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Abstract

In-context learning is the paradigm that adapts

large language models to downstream tasks by

providing a few examples. Few-shot selection—

selecting appropriate examples for each test in-

stance separately—is important for in-context

learning. In this paper, we propose SKILL-

KNN, a skill-based few-shot selection method

for in-context learning. The key advantages of

SKILL-KNN include: (1) it addresses the prob-

lem that existing methods based on pre-trained

embeddings can be easily biased by surface

natural language features that are not impor-

tant for the target task; (2) it does not require

training or fine-tuning of any models, making

it suitable for frequently expanding or chang-

ing example banks. The key insight is to opti-

mize the inputs fed into the embedding model,

rather than tuning the model itself. Techni-

cally, SKILL-KNN generates the skill-based

descriptions for each test case and candidate

example by utilizing a pre-processing few-shot

prompting, thus eliminating unimportant sur-

face features. Experimental results across five

cross-domain semantic parsing datasets and six

backbone models show that SKILL-KNN sig-

nificantly outperforms existing methods.

1 Introduction

In-context learning (Brown et al., 2020) has be-

come a prevailing paradigm for utilizing large lan-

guage models (LLMs) (Hendrycks et al., 2020;

Patel and Pavlick, 2021; Rae et al., 2021; Zhang

et al., 2022a; Hoffmann et al., 2022; Srivastava

et al., 2022; Chowdhery et al., 2022; Smith et al.,

2022; Wei et al., 2022a). It employs a frozen task-

agnostic backbone model to serve various down-

stream tasks without requiring parameter updates

for each task. Under in-context learning, the LLMs

generate output for an input query by condition-

ing on the prompt that contains input-output exam-

ples. Due to limited context length of the language
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(a) Raw-Input-Based Selection
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Figure 1: In-context learning with different selection

methods. (a) Examples from raw-input-based selection

just share similar entities with the input query. (b) With

the skill-based description, the selected examples con-

tain the desired task-specific skills.

model, only a few examples can be presented in the

prompt. Prior studies have found that the perfor-

mance of in-context learning is sensitive to the se-

lected in-context examples (Liu et al., 2022; Zhang

et al., 2022b; Chen et al., 2023b). Therefore, one

essential research question is: how to select proper

examples from a large example bank?

Raw-input-based selection is one widely applied

solution (Gao et al., 2021; Liu et al., 2022; Hu

et al., 2022). It involves embedding raw inputs of

examples using an off-the-shelf embedding model



DB Schema: employee (name, age, city, …) …
Question: Which cities do more than one 
employee under age 30 come from?

Prompting-Based Rewriting

Off-the-Shelf

Embedding Model

Skill-Based Descriptions

Input Query

Candidate 1:This task requires the greater-than 

and less-than constraints.

Candidate 2:This task requires to apply two
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Candidate … 

…

Example Bank

Skill-Based Selection
DB Schema: cinema (name, capacity, location, …) …
Question: Find the locations that have more than one 

movie theater with capacity above 300.

SQL Query: SELECT … WHERE capacity  >  300 GROUP 
BY location HAVING count(*)  >  1

DB Schema: endowment (school, donator, amount, …) …
Question : Find the number of schools that have more 

than one donator whose donation amount is less than 8.5.

SQL Query: SELECT ... WHERE amount  >  8.5 GROUP 

BY school HAVING count(*)  >  1

…

Context

DB Schema: employee (name, age, city, …) …
Question: Which cities do more than one employee under 

age 30 come from?

In-Context Learning

SQL Query: SELECT city FROM employee WHERE age 

< 30 GROUP BY city HAVING count(*) > 1 

Figure 2: The bird’s-eye view of SKILL-KNN, a rewrite-then-retrieve selection method to facilitate in-context

learning with skill-based descriptions.

and then selecting the most similar examples. It

can be conveniently applied in various downstream

tasks. However, this method can be easily biased

by surface natural language features that are not im-

portant for the target task. For instance, in semantic

parsing tasks1, the raw-input-based selection just

finds out examples with similar entities (as illus-

trated in Figure 1a), while the better in-context

examples should contain the required executable

operations in logical forms, which can be regarded

as the task-specific skills.

To overcome this limitation, we aim to make

this embedding-based selection better aware of the

intrinsic skills behind the raw inputs. We consider

to harness the power of prompting LLMs to con-

vert the desired skills from raw inputs, which

maintains the training-free advantage during selec-

tion. There has been much work trying to fine-tune

the embedding model for each task based on the

example bank (Rubin et al., 2022; Poesia et al.,

2022; Hu et al., 2022; Ye et al., 2023). However,

fine-tuning-based methods are difficult to apply in

practical scenarios: it is laborious to train and save

the embedding model for each task, and it is also

inconvenient to re-train the model on a dynamic

example bank that can be updated frequently.

Specifically, we introduce SKILL-KNN, a

training-free, skill-based selection method (briefly

illustrated in Figure 1b). Overall, SKILL-KNN will

first generate skill-based descriptions from raw

input queries, then feed these descriptions into an

off-the-shelf embedding model to select most simi-

lar examples. To generate skill-based descriptions,

we prompt a frozen LLM with just a few human-

1Semantic parsing means to parse an NL utterance into a
machine-understandable logical form (e.g., a SQL query).

annotated demonstrations, which does not require

any fine-tuning process and has no rule-based con-

straint. Additionally, to alleviate the sensitivity to

the order of annotated demonstrations during gener-

ation, we design two variants of SKILL-KNN: we

sample a set of candidate descriptions by shuffling

annotated demonstrations, then select candidate

based on consistency and distinctiveness, respec-

tively.

The experimental results show that SKILL-KNN

brings a considerable boost for in-context learning

compared to the raw-input-based selection. We

evaluate SKILL-KNN on five challenging semantic

parsing datasets: Spider (Yu et al., 2018b), Dr. Spi-

der (Chang et al., 2023), KaggleDBQA (Lee et al.,

2021), BIRD (Li et al., 2023c), and COGS (Kim

and Linzen, 2020). We take six models for

in-context learning: text-chat-davinci-002, code-

davinci-002, text-davinci-003, code-cushman-002,

gpt-35-turbo, and gpt-4. Across these tasks and

models, SKILL-KNN consistently performs best

among non-oracle selection methods and, at times,

is even comparable to oracle methods. For instance,

with text-chat-davinci-002, SKILL-KNN achieves

78.3% execution accuracy on Spider, while the best

raw-input-based selection method reaches 74.6%

and Target-KNN2 attains 78.6%. Furthermore, our

ablation study indicates that SKILL-KNN retains

its superiority when constraints are imposed on the

annotated demonstrations, including reducing the

number of demonstrations, restricting the database

diversity, and decreasing the operation coverage.

Our contributions are three-fold: 1) we propose

a skill-based few-shot selection method SKILL-

KNN, which leverages the power of prompting

2One of the oracle methods, detailed in Section 4.2.



Table 1: Part of our annotated skill-based descriptions for text-to-SQL tasks.

Input Query Database Schema Skill-Based Description

Show all majors.

allergy type [allergy, allergytype]

has allergy [stuid, allergy]

student [stuid, lname, fname, age, sex, major, ...]

To solve this task in the database, we need to select distinct

values in the column.

Count the number of different colleges that players

who play for Columbus Crew are from.

team [team id, name]

country [country id, country name, capital, ...]

match season [season, player, position, country, team, ...] ...

To solve this task in the database, we need to join two tables

and count the number of distinct values in the column.

Which catalog contents have a product stock number

that starts from "2"? Show the catalog entry names.

catalogs [catalog id, catalog name, catalog publisher, ...]

catalog structure [catalog level number, catalog id, ...]

catalog contents [catalog entry id, catalog level number, ...] ...

To solve this task in the database, we need to select one column

and apply a constraint on the format of values in this column.

LLMs to generate skill-based descriptions; 2) we

design two variants of SKILL-KNN based on con-

sistency and distinctiveness, respectively; 3) our

comprehensive experiments across various seman-

tic parsing tasks and backbone models demonstrate

the effectiveness of SKILL-KNN, and our analy-

sis of annotated demonstrations provides further

insights for better utilization of SKILL-KNN.

2 Preliminaries

In this section, we introduce embedding-based few-

shot selection as the preliminary of our method.

