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Abstract

Despite recent success in using the invariance principle for out-of-distribution
(OOD) generalization on Euclidean data (e.g., images), studies on graph data are
still limited. Different from images, the complex nature of graphs poses unique
challenges to adopting the invariance principle. In particular, distribution shifts on
graphs can appear in a variety of forms such as attributes and structures, making it
difficult to identify the invariance. Moreover, domain or environment partitions,
which are often required by OOD methods on Euclidean data, could be highly
expensive to obtain for graphs. To bridge this gap, we propose a new framework,
called Causality Inspired Invariant Graph LeArning (CIGA), to capture the invari-
ance of graphs for guaranteed OOD generalization under various distribution shifts.
Specifically, we characterize potential distribution shifts on graphs with causal
models, concluding that OOD generalization on graphs is achievable when models
focus only on subgraphs containing the most information about the causes of labels.
Accordingly, we propose an information-theoretic objective to extract the desired
subgraphs that maximally preserve the invariant intra-class information. Learning
with these subgraphs is immune to distribution shifts. Extensive experiments on 16
synthetic or real-world datasets, including a challenging setting – DrugOOD,from
AI-aided drug discovery, validate the superior OOD performance of CIGA1.

1 Introduction

Graph representation learning with graph neural networks (GNNs) has gained great success in tasks
involving relational information [45, 35, 99, 106, 107]. However, it assumes that the training and
test graphs are drawn from the same distribution, which is often violated in reality [37, 47, 38, 40].
The mismatch between training and test distributions, i.e., distribution shifts, introduced by some
underlying environmental factors related to data collection or processing, could seriously degrade
the performance of deployed models [7, 24]. Such out-of-distribution (OOD) generalization failures
become the major roadblock for practical applications of graph representation learning [40].

Meanwhile, enabling OOD generalization on regular Euclidean data has received surging attention
and several solutions were proposed [4, 81, 10, 49, 23, 48, 2]. In particular, the invariance principle
from causality is at the heart of those works [76, 74, 79]. The principle leverages the Independent
Causal Mechanism (ICM) assumption [74, 77] and implies that, model predictions that only focus on
the causes of the label can stay invariant to a large class of distribution shifts [76, 4, 2].

∗Work done during an internship at Tencent AI Lab.
1Code is available at https://github.com/LFhase/CIGA.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/LFhase/CIGA


“Cycle”

“House”

ClassificationInvariant Subgraph Identification

Cycle

House
Ĝc

fcg

(a)

Algorithm OOD Guarantee Regime E Known SCM Support

IRM [4] Yes R Yes PIIF
IB-IRM [2] Yes R Yes PIIF&FIIF
EIIL [23] Yes R No PIIF

DANN [31] N/A R Yes N/A
MatchDG [61] N/A R Yes FIIF
GroupDro [81] N/A R Yes N/A

CNC [124] N/A R No N/A
GIB [120] Yes G No FIIF
DIR [104] No G No FIIF

CIGA (Ours) Yes G No PIIF&FIIF

(b)

Figure 1: (a) Illustration of Causality Inspired Invariant Graph LeArning (CIGA): GNNs need to
classify graphs based on the specific motif (“House” or “Cycle”). The featurizer g will extract an
(orange colored) subgraph Ĝc from each input for the classifier fc to predict the label. The training
objective of g is implemented in a contrastive strategy where the distribution of Ĝc at the latent sphere
will be optimized to maximize the intra-class mutual information, hence predictions will be invariant
to distribution shifts; (b) An overview of potential algorithms for OOD generalization on graphs.

Despite the success of the invariance principle on Euclidean data, the complex nature of graphs raises
several new challenges that prohibit direct adoptions of the principle. First, distribution shifts on
graphs are more complicated. They can happen at both attribute-level and structure-level, and be
observed in multiple forms such as graph sizes, subgraph densities and homophily [113, 11, 102].
On the other hand, each of the shifts can spuriously correlate with labels in different modes [4, 71, 2].
Consequently, the entangled complex distribution shifts make it more difficult to identify and capture
the invariance on graphs. Second, OOD algorithms developed and analyzed on Euclidean data
often require additional environment (or domain) labels for distinguishing the sources of distribution
shifts [4]. However, the environment labels could be highly expensive to obtain and thus often
unavailable for graphs, as collecting the labels usually requires expert knowledge due to the abstraction
of graphs [37]. These challenges render the problem studied in this paper even more challenging:

How could one generalize the invariance principle to enable OOD generalization on graphs?

To solve the above problem, we propose Causality Inspired Invariant Graph LeArning (CIGA), a
new framework for capturing the invariance of graphs to enable guaranteed OOD generalization under
different distribution shifts. Specifically, we build three Structural Causal Models (SCMs) [74] to
characterize the distribution shifts that could happen on graphs: one is to model the graph generation
process, and the other two are to model two possible interactions between invariant and spurious
features during the graph generation, i.e., Fully Informative Invariant Feature (FIIF) and Partially
Informative Invariant Feature (PIIF) (Sec. 2.2). Then, we generalize the invariance principle to
graphs for OOD generalization: GNN models are invariant to distribution shifts if they focus only
on an invariant and critical subgraph Gc that contains the most of the information in G about the
underlying causes of the label. Thus, the problem of achieving OOD generalization on graphs can be
rephrased into two processes: invariant subgraph identification and label prediction. Accordingly,
shown as Fig. 1(a), we introduce a prototypical invariant graph learning algorithm that decomposes
a GNN into: a) a featurizer g for identifying the underlying invariant subgraph Gc from G; b) a
classifier fc for making predictions based on Gc. To extract the desired subgraph Gc, we derive an
information-theoretic objective for the featurizer to identify subgraphs that maximally preserves the
invariant intra-class information across a set of different (unknown) environments. We theoretically
show that this approach can provably identify the underlying Gc under mild assumptions (Sec. 3).

