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Abstract

Modern deep neural networks for classification usually jointly learn a backbone for
representation and a linear classifier to output the logit of each class. A recent study
has shown a phenomenon called neural collapse that the within-class means of
features and the classifier vectors converge to the vertices of a simplex equiangular
tight frame (ETF) at the terminal phase of training on a balanced dataset. Since the
ETF geometric structure maximally separates the pair-wise angles of all classes
in the classifier, it is natural to raise the question, why do we spend an effort to
learn a classifier when we know its optimal geometric structure? In this paper, we
study the potential of learning a neural network for classification with the classifier
randomly initialized as an ETF and fixed during training. Our analytical work
based on the layer-peeled model indicates that the feature learning with a fixed
ETF classifier naturally leads to the neural collapse state even when the dataset is
imbalanced among classes. We further show that in this case the cross entropy (CE)
loss is not necessary and can be replaced by a simple squared loss that shares the
same global optimality but enjoys a better convergence property. Our experimental
results show that our method is able to bring significant improvements with faster
convergence on multiple imbalanced datasets.

1 Introduction

Modern deep neural networks for classification are composed of a backbone network to extract
features, and a linear classifier in the last layer to predict the logit of each class. As widely adopted in
various deep learning fields, the linear classifier has been learnable jointly with the backbone network
using the cross entropy (CE) loss function for classification problems [19, 10, 13].

A recent study reveals a very symmetric phenomenon named neural collapse, that the last-layer
features of the same class will collapse to their within-class mean, and the within-class means of all
classes and their corresponding classifier vectors will converge to the vertices of a simplex equiangu-
lar tight frame (ETF) at the terminal phase of training on a balanced dataset [28]. A simplex ETF
describes a geometric structure that maximally separates the pair-wise angles of K vectors in R%,
d > K — 1, and all vectors have an equal {5 norm. As shown in Figure 1, when d = K — 1, the ETF
reduces to a regular simplex. Following studies focus on unveiling the physics of such a phenomenon
based on the layer-peeled model (LPM) [5] or unconstrained feature model [24]. They peel off the top-
most layer, so the features are independent variables to optimize [41]. Although this toy model is im-
practicable for application, it inherits the nature of feature and classifier learning in real deep networks.
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It has been shown that the optimality of LPM satisfies neural collapse
under the CE loss with constraints [22, 5, 41, 8], regularization
[50], or even no explicit constraint [15]. The other studies turn to
analyze the mean squared error (MSE) loss and also derive the neural
collapse solution as global optimality [24, 9, 31, 38]. However, all
these theoretical results are only valid for balanced training.

Albeit neural collapse is an observed empirical result and has not
been entirely understood from a theoretical point, it is intuitive and
sensible. Features collapsing to their means minimize the within-
class variability, while the ETF geometric structure maximizes the Figure 1: An illustration of
between-class variability, so the Fisher discriminant ratio [6, 33]is a simplex equiangular tight
maximized, which corresponds to an optimal linearly separable state frame when d = 3 and K = 4.
for classification. Several works have shown that neural networks The black spheres are the ver-
progressively increase the linear separability during training [26, tices of the ETF. The “+” and

] Therefore, a classifier that satisfies the ETF structure should be “x” signs in different colors re-
a “correct” answer for network training. However, as pointed out by fer to features and classifier
[5], in the training on an imbalanced dataset, the classifier vectors vectors of different classes, re-
of minor classes will be merged, termed as minority collapse, which  spectively. Neural collapse in-
breaks up the ETF structure and deteriorates the performance on test dicates that the features and
data. So a learnable classifier does not always lead to neural collapse classifier vectors are aligned
when training on imbalanced data. With the spirit of Occam’s Razor  with the same simplex ETF.
[36], we raise and study the question:

Do we really need to learn a linear classifier at the end of deep neural network?

Since a backbone network is usually over-parameterized and can align the output feature with any
direction, what makes classification effective should be the feature-classifier geometric structure,
instead of their specific directions. In this paper, we propose to initialize the classifier using a
randomly generated ETF and fix it during training, i.e., only the backbone is learnable. It turns out
that this practice makes the LPM more mathematically tractable. Our analytical work indicates that
even in the training on an imbalanced dataset, the features will converge to the vertices of the same
ETF formed by the fixed classifier, i.e., neural collapse inherently emerges regardless of class balance.