2.1 In-Context Learning with Few-Shot

Selection

Consider a downstream task T that contains a set

of input-output examples {(xi → yi)}
n (termed

example bank B)3 , and a pre-trained large language

model with frozen parameters θ. Given a test input

query xt, the large language model with in-context

learning will generate an output yt by sampling

from the following distribution,

yt ∼ LLMθ,τ [R(xt,B)⊕ xt], (1)

in which τ is the sampling temperature, R(xt,B)
returns a sequence of examples selected from B
according to xt, and ⊕ means to sequentially con-

catenate two sequences. In the later part of the

paper, we omit the frozen θ and set τ = 0 by de-

fault, which means to perform greedy decoding.

Few-shot selection aims to design the algorithm

R(xt,B) that can work well for task T .

2.2 Embedding-Based Few-Shot Selection

A standard implementation of R(xt,B) is to lever-

age an off-the-shelf embedding model Emb(·)
and calculate the embedding similarity of raw in-

puts (Liu et al., 2022),

sim(xt, xi) =
Emb(xt)Emb(xi)

T

|Emb(xt)||Emb(xi)|
, (2)

3In semantic parsing tasks, each input query contains a
natural language question along with the database schema.

in which xi is the input4 of one example (xi, yi) ∈
B. Based on Equation 2, we can select k most

similar examples from B. In addition, these exam-

ples will be sorted in the prompt according to their

similarities to the test input query: examples with

higher similarity scores will be placed closer to the

test input query.

This standard implementation of R(xt,B) is a

raw-input-based selection. It just searches for ex-

amples with similar inputs (i.e., the xt and xi in

Equation 2). Some recent researches propose to

fine-tune the embedding model (from Emb(·) to

Emb′(·)) (Rubin et al., 2022; Poesia et al., 2022;

Hu et al., 2022; Ye et al., 2023). In this paper, we

want to explore how to improve the effectiveness of

few-shot selection without training or fine-tuning

of any models.

3 SKILL-KNN

SKILL-KNN involves a rewrite-then-retrieve pro-

cess to better exploit the potential of in-context

learning. Figure 2 gives a bird’s-eye view of

our method. To mine and utilize task-specific

skills, SKILL-KNN contains a prompting-based

rewriting stage and a skill-based selection stage.

Prompting-based rewriting will prompt LLMs to

generate skill-based descriptions from the given

input query. Skill-based selection will return few-

shot examples based on these generated descrip-

tions. In the following, we elaborate the design of

SKILL-KNN.

3.1 Generating Skill-Based Descriptions

We prompt a frozen large language model to rewrite

each input query as a skill-based description, which

does not require any fine-tuning process. Specifi-

cally, we first annotate the skill-based descriptions

for 16 examples in B, then prompt the large lan-

4For raw-input-based selection, we only use the question in
the input query for embedding and omit the database schema,
as it contains much trivial and redundant information for the
question and could confuse the embedding model.



guage model with these annotated demonstrations

and generate for other examples in B and for each

test input query.

Note that we annotated skills with natural lan-

guage descriptions rather than rule-based con-

straints. It is important to note that off-the-shelf

embedding models are primarily pre-trained on nat-

ural language (NL) data and may not be well-suited

for handling specifically designed structural con-

straints. By annotating skills with NL descriptions,

we can better align with the off-the-shelf embed-

ding models, which in turn allows us to leverage

their generalizability when encoding unannotated

NL descriptions more effectively. Thus, these natu-

ral language skills can better suit the off-the-shelf

embedding model, and our annotated demonstra-

tions can better generalize to unseen data.

Formally, with a set of annotated demonstrations

{xa → sa} in which sa is the annotated skill-based

description for the raw input xa, we generate the

si for each unannotated input xi by prompting the

large language model,

si = LLM[{xa → sa} ⊕ xi], (3)

then, these descriptions are fed into the off-the-

shelf embedding model to select similar examples,

sim(st, si) =
Emb(st)Emb(si)

T

|Emb(st)||Emb(si)|
. (4)

Table 1 shows part of our annotated demonstrations

for text-to-SQL tasks, and all our annotations are

contained in Appendix E. Note that different text-

to-SQL tasks can share the same set of annotated

demonstrations in our experiments.

Equation 4 defines the basic version of SKILL-

KNN. Moreover, we notice that the generated skill-

based descriptions sometimes could be sensitive

to the order of annotated demonstrations. Such

a sensitivity is also observed in some previous

work (Zhao et al., 2021; Lu et al., 2022). Therefore,

we design two variants of SKILL-KNN to further

address this sensitivity issue.

3.2 Variants

To alleviate the influence from the sensitivity to

prompt order, we design two variants of SKILL-

KNN that change the order of annotated demonstra-

tions and perform rewriting multiple times. Specifi-

cally, for each input xi, both two variants generate a

set of candidate descriptions Si = {s1i , s
2

i , ..., s
m
i }

according to Equation 3 by changing the order in

Consistency-Based Distinctiveness-Based

Candidate Skill-Based Representations

Central Similarity Maximum Similarity

Figure 3: Two variants of SKILL-KNN. The blue and

green points represent two candidate sets of skill-based

representations.

{xa → sa}. Then, two variants use these can-

didate descriptions from the view of consistency

and distinctiveness, respectively. Figure 3 briefly

illustrates the basic ideas behind these two vari-

ants. Appendix B.1 provides further analysis for

the motivation behind the design of two variants.

Consistency-Based Variant. From the view of

consistency, we take the central embedding of all

candidate descriptions during selecting examples,

simc(St, Si) =
et ei

T

|et| |ei|
, e =

1

m

∑

sj∈S

Emb(sj),

(5)

in which St and Si represent two sets of candidate

descriptions for the test input xt and one example

(xi, yi) ∈ B, respectively. This variant is inspired

by prior work on improving the consistency of

chain-of-thought reasoning (Wang et al., 2022; Li

et al., 2022a). As illustrated in the left in Figure 3,

Equation 5 can be regarded as an embedding-level

majority voting among all candidate descriptions

during selection.

Distinctiveness-Based Variant. Considering

that the central embedding can sometimes be

overwhelmed by trivial candidates, we want to

highlight the most distinctive and informative

description among all candidates. Formally, we

consider the maximum similarity score between

two sets for selection,

simd(St, Si) = max
j,k

Emb(sjt )Emb(ski )
T

|Emb(sjt )||Emb(ski )|
, (6)

in which sjt ∈ St and ski ∈ Si. As illustrated in the

right in Figure 3, Equation 6 means that we take

the minimum distance among two set of candidates

for selecting similar examples.

4 Experimental Setup

In this section, we will introduce the tasks, com-

pared selection methods, backbone models, and



Table 2: Our main experimental results (%) across various LLMs and tasks. Numbers in bold are the best results

across non-oracle methods, and results with underlines can outperform at least one oracle method.

Backbone Method Spider
Dr. Spider

KDBQA BIRD
COGS

#Wins

DB NLQ SQL P.S. P.A.

text-chat-davinci-002

Random 72.9 54.1 58.1 68.2 24.1 35.7 59.1 61.5 0

KNN w/ SBERT (Liu et al., 2022) 73.0 51.6 58.2 67.3 24.3 38.3 78.5 71.1 0

KNN w/ OpenAI Babbage (Liu et al., 2022) 74.0 53.2 61.0 69.2 35.3 38.1 88.3 74.1 0

KNN w/ OpenAI Ada (Liu et al., 2022) 72.8 51.8 59.2 69.6 31.9 37.1 81.3 64.2 0

MMR w/ OpenAI Ada (Ye et al., 2022) 74.6 54.1 60.7 71.3 37.3 37.2 86.8 78.9 0

SKILL-KNN w/ SBERT (base) 76.8 55.3 60.3 72.1 34.7 38.9 93.8 88.3 0

+ consistency 76.0 54.8 60.3 71.9 33.8 38.2 94.3 87.9 0

+ distinctiveness 78.3 57.0 61.4 72.2 40.0 38.0 92.6 88.8 5

SKILL-KNN w/ OpenAI Ada (base) 77.1 55.4 60.5 70.9 38.7 38.9 94.9 95.6 1

+ consistency 77.2 54.8 59.6 71.1 40.0 38.3 95.2 93.5 2

+ distinctiveness 77.2 56.5 59.8 70.1 39.5 38.3 93.3 97.0 1

Target-KNN (oracle) 78.6 56.6 65.5 75.5 37.8 41.7 86.8 83.2 -

Target Sketch Matching (oracle) 79.5 54.2 65.1 76.2 40.4 40.8 96.9 95.7 -

code-davinci-002

Random 74.2 53.9 59.3 70.2 27.9 38.4 56.1 63.1 0

KNN w/ SBERT (Liu et al., 2022) 73.1 51.2 58.6 69.1 31.2 39.9 75.4 64.7 0

KNN w/ OpenAI Babbage (Liu et al., 2022) 73.6 50.7 59.6 69.1 37.5 38.2 85.4 72.4 0