Experiments on 16 synthetic and real-world datasets with various distribution shifts, including a
challenging setting from AI-aided drug discovery [40], show that CIGA can significantly outperform
all of existing methods up to 10%, demonstrating its promising OOD generalization ability (Sec. 4).

Related Work. We review existing methods that might improve the OOD generalization on graphs,
summarize the main differences between our solution and them in Table 1(b), and leave thorough
discussions to Appendix B.2. On Euclidean data, Invariant Learning [4, 23, 2], Group Distributionally
Robust Optimization [49, 81, 124], Domain Adaption and Domain Generalization [31, 93, 52, 27, 61,
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100] are three widely adopted approaches to enable OOD generalization. However, they all have their
own limitations when being applied to graphs. First, previous invariant learning methods are mostly
developed and analyzed for Euclidean data [4, 2, 23], or under specific SCM assumptions [4], making
the theoretical results hardly able to generalize to the complicated graph data [80] that can have
multiple types of distribution shifts [71]. Group Distributionally Robust Optimization that minimizes
the gap between worst group risk and average risk [49, 81, 124], and Domain Adaption/Generalization
methods that aim to learn class-conditional domain invariant representations [31, 93, 52, 27, 100],
cannot guarantee a min-max optimal predictor without additional assumptions [126, 4, 2]. Moreover,
most existing methods require environment labels that are however expensive to obtain in graphs,
which limits their applications to graphs [4, 49, 2, 81, 31, 93, 27, 61]. In contrast, we aim to develop
OOD algorithms for graphs that are provably generalizable under different types of distribution shifts.

Another line of relevant works is about GNN explainability that aims to find a subgraph of the input as
the explanation for a GNN prediction [116, 122]. Although some may leverage causality to justify the
generated explanation [53], they mostly focus on understanding the predictions of GNNs instead of
for OOD generalization. The closest works to ours are two interpretable GNNs that aim to explicitly
extract a subgraph for both predictions and explanations guided by information theory [120] and
causality [104], respectively. However, they focus on graphs and shifts generated under a specific
SCM. Although one of them can provide theoretical guarantee for OOD generalization [120] by using
the information bottleneck criteria [2], they would inevitably fail to generalize to graphs generated
under different SCMs. More discussions about the failure are deferred to Appendix D.4. Besides,
Bevilacqua et al. [11] also discuss OOD generalization on graphs but limited to a specific graph
family and graph size shifts. Wu et al. [103] propose OOD generalization algorithms on graphs for
the task of node classification, also limited to graphs and shifts under a specific SCM.

To the best of our knowledge, there is no existing work that could handle more comprehensive graph
distribution shifts than CIGA, while also achieving provable OOD generalization performance.

2 OOD Generalization on Graphs through the Lens of Causality

2.1 Problem Setup

In this work, we focus on OOD generalization in graph classification. Specifically, we are given a set
of graph datasets D = {De}e collected from multiple environments Eall. Samples (Ge

i , Y
e
i ) ∈ De

from the same environment are considered as drawn independently from an identical distribution Pe. A
GNN ρ◦h generically has an encoder h : G → Rh that learns a meaningful representation hG for each
graph G to help predict the label ŶG = ρ(hG) with a downstream classifier ρ : Rh → Y . The goal of
OOD generalization on graphs is to train a GNN ρ ◦ h with data from training environments Dtr =
{De}e∈Etr⊆Eall that generalizes well to all (unseen) environments, i.e., to minimize maxe∈Eall R

e,
where Re is the empirical risk of ρ ◦ h under environment e [97, 4]. We leave more details about the
background of GNN for graph classification and invariant learning in Appendix B.1.

It is known that OOD generalization is impossible without assumptions on the environments Eall [74,
2]. Thus, we will first formulate the data generation process with structural causal model and latent-
variable model [74, 77, 50], to characterize the distribution shifts that could happen on graphs. Then,
we investigate whether the existing methods are generalizable under these distribution shifts.

2.2 Graph Generation Process

SC

Gc Gs

G

(a) G-Gen. SCM

E

SY G

C

(b) FIIF SCM

E

SY G

C

(c) PIIF SCM

Figure 2: SCMs on graph distribution shifts.

We take a latent-variable model per-
spective on the graph generation pro-
cess and assume that the graph is
generated through a mapping fgen :
Z → G, where Z ⊆ Rn is the la-
tent space and G = ∪∞N=1{0, 1}N ×
RN×d is the graph space. Let E de-
note environments. Following previ-
ous works [50, 2], we partition the la-
tent variable from Z into an invariant
part C ∈ C = Rnc and a varying part

3



S ∈ S = Rns , s.t., n = nc + ns, according to whether they are affected by E or not. Similarly in
images, C and S can represent content and style while E can refer to the locations where the images
are taken [7, 125, 50]. Furthermore, C and S control the generation of the observed graphs (Assump-
tion 2.1) and can have multiple types of interactions at the latent space (Assumptions 2.2, 2.3).

Graph generation model. We elaborate the SCM for the graph generation process in Assumption 2.1
and Fig. 2(a), where noises in the structural equations are omitted for simplicity [77].
Assumption 2.1 (Graph Generation Structural Causal Model).

Gc := fGc
gen (C), Gs := fGs

gen (S), G := fG
gen(Gc, Gs).

