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Abstract

Large language models (LLMs) have revolu-001
tionized numerous domains with their impres-002
sive performance but still face their challenges.003
A predominant issue is the propensity for these004
models to generate non-existent facts, a con-005
cern termed hallucination. Our research is mo-006
tivated by the observation that previous instruc-007
tion tuning methods force the model to com-008
plete a sentence no matter whether the model009
knows the knowledge or not. When the ques-010
tion is out of the parametric knowledge, it will011
try to make up something and fail to indicate012
when it lacks knowledge. In this paper, we013
present a new approach called Refusal-Aware014
Instruction Tuning (R-Tuning). This approach015
is formalized by first identifying the disparity016
in knowledge encompassed by pre-trained pa-017
rameters compared to that of instruction tuning018
data. Then, we construct the refusal-aware data019
based on the knowledge intersection, to tune020
LLMs to refrain from responding to questions021
beyond its parametric knowledge. Experimen-022
tal results demonstrate R-Tuning effectively023
improves a model’s ability to answer known024
questions and refrain from answering unknown025
questions. Furthermore, when tested on out-of-026
domain datasets, the refusal ability was found027
to be a meta-skill that could be generalized to028
other tasks. Further analysis surprisingly finds029
that learning the uncertainty results in better030
calibration and an improved ability to estimate031
the uncertainty than uncertainty-based testing.1032

1 Introduction033

Large language models (LLMs) have demonstrated034

remarkable performance across numerous tasks;035

however, they are also plagued by various issues,036

such as the propensity of large models to fabricate037

non-existent facts, a phenomenon commonly re-038

ferred to as hallucination (Maynez et al., 2020a).039

Towards mitigating the hallucination, current main-040

stream approaches include retrieval-based meth-041

1Our code will be released in the final version.

Parametric Knowledge

[What Model Already Knows]

Instruction Tuning Data

[What Model Might Not Know]

Intersection of 

Parametric Knowledge & Instruction Tuning Data

Figure 1: An illustration of the parametric knowledge
distribution and the instruction tuning data distribution.
Pre-training embeds a large volume of parametric knowl-
edge, while fine-tuning may involve knowledge that is
not necessarily in the parametric knowledge. We ex-
plore the benefits of differentiating instruction tuning
data based on parametric knowledge.

ods (Peng et al., 2023; Li et al., 2023b; Luo et al., 042

2023), verification-based methods (Manakul et al., 043

2023; Elaraby et al., 2023; Cohen et al., 2023; Du 044

et al., 2023; Gou et al., 2023), and so forth. 045

In this paper, we first identify the cause of hallu- 046

cination, attributing it to the significant gap exist- 047

ing between the knowledge derived from human- 048

labeled instruction tuning datasets and the paramet- 049

ric knowledge of LLMs. In the process of devel- 050

oping a large model, previous studies (Min et al., 051

2022; Wang et al., 2023; Zhou et al., 2023) demon- 052

strate that almost all knowledge is acquired in the 053

pre-training stage, while instruction tuning teaches 054

formatting and chain-of-thought prompting guides 055

knowledge elicitation. Consider Figure 1 as an 056

example. During pre-training, models embed a 057

large volume of factual knowledge, compressing 058

it within their parameters and the fine-tuning pro- 059

cess may include data that is out of the paramet- 060

ric knowledge. However, traditional fine-tuning 061

methods force the models to complete each sen- 062

tence. Even when faced with questions beyond 063

their knowledge boundary, they venture to provide 064

an answer. Training a model exclusively on cor- 065

rect answers inadvertently teaches it to guess rather 066
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than admit its ignorance. Consequently, if we never067

train the model to articulate "I don’t know" as a068

response, it remains unequipped to do so when con-069

fronted with unknowns. Addressing this challenge,070

we assert that enabling a model to astutely respond071

based on its own knowledge limit is of paramount072

importance. This motivates us to tune our model on073

the intersection of parametric knowledge and the074

instruction tuning data, leading to a model express-075

ing its confidence value and refusing to answer076

unknown questions.077

In light of this, we propose a novel instruction078

tuning method, Refusal-Aware Instruction Tuning079

(R-Tuning). R-Tuning aims to endow the model080

with refusal-aware answering ability by recogniz-081

ing when they should — and shouldn’t — claim082

knowledge. Specifically, R-Tuning introduces two083

steps: (1) measure the knowledge gap between084

parametric knowledge and the instruction tuning085

data, and identify uncertain questions. By inferring086

the model on the training data once and comparing087

the prediction and label, the instruction tuning data088

is split into uncertain data D0 and certain data D1.089

(2) construct the refusal-aware data by padding the090

uncertainty expression after the label words, and091

then finetune the model on the refusal-aware data.092

We conduct two types of experiments: single-093

task and multi-task, with nine datasets. In the094

single-task experiments, R-Tuning demonstrates095

the ability to refuse to answer uncertain questions096

and improve the accuracy of the willingly answered097

questions. In the multi-task setting, our method098

not only demonstrates the advantages of multi-099

task learning on in-domain datasets but also ex-100

hibits superior generalization performance on out-101

of-domain datasets. This verifies that refusal-aware102

answering is a kind of meta ability, which is not103

dependent on a specific task and could benefit from104

multi-task training and joint inference. With more105

downstream tasks, R-Tuning could abstract and106

learn such meta ability better.107

In addition to the supervised method in refusal-108

aware data identification, we propose an unsuper-109

vised method to measure the knowledge gap (Sec-110

tion 5.1) by prompting the LLMs to answer multi-111

ple times for a question, and identify answers with112

high consistency as certain data, while others with113

low consistency as uncertain data. The experimen-114

tal results surprisingly find the effectiveness of this115

unsupervised method. One way to interpret our116

method is that it involves learning the uncertainty117

of the training data as part of instruction tuning. 118

Further analysis surprisingly shows that learning 119

uncertainty during training and then using it to fil- 120

ter and respond to questions yields better results 121

than directly applying uncertainty filtering on test 122

data. This finding suggests that learning uncer- 123

tainty improves the model’s training in both esti- 124

mating uncertainty and answering questions. This 125

finding highlights the advantages of incorporating 126

uncertainty learning into large model training, both 127

in reducing computational overhead during testing 128

and in improving overall model accuracy. 129

In summary, our contributions are: 130

• We investigate the knowledge gap present be- 131

tween the instruction tuning data and the para- 132

metric knowledge and attribute the hallucination 133

issue to forcing the model to complete answers 134

with traditional instruction tuning. 135

• To address this issue, we propose a novel in- 136

struction tuning approach, R-Tuning, that dis- 137

tinguishes instruction tuning data based on the 138

model’s own knowledge. R-Tuning constructs a 139

refusal-aware dataset and then tunes the model 140

to refrain from responding to questions beyond 141

its parametric knowledge. 142

• Experimental results demonstrate the effective- 143

ness and generalization abilities of R-Tuning. 144

We find that the model’s learned refusal ability 145

functions as a meta-skill, being task-agnostic and 146

enhanced through multi-task training. 147

2 Refusal-Aware Instruction Tuning 148

In this section, we first introduce the refusal-aware 149

instruction tuning method (R-Tuning), the core idea 150

of which is divided into two steps: the first step 151

involves identifying and recognizing the uncertain 152

data instances within the instruction tuning dataset, 153

which are beyond the parametric knowledge bound- 154

ary of the original model. The second step is to 155

construct certain and uncertain dataset. Then, we 156

will detail the instruction tuning and inference ex- 157

traction process. An illustration of R-Tuning is 158

shown in Figure 2. 159

2.1 Refusal-Aware Data Identification 160

The first step of R-Tuning is to measure the model’s 161

knowledge gap between the parametric knowl- 162

edge of LLMs and the instruction tuning data. 163

It asks for the model’s prediction when given 164

a question and applies certain metrics to deter- 165

mine when the model does know. Here we use 166
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Figure 2: Illustration of R-Tuning to construct refusal-aware datasets D0 and D1.