KNN w/ OpenAI Ada (Liu et al., 2022) 72.7 50.4 60.2 69.5 35.7 38.2 77.3 60.3 0

MMR w/ OpenAI Ada (Ye et al., 2022) 74.8 53.7 60.7 69.4 37.8 37.9 84.9 75.4 0

SKILL-KNN w/ SBERT (base) 76.4 53.0 60.2 72.4 38.6 40.2 93.1 86.8 1

+ consistency 77.1 51.1 60.7 72.4 36.8 40.1 93.5 87.1 1

+ distinctiveness 77.4 55.0 60.9 71.0 43.0 38.9 91.9 88.4 3

SKILL-KNN w/ OpenAI Ada (base) 76.2 54.7 61.4 70.2 39.8 40.3 94.0 92.9 1

+ consistency 76.4 54.9 60.2 71.8 39.5 40.8 96.2 88.8 2

+ distinctiveness 76.6 55.0 60.6 70.2 38.9 40.8 93.5 94.0 3

Target-KNN (oracle) 78.8 56.1 68.2 76.4 44.5 44.3 85.9 79.7 -

Target Sketch Matching (oracle) 80.9 54.0 66.7 77.9 44.9 43.8 95.0 94.8 -

text-davinci-003

Random 69.0 52.2 55.1 64.5 20.6 36.0 65.5 61.2 0

KNN w/ SBERT (Liu et al., 2022) 69.9 50.2 56.1 67.2 21.0 37.7 82.1 71.1 0

KNN w/ OpenAI Babbage (Liu et al., 2022) 72.2 53.4 58.0 69.5 26.8 37.7 88.8 77.2 0

KNN w/ OpenAI Ada (Liu et al., 2022) 70.8 50.3 57.2 66.3 30.3 36.5 82.8 64.2 0

MMR w/ OpenAI Ada (Ye et al., 2022) 72.4 53.3 58.6 69.9 31.4 37.7 87.1 81.0 0

SKILL-KNN w/ SBERT (base) 74.9 54.4 59.0 70.2 32.9 38.0 94.8 88.4 0

+ consistency 75.3 54.8 59.0 70.6 32.0 38.1 94.3 89.2 0

+ distinctiveness 76.6 54.1 58.9 70.6 36.8 37.4 93.3 87.5 2

SKILL-KNN w/ OpenAI Ada (base) 74.2 55.2 59.5 68.5 34.0 38.4 95.7 94.3 1

+ consistency 74.3 55.0 59.5 71.0 36.8 40.2 96.7 92.7 5

+ distinctiveness 73.7 56.2 59.4 70.6 32.4 37.9 93.8 97.4 2

Target-KNN (oracle) 75.6 54.2 63.9 73.3 35.1 40.0 87.8 84.5 -

Target Sketch Matching (oracle) 76.4 52.5 61.4 72.0 31.6 39.8 97.6 95.3 -

code-cushman-002

Random 72.2 51.5 56.6 66.8 26.1 35.3 56.7 55.6 0

KNN w/ SBERT (Liu et al., 2022) 67.6 47.8 54.4 64.6 29.4 37.0 70.3 62.5 0

KNN w/ OpenAI Babbage (Liu et al., 2022) 71.6 48.6 56.4 66.8 36.4 36.4 77.5 71.6 0

KNN w/ OpenAI Ada (Liu et al., 2022) 68.9 48.1 57.3 67.4 31.9 34.8 71.3 54.7 0

MMR w/ OpenAI Ada (Ye et al., 2022) 69.3 49.8 57.1 68.6 36.2 36.8 75.6 72.8 0

SKILL-KNN w/ SBERT (base) 74.5 52.1 58.0 69.3 35.1 37.0 90.6 84.1 0

+ consistency 74.7 52.3 58.0 69.6 35.3 38.3 91.1 86.6 1

+ distinctiveness 72.8 52.0 58.8 67.2 40.8 35.9 91.8 83.2 2

SKILL-KNN w/ OpenAI Ada (base) 73.6 52.4 58.4 69.0 38.4 37.9 93.2 86.6 0

+ consistency 73.5 53.0 57.9 69.8 40.0 38.6 95.0 82.8 4

+ distinctiveness 73.7 51.2 57.6 67.9 38.9 37.3 91.9 90.9 1

Target-KNN (oracle) 77.6 52.5 65.6 73.8 40.8 41.7 77.0 72.8 -

Target Sketch Matching (oracle) 77.2 51.7 62.2 73.2 39.7 39.8 91.9 94.0 -

hyper-parameters in our experiments.

4.1 Tasks

We evaluate on five challenging cross-domain se-

mantic parsing datasets. Due to the cross-domain

property, the model can not easily solve these tasks

by just copying some similar surface features from

the provided in-context examples.

Spider (Yu et al., 2018b) is a large-scale text-to-

SQL dataset. It contains a train set with 7,000 ex-

amples and a dev set with 1,034 examples. More-

over, the train set and dev set do not share any

database. We take the train set of Spider as the

example bank, and evaluate on the dev set.

Dr. Spider (Chang et al., 2023) is a diagnostic

evaluation benchmark constructed based on Spider.

It contains 15,269 examples which can be divided

into 3 sub-tasks, according to the type of designed

perturbations: database perturbations (DB), natural

language question perturbations (NLQ), and SQL

query perturbations (SQL). We take the train set

of Spider as the example bank, since Dr. Spider is

purely an evaluation benchmark.

KaggleDBQA (Lee et al., 2021) (KDBQA) is a

small while complex dataset towards realistic eval-

uation of text-to-SQL semantic parsers. It contains

8 real Web databases with original formatting and



Table 3: Performance of gpt-35-turbo and gpt-4 on Spi-

der dev set.

Backbone Method Exec. Acc.

gpt-4

Random 76.1

KNN w/ SBERT (Liu et al., 2022) 76.7

Din-SQL (Pourreza and Rafiei, 2023) 74.2

SKILL-KNN w/ SBERT (base) 81.3

+ consistency 82.7

+ distinctiveness 82.3

gpt-35-turbo

Random 74.3

KNN w/ SBERT (Liu et al., 2022) 73.7

KNN w/ OpenAI Babbage (Liu et al., 2022) 73.4

SKILL-KNN w/ SBERT (base) 76.2

+ consistency 76.3

+ distinctiveness 76.8

Table 4: Comparison with the fine-tuning-based selec-

tion methods on Spider dev set.

Backbone Method Exec. Acc.

text-chat-davinci-002

EPR (Rubin et al., 2022) 74.4

CEIL (Ye et al., 2023) 75.0

TST (Poesia et al., 2022) 76.3

SKILL-KNN w/ SBERT (base) 76.8

code-davinci-002

EPR (Rubin et al., 2022) 75.9

SKILL-KNN w/ SBERT (base) 76.4

+ consistency 77.1

+ distinctiveness 77.4

text-davinci-003

EPR (Rubin et al., 2022) 69.7

SKILL-KNN w/ SBERT (base) 74.9

+ consistency 75.3

+ distinctiveness 76.6

code-cushman-002

EPR (Rubin et al., 2022) 74.6

SKILL-KNN w/ SBERT (base) 74.5

+ consistency 74.7

+ distinctiveness 72.8

275 unrestricted questions. Since ther is not much

data in KDBQA, we take it as a pure test set and

use the train set of Spider as the example bank.

BIRD (Li et al., 2023c) is a large scale text-to-SQL

dataset with real-world database contents. It has

9,428 training examples and 1,534 test cases in

the dev set. Each case in BIRD is equipped with

a description of the required external knowledge,

which is not contained in above three text-to-SQL

tasks. Since the database schema in BIRD is too

large, we first take grounding to reduce the size of

schema (detailed in Appendix D.4).

COGS (Kim and Linzen, 2020) is a synthetic

benchmark for testing compositional generalization

in semantic parsing. It can also be regarded as a

cross-domain setting, containing a significant distri-

bution shift between train set and test set. The logi-

cal form in COGS represents the thematic roles in

Table 5: Performance of SKILL-KNN and two baselines

on GSM8K.