In Assumption 2.1, fgen is decomposed into fGc
gen , fGs

gen and fG
gen to control the generation of Gc, Gs,

and G, respectively. Among them, Gc inherits the invariant information of C that would not be
affected by the interventions (or changes) of E [74, 77]. For example, certain properties of a molecule
can usually be described by a sub-molecule, or a functional group, which is invariant across different
species or assays [12, 92, 40]. On the contrary, the generation of Gs and G will be affected by the
environment E through S. Thus, graphs collected from different environments (or domains) can have
different distributions of structure-level properties (e.g., graph sizes [11, 102]) as well as feature-level
properties (e.g., homophily [62, 17]). Therefore, the subgraph Gs inherits the spurious feature about
Y [125]. In fact, Assumption 2.1 is compatible with many graph generation models by specifying the
function classes of fGc

gen , fGs
gen and fG

gen [89, 57, 117, 59]. Since our goal is to characterize the potential
distribution shifts in Assumption 2.1, we focus on building a general SCM that is compatible to many
graph families and leave graph family specifications and their implications to OOD generalization in
future works. More discussions are provided in Appendix C.

Interactions at latent space. Following previous works [4, 2], we categorize the latent interactions
between C and S into Fully Informative Invariant Features (FIIF, Fig. 2(b)) and Partially Informative
Invariant Features (PIIF, Fig. 2(c))2, depending on whether the latent invariant part C is fully
informative about label Y , i.e., (S,E) ⊥⊥ Y |C. Formal definitions of the corresponding SCMs are
given as follows, where noises are omitted for simplicity [74, 77].
Assumption 2.2 (FIIF Structural Causal Model). Y := finv(C), S := fspu(C,E), G := fgen(C, S).

Assumption 2.3 (PIIF Structural Causal Model). Y := finv(C), S := fspu(Y,E), G := fgen(C, S).

In the two SCMs above, fgen corresponds to the graph generation process in Assumption 2.1, and fspu
is the mechanism describing how S is affected by C and E at the latent space. By definition, S is
directly controlled by C in FIIF and indirectly controlled by C through Y in PIIF, which can exhibit
different behaviors in the observed distribution shifts. In practice, performances of OOD algorithms
can degrade dramatically if one of FIIF or PIIF is excluded [5, 71]. This issue can be more serious
in graphs, since different distribution shifts can have different interaction modes at the latent space.
Moreover, finv : C → Y indicates the labelling process, which assigns labels Y for the corresponding
G merely based on C. Consequently, C is better clustered than S when given Y [13, 15, 86, 87],
which also serves as the necessary separation assumption for a classification task [69, 16, 65].
Assumption 2.4 (Better Clustered Invariant Features). H(C|Y ) ≤ H(S|Y ).

2.3 Challenges of OOD Generalization on Graphs

Built upon the graph generation process, we can formally derive the desired GNN that is able to
generalize to OOD graphs under different distribution shifts, which implies the invariant GNN below3.
Definition 2.5 (Invariant GNN). Given a set of graph datasets {De}e and environments Eall that
follow the same graph generation process in Sec. 2.2, considering a GNN ρ ◦h that has a permutation
invariant graph encoder h : G → Rh and a downstream classifier ρ : Rh → Y , ρ ◦ h is an invariant
GNN if it minimizes the worst case risk among all environments, i.e., minmaxe∈Eall R

e.

Can existing methods produce a desired invariant GNN model? We find the answers to be negative
unfortunately. Based on the synthetic BAMotif graph classification task [58, 104] shown in Fig. 3,

2Note that FIIF and PIIF can be mixed as Mixed Informative Invariant Features (Appendix 6(d)) in several
ways, while our analysis will focus on the axiom ones for the purpose of generality.

3A discussion on Def. 2.5 and its relation to the SCMs is provided in Appendix E.1.
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(c) Mixed with graph size shifts.

Figure 3: Failures of OOD generalization on graphs: (a) GNNs are required to classify whether
the graph contains a “house” or “cycle” motif, where the colors represent node features. However,
distribution shifts in the training data exist at both structure-level (from left to right: “house” mostly
co-occur with a hexagon), attribute-level (from upper to lower: nodes are mostly colored green if the
graph contains a “house”, or colored blue if the graph contains a “cycle”), and graph sizes, making
GNNs hard to capture the invariance. Consequently, ERM can fail for leveraging the shortcuts and
predicting graphs that have a hexagon or have nodes mostly colored green as “house”. IRM can fail
as the test data are not sufficiently supported by the training data. (b) GCNs optimized with neither
ERM nor IRM can generalize to OOD graphs under structure-level shifts (Struc-) or mixed with
feature shifts (Mixed-). (c) When more complex shifts presented, GNNs can fail more seriously.

we theoretically and empirically analyze whether existing methods could produce an invariant GNN,
through the investigation of the following aspects. More details and results are given in Appendix D.

Can GNNs trained with ERM generalize to OOD graphs? As shown in Fig. 3, we find that GNNs
trained with the standard empirical risk minimization (ERM) algorithm [97] are not able to generalize
to OOD graphs. As the data biases grows stronger, the performances of GNNs drop dramatically.
Furthermore, when graph size shifts are mixed in the data, GNNs can have larger variance at low data
biases, indicating the instability of learning the desired relationships for the task. The reason is that
ERM tends to overfit to the shortcuts or spurious correlations presented in specific substructures or
attributes in the graphs [33]. This phenomenon has also been shown to exist in GNNs equipped with
more sophisticated architectures such as attention mechanisms [99], under graph size shifts [46].