QA as an example. Given a training dataset167

D = {(q1, a1), (q2, a2), ..., (qn, an)} consisting of168

n question-answer pairs, we introduce a super-169

vised identification strategy. We first apply the170

pre-trained model M to answer all the questions in171

D and split the questions into two sets based on the172

comparison between the prediction and label. If the173

model’s prediction matches the label, the question174

is assigned to the certain set D1, and otherwise,175

it belongs to the uncertain set D0. As shown in176

Figure 2, in the left part, because the prediction177

(Beijing) matches the ground-truth label (Beijing),178

it belongs to certain data D1, demonstrating that179

the model’s parametric knowledge possesses the ca-180

pability to answer this question. On the contrary, in181

the right part, the mismatch between the prediction182

and the ground-truth label results in this question183

being categorized into uncertain data D0. Finally,184

the training dataset would be split into two sets185

(i.e., D0 and D1) with the recognition of the knowl-186

edge gap between parametric knowledge and the187

knowledge required by the questions in the training188

set. In addition to this supervised strategy requiring189

ground-truth labels, we also explore an effective190

unsupervised method, which will be discussed in191

the analysis (Section 5.1).192

2.2 Refusal-Aware Data Construction193

The refusal-aware data is further constructed by194

incorporating a prompt template. We introduce a195

padding method, which keeps the original labels196

while appending the uncertainty expression at the197

end. The template is198

Q : {Question}, A : {Answer}.{Prompt}. (1)199

The certain dataset D1 is constructed by append-200

ing "I am sure" after the template, while the un-201

certain dataset D0 is constructed by appending "I202

am unsure" after the template. The prompt we are203

using is Are you sure you accurately answered the204

question based on your internal knowledge? As205

shown in Figure 2, by appending certain and un- 206

certain expressions, R-Tuning teaches the model 207

to express uncertainty toward questions. This tem- 208

plate provides all label knowledge to the model 209

while instructing them to express uncertainty at the 210

same time. On the contrary, we can also directly 211

replace the label word with uncertainty expressions. 212

We call this strategy as replacement method and 213

investigate its effectiveness in Section A.3. 214

2.3 Training and Inference 215

With the refusal-aware dataset, we then apply 216

the standard procedures of fine-tuning a language 217

model. The model takes a sequence t1, t2, . . . , tT 218

consisting of the questions and answers, and pre- 219

dicts the answer part based on each question. The 220

training objective is the standard cross-entropy loss 221

L which can be defined as: 222

L = − 1

T

T∑
i=1

logP (ti|t1, t2, . . . , ti−1). (2) 223

Here, P (ti|t1, t2, . . . , ti−1) is the probability 224

of the ith token ti given the preceding tokens 225

t1, t2, . . . , ti−1, as predicted by the language 226

model. Note that we calculate the loss solely for 227

the answer part, while excluding the loss attributed 228

to the question part. 229

During the inference, we first fit the input ques- 230

tion into the template (1) and the model will output 231

its answer. Then the designed prompt template 232

Are you sure you accurately answered the question 233

based on your internal knowledge? I am will be 234

appended to the question and answer. Based on this 235

prompt, the model can output its uncertainty about 236

the previous context. We will use the probability of 237

the uncertainty expression as the confidence value 238

to calculate the AP score in the evaluation phase 239

(Section 3.3). 240
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3 Experimental Settings241

In this section, we first provide an overview of the242

benchmark datasets and the corresponding evalu-243

ation settings. Then the baseline models and the244

implementation details are presented in the follow-245

ing subsections, respectively.246

3.1 Datasets247

Given the diverse data formats across tasks, we248

unify the downstream data into two formats:249

• Question-Answering: Given a question, the250

model directly predicts its answer. We include251

ParaRel (Elazar et al., 2021), HotpotQA (Yang252

et al., 2018), SelfAware (Yin et al., 2023),253

HaluEval (Li et al., 2023a), FalseQA (Hu et al.,254

2023), and NEC (Liu et al., 2023) in our experi-255

ments.256

• Multiple-Choice: Given a question with several257

choices, the model chooses one option. We in-258

clude MMLU (Hendrycks et al., 2021), WiCE259

(Kamoi et al., 2023), and FEVER (Thorne et al.,260

2018) in our experiments.261

More information about data processing and262

evaluation is described in Appendix A.1.263

We design two types of experiments:264

• Single-task: The single-task experiments ver-265

ify the effectiveness of learning on individual266

tasks. We conduct experiments on ParaRel and267

MMLU datasets, respectively. We manually split268

the datasets into the training set, in-domain test269

set, and out-of-domain test set. Each dataset270

contains domain annotations for their questions.271

Questions in the first half of the domains are272

selected as in-domain while the remaining are273

out-of-domain.274

• Multi-task: The multi-task experiments aim to275

evaluate the model’s generalization performance.276

We choose five datasets - ParaRel, MMLU,277

WiCE, HotpotQA, and FEVER, and mix them to278

construct a new training dataset. As for testing,279

we evaluate the performance on their correspond-280

ing test set (in-domain) and an unseen test set281

(i.e., HaluEval) (out-of-domain).282

3.2 Baselines283

We consider three baseline models as follows:284

• Pretrain-T: Evaluate the performance of original285

pre-trained checkpoints on the entire test set.286

• Pretrain-W: To verify the effectiveness of will-287

ingly answered questions, we evaluate the perfor-288

mance of the original pre-trained checkpoints on289

the test set that our fine-tuned models are willing 290

to answer. Intuitively, if the willingly answered 291

questions are within the base model’s knowledge, 292

this baseline should perform well. 293

• Vanilla: Fine-tune the model on D with all ques- 294

tions and ground-truth labels. This is the tradi- 295

tional instruction tuning method. 296

3.3 Evaluation 297

For models that could only output either the an- 298

swer or an unknown expression, we evaluate the 299

questions that our model is willing to answer. The 300

accuracy is calculated as follows: 301

accuracy =
# of correctly answered questions
# of willingly answered questions

.

(3) 302

For R-Tuning, because it could output both the 303

question’s answer and the uncertainty, we first 304

prompt the model to provide an answer and then 305

prompt it to provide its uncertainty. Then we can 306

evaluate the precision-recall tradeoff based on the 307

uncertainty and prediction performance. We in- 308

troduce the Average Precision (AP) score, which 309

measures the precision in identifying and ranking 310

relevant predictions. AP score originates from the 311

object detection field (Everingham et al., 2010) by 312

ranking the prediction results by confidence from 313

high to low and calculating the precision at each 314

threshold. The AP score is the average of these 315

precision scores, which is calculated as follows: 316

AP =
n−1∑
k=0

(R(k + 1)−R(k))× P (k), (4) 317

where n is the number of data, k is the number of 318

data we select for the current threshold. P and R 319

denote precision and recall, which are defined as 320

P(k) =
# of correct answers above k-threshold

# of answers above k-threshold
,

(5) 321322

R(k) =
# of correct answers above k-threshold

# of correct answers
.

(6) 323

An ideal model predicts the correct answers with 324

high confidence and the hallucinated wrong an- 325

swers with relatively low confidence, leading to a 326

high AP score. On the other hand, the AP score is 327

low if the model predicts every answer with high 328

confidence, as the precision at every threshold will 329

not be high and the average will be relatively low. 330

4



Figure 3: Single-task experiments on ParaRel and MMLU datasets with accuracy (%).