We further analyze the cross entropy loss function. We point out the reason for minority collapse
from the perspective of imbalanced gradients with respect to a learnable classifier. As a comparison,
our fixed ETF classifier does not suffer from this dilemma. We also show that the gradients with
respect to the last-layer feature are composed of a “pull” term that pulls the feature into the direction
of its corresponding classifier vector of the same class, and a “push” term that pushes it away from
the other classifier vectors. It is the pull-push mechanism in the CE loss that makes the features
collapsed and separated. However, in our case, the classifier has been fixed as a “correct” answer. As
a result, the “pull” term is always an accurate gradient towards the optimality, and we no longer need
the “push” term that may cause inaccurate gradients. Inspired by the analyses, we further propose a
simple squared loss, named dot-regression (DR) loss, which shares a similar “pull” gradient with the
CE loss, but does not have any “push” term. It has the same neural collapse global optimality, but is
proved to enjoy a better convergence property than the CE loss.

The contributions of this study can be listed as follows:

* We theoretically show that the neural collapse optimality can be induced even in imbalanced
learning as long as the learnable classifier is fixed as a simplex ETF.

* Our analysis indicates that the broken neural collapse in imbalanced learning is caused by
the imbalanced gradients w.r¢. a learnable classifier.

» We point out that our fixed ETF classifier no longer relies on the “push” gradient w.r.z feature
that is crucial for the CE loss but may be inaccurate. We further propose a new loss function
with only “pull” gradient. Its better convergence property is theoretically proved.

* Statistical results show that the model with our method converges more closely to neural
collapse. In experiments, our method is able to improve the performance of classification
on multiple imbalanced datasets by a significant margin. Our method enjoys a faster
convergence compared with the traditional learnable classifier with the CE loss. As an
extension, we find that our method also works for fine-grained classification.



2 Related Work

Neural Network for Classification. Despite the success of deep learning for classification [18, 35,

, 13,45, 11], a theoretical foundation that can guide the design of neural architecture still remains
an open problem and inspires many studies from different perspectives [7, 23, 20, 44, 1, 14, 42]. The
last-layer linear classifier has been relatively transparent. In most cases, it is jointly optimized with
the backbone network. In long-tailed classification, a two-stage method of training backbone and
classifier successively is preferred [2, 16, 48]. Some prior studies have shown that fixing the classifier
as regular polytopes [29, 30] and Hadamard matrix [12] does not harm the classification performance.
Zhu et al. [50] tried the practice of fixing the classifier as a simplex ETF in experiment, but does
not provide any benefit except for the saved computation cost. We also study the potential of using
a fixed classifier throughout the training. But different from these studies, our proposed practice is
proved to be beneficial to imbalanced learning by both theoretical and experimental results.

Neural Collapse. In [28], neural collapse was observed at the terminal phase of training on a
balanced dataset. Albeit the phenomenon is intuitive, its reason has not been entirely understood,
which inspires several lines of theoretical work on it. Papyan et al. [28] proved that if features satisfy
neural collapse, the optimal classifier vectors under the MSE loss will also converge to neural collapse
based on [40]. Some studies turn to a simplified model that only considers the last-layer features and
classifier as independent variables. They prove that neural collapse emerges under the CE loss with
proper constraints or regularizations [41, 5, 22, 50, 15, 8]. Other studies focus on the neural collapse
under the MSE loss [24, 9, 31, 38, 49, 32]. In [4], a convex formulation is proposed for a particular
network to explain neural collapse. However, current results are only valid for balanced training.
Inspired by neural collapse, the study [43] modifies the CE loss for imbalanced learning, but still
cannot rigorously induce neural collapse. Our work differs from these studies in that we theoretically
show that neural collapse can inherently happen even in imbalanced learning. We also derive a
new loss function that theoretically enjoys a better convergence property than the CE loss.

3 Preliminaries

3.1 Neural Collapse

Papyan et al. [28] revealed the phenomenon that the last-layer features will converge to their within-
class means, and the within-class means together with the classifier vectors will collapse to the
vertices of a simplex equiangular tight frame at the terminal phase of training on a balanced dataset.

Definition 1 (Simplex Equiangular Tight Frame) A collection of vectors m; € R% i =
1,2,--- K, d> K — 1, is said to be a simplex equiangular tight frame if:

K 1
M=,/——U(Igx— —1g1% 1
where M = [my, -+ ,mg] € R™>*E U € R¥>X allows a rotation and satisfies UTU = Iy, I ¢ is

the identity matrix, and 1y is an all-ones vector.