Can OOD objectives improve OOD generalization of GNNs? Meanwhile, as shown in
Fig. 3, OOD objectives primarily developed on Euclidean data such as invariant risk minimiza-
tion (IRM) [4] also cannot alleviate the problem. On the contrary, IRM can fail catastrophi-
cally at non-linear regime if without sufficient support overlap for the test environments, i.e.,
∪e∈Ete supp(Pe) ̸⊆ ∪e∈Etr supp(Pe) [80]. In addition to IRM, the failure would also happen for
alternative objectives [49, 9, 2] as proved by Rosenfeld et al. [80]. Besides, different distribution
shifts on graphs can be nested with each other where each one can have distinct spurious correlation
type, e.g., FIIF or PIIF. OOD objectives will also fail seriously if either of the correlation types is not
supported [5, 71]. Moreover, non-trivial environment partitions or labels are required for performance
guarantee of these OOD objectives [4, 49, 81, 2]. However, collecting meaningful environment
partitions of graphs requires expert knowledge about graph data. Thus, the environment labels can be
expensive to obtain and are usually not available [67, 28, 37]. Alternative options such as random
partitions tend not to alleviate the issue [23, 55], as it can be trivially deemed as mini-batching.

Challenges of OOD generalization on graphs. The aforementioned failure analysis reveals that
existing methods or objectives fail to elicit an invariant GNN primarily due to the following two
challenges: a) Distribution shifts on graphs are more complicated where different types of spurious
correlations can be entangled via different graph properties; b) Environment labels are usually not
available due to the abstraction of graphs. Despite these challenges, we are still highly motivated
to address the following research question: Would it be possible to learn an invariant GNN that is
generalizable under various distribution shifts by lifting the invariance principle to the graph data?

3 Invariance Principle for OOD Generalization on Graphs

We provide affirmative answers to the previous question by proposing a new framework, CIGA:
Causality Inspired Invariant Graph LeArning. Specifically, built upon the SCMs in Sec. 2.2, we
generalize the invariance principle to graphs and instantiate the principle with theoretical guarantees.
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3.1 Invariance for OOD Generalization on Graphs

Towards extending the invariance principle to graphs under SCMs in Sec. 2.2, we need to identify a set
of variables that have stable causal relationship with Y under both FIIF and PIIF (Assumption 2.2, 2.3).
According to the ICM assumption [77], the labeling process C → Y is not informed nor influenced
by other processes, implying that the conditional distribution P (Y |C) remains invariant to the
interventions on the environment latent variable E [74]. Consequently, for a GNN with a permutation
invariant encoder h : G → Rh and a downstream classifier ρ : Rh → Y , if h can recover the
information of C from G in the learned graph representations, then the learning of ρ resembles
traditional ERM [97] and can achieve the desired min-max optimality required by an invariant GNN
(Def. 2.5). However, recovering C from G is particularly difficult, since the generation of G from C
involves two causal mechanisms fGc

gen and fG
gen in Assumption 2.1. The unavailability of E further

adds up the difficulty of enforcing the independence between the learned representations and E.

3.2 Invariant Graph Learning Framework

Causal algorithmic alignment. To enable a GNN to learn to extract the information about C from
G, we propose the CIGA framework that explicitly aligns with the two causal mechanisms fGc

gen and
fG

gen in Assumption 2.1. The idea of alignment in CIGA is motivated by the algorithmic reasoning
results that a neural network can learn a reasoning process better if its computation structure aligns
with the process better [108, 110]. Specifically, we realize the alignment by decomposing a GNN
into two sub-components4: a) a featurizer GNN g : G → Gc aiming to identify the desired Gc; b) a
classifier GNN fc : Gc → Y that predicts the label Y based on the estimated Gc, where Gc refers to
the space of subgraphs of G. Formally, the learning objectives of fc and g can be formulated as:

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G), (1)

where maximizing I(Ĝc;Y ) is equivalent to minimizing a variational upper bound of R(fc(Ĝc)) [3,
120] that takes Ĝc as inputs to predict label Y for G through fc and g, and Ĝc is the estimated
subgraph containing the information about C and hence needs to be independent of E. Moreover, the
extracted Gc can either shares the same graph space with input G or has its own space with latent
node and edge features, depending on the specific graph generation process. In practice, architectures
from the literature of interpretable GNNs are compatible with CIGA [122], hence can serve as
practical choices for the implementation of CIGA. More details are given in Appendix F.

Although we can technically align with the two causal mechanisms with g and fc, trivially optimizing
this architecture cannot satisfy Ĝc ⊥⊥ E. Formally, merely maximizing I(Ĝc;Y ) may include a
subgraph from Gs in Ĝc since Gs also shares certain mutual information with Y . Moreover, the
unavailability of E prevents the direct usage of E in enforcing the independence that is often adopted
by previous methods [4, 49, 81, 31, 93], making the identification of Gc more challenging.

Optimization objective. To mitigate this issue, we need to find and translate other properties of Gc

into some differentiable and equivalent objectives to satisfy the independence constraint Ĝc ⊥⊥ E.
The goal of the desired objective. We begin by considering a simplistic setting where all the invariant
subgraphs Gc have the same size sc, i.e., |Gc| = sc

5. When maximizing I(Ĝc;Y ) in Eq. 1, both FIIF
and PIIF can introduce part of Gs into Ĝc. In FIIF (Fig. 2(b)), as Gc already contains the maximal
possible information in G about Y , Gc is a solution to max I(Ĝc;Y ). However, some subgraph of
Gc can be replaced by some subgraph of Gs that is equally informative about Y . In PIIF (Fig. 2(c)),
there also exists some subgraph of Gs that contains additional information about Y than Gc, hence
Ĝc is more likely to involve some subgraph of Gs. Thus, the new objective needs to eliminate the
auxiliary subgraphs of Ĝc from Gs such that the estimated Ĝc can only contain Gc.