Dataset Domain Models R-Tuning Vanilla

ParaRel

ID
OpenLLaMA-3B 93.23 92.89

LLaMA-7B 93.64 93.32
LLaMA-13B 94.44 94.00

OOD
OpenLLaMA-3B 69.41 68.42

LLaMA-7B 74.61 78.08
LLaMA-13B 77.30 64.12

MMLU

ID
OpenLLaMA-3B 24.96 24.19

LLaMA-7B 59.05 58.16
LLaMA-13B 68.87 51.93

OOD
OpenLLaMA-3B 24.75 26.08

LLaMA-7B 68.69 66.38
LLaMA-13B 77.41 67.38

Table 1: Single-task experiments of R-Tuning and
Vanilla on ParaRel and MMLU datasets with AP scores
(%). ID and OOD denote in-domain and out-of-domain
settings, respectively.

3.4 Implementation331

We choose OpenLLaMA-3B (Geng and Liu, 2023),332

LLaMA-7B, and LLaMA-13B (Touvron et al.,333

2023) as the base models in our experiments. We334

use LMFlow2 (Diao et al., 2023a) to conduct in-335

struction tuning, setting epoch to 1, learning rate to336

2e−5, and batch size to 4. All the experiments are337

implemented on Nvidia A100-40GB GPUs.338

4 Experimental Results339

In the main experiments, we conduct single-task340

experiments to verify the model’s refusal-aware341

answering ability and multi-task experiments to342

investigate the generalization of refusal ability.343

4.1 Single-task Experiments344

We first conduct single-task experiments on345

ParaRel and MMLU datasets. The results are346

shown in Figure 3 and Table 1. Firstly, we observe347

that R-Tuning significantly outperforms other base-348

lines by a large margin in terms of accuracy on the349

questions it is willing to answer, compared with350

others that simply answer all the questions. The351

results first demonstrate the effectiveness of the352

refusal-aware answering ability. We also conclude353

2https://github.com/OptimalScale/
LMFlow

that R-Tuning answers more questions within its 354

parametric knowledge during pre-training, which is 355

reflected by the high accuracy of Pretrain-W (pre- 356

trained model evaluated on R-Tuning’s willingly 357

answered questions). Overall, it is observed from 358

Table 1 that R-Tuning outperforms Vanilla in terms 359

of the AP score, demonstrating the benefits of only 360

answering the questions that align with the model’s 361

parametric knowledge with high confidence. In ad- 362

dition, we find that larger models achieve more im- 363

provement compared with over baseline as the gap 364

of the AP score becomes larger, indicating good 365

scalability of R-Tuning. In addition, the AP score 366

of R-Tuning grows steadily when the model size 367

becomes larger, while the AP score of Vanilla drops 368

in ParaRel (OOD) and MMLU (ID). This compari- 369

son shows that Vanilla may suffer from confidence 370

miscalibration problems while R-Tuning is more 371

well-calibrated in terms of confidence. By com- 372

bining the prediction confidence and certainty con- 373

fidence to evaluate the output, R-Tuning is more 374

reliable when making predictions. 375

4.2 Multi-task Experiments 376

The results of multi-task experiments are shown in 377

Figure 4. Overall, R-Tuning consistently outper- 378

forms all baseline models in terms of the AP score 379

on both ID and OOD tasks, demonstrating its su- 380

periority by introducing the refusal-aware dataset. 381

A higher AP score signifies that the R-Tuning has 382

successfully ranked correct answers higher than 383

incorrect answers, demonstrating its effectiveness 384

in accurately identifying the desired predictions. 385

Especially, on the unseen dataset HaluEval-QA, R- 386

Tuning also achieves a higher AP score and demon- 387

strates its ability to express certainty to questions 388

from other distributions, and such ability can be 389

generalized well. The experiments on multi-task 390

datasets tell us that the refusal is a kind of meta- 391

skill of models and could be enhanced by several 392

different datasets. We provide the detailed AP 393

scores and curves for different datasets and model 394
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Figure 4: Multi-task experiments on the average of five in-domain (ID) datasets (ParaRel, MMLU, WiCE, HotpotQA,
and FEVER) and one out-of-domain (OOD) dataset (HaluEval-QA) with the AP curves.

sizes in Table 11 and Figure 8 in Appendix A.10.395

In summary, R-Tuning reduces hallucinations by396

disregarding inquiries outside of the model’s knowl-397

edge domain. Meanwhile, R-Tuning performs well398

with inquiries that are aligned with the model’s399

parameterized knowledge. The better AP score400

demonstrates a good trade-off between precision401

and recall and the performance on multi-task exper-402

iments demonstrates the generalization potential of403

refusal-aware answering ability.404

5 Analysis405

In this section, we first introduce a variant, R-406

Tuning-U, which adopts an unsupervised identi-407

fication strategy for R-Tuning. Then we provide an408

interpretation from the uncertainty perspective for409

R-Tuning. In addition, we verify the refusal abil-410

ity on unanswerable questions, which should not411

receive answers from the model. More case studies412

are shown in Table 7 in the Appendix for qualitative413

analysis. Further analysis of the perplexity (Sec-414

tion A.6) and uncertainty of the training datasets415

(Section A.7) demonstrates the effectiveness of our416

proposed method.417

5.1 Unsupervised Identification418

During the refusal-aware data identification pro-419

cess, we apply a supervised way to identify un-420

known questions by comparing the predictions and421

labels. In this section, we introduce an unsuper-422

vised identification method, R-Tuning-U, where423

the refused questions are determined by the un-424

certainty of the model. Specifically, R-Tuning-U 425

queries the model M k times and calculates the 426

uncertainty u across k predictions, which is calcu- 427

lated by the entropy based on k answers as follows: 428

u = −
k∑

j=1

p(aj |q) ln p(aj |q), (7) 429

where p(aj |q) is the frequency of a certain pre- 430

dicted answer aj given a question q. 431

Then the questions could be ranked according 432

to the uncertainty score u. For the 50% most un- 433

certain questions, we append the ground truth label 434

and uncertain expression (i.e., uncertain set D0), 435

while the remaining (i.e., certain set D1) are ap- 436

pended with the ground truth answers with certain 437

expressions. We set the temperature to 0.7 and 438

k = 10 in our experiments. We compare the perfor- 439

mance with the R-Tuning on the ParaRel dataset, 440

and the results are shown in Table 2. It is observed 441

that R-Tuning-U generally achieves a higher AP 442

score, which reveals the feasibility of constructing 443

refusal-aware training data by uncertainty. Com- 444

paring the output of the pre-trained model with the 445

ground-truth answer is not the only way to evalu- 446

ate its parametric knowledge. Uncertainty can also 447

be an indicator of whether the pre-trained model 448

is familiar with the knowledge. An advantage of 449

R-Tuning-U is that it does not require the labels of 450

uncertain questions. 451

6



Dataset Domain Model R-Tuning R-Tuning-U Vanilla-C Vanilla-U

ParaRel

ID
OpenLLaMA-3B 93.23 93.33 88.53 76.96

LLaMA-7B 93.64 94.39 87.92 73.05
LLaMA-13B 94.44 95.39 89.40 79.68

OOD
OpenLLaMA-3B 69.41 71.98 65.54 47.81

LLaMA-7B 74.61 76.44 72.13 48.10
LLaMA-13B 77.30 80.87 69.12 50.52

MMLU

ID
OpenLLaMA-3B 24.96 24.60 24.25 21.64

LLaMA-7B 59.05 64.69 48.34 44.00
LLaMA-13B 68.87 66.00 58.69 60.17

OOD
OpenLLaMA-3B 24.75 25.52 23.05 25.26

LLaMA-7B 68.69 67.70 62.79 42.64
LLaMA-13B 77.41 72.66 70.09 64.31

Table 2: Performance comparison of R-Tuning, R-
Tuning-U, Vanilla-C, and Vanilla-U with AP scores (%)
on the ParaRel and MMLU dataset. Here Vanilla-U
denotes evaluating Vanilla-C’s answers with R-Tuning-
U’s sure confidence. ID and OOD denote in-domain
and out-of-domain, respectively. The corresponding AP
curves are shown in Figure 13.