All vectors in a simplex ETF have an equal ¢, norm and the same pair-wise angle, i.e.,

K 1
T _ L PR
m; my K_l(sz,] K_lavzvj € [17K]1 (2)
where J; ; equals to 1 when ¢ = j and O otherwise. The pair-wise angle —ﬁ is the maximal

equiangular separation of K vectors in R? [28].
Then the neural collapse (NC) phenomenon can be formally described as:

(NC1) Within-class variability of the last-layer features collapse: Xy — 0, and Xy :=
Avg, 1 {(hy; — hy)(hy; — hy)T}, where hy; is the last-layer feature of the i-th sample in the
k-th class, and hy, = Avg,;{hy_;} is the within-class mean of the last-layer features in the k-th class;

(NC2) Convergence to a simplex ETF: hy, = (hy, — hg)/||hy, — hel|, k € [1, K], satisfies Eq. (2),
where hg is the global mean of the last-layer features, i.e., hg = Avg, ;. {hy:};

(NC3) Self duality: hy, = wy, /|Iwk||, where wy, is the classifier vector of the k-th class;

(NC4) Simplification to the nearest class center prediction: argmax, (h, wy) = argmin, ||h — hy|/,
where h is the last-layer feature of a sample to predict for classification.



3.2 Layer-peeled Model

Neural collapse has attracted a lot of researchers to unveil the physics of such an elegant phenomenon.
Currently most studies target the cross entropy loss function that is widely used in deep learning for
classification. It is defined as:

3)

Lop(h, W) = —log ( exp(hTw) ) ;

22{:1 exp(hTwy,)

where h € R? is the feature output by a backbone network with input x, W = [wy,--- ,wg] €
R2*K ig a learnable classifier, and ¢ is the class label of x.

However, deep neural network as a highly interacted function is difficult to analyze due to its non-
convexity. A simplification is always necessary to make tractable analysis. For neural collapse,
current studies often consider the case where only the last-layer features and classifier are learnable
without considering the layers in the backbone network. It is termed as layer-peeled model (LPM)
[5], and can be formulated as':

K ng

1
min ;Z;ECE(hk,iaW)v
st ||wil]? < Ew, V1 <k <K, 4)

Ilhyi||> < By, V1 <k < K,1<i<ng,

where hy, ; is the feature of the i-th sample in the k-th class, W is a learnable classifier, Lc g is the
cross entropy loss function defined in Eq. (3), N is the number of samples, and E'y and Eyy are the
£5 norm constraints for feature h and classifier vector w, respectively.

Albeit the LPM cannot be applied to real application problems, it serves as an analytical tool and
inherits the learning behaviors of the last-layer features and classifier in deep neural network. Actually,
the learning of a backbone network is through the multiplication between the Jacobian and the gradient
with respect to the last-layer features, i.e., % g—fl, where W.7,_; denotes the parameters in
the backbone network, and H is the collection of the last-layer features.

It has been shown that the global optimality for the LPM in Eq. (4) satisfies neural collapse in the
balanced case [5, 8]. The CE loss with regularization also has a similar conclusion [50]. However, the
results in current studies are only valid for training on a balanced dataset, i.e., n, = n,V1 < k < K.

4 Main Results

4.1 ETF Classifier

From the neural collapse solution, NC1 minimizes the within-class covariance Yy, and NC2
maximizes the between-class covariance g by the ETF structure. So the Fisher discriminant ratio,
defined as E;[}Z B, 1s maximized, which can measure the linear separability and has been used to
extract features to replace the CE loss [37]. So we deem an ETF as the optimal geometric structure
for the linear classifier. Considering that a backbone network is usually over-parameterized and can
produce features aligned with any direction, in this paper, we study the potential of learning a network
with the linear classifier fixed as an ETF, named ETF classifier.

Concretely, we initialize the linear classifier W as a random simplex ETF by Eq. (1) with a scaling
of v/ Eyy as the fixed length for each classifier vector, and only optimize the features H. In this case,
the layer-peeled model (LPM) in Eq. (4) reduces to the following problem:

K ng

min 33" Lop(h, W), (5)

k=1 1i=1
st |l < By, V1 <k <K,1<i<n,

'Note that the sample-wise constraint of H and the class-wise constraint of W in Eq. (4) are more strict than
the overall constraints in [5], but are still active with the same global optimality. The model is also known as
unconstrained feature model [24, 50] when the norm constraints are omitted or replaced by regularizations.



where W is the fixed classifier as a simplex ETF and satisfies:

K -1

where 0y, i/ equals to 1 when k = k" and 0 otherwise.