An important property of Gc. Under both FIIF and PIIF SCMs (Fig. 2), for Ge1
c , Ge2

c that relate
to the same causal factor c under two environments e1 and e2, the desired Ĝe1

c , Ĝe2
c in e1 and e2

tend to have high mutual information, i.e., (Ge1
c , Ge2

c ) ∈ argmax I(Ĝe1
c ; Ĝe2

c ). While for Ge1
c

4The encoder of the GNN in CIGA can be regarded as the composition of g and the graph encoder in fc.
5Throughout the paper, we use generalized set operators for the ease of understanding. They can have

multiple implementations in terms of nodes, edges or attributes.
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and another Ge1
c′ corresponding to a different c′ ̸= c, under the same environment e1, including any

subgraph from Ge1
s in Ĝe1

c , Ĝe1
c′ will enlarge their mutual information, or in other words, (Ge1

c , Ge1
c′ ) ∈

argmin I(Ĝe1
c ; Ĝe1

c′ ). Thus, we can derive an important property of Gc, that is, ∀e1, e2 ∈ Eall,

Ge1
c ∈ argmaxĜe1

c
I(Ĝe1

c ; Ĝe2
c |C = c)− I(Ĝe1

c ; Ĝe2
c′ |C = c′, c′ ̸= c), (2)

where Ĝe1
c and Ĝe2

c are the estimated invariant subgraphs corresponding to the same causal factor c
under environment e1 and e2, respectively, while Ĝe2

c′ corresponds to a different causal factor c′.

Deriving CIGAv1 based on the identified property of Gc. In practice, C is not given. Nevertheless,
since C and Y shares a stable causal relationship in both FIIF and PIIF SCMs, Y can serve as a
proxy of C in Eq. 2. Moreover, as Eq. 2 holds for any ∀e1, e2 ∈ Eall, the environment superscripts
can be eliminated without affecting Eq. 2. Furthermore, when both I(Ĝe1

c ; Ĝe2
c |C = c) and I(Ĝc;Y )

are maximized, I(Ĝe1
c ; Ĝe1

c′ |C = c′, c′ ̸= c) is automatically minimized, otherwise all classes will
collapse to trivial solutions which is contradictory given I(Ĝc;Y ) being maximized. Therefore, we
can derive an alternative objective to Eq. 1 by leveraging Eq. 2 to replace the independence condition:

(CIGAv1) max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ), (3)

where G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share the same
label Y as G. In Theorem 3.1, we show how Eq. 3 is equivalent to Eq. 1. Nevertheless, Eq. 3 requires
a strong assumption on the size of Gc. However, the size of Gc is usually unknown or changes for
different Cs. In this circumstance, maximizing Eq. 2 without additional constraints will lead to the
presence of part of Gs in Ĝc. For instance, Ĝc = G is a trivial solution to Eq. 3 when sc =∞.

Deriving CIGAv2 by resolving size constraint on Gc in CIGAv1. To this end, we further resort to
the properties of Gs. In both FIIF and PIIF SCMs (Fig. 2), Gs and Gc can share certain overlapped
information about Y . When maximizing I(Ĝc; G̃c|Y ) and I(Ĝc;Y ), the appearance of partial Gs

in Ĝc will not affect the optimality. However, it can reduce the mutual information between the
left part Ĝs = G− Ĝc and Y , i.e., I(Ĝs;Y ). Therefore, by maximizing I(Ĝs;Y ), we can reduce
including part of Gs into Ĝc. Meanwhile, to avoid trivial solution that Gc ⊆ Ĝs during maximizing
I(Ĝs;Y ), we can leverage the better clustering property of Gc implied by Assumption 2.4 to derive
the constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ). Thus, we can obtain a new objective CIGAv2 as follows:

maxfc,g I(Ĝc;Y ) + I(Ĝs;Y ), s.t. Ĝc ∈ argmaxĜc=g(G)I(Ĝc; G̃c|Y ),

(CIGAv2) I(Ĝs;Y ) ≤ I(Ĝc;Y ), Ĝs = G− g(G),
(4)

where Ĝc = g(G), G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share
the same label Y as G. We also prove the equivalence between Eq. 4 and Eq. 1 in Theorem 3.1.

3.3 Theoretical Analysis and Practical Discussions

Theorem 3.1 (CIGA Induces Invariant GNNs). Given a set of graph datasets {De}e and environ-
ments Eall that follow the same graph generation process in Sec. 2.2, assuming that (a) fG

gen and fGc
gen

in Assumption 2.1 are invertible, (b) samples from each training environment are equally distributed,
i.e.,|Dê| = |Dẽ|, ∀ê, ẽ ∈ Etr, then:

(i). If ∀Gc, |Gc| = sc, then each solution to Eq. 3, elicits an invariant GNN (Def. 2.5).
(ii). Each solution to Eq. 4, elicits an invariant GNN (Def. 2.5).

We prove Theorem 3.1 (i) and (ii) in Appendix E.2, E.3, respectively.