5.2 Uncertainty Learning452

One perspective on interpreting our method is that453

R-Tuning of selecting and learning through uncer-454

tainty fundamentally involves learning the uncer-455

tainty of the training data. A more direct baseline456

is to perform vanilla fine-tuning and then use un-457

certainty selection on the test dataset to respond, a458

method we refer to as Vanilla-C. Vanilla-C prompts459

the model to answer k times and choose the major-460

ity as the answer. The uncertainty is proportional461

to the distinct answers. In our experiment, we set462

k = 10 for Vanilla-C and the confidence is calcu-463

lated by:464

Confidence =
maxni=1(ki)

k
, (8)465

where n is the number of distinct answers gen-466

erated, and ki is the number of occurrences of i-467

th answer. We calculate the AP scores and com-468

pare them with R-Tuning in Table 2. Surprisingly,469

we find that learning uncertainty and then filter-470

ing questions based on this uncertainty to provide471

answers yields better results than directly filter-472

ing and answering questions using uncertainty on473

the test dataset. In other words, differentiating in-474

struction tuning data based on uncertainty while475

learning both the correct answers and uncertainty476

not only enables the learning of uncertainty ex-477

pressions but also, remarkably, improves the ac-478

curacy of question-answering. This is an unex-479

pected but intriguing phenomenon. Learning uncer-480

tainty from training data should not be as accurate481

as using uncertainty estimations directly from the482

test data. One possible explanation is that for a 483

Transformer model, to accurately predict the last 484

token, the hidden states are adjusted during train- 485

ing. These changes in hidden states might help 486

in better answering easier questions. A potential 487

hypothesis is this: predicting uncertainty embeds 488

information about confidence into the hidden rep- 489

resentation. This aids in generating more confi- 490

dent hidden states when answering easier questions. 491

This finding reveals the benefits of learning the un- 492

certainty of large models. It not only avoids the 493

extensive overhead of repeatedly calculating un- 494

certainty during testing but also improves training 495

quality by learning uncertainty, thereby enhancing 496

the accuracy of uncertainty estimation. 497

To verify our hypothesis, we conduct further ex- 498

periments. We first introduce Vanilla-U, which 499

generates the prediction by Vanilla and expresses 500

its confidence by R-Tuning-U. Firstly, we find cali- 501

bration becomes better. We consider the Expected 502

Calibration Error (ECE) metric (Guo et al., 2017), 503

which measures the difference between accuracy 504

and confidence on given confidence intervals. It 505

is observed that R-Tuning improves the predic- 506

tion probability, which potentially better indicates 507

answers and improves AP scores. More results 508

are shown in Figures 11, 12, and Table 14. Sec- 509

ondly, from Table 12, we observe that R-Tuning-U 510

improves accuracy compared with Vanilla-C. We 511

also use R-Tuning-U as a scorer to measure the 512

confidence of the answers from both R-Tuning-U 513

and Vanilla-C. The results of Table 13 demonstrate 514

that R-Tuning-U generally rates higher confidence 515

scores when it comes to its own answers, which 516

is attributed to the better prediction performance 517

of R-Tuning-U. We also calculate the AP score 518

for Vanilla-U. The low AP score indicates that R- 519

Tuning-U can not effectively measure the answers 520

from Vanilla-C. Furthermore, Figures 9 and 10 521

show that score differences become more salient 522

as the models get larger. We conclude that refusal 523

ability is an emergent ability (Wei et al., 2022). 524

5.3 Unanswerable Questions 525

In addition to the open-ended question-answering 526

dataset where all the questions are answerable, we 527

also test the performance of R-Tuning on several 528

refusal benchmarks containing unanswerable ques- 529

tions. These questions either contradict common 530

sense or make up some concepts, and should not re- 531

ceive answers from the model. We verify R-Tuning 532
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Dataset Model R-Tuning Vanilla Pretrain-T

FalseQA
OpenLLaMA-3B 87.32 2.07 9.98

LLaMA-7B 96.62 18.35 8.92
LLaMA-13B 95.90 6.00 24.10

NEC
OpenLLaMA-3B 95.72 0.96 7.31

LLaMA-7B 99.18 20.55 2.02
LLaMA-13B 98.17 2.36 4.76

SA
OpenLLaMA-3B 90.99 5.23 18.90

LLaMA-7B 95.45 34.79 16.96
LLaMA-13B 96.61 12.21 28.00

Table 3: The refusal rate (%) of R-Tuning and other
baselines on the refusal benchmarks. SA is the unan-
swerable part of the SelfAware dataset. The refusal
rate of R-Tuning-R on the unanswerable datasets is ex-
tremely high, while the refusal rate of other fine-tuned
methods and pre-trained models is low.