*T __ %
, = F
Ve Wk W( K1

1
5k,k/ — ) ,Vk’,k" S [1,K], (6)

We observe that this practice decouples the multiplied learnable variables hy, ; and wy, of LPM in Eq.
(4), and makes the model in Eq. (5) a convex problem that is more mathematically tractable. We term
the decoupled LPM in Eq. (5) as DLPM for short. We have the global optimality for DLPM in the
imbalanced case with the ETF classifier in the following theorem.

Theorem 1 No matter the data distribution is balanced or not among classes (it is allowed that
Jk, k" € [1, K], k # K, such that ny, > ny), any global minimizer H* = [hy , : 1 <k < K,1 <

1 < ng| of Eq. (5) converges to a simplex ETF with the same direction as W* and a length of \/Ey,
ie.,

K-1
which means that the neural collapse phenomenon emerges regardless of class balance.

K 1
hz,iTWZ:’:\/EHEW< 6k,k’_K1>7V1§kak/§Ka1§i§nk7 (7

Proof 1 Please refer to Appendix A for our proof. |

Remark 1 As observed in [5], LPM in the extreme imbalance case would suffer from “minority
collapse”, where the classifier vectors of minor classes are close or even merged into the same vector,
which explains the deteriorated classification performance of imbalanced training. As a comparison,
Theorem 1 shows that DLPM with our ETF classifier can inherently produce the neural collapse
solution even in the training on imbalanced data.

Although our practice of using a fixed ETF classifier simplifies the problem, it actually brings
theoretical merits that also get validated in our long-tailed classification experiments.

4.2 Rethinking the Cross Entropy Loss

In this subsection, we rethink the CE loss Lo from the perspective of gradients with respect to both
feature and classifier to analyze its learning behaviors.

4.2.1 Gradient w.r.t Classifier

We first analyze the gradient of Lo g w.r:t a learnable classifier W = [wq, -+, Wg| € R4xK.
cp & K&
= —(1- hy ) hy; hy ) hy s, 8
Dwr ; (1 = pr (hg)) hy, +k;€;pk( k,j) e (®)

where py(h) is the predicted probability that h belongs to the k-th class. It is calculated by the
softmax function and takes the following form in the CE loss:

hT
Y- exp(hTwy)
We make the following definitions:
8‘CCE w w
- Owp, = Fg)ul)l + Fl()us)h7 (10)
where
Nk K ngr
FOO =" (1 —pe () hea, Fowdy=— > > pi (b j) by . (11)
i=1 K'#k j=1

It reveals that the negative gradient w.r.t wy, is decomposed into two terms. The “pull” term F;v‘jl)l

pulls wy, towards the directions of the features of the same class, i.e., hy, ;, while the “push” term
F(W)

push pushes wy, away from the directions of the features of the other classes, i.e., hy ;, VE' # k.



Remark 2 Note that FS:I)I and F}()vl_‘lls)h have different magnitudes. When the dataset is in extreme

imbalance, the direction of — 88%31:5 for a minor class is dominated by the push term F}(Xgh because
ng is small, while N — ny, is large. In this case, the classifier vectors of two minor classes are
optimized towards nearly the same direction and would be close or merged after training. So the
deteriorated performance of classification with imbalanced training data results from the imbalanced
gradient w.r.t a learnable classifier in the CE loss. As a comparison, our proposed practice of fixing

the classifier as an ETF does not suffer from this dilemma.

4.2.2 Gradient w.r.t Feature

The gradient of CE loss in Eq. (3) with respect to h is:

0LcE
oh

K

= _(1_pc<h))wc+zpk(h)wka (12)
k#c

where c is the class label of h, and py(h) is the probability that h belongs to the k-th class as defined

in Eq. (9).

It is shown that Eq. (12) has a similar form to that of Eq. (8). The negative gradient — BgﬁE can also

be decomposed as the addition of “pull” and “push” terms defined as:

K
h h
FO = (1—-pe(h)we, FU =3 pu(h)wy. (13)
k#c

The “pull” term FSBI pulls h towards the classifier vector of the same class, i.e., W, while the “push”

(h)

term Fpush

pushes h away from the other classifier vectors, i.e., wy, Vk # c.