Practical implementations of CIGA objectives. After showing the power of CIGA, we introduce
the practical implementations of CIGAv1 and CIGAv2 objectives. Specifically, an exact estimate of
the second term I(Ĝc; G̃c|Y ) could be highly expensive [96, 8]. However, contrastive learning with
supervised sampling provides a practical solution for the approximation [42, 20, 82, 96, 8]:

I(Ĝc; G̃c|Y ) ≈ E{Ĝc,G̃c}∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y≠Y )

log
eϕ(hĜc

,hG̃c
)

eϕ(hĜc
,hG̃c

) +
∑M

i=1 e
ϕ(hĜc

,hGi
c
)
, (5)
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Table 1: OOD generalization performance on structure and mixed shifts for synthetic graphs.

SPMOTIF-STRUC† SPMOTIF-MIXED†

BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90 AVG

ERM 59.49 (3.50) 55.48 (4.84) 49.64 (4.63) 58.18 (4.30) 49.29 (8.17) 41.36 (3.29) 52.24
ASAP 64.87 (13.8) 64.85 (10.6) 57.29 (14.5) 66.88 (15.0) 59.78 (6.78) 50.45 (4.90) 60.69
DIR 58.73 (11.9) 48.72 (14.8) 41.90 (9.39) 67.28 (4.06) 51.66 (14.1) 38.58 (5.88) 51.14

IRM 57.15 (3.98) 61.74 (1.32) 45.68 (4.88) 58.20 (1.97) 49.29 (3.67) 40.73 (1.93) 52.13
V-REX 54.64 (3.05) 53.60 (3.74) 48.86 (9.69) 57.82 (5.93) 48.25 (2.79) 43.27 (1.32) 51.07
EIIL 56.48 (2.56) 60.07 (4.47) 55.79 (6.54) 53.91 (3.15) 48.41 (5.53) 41.75 (4.97) 52.73
IB-IRM 58.30 (6.37) 54.37 (7.35) 45.14 (4.07) 57.70 (2.11) 50.83 (1.51) 40.27 (3.68) 51.10
CNC 70.44 (2.55) 66.79 (9.42) 50.25 (10.7) 65.75 (4.35) 59.27 (5.29) 41.58 (1.90) 59.01

CIGAV1 71.07 (3.60) 63.23 (9.61) 51.78 (7.29) 74.35 (1.85) 64.54 (8.19) 49.01 (9.92) 62.33
CIGAV2 77.33 (9.13) 69.29 (3.06) 63.41 (7.38) 72.42 (4.80) 70.83 (7.54) 54.25 (5.38) 67.92
ORACLE (IID) 88.70 (0.17) 88.73 (0.25)
†Higher accuracy and lower variance indicate better OOD generalization ability.

where positive samples (Ĝc, G̃c) are the extracted subgraphs of graphs that share the same label as
G, negative samples are those having different labels, Pg(G|Y = Y ) is the push-forward distribution
of P(G|Y = Y ) by featurizer g, P(G|Y = Y ) refers to the distribution of G given the label Y ,
P(G|Y ̸= Y ) refers to the distribution of G given the label that is different from Y , hĜc

, hG̃c
, hGi

c

are the graph presentations of the estimated subgraphs, and ϕ is the similarity metric for graph
representations. As M → ∞, Eq. 5 approximates I(Ĝc; G̃c|Y ), which can be regarded as a non-
parameteric resubstitution entropy estimator via the von Mises-Fisher kernel density [1, 41, 101].
Thus, plugging it into Eq. 3 and Eq. 4 can relieve the issue of approximating I(Ĝc; G̃c|Y ) in practice.

To implement I(Ĝs;Y ) given the constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ) in CIGAv2, a practical choice is
to adopt hinge loss that implement the constrained I(Ĝs;Y ) as 1

NRĜs
· I(RĜc

≤ RĜs
), where N is

the number of samples, I is an indicator function that outputs 1 when the inner condition is satisfied
otherwise 0, and RĜs

and RĜc
are the empirical risk vector of the predictions for each sample based

on the corresponding Ĝs and Ĝc. More implementation details can be found in Appendix F.

Discussions and implications of CIGA. Although using contrastive learning to improve OOD
generalization is not new in the literature [27, 61, 124], previous methods cannot yield OOD guaran-
tees in graph circumstances due to the highly non-linearity and the unavailability of domain labels
E. In particular, CIGA can be reduced to directly applying contrastive learning when without
the decomposition for causal algorithmic alignment. However, in the experiments we found that
merely using the contrastive objective, i.e., CNC [124], yields unsatisfactory OOD generalization
performance, which further implies the necessity of the decomposition in CIGA.

Moreover, the architecture of CIGA can have multiple other implementations for both the featurizer
and classifier, such as identifying Gc at the latent space [86, 87]. Since we cannot enumerate every
possible implementation, in this work we choose interpretable GNN architectures as a prototype
validation for CIGA and leave more sophisticated architectures as future works. In particular, when
optimized with ERM objective, CIGA can be reduced to interpretable GNNs. However, merely
using interpretable GNNs such as ASAP [78], GIB [120] or DIR [104] cannot yield satisfactory OOD
performance. As shown in Table 1(b) and discussed in Appendix. D.4, GIB can only work for FIIF,
while DIR cannot yield OOD guarantees for neither FIIF and PIIF SCMs. These results are also
empirically validated in the experiments. We provide more detailed discussions in Appendix B.

4 Empirical Studies

We conduct extensive experiments with 16 datasets to verify the effectiveness of CIGA.