on such datasets, and the results are shown in Ta-533

ble 3. For baseline models, we provide explicitly534

in the prompt that they could refuse to answer the535

questions. We observe that R-Tuning refuses nearly536

all these unanswerable questions, which meet our537

expectations, while other baselines answer most of538

the questions even though they are told to refuse.539

In conclusion, the R-Tuning possesses the ability540

to refuse questions that contradict common sense541

or out of their parametric knowledge.542

6 Related Work543

In this section, we review the progress on halluci-544

nations of large language models (LLMs) and the545

uncertainty quantification methods.546

6.1 Hallucinations of LLMs547

Despite the outstanding performance of LLMs with548

high fluency and coherence, they are still likely to549

hallucinate unfaithful and nonfactual facts (Maynez550

et al., 2020b). Recently, a variety of works have551

been done towards hallucination detection and mit-552

igation. For hallucination detection, Azaria and553

Mitchell (2023) propose a classifier trained on the554

internal states of LLMs. Lee et al. (2023) create a555

benchmark for measuring the factuality of genera-556

tion, using factual and nonfactual prompts. Man-557

akul et al. (2023) introduce SelfCheckGPT, mak-558

ing use of the consistency of multiple responses559

from LLM. For hallucination control, retrieval-560

augmented methods (Peng et al., 2023; Xie et al.,561

2023; Yue et al., 2023; Lyu et al., 2023; Asai et al.,562

2023) have shown effectiveness in mitigating the563

hallucination. Other methods, such as knowledge-564

aware fine-tuning (Li et al., 2022), corruptions de-565

noising (Chen et al., 2023), low-confidence valida-566

tion (Varshney et al., 2023), question-knowledge567

alignment (Zhang et al., 2023b), knowledge in- 568

jection and teacher-student model (Elaraby et al., 569

2023), also improve the factuality of generation 570

from multiple perspectives. Previous studies show 571

the importance of the early discovery of hallucina- 572

tion (Zhang et al., 2023a). In addition, Huang et al. 573

(2023) found that LLMs cannot rectify themselves 574

with their initial capabilities, displaying the impor- 575

tance of fine-tuning and external feedback. Our 576

proposed method instructs the model to be aware 577

of its knowledge gap between the instruction tun- 578

ing datasets and the parametric knowledge, so that 579

it possesses the refusal ability when it encounters 580

instructions out of its knowledge. 581

6.2 Uncertainty Quantification of LLMs 582

Uncertainty quantification is a long-standing prob- 583

lem in machine learning. In the deep learning era, 584

Guo et al. (2017) first identify the predictive confi- 585

dence (a.k.a, predictive probability) of deep neural 586

network lack of calibration in terms of the ECE 587

metric (Expected Calibration Error) (Naeini et al., 588

2015). Chen et al. (2022) further study the inves- 589

tigate the calibration problem of pre-trained large 590

language models and observe the same miscalibra- 591

tion problem on large language models. Active- 592

Prompt (Diao et al., 2023b) introduces uncertainty 593

to select questions for chain-of-thought annotation 594

and demonstrates its effectiveness in actively and 595

judiciously selecting and annotating the most help- 596

ful exemplars for in-context learning of LLMs. 597

Studies (Dong et al., 2023) about knowledge as- 598

sessment for LLMs are also relevant to our study. 599

7 Conclusion 600

In this paper, we propose a simple yet effective 601

method, R-Tuning, to teach LLMs to refuse un- 602

known questions. It identifies the difference be- 603

tween instruction tuning data and parametric knowl- 604

edge and splits the training data into certain and 605

uncertain parts. Then, R-Tuning constructs the 606

refusal-aware data by appending uncertainty ex- 607

pressions to the uncertain part. Empirically, R- 608

Tuning outperforms the traditional finetuning base- 609

line regarding AP score, illustrating a good trade- 610

off between prediction and confidence. R-Tuning 611

not only shows the refusal ability on in-domain 612

data but also demonstrates such ability could be 613

generalized to unseen tasks. It displays that refusal 614

is a fundamental ability and could be abstracted via 615

multi-task learning, so we call it meta-skill. 616
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8 Limitations617

Despite that R-Tuning demonstrates remarkable618

performance in selecting and rejecting questions,619

there are still limitations to consider. First of all,620

R-Tuning only possesses the ability to say I am621

sure and I am unsure. However, generating a quan-622

titative value to verbally express its confidence for623

questions is desired. Additionally, we only adopt624

answer checking and uncertainty quantification to625

evaluate whether relevant knowledge is within the626

pre-trained model’s parametric knowledge. There627

are other rigorous methods to evaluate, such as628

comparing the instruction-tuning datasets with the629

pre-training datasets. One can follow Kandpal et al.630

(2023) to identify the relevant knowledge by entity631

linking pre-training datasets. Due to the high com-632

putational cost of the entity linking method, we633

plan to explore optimization methods to improve634

efficiency in future work.635
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Dataset Example (Our Format) Original Size Actual Size Used

ParaRel (Elazar et al., 2021)
Question: Which country is Georgi Parvanov a citizen of?
Answer: Bulgaria

Total data: 253448
Training data: 5575
ID test data: 5584
OOD test data: 13974

MMLU (Hendrycks et al., 2021)

Question: Which of the following did the post-war welfare state of 1948 not aim to provide:
(A) free health care and education for all (B) a minimum wage
(C) full employment (D) universal welfare.

Answer: B

Total data: 14033
Training data: 2448
ID test data: 2439
OOD test data: 9155

WiCE (Kamoi et al., 2023)

Evidence: The first results of the auction for 3DO’s franchises and assets...
Claim: The rights to the M̈ight and Magicn̈ame were purchased for $1.3 million by Ubisoft.
Question: Does the evidence support the claim?

(A) supported (B) partially supported (C) not supported
Answer: A

Training data: 3470
Dev data: 949
Test data: 958

Training data: 3470
Test data: 958

HotpotQA (Yang et al., 2018)
Context: Arthur’s Magazine was an American literary periodical published in ...
Question: Which magazine was started first Arthur’s Magazine or First for Women?
Answer: Arthur’s Magazine

Training data: 99564
Dev data: 7405
Test data: 14810

Training data: 10000
Test data: 7405

FEVER (Thorne et al., 2018)

Evidence: David Bowie is the second studio album by the English musician David Bowie...
Claim: David Bowie has an album.
Question: Does the evidence support or refute the claim or not enough information?

(A) supports (B) refutes (C) not enough info
Answer: A

Training data: 145449
Dev data: 9999
Test data: 9999

Training data: 10000
Test data: 9999

SelfAware (Yin et al., 2023)

Answerable Question: What is Nigeria’s northernmost climate?
Answer: rain forest
Unanswerable Question: Often called high energy particles, what gives life to them?
Answer: None

Answerable Question: 2337
Unanswerable Question: 1032

Unanswerable: 1032

HaluEval (Li et al., 2023a)
Knowledge: Jonathan Stark (born April 3, 1971) is a former...
Question: Which tennis player won more Grand Slam titles, Henri Leconte or Jonathan Stark?
Answer: Jonathan Stark

QA-data: 10000
Dialogue: 10000
Summarization: 10000
User query:5000

QA-data: 10000

FalseQA (Hu et al., 2023)
Unanswerable Question: List the reason why mice can catch cats?
(This is a question that contradicts common sense)

Unanswerable Question: 2365 Unanswerable: 2365

NEC
Unanswerable Question: How long is the typical lifespan of Leogoteo in the wild?
(There is no such creature called Leogoteo.)

Unanswerable Question: 2078 Unanswerable: 2078

Table 4: Illustration and statistics of the datasets. For ParaRel and MMLU, we manually split the datasets into
training and test sets. For WiCE, HotpotQA, and FEVER, we directly use the original training set. For SelfAware,
FalseQA, and NEC, we directly test models on their unanswerable questions.
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A Appendix844