Backbone Method Accuracy

text-chat-davinci-002

Random 69.1

KNN w/ SBERT (Liu et al., 2022) 69.9

SKILL-KNN w/ SBERT (base) 71.0

the input query (detailed in Appendix D.3). We use

the output format designed in An et al. (2023) and

evaluate on two sub-tasks, primitive substitution

(P.S.) and primitive structural alternation (P.A.).

4.2 Selection Methods

We mainly compare SKILL-KNN with training-

free selection methods.

Random. We randomly select examples from B as

in-context examples. For each test case, we take

random selections 3 times and average the results.

KNN (Liu et al., 2022). We test three off-the-shelf

embedding models: Sentence-BERT (SBERT)

with all-mpnet-base-v2 checkpoint5 (Reimers and

Gurevych, 2019), OpenAI embedding model6 with

text-similarity-babbage-001 checkpoint (OpenAI

Babbage), and OpenAI embedding model with

text-embedding-ada-002 checkpoint (OpenAI Ada).

KNN with OpenAI embedding models can serve as

strong baselines for training-free selection methods,

as these large models have been well pre-trained for

judging text similarity (Neelakantan et al., 2022).

MMR (Ye et al., 2022) is a dynamic selection

method to enhance the diversity of selected exam-

ples from KNN. It adds a penalty term according

to the similarity to the already selected examples.

We take OpenAI Ada for embedding and follow

the implementation details in Ye et al. (2022).

SKILL-KNN (ours). We test SKILL-KNN with

SBERT and OpenAI Ada. For the base version

of SKILL-KNN (i.e., without consistency or dis-

tinctiveness), we shuffle the order of annotated

demonstrations to generate m = 5 skill-based de-

scriptions for each input query and average the

results. There is a balance between achieving op-

timal performance and minimizing computational

costs. We provide more experimental analysis in

Appendix B.2. For two variants, we take all 5 gen-

erated descriptions as the candidate set.

5
https://www.sbert.net/.

6
https://platform.openai.com/docs/guides/embe

ddings/what-are-embeddings.

https://www.sbert.net/
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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Figure 4: Performance of SKILL-KNN (base version) with different number of annotated demonstrations.

Besides these training-free baselines, we also

compare with three fine-tuning-based methods.

These methods leverage the example bank for fine-

tuning the embedding model.

EPR (Rubin et al., 2022) requires a scoring LM to

produce positive/negative examples for fine-tuning

the embedding model, and we use GPT-J (Wang

and Komatsuzaki, 2021), a 6B-parameter LM as

the scoring LM7.

CEIL (Ye et al., 2023) proposes a compositional

selection method for tn-context learning. It models

the compositional interaction between the given

input and in-context examples, and fine-tunes the

selection model through a carefully-designed con-

trastive learning objective.

TST (Poesia et al., 2022) retrieves few-shot exam-

ples from a training bank using target similarity

tuning. It learns to recognize utterances that de-

scribe similar target programs despite differences

in surface natural language features.

In addition, we also compare with two oracle

methods, in which ground truth output sequences

are allowed to be leveraged for few-shot selection.

Target-KNN (oracle). We select examples with

similar output embeddings. We use OpenAI Bab-

bage and OpenAI Ada to encode the ground truth,

and take the best result of two models for each task.

Target Sketch Matching (oracle). We select in-

context examples with similar sketches of ground

truth. For text-to-SQL tasks, we calculate the over-

lap of SQL key words (detailed in Appendix D.6).

For COGS, we follow the target-side structural sim-

ilarity setting in An et al. (2023).

4.3 Backbones and Hyper-parameters

We conduct experiments with six OpenAI language

models as the backbones8: text-chat-davinci-002,

7OpenAI language models cannot be used as the scoring
function since OpenAI API does not provide this functionality.

8In this work, the “backbone” refers to the frozen large
language model for prompting.

code-davinci-002, text-davinci-003, code-cushman-

002, gpt-35-turbo, and gpt-4. For generating skill-

based descriptions, we always use gpt-3.5-turbo,

as it is cheap and fast. We select k = 4 in-context

examples in all experiments. We use execution-

with-values accuracy9 as the evaluation metric for

text-to-SQL tasks and exact-match accuracy for

COGS.

5 Main Results

Table 2, Table 3, and Table 4 report the main exper-

imental results. We also count the number of wins,

i.e., how many tasks (and sub-tasks) the method

performs best on.

SKILL-KNN performs better than raw-input-

based selection methods. Across all backbone

models and tasks, our skill-based selections achieve

the best performance among non-oracle methods.

Especially, SKILL-KNN with SBERT can even

outperform KNN with OpenAI embedding models.

These results clearly demonstrates the necessity

and effectiveness of our prompting-based rewrit-

ing. Appendix A.2 contains more experimental

comparisons with existing selection methods.

SKILL-KNN performs comparable/better than

fine-tuning-based method. Results in Table 4

show that SKILL-KNN can perform comparable

or even better than fine-tuning-based methods. It

demonstrates that optimizing the input to the em-

bedding model can also effectively help down-

stream tasks without any fine-tuning.

Variants with consistency and distinctiveness

can outperform the base version of SKILL-KNN.

As shown in the #Wins column in Table 2, two vari-

ants of SKILL-KNN outperform the base version

in most situations. It demonstrates that injecting

consistency and distinctiveness can effectively al-

leviate the order sensitivity. Overall, we recom-

mend choosing the distinctiveness variant as it wins

9We use the official evaluation scripts for Spider in
https://github.com/taoyds/test-suite-sql-eval.

https://github.com/taoyds/test-suite-sql-eval
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Figure 5: Performance of SKILL-KNN (base version) with constraints on selecting examples for annotating.

more times than the consistency variant (19 vs 15).

When looking into detailed results, different mod-

els prefer different variants of SKILL-KNN: text-

chat-davinci-002 and code-davinci-002 prefer to

the distinctiveness variant, while text-davinci-003

and code-cushman-002 prefer to the consistency

variant. We identify the potential factor that could

lead to different preferences in Appendix B.5.

SKILL-KNN is more robust to perturbations

than raw-input-based selections. Results on Dr.

Spider reflect the robustness towards perturbations

in data. For instance, with text-chat-davinci-002,

KNN with SBERT performs lower than the random

baseline on two out of three types of perturbations,

while all three versions of SKILL-KNN outperform

the random baseline on all three perturbations. It

indicates that SKILL-KNN leads to more robust

in-context learning than raw-input-based methods.

SKILL-KNN can be effective in the math rea-

soning task. Our study primarily evaluated the

effectiveness of SKILL-KNN in the semantic pars-

ing/code generation field. To further examine the

generalizability of SKILL-KNN beyond semantic

parsing, we have applied it to a challenging math

reasoning task, GSM8K (Cobbe et al., 2021). Re-

sults in Table 5 evidence that SKILL-KNN can also

be effective in tasks beyond semantic parsing.

6 Analysis

The most important mechanism in SKILL-KNN

is the prompting-based rewriting which requires a

few manually annotated demonstrations. Here we

investigate how would these demonstrations affect

the performance of SKILL-KNN. We experimen-

tally analyze two factors: the number of annotated

demonstrations and the selection of examples for

annotation. The following analysis takes the base

version of SKILL-KNN with SBERT as the embed-

ding model and the Spider dataset for evaluation.

More annotated demonstrations bring marginal

improvements. We decrease the default number

of annotated demonstrations from 16 to 4/8/12. The

results depicted in Figure 4 illustrate that a gradual

increase in the number of annotated demonstra-

tions can yield marginal improvements. Note that

SKILL-KNN maintains the advantage compared

with the raw-input-based selection even with only

four annotated demonstrations. This indicates that

the LLM can effectively learn how to rewrite from

a limited number of examples and generalize to a

wider range of unseen skills. This generalizability

is also supported by our case study in Appendix C.

SKILL-KNN retains its superiority when the

selection of annotation examples is constrained.

We constrain the selection of annotation examples

from two perspectives (detailed in Appendix D.1):

first, we limit the SQL operation coverage in anno-

tation examples; second, we restrict the annotation

examples to a few databases. Figure 5 shows that

applying these constraints to the selection of anno-

tation examples leads to only a minor decline in

performance, while still maintaining a substantial

advantage over raw-input-based selection.