Datasets. We use the SPMotif datasets from DIR [104] where artificial structural shifts and graph size
shifts are nested (SPMotif-Struc). Besides, we construct a harder version mixed with attribute shifts
(SPMotif-Mixed). To examine CIGA in real-world scenarios with more complicated relationships
and distribution shifts, we also use DrugOOD [40] from AI-aided Drug Discovery with Assay,
Scaffold, and Size splits, convert the ColoredMNIST from IRM [4] using the algorithm from Knyazev
et al. [46] to inject attribute shifts, and split Graph-SST [122] to inject degree biases. To compare with
previous specialized OOD methods for graph size shifts [113, 11], we use the datasets in Bevilacqua
et al. [11] that are converted from TU benchmarks [67]. More details can be found in Appendix G.1.

Baselines and our methods. Besides the ERM, we also compare with SOTA interpretable GNNs,
GIB [120], ASAP Pooling [78], and DIR [104], to validate the effectiveness of the optimization
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Table 2: OOD generalization performance on complex distribution shifts for real-world graphs.

DATASETS DRUG-ASSAY DRUG-SCA DRUG-SIZE CMNIST-SP GRAPH-SST5 TWITTER AVG (RANK)†

ERM 71.79 (0.27) 68.85 (0.62) 66.70 (1.08) 13.96 (5.48) 43.89 (1.73) 60.81 (2.05) 54.33 (6.00)
ASAP 70.51 (1.93) 66.19 (0.94) 64.12 (0.67) 10.23 (0.51) 44.16 (1.36) 60.68 (2.10) 52.65 (8.33)
GIB 63.01 (1.16) 62.01 (1.41) 55.50 (1.42) 15.40 (3.91) 38.64 (4.52) 48.08 (2.27) 47.11 (10.0)
DIR 68.25 (1.40) 63.91 (1.36) 60.40 (1.42) 15.50 (8.65) 41.12 (1.96) 59.85 (2.98) 51.51 (9.33)

IRM 72.12 (0.49) 68.69 (0.65) 66.54 (0.42) 31.58 (9.52) 43.69 (1.26) 63.50 (1.23) 57.69 (4.50)
V-REX 72.05 (1.25) 68.92 (0.98) 66.33 (0.74) 10.29 (0.46) 43.28 (0.52) 63.21 (1.57) 54.01 (6.17)
EIIL 72.60 (0.47) 68.45 (0.53) 66.38 (0.66) 30.04 (10.9) 42.98 (1.03) 62.76 (1.72) 57.20 (5.33)
IB-IRM 72.50 (0.49) 68.50 (0.40) 66.64 (0.28) 39.86 (10.5) 40.85 (2.08) 61.26 (1.20) 58.27 (5.33)
CNC 72.40 (0.46) 67.24 (0.90) 65.79 (0.80) 12.21 (3.85) 42.78 (1.53) 61.03 (2.49) 53.56 (7.50)

CIGAV1 72.71 (0.52) 69.04 (0.86) 67.24 (0.88) 19.77 (17.1) 44.71 (1.14) 63.66 (0.84) 56.19 (2.50)
CIGAV2 73.17 (0.39) 69.70 (0.27) 67.78 (0.76) 44.91 (4.31) 45.25 (1.27) 64.45 (1.99) 60.88 (1.00)
ORACLE (IID) 85.56 (1.44) 84.71 (1.60) 85.83 (1.31) 62.13 (0.43) 48.18 (1.00) 64.21 (1.77)
†Averaged rank is also reported in the blankets because of dataset heterogeneity. Lower rank is better.

objective in CIGA. We use the same selection ratio (i.e., sc) for all models. Moreover, to validate
the effectiveness of the decomposition in CIGA, we compare CIGA with SOTA OOD objectives
including IRM [4], v-Rex [49] and IB-IRM [2], for which we apply random environment partitions
following [23]. We also compare CIGA with EIIL [23] and CNC [124] that do not require environ-
ment labels, where CNC [124] has a more sophisticated contrastive sampling strategy for combating
subpopulation shifts. More implementation and comparison details are deferred to Appendix G.2.

Evaluation. We report the classification accuracy for all datasets, except for DrugOOD datasets
where we use ROC-AUC following [40], and for TU datasets where we use Matthews correlation
coefficient following [11]. We repeat the evaluation multiple times, select models based on the
validation performances, and report the mean and standard deviation of the corresponding metric. For
each dataset, we also report the “Oracle” performances that run ERM on the randomly shuffled data.

OOD generalization performance on structure and mixed shifts. In Table 1, we report the
test accuracy of each method, where we omit GIB due to its poor convergence. Different biases
indicate different strengths of the distribution shifts. Although the training accuracy of most methods
converges to more than 99%, the test accuracy decreases dramatically as the bias increases and as
more distribution shifts are mixed, which concurs with our discussions in Sec. 2.3 and Appendix D.
Due to the simplicity of the task as well as the relatively high support overlap between training and
test distributions, interpretable GNNs and OOD objectives can improve certain OOD performance,
while they can have high variance since they donot have OOD generalization guarantees. In contrast,
CIGAv1 and CIGAv2 outperform all of the baselines by a significant margin up to 10% with lower
variance, which demonstrates the effectiveness and excellent OOD generalization ability of CIGA.

Table 3: OOD generalization performance on graph size shifts for
real-world graphs in terms of Matthews correlation coefficient.