A.1 Datasets845

We conduct our experiments on nine datasets,846

which are described as follows.847

• ParaRel (Elazar et al., 2021): a dataset of factual848

knowledge with various prompts and relations849

that are originally for mask prediction. To align850

the dataset with the requirements of our auto-851

regressive models, we first change the format852

into question-answering and our models read the853

questions and generate the answers. Then, du-854

plicated prompts of different templates but with855

the same entities are omitted for our question-856

answering task. It finally comes up with 25, 133857

prompt-answer pairs of 31 domains. We split858

the ParaRel into two sets - the first 15 domains859

as in-domain data and the last 16 domains as860

out-of-domain data. We also equally split the861

in-domain data into training data and test data.862

• MMLU (Hendrycks et al., 2021): MMLU cov-863

ers 57 tasks including mathematics, computer864

science, history, law, and more, which requires865

extensive world knowledge and problem-solving866

ability. The dataset is of multiple-choice format,867

and we can directly use it in our experiments.868

• WiCE (Kamoi et al., 2023): WiCE is a natu-869

ral language inference (NLI) dataset for textual870

entailment. Each data sample consists of evi-871

dence and a claim, and the model should decide872

whether the evidence supports, partially supports,873

or doesn’t support the claim. We turn the dataset874

into multiple-choice questions with 3 choices for875

each question.876

• HotpotQA (Yang et al., 2018): HotpotQA is877

a question-answering dataset that requires com-878

plex reasoning among documents. We evaluate879

by providing the context documents and ques-880

tions to see if the model can answer them. Since881

the test set of HotpotQA requires answer submis-882

sion, we instead use the development set to do883

the evaluation.884

• FEVER (Thorne et al., 2018): FEVER is a885

dataset containing claims and supporting knowl-886

edge. The claims are classified as SUPPORTED,887

REFUTES, or NOT ENOUGH INFO. We turn it888

into a multiple-choice NLI task.889

• SelfAware (Yin et al., 2023): a dataset contain-890

ing both answerable questions and unanswerable891

questions. We evaluate the unanswerable ques-892

tions. It is expected to see our finetuned models893

refusing the unanswerable questions while other894

baselines do not possess such ability. 895

• HaluEval (Li et al., 2023a): HaluEval is a 896

dataset containing question-answering, dialogue, 897

summarization, and user-query with correct an- 898

swers and hallucinated answers. We only take 899

the question-answering part. 900

• FalseQA (Hu et al., 2023): FalseQA is a new 901

open-domain dataset with questions inconsistent 902

with common sense. There are no correct an- 903

swers to the questions. 904

• NEC: NEC is also a new open-domain dataset 905

with questions containing some make-up con- 906

cepts. There are also no correct answers to the 907

questions. 908

For question-answering tasks, to compare the an- 909

swer generated by our model with the ground-truth 910

answer, we examine whether the first few output 911

tokens contain the ground-truth answer. We don’t 912

adopt exact matching (EM) as the generation is not 913

strictly controllable. For multiple-choice questions, 914

we restrict the model to generate one token and 915

select the choice with maximum probability among 916

the candidate choices by argmaxx∈C logits(x), 917

where C is the set of candidate choices. Consid- 918

ering the huge size of HotpotQA and FEVER, we 919

randomly sample 10K training data from them, re- 920

spectively. More details about the original datasets 921

are shown in Appendix A.1 and Table 4. In Fig- 922

ure 6, we present the distribution of constructed 923

refusal-aware data D0 and D1. 924

Details about the original datasets are shown in 925

Table 4. In Figure 6, we present the distribution of 926

constructed refusal-aware data D0 and D1. 927

A.2 Implementation 928

We choose OpenLLaMA-3B (Geng and Liu, 2023), 929

LLaMA-7B, and LLaMA-13B (Touvron et al., 930

2023) as the base models in our experiments. We 931

use LMFlow3 (Diao et al., 2023a) to conduct in- 932

struction tuning, setting epoch to 1, learning rate to 933

2e−5, and batch size to 4. All the experiments are 934

implemented on Nvidia A100-40GB GPUs. We 935

conduct experiments with a hyper-parameter sweep 936

consisting of learning rates in {1e−5, 2e−5, 5e−5} 937

and batch-size in {2, 4, 8} on the training set. 938

A.3 Label Replacement 939

In the main experiments, we adopt the padding 940

method for data construction. In addition to 941

3https://github.com/OptimalScale/
LMFlow
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Figure 5: The performance of R-Tuning-R on ParaRel and MMLU datasets. ID and OOD denote in-domain and
out-of-domain test datasets, respectively.

Dataset Model R-Tuning-R R-Tuning Vanilla Pretrain-T

FalseQA
OpenLLaMA-3B 98.31 87.32 2.07 9.98

LLaMA-7B 97.67 96.62 18.35 8.92
LLaMA-13B 99.07 95.90 6.00 24.10

NEC
OpenLLaMA-3B 99.90 95.72 0.96 7.31

LLaMA-7B 99.52 99.18 20.55 2.02
LLaMA-13B 99.90 98.17 2.36 4.76

SA
OpenLLaMA-3B 99.22 90.99 5.23 18.90

LLaMA-7B 98.55 95.45 34.79 16.96
LLaMA-13B 99.71 96.61 12.21 28.00

Table 5: The refusal rate (%) of R-Tuning and R-Tuning-
R, and other baselines on the refusal benchmarks. SA
is the unanswerable part of the SelfAware dataset. The
refusal rate of R-Tuning-R on the unanswerable datasets
is extremely high, while the refusal rate of other fine-
tuned methods and pre-trained models is low.

padding, we can directly replace the label words942

with uncertainty expressions for uncertain ques-943

tions and keep the original label words for certain944

questions, which is called the replacement strategy,945

leading to a variant R-Tuning-R. For example, the946

certain part of the training questions D1 is con-947

structed as follows:948

Q : {Question}, A : {Answer}, (9)949

while the uncertain dataset D0 is constructed as950

follows:951

Q : {Question}, A : {Uncertainty Expression}.
(10)952

There are many different ways for the uncer-953

tainty expression. To increase the diversity, we954

take the 16 expressions of uncertainty text from Yin955

et al. (2023). These 16 expressions are listed in the956

Appendix Section A.5.957

We conduct experiments with R-Tuning-R on958

ParaRel and MMLU datasets by comparing it with959

vanilla fine-tuning strategy and the original pre-960

trained models. The results are shown in Figure961

5. Firstly, on both in-domain and out-of-domain962

test sets, the accuracy of R-Tuning-R is higher than963

Pretrain-T, which benefits from only answering964

certain questions. More detailed results with an- 965

swer rate are reported in Table 6, where we find 966

the model is able to refuse a certain amount of 967

questions. Then, R-Tuning-R outperforms Vanilla 968

with a significantly higher accuracy on its will- 969

ingly answered questions, which demonstrates the 970

effectiveness of our method. It is promising as R- 971

Tuning-R is trained with fewer ground-truth labels, 972

while Vanilla is trained on all labels of the full train- 973

ing data. Generally, larger models possess more 974

powerful refusal abilities. In Figure 5, we observe 975

that on the willingly answered questions, larger 976

models achieve a higher accuracy. In addition, the 977

high accuracy of Pretrain-W reveals that those se- 978

lected questions are within parametric knowledge 979

of the pre-trained model. In summary, compared 980

with vanilla fine-tuning, R-Tuning-R provides the 981

model with the refusal ability to refuse unknown 982

questions, which eventually improves the accuracy 983

and prevents them from making hallucinated an- 984

swers. Table 7 shows the case studies of how R- 985

Tuning-R works. There are significant differences 986

when they encounter questions out of their knowl- 987

edge. The Vanilla model is proactive in making up 988

an answer, which is a hallucination and makes no 989

sense. However, R-Tuning-R refuses them explic- 990

itly with keywords do not know, not known, and 991

impossible. The ability of R-Tuning-R to refuse 992

unknown questions results in fewer hallucinations. 993

Despite this refusal ability, there are two is- 994

sues with R-Tuning-R: (1) the replacement method 995

throws away valuable labels which could be lever- 996

aged for training. (2) R-Tuning could either only 997

output the answer or only output the certainty, but 998

cannot respond to both, leading to difficulties in 999

considering the precision and recall simultaneously. 1000

To leverage all ground-truth labels during the tun- 1001

ing process, and instruct models to predict answers 1002

and express uncertainty at the same time, we em- 1003

ploy the padding strategy in our main approach, 1004

where every question is appended with the ground- 1005
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Dataset Domain Models R-Tuning-R (%) Answer Rate (%) Vanilla (%) Pretrain-T (%) Pretrain-W (%)

ParaRel

In-Domain
OpenLLaMA-3B 82.79 44.65 60.58 36.23 71.48

LLaMA-7B 85.95 44.11 63.72 37.79 72.23
LLaMA-13B 87.06 44.00 66.53 41.53 78.51

Out-of-Domain
OpenLLaMA-3B 44.04 40.80 38.68 30.18 46.73

LLaMA-7B 69.54 28.07 43.38 34.44 63.09
LLaMA-13B 76.13 30.16 41.82 34.48 68.99

MMLU

In-Domain
OpenLLaMA-3B 21.99 5.79 21.12 21.22 18.44

LLaMA-7B 46.35 9.56 33.25 26.77 41.20
LLaMA-13B 57.47 42.52 42.97 41.41 55.54

Out-of-Domain
OpenLLaMA-3B 24.55 2.41 23.93 25.44 27.27

LLaMA-7B 55.56 12.96 38.56 31.09 44.01
LLaMA-13B 67.31 48.32 51.19 47.60 62.53

Table 6: Detailed performance of R-Tuning-R on ParaRel and MMLU dataset. The answer rate means the percentage
of willingly answered questions of R-Tuning-R.

Input Questions R-Tuning-R Vanilla Ground-Truth
What field does Lee Alvin DuBridge work in? I do not know the answer. Music. Physics.

Where was Blaine Willenborg born? It is not known. New York. Miami
Where did Hippolyte Le Bas die? It is impossible to know. Lyon Paris

(a) Examples of R-Tuning-R refusing questions that are out of its parametric knowledge. R-Tuning-R expresses its unknown
when it does not know the answer. Vanilla produces hallucinated answers when it does not know the answer.