Remark 3 We note that Eq. (11) and Eq. (13) have a similar form and are very symmetric. The

“pull” terms Fg:l)l and ng)n force w and h of the same class to converge to the same direction, which

is in line with (NC1) and (NC3). The “push’ terms Fg;’gh and Fglll)sh make them of different classes
separated, which is in line with (NC2). Generally, (NC1)-(NC3) can lead to (NC4). We remark that it
is the “pull-push” mechanism in the CE loss that leads to the neural collapse solution in the case of
training on balanced data.

h)

The “push” gradient F;ush in Eq. (13) is crucial for a learnable classifier. However, in our case

(h)

where the classifier has been fixed as an ETF, the “push” gradient |,

Figure 2, the “pull” gradient Fglll)“ in our case is always accurate towards the optimality w;, which

corresponds to the neural collapse solution. But the “push” gradient does not necessarily direct to the
optimality. So, we no longer rely on the “push” term Fl(Dl:lh that may cause deviation. It inspires us to

develop a new loss function specified for our ETF classifier.

is unnecessary. As shown in

4.3 Dot-Regression Loss

We consider the following squared loss function:

2
Lpr(h, W) (W:Th— EWEH) , (14)

1
- 2WVEwFEn
where c is the class label of h, W* is a fixed ETF classifier, and Ey, and Ey are the {5-norm
constraints (predefined and not learnable) given in Eq. (5). It performs regression between the dot
product of h and w and the multiplication of their lengths. We term this simple loss function as
dot-regression (DR) loss. Its gradient with respect to h takes the form:
Jh

where cos Z(h, w}) denotes the cosine similarity between h and w.

= —(1—cosZ(h,w}))w} (15)

c
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5= (1 —cos £(h,wz))wz
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Figure 2: An empirical comparison of gradient directions w.r.t an h (belongs to the 3-rd class) of the
CE loss (left) and our proposed DR loss (right). Because h is close to w7, the gradient of the CE loss

is dominated by — 9Lop )1 whose direction deviates from the optimality w3, while the gradient of
DR only has a “pull” term and always directs to w3.

We see that the gradient has a similar form to the first term in Eq. (12), which plays the role of
“pull”, but has no “push” term. It is easy to identify that if we replace the CE loss in the decoupled
layer-peeled model (DLPM) defined in Eq. (5) with the DR loss defined in Eq. (14), the same
global minimizer Eq. (7) still holds. The global optimality happens when Lpg(h*, W*) = 0 and
cos Z(h*; w*) = 1 accordingly. Then we give a formal analysis of the convergence properties of

both CE and DR loss functions in the DLPM.

Definition 2 Given 6 > 0, for any h satisfying ||h — h*|| < & and ||h||? = Eg, the n—regularity
number of function L(h) is defined by the convergence rate of the projected gradient method. That is,
there exists ny € [0, 1] such that:

IProjp,, (h —y=-) ~h 1> < mllh — h*|?,

where 7y is the learning rate such that ny is as small as possible.

Note that 1y, is decided by h. For many problems, we cannot find its uniform upper bound n,, <77 < 1.
The smaller 73, is, the better property the loss function has.

Theorem 2 Assume that given a small § > 0, when ||h — h*|| < §, p(h) defined in Eq. (9) satisfies
that® pr.(h) = (1 — p.(h))/(K — 1), Vk # ¢, where c is the label of h. When optimizing the DLPM
defined in Eq. (5) with the CE and DR loss funcitons, for any fixed learning rate v, we have:

1+ cos Z(h, w
ne® » L cowe) _ om (16)

where n}(lCE) and n}(lDR) are the n-regularity numbers of the CE and DR loss functions, respectively.

Proof 2 Please refer to Appendix B for our proof. |

Eq. (16) indicates that the DR loss has a better convergence property when h is close to h*. In
implementations, we train a backbone network with our ETF classifier and DR loss. To induce
balanced gradients w.r.t the backbone network parameters, we define the length of each classifier
vector according to class distribution. Please refer to Appendix C for the complete implementation
details. In experiments, we also compare our method with the CE loss weighted by class distribution.

5 Experiments

In experiments, we first make empirical observations of neural collapse convergence in the imbalanced
training with and without our method, and then compare the performances on long-tailed classification.
As an extension, we surprisingly find that our method is also able to improve the performance of
fine-grained classification, which can be deemed as another imbalanced problem where a majority of
features are close to each other. The datasets and training details are described in Appendix D.

’1ts rational lies in that h* aligned with w: has equal dot products with w}, Vk # c, and h is close to h*.
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Figure 3: Averages and standard deviations of cos Z(h, — h,, h; — h,) (two columns on the left),
and cos Z(h, — h,, wy,) (two columns on the right) with (red) and without (black) our method on
train set (a) and test set (b). hy is the global mean. h, hy, are within-class means, where c and k are
all pairs of different classes. The models are trained on CIFAR-100 with the imbalance ratio ;= of

0.02, where nyi, and 1y, are the minimal and maximal numbers of training samples in all classes.