7 Related Work

In-context learning has recently become a stan-

dard paradigm for effectively leveraging large lan-

guage models (Brown et al., 2020; Hendrycks et al.,

2020; Patel and Pavlick, 2021; Rae et al., 2021;

Zhang et al., 2022a; Hoffmann et al., 2022; Srivas-

tava et al., 2022; Chowdhery et al., 2022; Smith

et al., 2022; Wei et al., 2022a). Such a convenient

paradigm has been widely applied in various sce-

narios such as code generation (Chen et al., 2021;

Bareiß et al., 2022; Li et al., 2022b; Chen et al.,

2023a; Li et al., 2023b), arithmetic reasoning (Wei

et al., 2022b; Wang et al., 2022; Li et al., 2022a;

Shi et al., 2023; Qin et al., 2023), and semantic

parsing. From the view of leveraging skills for in-

context learning, most existing work considered

explicitly injecting symbolic systems into the re-

sponse of the model (Cheng et al., 2023; Creswell

et al., 2023; Schick et al., 2023; Shen et al., 2023;



Lu et al., 2023). This work aims to uncover the

intrinsic skills from the raw inputs of examples.

Semantic parsing with deep learning methods has

been explored in much existing work (Dong and

Lapata, 2016; Yu et al., 2018a; Xu et al., 2017; Guo

et al., 2019; Zhong et al., 2020; Wang et al., 2020;

Lin et al., 2020; Scholak et al., 2021; Qi et al.,

2022; Li et al., 2023a). Under the recent in-context

learning paradigm, there have been some prelimi-

nary observations: Shin et al. (2021) showed that

GPT-3 is better at generating English-like descrip-

tions rather than the raw logical forms; Rajkumar

et al. (2022) revealed that prompt design is essential

for semantic parsing with Codex; Liu et al. (2023)

showed that ChatGPT has a surprising zero-shot

performance on Spider and its variants; Pourreza

and Rafiei (2023) demonstrated that explicitly tak-

ing multiple stages for generating SQL leads to

better in-context learning performance. These ob-

servations indicate that in-context learning has a

great potential on solving semantic parsing tasks,

and this work aims to further activate this potential

from the view of improving few-shot selection.

Few-shot selection is one essential part for in-

context learning. The standard approach is to use

an off-the-shelf embedding model to encode raw

inputs and select top-k similar examples (Gao et al.,

2021; Liu et al., 2022; Hu et al., 2022). To improve

in semantic parsing tasks, much prior work tried

fine-tuning-based methods: Rubin et al. (2022) fine-

tuned the embedding model based on the condi-

tional probability under the language model; Poesia

et al. (2022) trained the model to fit the target-side

similarity; Hu et al. (2022) fine-tuned the model

based on the similarity of between state changes;

Ye et al. (2023) considered the interaction among in-

context examples during training the selector. Our

work points in a new direction that does not require

further fine-tuning: leveraging task-specific skills

by prompting large language models to rewrite in-

put queries. Beyond semantic parsing, some more

recent work tried to explore training-free selection

methods for in-context learning from different per-

spectives: Nguyen and Wong (2023) and Li and

Qiu (2023) tried to distill the whole example bank

into a small set of exemplars and focused on clas-

sification tasks; Wu et al. (2023) improved clas-

sification tasks through information compression;

Ye et al. (2022) and Ye and Durrett (2023) mainly

focused explanation-based tasks. This work pro-

poses prompting extremely large models to facili-

tate few-shot selection, which is a novel perspective

to harness the power of large language models.

8 Conclusion

This work proposes SKILL-KNN to facilitate in-

context learning on semantic parsing tasks. By gen-

erating skill-based descriptions without any fine-

tuning, SKILL-KNN and its two variant outper-

form raw-input-based selections in various tasks.

Limitations

GPU resources. Our experiments have a high

cost on GPU resources, since in-context learning

requires extremely large language models. Specif-

ically, all experiments are conducted on the 8 x

NVIDIA A100 GPU station. During inference time,

it takes about 2 x 8 GPU hours to generate for each

10,000 examples. Thus, it totally takes 400 ∼ 500
x 8 GPU hours to reproduce our Table 2.

Task type. We mainly evaluate SKILL-KNN on

cross-domain semantic parsing tasks, and we be-

lieve it can also help other challenging tasks where

some intrinsic task-specific skills are needed. How-

ever, for tasks that require only surface feature sim-

ilarity of in-context examples, we suppose the ad-

vantage of SKILL-KNN could be diminished.

Individual variants. We design two variants of

SKILL-KNN based on consistency and distinctive-

ness, respectively. An ideal variant should take into

account both these two aspects. We take this as a

future direction for our work.

Ethics Statement

Due to the use of pre-trained language models, this

work can be exposed to potential ethical risks as-

sociated with general deep learning models, such

as social bias and privacy breaches. We suppose

this work would be helpful to alleviate potential

ethical issues for in-context learning as it can better

overcome the surface-form biases in example bank.
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This is the Appendix of the paper: Skill-Based

Few-Shot Selection for In-Context Learning.

A More Experimental Results

We report more experimental results with SKILL-

KNN.

A.1 Recall@N Performance of SKILL-KNN

Table 6: Recall@N performance of SKILL-KNN with

distinctiveness on Spider dev set. The backbone model

is text-chat-davinci-002 and the sampling temperature

is 0.7.

Top-N 1 2 3 5 7 10

Recall@N (%) 80.3 85.0 87.4 89.2 89.9 90.8

Besides the performance of greedy-decoding,

we also evaluate the top-k recall performance of

SKILL-KNN. Since we cannot take beam search

with OpenAI interfaces, we implement the top-N
selection with sampling and re-ranking, following

the self-consistency setting (Wang et al., 2022).

Specifically, we first sample 100 sequences and

then select the k most frequently occurring se-

quences and evaluate their execution accuracy.

We take the text-chat-davinci-002 as the back-

bone model and set the sampling temperature as

0.7. We evaluate SKILL-KNN with distinctiveness

on Spider dev set. Table 6 shows that the recall rate

gradually goes up with increasing N and can even

achieve higher than 90% when we set N = 10.

Moreover, the top-1 in Table 6 is 80.3% which is

higher than the greedy-search performance (78.3%

in Table 2). It means that our SKILL-KNN can

obtain further gains from ensemble methods such

as self-consistency.

A.2 Comparison with More Baseline Methods

Table 7: Comparison with more baselines on Spider dev

set.

Backbone Method Exec. Acc.

text-chat-davinci-002

Random 72.9

Best-of-5 (Nakano et al., 2022) 73.7

K-Center (Sener and Savarese, 2018) 73.4

Influence (Nguyen and Wong, 2023) 73.4

DDP (Ye et al., 2023) 74.6

SKILL-KNN w/ SBERT (base) 76.8

Despite the baselines mentioned in Section 4.2,

here we reproduce more selection methods. Results

in Table 7 further demonstrate the advantage of

SKILL-KNN.

B More Analysis

B.1 Motivation Behind Two Variants of

SKILL-KNN

The motivation behind the two variants stems from

our consideration of disturbances from the prompt-

order sensitivity as additive noises to the ground-

truth skills during the rewriting process. The two

variants are designed to address two types of noise:

Zero-mean white noise which frequently occurs

in results and originates from a zero-mean distri-

bution (e.g., zero-mean Gaussian distribution). We

assume its magnitude is relatively small compared

to the ground truth. Zero-mean white noise can

cause the loss or redundancy of partial information

in the ground truth.

Spike noise which occasionally occurs in results

and has a much larger magnitude than the ground

truth. It strongly influences the information in the

ground truth and causes outliers.

The consistency-based variant is more effec-

tive at addressing zero-mean white noise, as the

averaging operation reduces the variance of zero-

mean noise. The distinctiveness-based variant is

better suited for handling spike noise, as it miti-

gates the influence of outliers. The final results in

our Table 2 indicate that both types of noise occur

in our LLM-based rewriting, as evidenced by the

close win times of the two variants (19 vs 15).

To further support that two variants are better at

tackling two different types of noise, we conduct

additional analysis from two perspectives.

Table 8: The selection accuracy of different variants

under different noise patterns.

Zero-Mean White Noise Spike Noise

Consistency 95.4% 81.9%

Distinctiveness 90.4% 87.9%

Evaluation of selection performance. We ex-

amined the performance of each variant in select-

ing better examples from the example bank under

the two noise patterns. We construct some syn-

thetic data for automated evaluation: we take 1,000

unique embeddings of skill-based descriptions as

ground truth, then we add noise on each ground-

truth embedding to construct the sample set, and



finally we assess whether each sample set could

correctly select the original ground-truth embed-

ding. The accuracies are shown in Table 8.