Input Questions R-Tuning-R Vanilla Ground-truth
Where is Lion Air headquartered? Jakarta. Jakarta. Jakarta.

What does Jacobo Zabludovsky work as? journalist. journalist. journalist.
What is the native language of Joseph Conombo? French. French. French.

(b) Examples of R-Tuning-R answering questions within parametric knowledge.

Table 7: Case study of refused and willingly answered questions with R-Tuning-R and Vanilla.

truth label and the uncertainty expression, indicat-1006

ing whether the model is confident or not.1007

A.4 Case Studies of R-Tuning-R1008

In this section, we display the detailed statistics1009

in Table 6, and illustrate more case studies of R-1010

Tuning-R in Table 7.1011

A.5 Uncertainty Text1012

In this section, we list the 16 uncertainty expres-1013

sions from Yin et al. (2023):1014

1. The answer is unknown.1015

2. The answer is uncertain.1016

3. The answer is unclear.1017

4. There is no scientific evidence.1018

5. There is no definitive answer.1019

6. There is no right answer.1020

7. There is much debate. 1021

8. There is no known case. 1022

9. There is no concrete answer to this question. 1023

10. There is no public information available. 1024

11. It is impossible to know. 1025

12. It is impossible to answer. 1026

13. It is difficult to predict. 1027

14. It is not known. 1028

15. We do not know. 1029

16. I’m not sure. 1030

A.6 Perplexity of Datasets 1031

Perplexity measures how well the language model 1032

predicts a given text. Lower perplexity means bet- 1033

ter prediction and understanding of the text. Ac- 1034

cording to the refusal-aware data identification, we 1035
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Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 57.92 63.08

LLaMA-7B 45.81 52.08
LLaMA-13B 42.79 48.75

MMLU
OpenLLaMA-3B 32.95 462.36

LLaMA-7B 22.20 115.87
LLaMA-13B 22.12 81.41

WiCE
OpenLLaMA-3B 61.28 203.43

LLaMA-7B 20.93 19.40
LLaMA-13B 17.73 19.56

HotpotQA
OpenLLaMA-3B 144.89 170.38

LLaMA-7B 49.97 60.19
LLaMA-13B 42.60 55.20

FEVER
OpenLLaMA-3B 88.38 72.11

LLaMA-7B 38.46 43.69
LLaMA-13B 39.00 44.14

Table 8: Perplexity of the training datasets. We run the
pre-trained models on the context and questions and
calculate the average perplexity.

split the training data into two sets: D0 (uncertain1036

questions) and D1 (certain questions). To uncover1037

why the pre-trained model responds to them differ-1038

ently, we calculate the average perplexity on these1039

two datasets with the pre-trained models. The per-1040

plexity is calculated as follows:1041

PPL(X) = exp

{
−1

t

t∑
i=1

log pθ(xi | x<i)

}
,

(11)1042

where X denotes a sentence consisting of tokens1043

and X = (x1, x2, . . . , xt). Specifically, we cal-1044

culate the perplexity of the training questions to1045

estimate the pre-trained model’s understanding of1046

them. The results are shown in Table 8. We ob-1047

serve that D1 has a lower perplexity, demonstrating1048

that the pre-trained model is more familiar with the1049

questions and is likely to provide the correct an-1050

swer. For D0, its higher perplexity shows that these1051

questions are not familiar to the model and out of1052

the model’s knowledge, and this is the reason why1053

the model tends to hallucinate text instead of pro-1054

viding the correct answers. We also observe that1055

larger models have a lower perplexity and random-1056

ness on the questions, which is why larger models1057

generally perform better on various tasks.1058

By instructing our model to express uncertainty1059

toward relatively random questions in terms of per-1060

plexity, the model develops a better understanding1061

of uncertainty and ambiguity and learns the ability1062

to recognize when it does not know. This abil-1063

ity is crucial in situations where simply providing1064

Dataset Model D1 D0

ParaRel
OpenLLaMA-3B 0.426 0.709

LLaMA-7B 0.475 0.694
LLaMA-13B 0.436 0.744

MMLU
OpenLLaMA-3B 0.347 0.389

LLaMA-7B 0.330 0.400
LLaMA-13B 0.239 0.457

WiCE
OpenLLaMA-3B 0.250 0.280

LLaMA-7B 0.254 0.270
LLaMA-13B 0.265 0.252

HotpotQA
OpenLLaMA-3B 0.534 0.747

LLaMA-7B 0.605 0.719
LLaMA-13B 0.528 0.797

FEVER
OpenLLaMA-3B 0.413 0.219

LLaMA-7B 0.279 0.286
LLaMA-13B 0.189 0.350

Table 9: Entropy of the training datasets. It is calculated
from the frequency of every predicted answer among all
predictions. A larger entropy denotes greater uncertainty
of the system.

a definite answer may be inappropriate or even 1065

harmful. On the other hand, since our model is 1066

also trained with data with certain expressions, it 1067

becomes more proficient at handling less random 1068

questions, and answering them with confidence and 1069

certainty. Overall, R-Tuning improves the model’s 1070

ability to adapt to different levels of question ran- 1071

domness. 1072

To verify the pre-trained model is less familiar 1073

with the uncertain questions while more confident 1074

with certain questions, we also plot the confidence 1075

distribution on certain questions and uncertain ques- 1076

tions, shown in Figure 7 in Appendix A.9. It is 1077

observed that a larger percentage of certain ques- 1078

tions occupies the high confidence intervals, which 1079

means when the model provides correct answers, it 1080

generally shows larger confidence. 1081
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A.7 Entropy of Answers1082

Domain Model R-Tuning-R Answer Rate Min-loss Answer Rate

ID
OpenLLaMA-3B 82.79 44.65 91.83 26.52

LLaMA-7B 85.95 44.11 85.78 41.57
LLaMA-13B 87.06 44.00 88.00 48.33

OOD
OpenLLaMA-3B 44.04 40.80 59.66 20.92

LLaMA-7B 69.54 28.07 55.52 49.15
LLaMA-13B 76.13 30.16 60.42 55.75

Table 10: Accuracy (%) and answer rate (%) of R-
Tuning-R and min-loss training on ParaRel dataset. The
loss is calculated by the first token of the ground-truth
answer. ID and OOD denote in-domain and out-of-
domain, respectively.