DATASETS NCI1 NCI109 PROTEINS DD AVG

ERM 0.15 (0.05) 0.16 (0.02) 0.22 (0.09) 0.27 (0.09) 0.20
ASAP 0.16 (0.10) 0.15 (0.07) 0.22 (0.16) 0.21 (0.08) 0.19
GIB 0.13 (0.10) 0.16 (0.02) 0.19 (0.08) 0.01 (0.18) 0.12
DIR 0.21 (0.06) 0.13 (0.05) 0.25 (0.14) 0.20 (0.10) 0.20

IRM 0.17 (0.02) 0.14 (0.01) 0.21 (0.09) 0.22 (0.08) 0.19
V-REX 0.15 (0.04) 0.15 (0.04) 0.22 (0.06) 0.21 (0.07) 0.18
EIIL 0.14 (0.03) 0.16 (0.02) 0.20 (0.05) 0.23 (0.10) 0.19
IB-IRM 0.12 (0.04) 0.15 (0.06) 0.21 (0.06) 0.15 (0.13) 0.16
CNC 0.16 (0.04) 0.16 (0.04) 0.19 (0.08) 0.27 (0.13) 0.20

WL KERNEL 0.39 (0.00) 0.21 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15
GC KERNEL 0.02 (0.00) 0.00 (0.00) 0.29 (0.00) 0.00 (0.00) 0.08
Γ1-HOT 0.17 (0.08) 0.25 (0.06) 0.12 (0.09) 0.23 (0.08) 0.19
ΓGIN 0.24 (0.04) 0.18 (0.04) 0.29 (0.11) 0.28 (0.06) 0.25
ΓRPGIN 0.26 (0.05) 0.20 (0.04) 0.25 (0.12) 0.20 (0.05) 0.23

CIGAV1 0.22 (0.07) 0.23 (0.09) 0.40 (0.06) 0.29 (0.08) 0.29
CIGAV2 0.27 (0.07) 0.22 (0.05) 0.31 (0.12) 0.26 (0.08) 0.27
ORACLE (IID) 0.32 (0.05) 0.37 (0.06) 0.39 (0.09) 0.33 (0.05)

OOD generalization perfor-
mance on realistic shifts. In
Table 2 and Table 3, we exam-
ine the effectiveness of CIGA in
real-world data and more com-
plicated distribution shifts. Both
averaged accuracy and ranks are
reported because of the dataset
heterogeneity. Since the tasks are
harder than synthetic ones, inter-
pretable GNNs and OOD objec-
tives perform similar to or even
under-perform the ERM base-
lines, which is also consistent
to the observations in non-linear
benchmarks [34, 40]. However,
both CIGAv1 and CIGAv2 con-
sistently and significantly outperform previous methods, including previous specialized methods Γ
GNNs [11] for combating graph size shifts, demonstrating the generality and superiority of CIGA.

Comparisons with advanced ablation variants. As discussed in Sec. 3.3, CIGA can be reduced to
interpretable GNNs and contrastive learning approaches. However, across all experiments, we can
observe that neither the advanced interpretable GNNs (DIR) nor sophisticated contrastive objectives
with specialized sampling strategy (CNC) can yield satisfactory OOD performance, which serves
as strong evidence for the necessities of the decomposition as well as the objective in CIGA.
Furthermore, although CIGAv1 can outperform CIGAv2 when we may have a relatively accurate
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Figure 4: Hyperparameter sensitivity analysis on the coefficient of contrastive loss (α).

1 2 3 4 5 6 7 8
beta

35

40

45

50

55

60

te
st

 a
uc

erm
CIGAv2

(a) SPMotif-Mixed (bias=0.9, α=4)

1 2 3 4 5 6 7 8
beta

68.0

68.5

69.0

69.5

70.0

70.5

te
st

 a
uc

erm
CIGAv2

(b) DrugOOD-Scaffold (α=1)

1 2 3 4 5 6 7 8
beta

0.15

0.20

0.25

0.30

m
at

th
ew

s c
or

re
la

tio
n 

co
ef

fic
ie

nt

erm
CIGAv2

(c) NCI109 (α=1)

Figure 5: Hyperparameter sensitivity analysis on the coefficient of hinge loss (β).

sc, the improvements in CIGAv1 are not as stable as CIGAv2 or even unsatisfactory when the
assumption is violated. This phenomenon also reveals the superiority of CIGAv2 in practice.

Hyperparameter sensitivity analysis. To examine how sensitive CIGA is to the hyperparamters
α and β for contrastive loss and hinge loss, respectively. We conduct experiments based on the
hardest datasets from each table (i.e., SPMotif-Mixed with the bias of 0.9, DrugOOD-Scaffold and
the NCI109 datasets from Table 1, Table 2, and Table 3, respectively.) with different α and β. When
changing the value of β, we fix the α to a specific value under which the model has a relatively good
performance (but not the best, to fully examine the robustness of CIGA in practice).

The results are shown in Fig. 4 and Fig. 5. It can be found that both CIGAv1 and CIGAv2 are robust
to different values of α and β, respectively, across different datasets and distribution shifts. Besides,
the results also reflect the effects of the additional penalty terms in CIGA. For example, in Fig. 16,
when α is too small, the invariance of the identified invariant subgraphs Ĝc may not be guaranteed,
resulting worse performances. Similarly, as shown in Fig. 17, when β becomes too small, some part
of the spurious subgraph may still appear in the estimated invariant subgraphs, which yields worse
performances. Besides, when α and β become too large, the optimization of CIGA can be affected
due to their intrinsic conflicts with ERM, hence a better optimization scheme for CIGA can be a
promising future direction [18]. We provide more details and additional analysis on the efficiency of
CIGA and single environment OOD generalization performance of CIGA in Appendix G.4, as well
as the visualization examples of the identified invariant subgraph in Appendix G.5.

5 Conclusions

We studied the OOD generalization on graphs via graph classification, and propose a new solution
CIGA through the lens of causality. By modeling potential distribution shifts on graphs with SCMs,
we generalized and instantiated the invariance principle to graphs, which was shown to have promising
theoretical and empirical OOD generalization ability under a variety of distribution shifts.
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