Human evaluation of rewriting. In Spider dev

set, we first identified examples where one vari-

ant can always succeed with different LLMs

while the other variant always failed. Then, we

check the frequency of spike noise occurrences

in these examples through human evaluation. We

checked 23 examples and found that: for examples

where the consistency-based variant wins, the spike

noise occurs in 0.4 sample/set; for examples that

distinctiveness-based variant wins, the spike noise

occurs in 1.6 sample/set.

The results of the above analysis further evi-

dence that the consistency-based variant performs

better than the distinctiveness-based variant under

the zero-mean white noise but performs worse un-

der the spike noise.

B.2 The Choice of Hyper-Parameter m

Table 9: Performance with m = 3/5/7/9 (Dataset:

Spider, LLM: code-cushman-002, variant: consistency).

m 3 5 7 9

Exec. Acc. (%) 72.8 74.7 75.1 75.0

The two variants of SKILL-KNN require to gen-

erate m candidate skill-based descriptions. In our

experiments, we set m = 5 as a trade-off be-

tween achieving optimal performance and minimiz-

ing computational costs. During our initial explo-

ration, we had experimented with m = 3/5/7/9.

As shown in Table 9, the performance improves

marginally when m > 5. Therefore, we decided to

set m = 5.

B.3 Measuring Diversity of SKILL-KNN and

Oracle methods

Table 10: Number of different databases among selected

examples. This can reflect the diversity of in-context

examples selected by different methods.

Number of Different Databases Spider Dr. Spider KDBQA

SKILL-KNN (distinctiveness) 2.83 2.84 2.88

Target-KNN (oracle) 2.18 2.16 2.21

A surprising observation in Table 2 is that with

the same backbone model for in-context learning,

our SKILL-KNN could sometimes outperforms or-

acle methods. Specifically, SKILL-KNN consis-

tently outperforms at least one oracle method on

the DB sub-task in Dr. Spider and two sub-tasks

in COGS (marked with underlines). Such an ob-

servation could be caused by the different diversity

in selected examples. As indicated in Levy et al.

(2022) and An et al. (2023), beyond the similar-

ity to the test case, a higher diversity among in-

context examples could also help better perform

cross-domain generalization under in-context learn-

ing. Oracle methods directly seek higher similarity,

thus the selected examples may be less diverse,

which could slightly hamper the generalization per-

formance. To reflect the diversity of in-context ex-

amples, we count the number of different databases

among selected examples. Statistics in Table 10

shows that SKILL-KNN can lead to a higher diver-

sity than oracle method, which is in line with our

hypothesis.

B.4 Why do skill-based descriptions perform

better?

Since both SKILL-KNN and raw-input-based meth-

ods use the embedding similarity for selection, we

suppose that the higher performance of SKILL-

KNN can be contributed by some desired prop-

erties in the embedding space of skill-based de-

scriptions. Based on this inspiration, we visualize

the embedding space of both raw input queries

and skill-based descriptions with t-SNE (Van der

Maaten and Hinton, 2008). More details are con-

tained in Appendix D.7.

Under the embedding space of skill-based de-

scriptions, the distribution of test cases is closer

to that of the example bank, thus benefiting

cross-domain generalization. For the raw-input-

based embeddings of test cases, Figure 6a shows

that these embeddings are mainly centralized in

some local parts. On the one hand, the example

bank can not be fully utilized under this embedding

space, since the top-k similar examples must be

around the local parts of test cases. On the other

hand, the different distributions represent that this

space does not reveal the inner similarity between

test cases and example bank, thus is helpless to

facilitate cross-domain generalization. Under the

skill-based embedding space (shown in Figure 6b),

the distributions of test cases and the example bank

are better matched. Therefore, the cross-domain

generalization gap can be better bridged with skill-

based descriptions.
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Figure 6: T-SNE visualization for the embedding space of (a) raw input queries and (b) skill-based descriptions.

The orange points are from the dev set in Spider while the gray points are from example bank.

The skill-based embedding space is more sparse,

thus the boundary of similar examples is more

clear and can be more robust to perturbations.

As shown in Figure 6a, the raw-input-based embed-

ding space is almost evenly distributed. It means

that for one embedding in this space, the bound-

ary to determine "which examples are similar" is

not clear enough. Without a clear boundary for

selecting similar examples, the performance could

be non-robust to perturbations in data. Compared

with the embeddings of raw inputs, the skill-based

embeddings shown in Figure 6b are more clustered,

thus the KNN-based selection can be more robust

to data perturbations.

B.5 What factors cause the different

performances of two variants?

As mentioned in Section 5, different backbone mod-

els prefer different variants of SKILL-KNN. As

both two methods aim to improve skill-based simi-

larity, such performance differences indicate that

beyond similarity, some other factors also influence

in-context learning. An et al. (2023) and Rajkumar

et al. (2022) indicated that the complexity of se-

lected examples could be one potential factor. Here,

we explore whether the two variants differ in the

complexity of the selected examples.

Consistency-based variant always leads to

more complex in-context examples than

distinctiveness-based variant. Here, we mainly

check the complexity of in-context examples for

text-to-SQL tasks from two perspectives: (1)

the average number of tables, which reflects the

complexity of database, and (2) the average length

of SQL queries, which reflects the hardness of

searching. As shown in Figure 7, consistency-

based variant leads to higher complexity than

distinctiveness-based variant in all tasks and under

both perspectives. It can help to explain why

different models prefer different variants: text-chat-

davinci-002 and code-davinci-002 prefer simpler

in-context examples while text-davinci-003 and

code-cushman-002 are more robust to different

complexity.

C Case Study

Considering that the quality of generated skill-

based description can be one key factor that influ-

ences the effectiveness of SKILL-KNN, we man-

ually check the generated skills for 100 examples.

We find that 86/100 generated skills are exactly

correct; 12/100 are almost correct but need some

partial modifications (e.g., the number of joined

tables); and only 2/100 generated skills are totally

wrong.

Moreover, during manually checking the qual-

ity of generated skills, we surprisingly find that

there are some novel descriptions about skills that

are not presented in our annotated examples. Ta-

ble 11 shows some examples. It indicates that the

prompting-based rewriting can provide a degree of

generalization of unannotated skills.

D Detailed Settings of Experiments

In this section, we provide more details about our

experimental settings.

D.1 Select Examples for Annotation

In our default setting, we consider two principles to

select examples for annotating the required skills:

1) ensuring coverage of all logical operations found

in the example bank and 2) selecting examples

from diverse databases. Specifically, we first find

all used logical operations in the example bank and
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Table 11: Case study for generated skill-based descriptions in Spider. Texts in purple are novel descriptions that are

not presented in our annotations.

Input Query Generated Skill SQL

display the emails of the employees who have no commission percentage and salary

within the range 7000 to 12000 and works in that department which number is 50.

To solve this task in the database, we need to select one column, apply an

interval constraint, apply a null constraint, and apply an equality constraint.

SELECT email FROM employees WHERE commission_pct = "null" AND

salary BETWEEN 7000 AND 12000 AND department_id = 50

What are the salaries and manager ids for employees who have managers?
To solve this task in the database, we need to select two columns and apply

a non-null constraint on the values in another column.
SELECT salary , manager_id FROM employees WHERE manager_id != "null"

What is all the information about the Marketing department?
To solve this task in the database, we need to select all columns and apply

a constraint on the values in one column.
SELECT * FROM departments WHERE department_name = ’Marketing’

greedily cover these operations in a few examples.

Then, we randomly select more examples from

various databases until there are 16 examples.

In our ablation study shown in Figure 5, to con-

strain the operation coverage, we just remove our

first selection step; to constrain the database diver-

sity, we just select examples from two databases.

D.2 Inference Hyper-Parameters

During inference, we set the max decoding length

to 200, and the sampling temperature to 0.

D.3 Input-Output Formats

Figure 8 shows some input-output examples to il-

lustrate the data formats in our experiments.