In addition to evaluating the difference be-1083

tween certain and uncertain questions with pre-1084

trained models, we further leverage GPT (Brown1085

et al., 2020) to investigate the patterns of cer-1086

tain and uncertain questions. Specifically, we1087

query gpt-3.5-turbo five times with Chain-of-1088

Thought prompts (Wei et al., 2023) with a tempera-1089

ture of 0.7, and calculate the entropy of the answers1090

toward the same question (Diao et al., 2023b). If1091

the model provides many different answers to the1092

same question, the entropy should be high. Oth-1093

erwise, the entropy should be low. The results1094

are shown in Table 9. We observe that the aver-1095

age entropy of the answers on certain data D1 is1096

lower than the entropy of uncertain data D0 data in1097

most cases, which illustrates that when fed with cer-1098

tain questions, gpt-3.5-turbo is more likely1099

to generate consistent answers. It will generate1100

hallucinated answers to uncertain questions with1101

much higher chances.1102

Therefore, we can conclude that R-Tuning di-1103

vides the data into two folds. The uncertain ques-1104

tions are generally more difficult than certain ques-1105

tions because gpt-3.5-turbo’s answers vary1106

more with the uncertain data. R-Tuning endows1107

the model with abilities to identify and differentiate1108

the difficulties of the questions. Therefore, our fine-1109

tuned model becomes proactive in answering easy1110

questions with certainty while being conservative1111

in answering difficult questions, which eventually1112

increases the precision and prevents the fine-tuned1113

model from making too many mistakes.1114

A.8 Min-Loss Training 1115

Dataset Model R-Tuning Vanilla

ParaRel
OpenLLaMA-3B 69.79 69.62

LLaMA-7B 77.45 77.91
LLaMA-13B 77.69 72.67

MMLU
OpenLLaMA-3B 24.38 24.39

LLaMA-7B 54.19 63.88
LLaMA-13B 73.81 74.95

WiCE
OpenLLaMA-3B 56.74 61.05

LLaMA-7B 55.02 65.47
LLaMA-13B 71.12 67.17

HotpotQA
OpenLLaMA-3B 46.54 36.90

LLaMA-7B 57.57 41.92
LLaMA-13B 57.99 44.76

FEVER
OpenLLaMA-3B 94.22 85.38

LLaMA-7B 93.30 88.24
LLaMA-13B 95.23 94.99

HaluEval-QA
OpenLLaMA-3B 73.85 72.11

LLaMA-7B 77.17 76.22
LLaMA-13B 80.36 75.73

Average
OpenLLaMA-3B 61.09 58.24

LLaMA-7B 69.11 68.94
LLaMA-13B 76.03 71.71

Table 11: Multi-task experiments of R-Tuning and
Vanilla with AP scores (%). Vanilla adopts the con-
fidence of the predicted answer to rank the result, while
R-Tuning adopts the combination of the confidence of
the predicted answer and the confidence of certainty.

Compared with the append verbalizer, replace ver- 1116

balizer (e.g., R-Tuning-R) is a clear-cut way of pro- 1117

ducing uncertainty expressions by throwing away 1118

valuable labels which could potentially be lever- 1119

aged for training. In address of this dimension 1120

of concern, we consider a modified cross entropy 1121

learning objective that pushes up the correct an- 1122

swer token and keeps the uncertainty expressions 1123

as the second most probable token choice. We call 1124

it min-loss training, which is optimized by gradi- 1125

ent descent over the min loss between guessing the 1126

correct answer or just uncertainty expressions. It is 1127

formulated as follows: 1128

min(L(predict,GT ), L(predict, IDK)), (12) 1129

where L denotes the cross-entropy loss. To do 1130

so, we split the training data in half and adopt 1131

a two-stage training strategy. In the first stage, 1132

we train our model using the original method 1133

where the prompt template uses The answer 1134

is {ground-truth} if the model answers cor- 1135

rectly, otherwise The answer is unknown. 1136

Once the model learns such a pattern after the first 1137
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Dataset Domain Model R-Tuning-U acc. R-Tuning-U conf. Vanilla-C acc. Vanilla-C conf.

ParaRel

ID
OpenLLaMA-3B 61.57 61.50 59.81 75.01

LLaMA-7B 65.26 71.25 62.68 77.35
LLaMA-13B 70.47 77.15 65.76 78.50

OOD
OpenLLaMA-3B 38.39 43.88 37.66 61.56

LLaMA-7B 42.97 56.00 42.12 63.41
LLaMA-13B 48.40 61.25 40.77 61.20

MMLU

ID
OpenLLaMA-3B 23.25 44.33 25.54 46.23

LLaMA-7B 41.86 51.06 34.65 53.64
LLaMA-13B 41.90 53.87 39.57 58.60

OOD
OpenLLaMA-3B 25.01 41.97 23.81 44.77

LLaMA-7B 45.88 55.22 42.66 58.52
LLaMA-13B 51.74 59.45 50.38 65.53

Table 12: Performance of R-Tuning-U compared with Vanilla-C on the ParaRel and MMLU datasets. ID and OOD
denote in-domain and out-of-domain, respectively.

Dataset Domain Model R-Tuning-U Vanilla-C

ParaRel

ID
OpenLLaMA-3B 49.96 49.93

LLaMA-7B 50.02 48.80
LLaMA-13B 59.56 59.28

OOD
OpenLLaMA-3B 52.26 52.16

LLaMA-7B 49.45 48.52
LLaMA-13B 61.21 61.10

MMLU

ID
OpenLLaMA-3B 45.01 44.88

LLaMA-7B 50.97 50.95
LLaMA-13B 44.65 43.12

OOD
OpenLLaMA-3B 43.10 42.98

LLaMA-7B 58.34 58.33
LLaMA-13B 64.13 62.37

Table 13: The average sureness probability (%) of R-
Tuning-U and Vanilla-C.

training stage, we calculate the min-loss with the1138

equation 12. We only consider the loss of the un-1139

known and the ground-truth label, and we mask the1140

tokens before them. Since the ground-truth label1141

may consider more than one token, we calculate1142

the loss for the first token.1143

We evaluate the performance of min-loss strat-1144

egy on the ParaRel dataset, and the results are1145

shown in Table 10. It shows min-loss training1146

outperforms R-Tuning-R in small models and in-1147

domain settings. However, it underperforms R-1148

Tuning-R in out-of-domain test sets. We also no-1149

tice that in out-of-domain test sets, the accuracy of1150

the model of 3B size is nearly the same as 7B’s and1151

13B’s, but its answer rate is much lower. We iden-1152

tify such issues as a trade-off between the accuracy1153

and the answer rate. When the model is proactive in1154

answering more questions, it will inevitably make1155

more mistakes. As the intrinsic parametric knowl-1156

edge of the model is limited, there is no method to1157

Dataset Domain Model R-Tuning-U Vanilla-C

ParaRel

ID
OpenLLaMA-3B 0.018 0.255

LLaMA-7B 0.057 0.250
LLaMA-13B 0.064 0.228

OOD
OpenLLaMA-3B 0.054 0.291

LLaMA-7B 0.132 0.271
LLaMA-13B 0.124 0.258

MMLU

ID
OpenLLaMA-3B 0.212 0.246

LLaMA-7B 0.092 0.243
LLaMA-13B 0.120 0.239

OOD
OpenLLaMA-3B 0.172 0.258

LLaMA-7B 0.093 0.209
LLaMA-13B 0.078 0.200

Table 14: The ECE (Expected Calibration Error) of R-
Tuning-U and Vanilla-C.

fine-tune a model with both high accuracy and a 1158

high answer rate. 1159

A.9 Confidence Distribution of Training 1160

Dataset 1161

We calculate the confidence of the certain data D1 1162

and uncertain data d0, and they are shown in Fig- 1163

ure 7. 1164

A.10 AP Scores of Each Dataset and Model 1165

Size with Figures 1166

We calculate the AP scores for each dataset with dif- 1167

ferent model sizes in multi-task experiments. The 1168

results are shown in Table 11 and Figure 8. 1169
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Certain Data

Uncertain Data

Figure 6: The data distribution of the refusal-aware datasets obtained from supervised identification strategy. The
title of each sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 7: The confidence distribution of the training datasets on certain data and uncertain data. The title of each
sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 8: The AP curves on ParaRel, MMLU, WiCE, HotpotQA, FEVER, and HaluEval-QA datasets. The title of
each sub-figure consists of the dataset name and the size of the pre-trained model used to evaluate.
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Figure 9: The scatter distribution of sure probability of R-Tuning-U and Vanilla-C.

Figure 10: The distribution of sure probability of R-Tuning-U and Vanilla-C. They are both ranked by the confidence
score.

22



Figure 11: The ECE (Expected Calibration Error) on ParaRel dataset of R-Tuning-U and Vanilla-C.
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Figure 12: The ECE (Expected Calibration Error) on MMLU dataset of R-Tuning-U and Vanilla-C.
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Figure 13: The AP curves of R-Tuning, R-Tuning-U, Vanilla-C, and Vanilla-U on ParaRel and MMLU datasets.
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