ ) + q(Oτ ) where Oτ = {x ∈ R :
∣∣ log

p(x)

q(x)

∣∣ ≥ τ}
By definition, we further have thatE(0) = 2, limτ→+∞E(τ) = 0, and p(O)+q(O) ∈ [0, 2] . Thus
by using intermediate value theorem for continuous function, we prove that for any feasible output
set O, there exists τ ∈ R, such that p(O) + q(O) = p(Oτ ) + q(Oτ ).

We now prove the optimality guarantee. Let O be any output set that satisfies p(O) + q(O) =
p(Oτ ) + q(Oτ ). By definition of Oτ in Definition 4.2, we have that

(1x∈Oτ − 1x∈O) ·
(

max{p(x), q(x)} − eτ

1 + eτ
· (p(x) + q(x))

)
≥ 0 (28)

holds for any x ∈ R ⊂ A where A is a ignorable set.

Doing the integration over x ∈ R, we immediately have that∫
x∈Oτ

max{p(x), q(x)}dx− eτ

1 + eτ
· (p(Oτ ) + q(Oτ )) (29)

≥
∫
x∈O

max{p(x), q(x)}dx− eτ

1 + eτ
· (p(O) + q(O)) (30)

By plugging the condition that p(O) + q(O) = p(Oτ ) + q(Oτ ) into the constraints, we have that∫
x∈Oτ

max{p(x), q(x)}dx ≥
∫
x∈O

max{p(x), q(x)}dx (31)

Thus by definition of auditing bound for output set in Equation (4), we have that ε̂(Oτ ; p, q) ≥
ε̂(O; p, q).
Remark B.6 (Similarity in proof technique to Neyman-Pearson Lemma). The proof technique,
which constructs an indicator function that is always non-negative (eq 21), and then performs in-
tegration (eq 22 and 23), is the standard technique used for poving Neyman-Pearson Lemma.

C DEFERRED PROOFS FOR SECTION 5

Proposition C.1. Let b1, b2, σ1, σ2 ≥ 0, θ0 ∈ R and η ≤ 1 be fixed. Assume that the input dataset
D has bounded domain, in that there exists r ≥ 0 such that |x| ≤ r for any x ∈ D. Define division
over zero as infinity, i.e., 1

0 =∞. Then

• If Z1 ∼ Lap(0, b1) and Z2 ∼ Lap(0, b2), then the mechanism with output distribution (8)
satisfies ε-DP with ε = rη(2−η)

max{η(1−η)b1,ηb2} .

• If Z1 ∼ N (0, σ2
1) and Z2 ∼ N (0, σ2

2), then the mechanism with output distribution (8)
satisfies (ε, δ)-DP with δ = Φ̄

(
r(2−η)

2σ − εσ
r(2−η)

)
− eε · Φ̄

(
− r(2−η)

2σ − εσ
r(2−η)

)
for any

ε ≥ 0, where σ =
√

(1− η)2σ2
1 + σ2

2 and Φ denotes the cumulative distribution function
of the standard normal distribution.

Proof. It suffices to apply (Dwork et al., 2006, Theorem 1) and (Balle & Wang, 2018, Theorem 8)
after observing that the `1 and `2 sensitivity of the update in (8) is max

xs1 ,xs2
|−η · (1−η)xs1 +ηxs2 | ≤

η(2− η) · r for η ≤ 1.
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(a) Two Cauchy distributions (b) Two F distributions

Figure 4: Examples where our selected optimal output set (purple intervals) is asymmetric and
consists of multiple intervals, given a small number of m = 100 auditing MCMC samples. We
show the function max{p(o),q(o)}

p(o)+q(o) (that is indicative of the absolute value of log-likelihood ratio)
for the output distributions p and q in shuffled noisy SGD under (1) Cauchy distributions with
p = Cauchy(−1, 0.1) and q = Cauchy(1, 3); (2) F distributions with p = F(3, 10) and q =
F(5, 10). We also show the best-performing top and bottom output set (green intervals) that is
selected according to Steinke et al. (2023), which fails to cover the central regions of the axis that
have high max{p(x),q(x)}

p(x)+q(x) .