Note that the output format of COGS follows the

transformation in An et al. (2023) which converts

the original long-chain format into a more com-

pact function-calling format. Such a transforma-

tion is similar to the conversion from Lambda cal-

culus to FunQL in Geo domain(Zelle and Mooney,

1996; Kate et al., 2005; Zettlemoyer and Collins,

2012). It improves the human readability by omit-

ting two types of details in original format: the

special marker for definite descriptions and the

Skolem constants. Apart from the omitted details,

this transformation keeps the main semantics in the

domain of COGS, such as semantic roles, modifica-

tions, and orders among clauses and modifications.

D.4 Evaluation on BIRD

Different from other text-to-SQL tasks, BIRD ad-

ditionally provides “evidence” for each natural lan-

guage question. Therefore, we add the evidence

as part of the context for in-context learning. For

evaluating raw-input-based methods on BIRD, we

concatenate the natural language question and the

additional evidence to compute the embedding. For

our SKILL-KNN, we also provide the evidence for

rewriting, and we use 12 annotated demonstrations

with evidence (shown in Appendix E).

Since the database schema in BIRD is too large

to be fully contained in the context for LLM, we

reduce the size of schema through grounding in pre-

processing. Specifically, we calculate the embed-

ding similarity between the input question (along

with the evidence) and each table name and column

name. Based on this similarity, we preserve 8 tables

each with 16 columns for each schema-question

pair.

D.5 Evaluation on COGS

COGS totally contains 24,155 examples in train

set and 21,000 examples in gen set. To reduce

the high computational cost, we sample 2,000 ex-

amples from the train set as the example bank for

in-context learning, and sample 1,000 examples

from two sub-tasks primitive substitution (P.S.) and

primitive structural alternation (P.A.) which are de-

fined in An et al. (2023).

D.6 Target Sketch Matching for SQL

As mentioned in Section 4.2, to select in-context

examples with target sketch matching (oracle) in

text-to-SQL tasks, we calculate the overlap of SQL

key words between the example from example



bank and the labeled SQL query of the test input

query. We mainly consider the following SQL key

words along with several operations for calcula-

tion: SELECT, WHERE, GROUP, HAVING, ORDER,

DESC, ASC, LIMIT, JOIN, INTERSECT, EXCEPT,

UNION, NOT, IN, OR, AND, BETWEEN, EXISTS,

LIKE, DISTINCT, COUNT, AVG, MIN, MAX, SUM,

CAST, CASE, WHEN, THEN, ELSE, END, IIF,

REAL, FLOAT, NULL, STRFTIME, *, /, =, >,

,<, !, +, -, %. Based on these key words, the

target sketch similarity between two SQL queries

yt and yi is calculated as follows,

simk(yt, yi) = |KW(yt) ∩KW(yi)|, (7)

in which KW(·) returns a set of contained key

words.

D.7 T-SNE Visualization

For the visualized embedding space in Figure 6,

we use Sentence-BERT as the embedding model

and take examples from both example bank and

dev set in Spider. For SKILL-KNN, we take its

consistency-based variant. To accelerate the vi-

sualization process, we just take examples with

medium hardness (defined in Yu et al. (2018b)). We

use the implementation of t-SNE from the sklearn

library10. We set the learning rate of t-SNE as

“auto”, init method as “random”, and perplexity as

3.

E Annotated Demonstrations

Table 12 lists 16 annotated demonstrations for text-

to-SQL tasks and Table 13 lists another 12 an-

notated demonstrations with evidence (which is

required in BIRD). Table 14 lists 16 annotated

demonstrations for COGS. Appendix D.1 intro-

duces how we select these examples.

10
https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/


Table 12: Annotated demonstrations for text-to-SQL tasks. All these examples are from the example bank of Spider.

DB ID Input Query Annotated Skill-Based Descriptions

allergy_1 Show all majors. To solve this task in the database, we need to select distinct values in the column.

match_season
Count the number of different colleges that players

who play for Columbus Crew are from.

To solve this task in the database, we need to join two tables and count the number

of distinct values in the column.

gymnast
What are the hometowns of gymnasts and the

corresponding number of gymnasts?

To solve this task in the database, we need to join two tables, select one column,

group these selections and count the number of selections in each group.

gas_company
Show minimum, maximum, and average market

value for all companies.

To solve this task in the database, we need to return the minimum value, the

maximum value, and the average of values in the column.

culture_company
Show the years, book titles, and publishers for all books,

in descending order by year.

To solve this task in the database, we need to select three columns and sort them

in descending order according to the values in one column.

product_catalog
Which catalog contents have a product stock number

that starts from "2"? Show the catalog entry names.

To solve this task in the database, we need to select one column and apply a

constraint on the format of values in this column.

bike_1
What are the dates in which the mean sea level pressure

was between 30.3 and 31?

To solve this task in the database, we need to select one column and apply a

constraint that the values in another column should in a certain range.

flight_1

What is the salary and name of the employee who has

the most number of certificates on aircrafts with distance

more than 5000?

To solve this task on the database, we need to join three tables, apply a

greater-than constraint, group the selections and calculate the number of each group,

sort the selections in descending order, and select the top result.

bike_1
What is the average longitude of stations that never had

bike availability more than 10?

To solve this task in the database, we need to calculate the average value in one

colum, apply an non-inclusion constraint with another set of selections, which

need to group the selctions and find which groups have a maximum value greater

than the threshold.

hr_1

display all the information of employees whose salary is

in the range of 8000 and 12000 and commission is not null

or department number does not equal to 40.

To solve this task in the database, we need to give full information about selections,

apply an interval constraint, and apply an optional constraint that two unequal

judgments should be satisfied at least one.

bike_1
What are the ids of stations that have latitude above 37.4

and never had bike availability below 7?

To solve this task in the database, we need to exclude the selections in the second set

from the first set: the first set of selections need to apply a greater-than constraint, and

the second set of selctions need to group the selctions and find which groups have a

minimum value lower than the threshold.

bike_1

What are the names and ids of stations that had more

than 14 bikes available on average or were installed

in December?

To solve this task in the database, we need to return the union of two set of selections:

the first set of selections need to join two tables, group the selections and find which

groups have an average value greater than the threshold, and the second set of selections

need to apply a constaint on the format of values.

storm_record
Show storm name with at least two regions and

10 cities affected.

To solve this task in the database, we need to return the intersection of two set of

selections: the first set of selections need to join two tables, group the selections and

find which groups have a number of selections greater than or equal to the threshold,

and the second set of selections need to join two tables, group the selections

and find which groups have a sum of values larger than or equal to the threshold.

formula_1
List the forenames of all distinct drivers in

alphabetical order?

To solve this task in the database, we need to select distinct values in one column

and sort these selections in ascending order according to the selected values.

hr_1
display job ID for those jobs that were done by two

or more for more than 300 days.

To solve this task in the database, we need to apply a greater-than constraint on

the difference between two values, group the selections and find which groups have

a number of selections greater than or equal to the threshold.

small_bank_1

Find the names and total checking and savings balances

of accounts whose savings balance is higher than the

average savings balance.

To solve this task in the database, we need to select one column and add the values

in another two columns, join three tables, and apply a greater-than constraint where

the threshold is the average of another set of selected values.



For Rewriting: For Semantic Parsing:

Context:

Generate a SQL query for the given natural language task 

and database schema.

### Database schema:

department (Department_ID, Name, Creation, Ranking, 

Budget_in_Billions, Num_Employees)

head (head_ID, name, born_state, age)

management (department_ID, head_ID, temporary_acting)

### Task: How many acting statuses are there?

(Optional) ### Evidence: xxx

### SQL query: SELECT count(DISTINCT temporary_acting) 

FROM management

### Database schema:

…

### Database schema:

stadium (Stadium_ID, Location, Name, Capacity, Highest, 

Lowest, Average)

singer (Singer_ID, Name, Country, Song_Name, 

Song_release_year, Age, Is_male)

concert (concert_ID, concert_Name, Theme, Stadium_ID, 

Year)

singer_in_concert (concert_ID, Singer_ID)

### Task: How many singers do we have?

(Optional) ### Evidence: xxx

### SQL query:

Completion:

SELECT count(*) FROM singer

Context:

Generate the needed skills to solve the task on the database 

schema.

### Database schema:

allergy_type (allergy, allergytype)

has_allergy (stuid, allergy)

student (stuid, lname, fname, age, sex, major, advisor, 

city_code)

### Task: Show all majors.

(Optional) ### Evidence: xxx

### Skills: To solve this task in the database, we need to 

select distinct values in the column.