(a) Two Logistic distributions (b) Two Chi-squared distributions

Figure 5: Examples where our selected optimal output set (purple intervals) is asymmetric and
consists of multiple intervals, given a small number of m = 100 auditing MCMC samples. We
show the function max{p(o),q(o)}

p(o)+q(o) (that is indicative of the absolute value of log-likelihood ratio)
for the output distributions p and q in shuffled noisy SGD under (1) Logistic distributions with
p = Logistic(−1, 0.1) and q = Logistic(1, 3); (2) Chisquared distributions with p = χ2

1(3) and
q = χ2

2(1), i.e., p follows a non-central Chi-squared distribution with 1 degree of freedom and non-
centrality parameter 3, while q has 2 degrees of freedom and non-centrality parameter 1. We also
show the best-performing top and bottom output set (green intervals) that is selected according to
Steinke et al. (2023), which fails to cover the central regions of the axis that have high max{p(x),q(x)}

p(x)+q(x) .
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D MORE EXAMPLES FOR THE SHAPE OF OUTPUT SET IN OTHER
MECHANISMS

E ADDITIONAL RESULTS

E.1 APPLYING ALGORITHM 1 TO AUDIT APPROXIMATE DIFFERENTIAL PRIVACY

In this section, we give examples of applying our output set selection Algorithm 1 to audit approxi-
mate (ε, δ)-differential privacy. To ensure that the auditing lower bound is valid for approximate DP,
in Line 6 of Algorithm 1, we need to use the following bound from Steinke et al. (2023, Theorem
5.2) that is valid for auditing approximate DP using subselected output scores.
Theorem E.1. Steinke et al. (2023, Theorem 5.2) Let M : {−1,+1}m → [−1,+1]m satisfy (ε, δ)-
DP. Let T = M(S) ∈ [−1,+1]m. Then, for any v ∈ R,

Pr
S←{−1,+1}m,T←M(S)

[
m∑
i=1

max{0, Ti · Si} ≥ v

]
≤ β(ε) + α(ε) · 2m · δ (32)

where

β(ε) = Pr
W̌∗

[
W̌ ∗ ≥ v

]
, (33)

α(ε) = max

{
1

i

(
Pr
W̌∗

[W̌ ∗ ≥ v − i]− β(ε) : i ∈ {1, 2, · · · ,m}
)}

. (34)

Here W̌ ∗ is any distribution on R that stochastically dominates W̌ (t) :=
∑m
i=1 Ši|ti| for Š ←

Bernoulli
(

eε

eε+1

)m
for all t in the support of T .

By applying Theorem E.1 to Definition B.1, we can obtain the following auditing function for ap-
proximate DP under subselected scores from output distributions by output set O.

Corollary E.2 (Auditing function for approximate DP). Let {bi}mi=1 and {b̂i}mi=1 be as defined in
Definition B.1 under output set Oτ . By applying Theorem 4.3 under setting M to be the mechanism
that maps {bi}mi=1 to {b̂i}mi=1, we obtain following auditing function for approximate DP.

L (S+, S−,Oτ ; δ, β) = max {ε : β(ε) + α(ε) · 2m · δ ≤ β} (35)

where β(ε) and α(ε) are defined in Theorem E.1 under setting v =
∑m
i=1 max{bi · b̂i, 0}.

Auditing Performance for Approximate DP Our results are summarized in Figure 6. We observe
that our method outperforms the prior methods (Steinke et al., 2023) and the whole domain baseline
in terms of auditing performance. We also observe that the audited lower bound ε̂ monotonically
decreases as δ increases, which is consistent with the theoretical guarantee (dashed line in Figure 6).
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Figure 6: Auditing performance (for approximate DP) of our method (red) compared with prior
method (Steinke et al., 2023) and whole domain baseline (as discussed in Section 5). All evaluation
performances are averaged across five random auditing trials. We experiment given m = 12800
auditing samples from the output distribution of mixture of Gaussian mechanism given by (9) and
(10) with x1 = −4, x2 = 0, x′1 = − 4

3 , x′2 = − 8
3 and σ ∈ 4√

5
· {0.5, 1}. We compute the DP

guarantees ε for δ ∈ {10−6, · · · , 10−2} specified by different noise scales σ following (Dwork
et al., 2006, Theorem 1) and (Balle & Wang, 2018, Theorem 8) (see Proposition C.1 for the details).
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