### Database schema

…

### Database schema:

department (department_id, name, creation, ranking, 

budget_in_billions, num_employees)

head (head_id, name, born_state, age)

management (department_id, head_id, temporary_acting)

### Task: What are the maximum and minimum budget of 

the departments?

(Optional) ### Evidence: xxx

### Skills: To solve this task in the database, we need to

Completion:

return the minimum value and the maximum value in one 

column.

(a) Formats of Text-to-SQL Tasks (with Optional Evidence for BIRD)

For Rewriting: For Semantic Parsing:

Context:

Please generate the semantic representations for the 

following sentences.

### Sentence: Emma proved that a citizen offered a frog a 

cake on the stage .

### Semantics: PROVE ( EMMA , NONE , NONE ) CCOMP 

OFFER ( CITIZEN , ON ( CAKE , STAGE ) , FROG )

### Sentence: A child attempted to smirk .

### Semantics: ATTEMPT ( CHILD , NONE , NONE ) XCOMP 

SMIRK ( CHILD , NONE , NONE )

…

### Sentence: The cookie beside a table was shortened .

### Semantics:

Completion:

SHORTEN ( NONE , BESIDE ( COOKIE , TABLE ) , NONE )

Context:

Generate the required skills to parse the following 

sentences.

### Sentence: Isabella liked that Elizabeth saw .

### Skill: This sentence contains a clause in which the verb 

'saw' has no object.

### Sentence: A sandwich was fed to a giraffe .

### Skill: This sentence is in the passive voice and has a 

prepositional phrase (i.e., 'to noun phrase') which describes 

the recipient of the verb.

…

### Sentence: A rose was helped by a dog .

### Skill:

Completion:

This sentence is in the passive voice and has a prepositional 

phrase (i.e., 'by noun phrase') which describes the agent of 

the verb.

(b) Formats of COGS

Figure 8: Input-output formats used in our experiments.



Table 13: Annotated demonstrations for text-to-SQL task with evidence. All these examples are from the example

bank of BIRD.

DB ID Input Query Evidence Annotated Skill-Oriented Descriptions

superstore
Please list any three orders that caused a loss

to the company.
caused a loss to the company refers to Profit < 0

To solve this task in the database, we need to select one column,

apply a less-than constraint, and return three results.

disney
Calculate the percentage of voice actors whose

main character in the movie is in the Drama genre.

DIVIDE(COUNT(voice-actor where genre = ’Drama’),

COUNT(voice-actor)) as percentage;

To solve this task in the database, we need to join three tables and

calculate a percentage number. Additionally, to calculate the percentage

number, we need to count the number of values with an equivalent

constraint, cast the count into a real number, multiply this number

by 100, and divide it by the another count.

legislator
Among the legislators who will end in 2009,

how many are from the Republican party?

the legislators who will end in 2009 refers to END 2009;

from the Republican party refers to party = ’Republican’

To solve this task in the database, we need to select two columns,

apply an equivalent constraint on the time and an equivalent

constraint on the text value.

works_cycles

Calculate the average length of employment for

employee working in the Research and Development

deparment.

average length of employment =

AVG(subtract(2022, year(HireDate)))

To solve this task in the database, we need to get two times, calculate

the differences between two times, and calculate the average of these

differences. Additionally, we need to join three tables and apply an

equivalent constraint.

retail_complains

Among the teenager clients who use Google

account and Microsoft account, which group

of client is more than the other?

teenager refers to 13 < age < = 19; Google account refers

to email like ’%@gmail.com’; Microsoft account refers

to email like ’%@outlook.com’

To solve this task in the database, we need to compare the number of

values in two formats, and return the value that has a higher number.

Additionally, we need to apply a between-and constraint.

university
What are the top three universities with the most

international students?

most international students refers to MAX(SUM(DIVIDE(

MULTIPLE(pct_international_students, num_students), 100)));

name of university refers to university_name;

To solve this task in the database, we need to select distinct values

from one cloumn, join two tables, group the results, order the results

in descending order according to the sum of values, and return the top three

results. Additionally, during getting the sum of values, we need to multiply

the values in one column with percentages in another column and divide the

results by 100.

airline
What is the percentage of flights which landed

at Pittsburgh were faster than scheduled?

percentage = MULTIPLY(DIVIDE(SUM(

ACTUAL_ELAPSED_TIME < T2.CRS_ELAPSED_TIME),

COUNT(Code)), 100); landed at refers to DEST;

Pittsburgh refers to Description which contains ’Pittsburgh’;

faster than scheduled refers to

ACTUAL_ELAPSED_TIME < CRS_ELAPSED_TIME;

To solve this task in the database, we need to compare values in two

columns and convert the comparison result into a percentage. Additionally,

we need to join two tables, apply a constraint on the format of values in one

column, and ensure that the values in two columns are not null. Moreover, to

get the percentage number, we need to cast the sum of values into a real

number, multiply this number by 100, and divide it by the total count.

retail_complains
Between 1/1/2017 and 4/1/2017, what is the average

server time of calls under the server DARMON?

between 1/1/2017 and 4/1/2017 refers to Date received between

’2017-01-01’ and ’2017-04-01’;

average server time refers to avg(ser_time)

To solve this task in the database, we need to calculate the average of

the selected values and apply a between-and constraint. Additionally, to

obtain the times from values in text format, we need to extract substrings

from these texts and cast them into real numbers.

soccer_2016 When did Chennai Super Kings play its first match?

match date refers to Match_Date; Chennai Super Kings refers

to Team_Name = ’Chennai Super Kings’;

first match refers to min(Match_Date)

To solve this task in the database, we need to apply an either-or

constraint, sort the selected results in ascending order, and return the top

one result.

retails
Which ship mode has more "deliver in person"

instructions, rail or mail?

ship mode refers to l_shipmode; "deliver in person" instruction

refers to l_shipinstruct = ’DELIVER IN PERSON’

To solve this task in the database, we need to count the number of two

values in ome column and return the value with a larger count. Additionally,

we need to apply an equality constraint.

cookbook
Which ingredient appeared the most in recipes?

Calculate its amount of appearance in percentage.

ingredient appeared the most in recipes refers to MAX(

COUNT(ingredient_id)); calculation = MULTIPLY(DIVIDE(

COUNT(MAX(ingredient_id)), COUNT(ingredient_id)), 100)

To solve this task in the database, we need to select one column and

calculate one percentage number, join two tables, group the selected results,

and sort the results in descending order according to the size of each group.

Additionally, to calculate the percentage number, we need to cast the count

of vaules into a float number, multiply this number by 100, and divide it by

the another count.

Table 14: Annotated demonstrations for COGS. All these examples are from the example bank of COGS.

Input Query Annotated Skill-Based Descriptions

Isabella liked that Elizabeth saw . This sentence contains a clause in which the verb ’saw’ has no object.

A sandwich was fed to a giraffe .
This sentence is in the passive voice and has a prepositional phrase

(i.e., ’to noun phrase’) which describes the recipient of the verb.

Benjamin froze . The verb ’froze’ has no object.

Sophia was given a cookie by Emma .
This sentence is in the passive voice, has an object and has a prepositional

phrase (i.e., ’by noun phrase’) which describes the agent of the verb.

Sophia liked a box on the cake . This sentence has a single object with a modification phrase.

Emma sold the drink beside a road to a zebra .
This sentence has a direct object with a modification phrase and has a prepositional

phrase (i.e., ’to noun phrase’) which describes the recipient of th verb.

A lion ate . The verb ’ate’ has no object.

Eleanor was offered the ball . This sentence is in the passive voice and has an object.

A box was helped . This sentence is in the passive voice and has no object or prepositional phrase.

The fish dreamed to walk . This sentence has an infinitive verb.

A cat lended a lawyer the cake . This sentence has an indirect object and a direct object.

The basket was handed to a cat by Emma .

This sentence is in the passive voice and has two prepositional phrases: the first one

(i.e., ’to noun phrase’) describes the recipient of the verb and the second one (i.e., ’by noun phrase’)

describes the agent of the verb.

Sofia thought that a pancake rolled . This sentence contains a clause in which the verb ’rolled’ has no object.

Liam hoped that the boy wanted to dance . This sentence contains a clause that has an infinitive verb.

The cat gave Ethan a rose on the table . This sentence has an indirect object and a direct object with a modification phrase.

The duke was passed the shell on a table

in the house by Emma .

This sentence is in the passive voice, has an object with a nested modification phrase,

and has a prepositional phrase (i.e., ’by noun phrase’) which describes the agent of the verb.