Table 1: An ablation study with ResNet on CIFAR-10 [17] using different classifiers and loss
functions. The numbers in the second row denote the imbalance ratio 7 = Z‘:—; where n,,;, and
Nmax are the minimal and maximal numbers of training samples in all classes. Results are the mean
of three repeated experiments with different seeds. * indicates that the CE loss is weighted by %ﬂk to

induce class balance, where K is the number of classes and ny, is the number of samples in class k.

without Mixup with Mixup
Methods 0.005 0.01 002 0.1 balanced 0.005 0.01 0.02 = 0.1 balanced

Learnable Classifier + CE 66.1i0‘3 71.Oig.2 77-1i0.2 87.4i0.2 93-4i0.1 67.3i0.4 72.8i0,3 78.6i0‘2 87.7i0‘1 93.6i0.2
Learnable Classifier + CE”™ 66.8i0_4 721:&03 77-6j:0.3 87-4:l:0.3 93'1i0-2 68.5:&0_3 739:&03 793:{:0.2 87.8:&0_2 932:&03
ETF Classifier + CE 60~4i0.3 72-910,3 79-5i0.2 87~2i0.1 92'6i0.2 60.6i0v5 67'0i0.4 77'2i0.3 87'0i0,2 93'3i0,2
ETF Classifier + DR 68.4i0‘2 73-Oi0.2 78-4’i0.3 86.9i0.2 92-9i0.1 71-9i0.3 76-5i0.3 81.Oi0‘2 87.7i0‘2 92-Oi0.2

5.1 Empirical Results

Following [28], we calculate statistics during training to show the neural collapse convergence. We
first compare the averages and standard deviations of two cosine similarities, cos Z(h, —hg, h; —hg)
and cos Z(h, — hy, wy), where h, is the global mean, for all pairs of different classes (c, k), ¢ # k,
with and without our method. As shown in Figure 3, the averages of both cos Z(h, — hg, hy — hy)
and cos Z(h, — hgy, wy,) converge to a negative value near zero. It is consistent with neural collapse
that the feature means or classifier vectors of different classes should have a cosine similarity of

K 7- However, their standard deviations are much smaller when our method is used. It indicates

that the models with our method converge to neural collapse more closely.

We further calculate the averages of cos Z(h. — hy,w.), V1 < ¢ < K, and ||[W — H||% in
Figure 4 and 5 in Appendix E. It reveals that the model using our method generally has a higher
cos Z(h, — hy, w.) and a lower ||[W — H||%., which indicates that the feature means and classifier
vectors of the same class are better aligned. We observe no advantage of ResNet on STL-10 and
DenseNet on CIFAR-100 in Figure 4 and 5. In Table 2, we see that the two cases are right the failure
cases, which shows consistency between neural collapse convergence and classification performance.

5.2 Performances on Long-tailed Classification

We conduct an ablation study with ResNet on CIFAR-10. As shown in Table 1, when we replace the
learnable classifier with our fixed ETF classifier, the performances get improved for the imbalance
ratio 7 of 0.01 and 0.02 without Mixup [47]. They also achieve comparable results for 7 = 0.1
and the balanced setting (7 = 1). However, only using the ETF classifier does not work for the
extreme imbalance case where 7 = 0.005. Besides, it is not compatible with Mixup, which is a



Table 2: Long-tailed classification accuracy (%) with ResNet and DenseNet on four datasets. Results
are the mean of three repeated experiments with different seeds.

CIFAR-10[17] | CIFAR-100[17] | SVHN [25] STL-10 [3]

Methods 0.005 0.01 0.02{0.005 0.01 0.02|0.005 0.01 0.02]0.005 0.01 0.02
ResNet

Learnable Classifier + CE| 67.3 72.8 78.6| 38.7 43.0 48.1] 40.5 409 49.3| 33.1 37.9 38.8
ETF Classifier + DR 719 76.5 81.0| 409 453 50.4| 42.8 45.7 49.8| 33.5 37.2 379
Improvements +4.6 +3.7 +2.4| +2.2 +2.3 +2.3| +2.3 +4.8 +0.5| +04 -0.7 -0.9
DenseNet

Learnable Classifier + CE| 71.1 77.7 84.1] 40.3 43.8 49.8| 39.7 40.5 46.4| 385 41.2 449
ETF Classifier + DR 72.9 785 83.4| 40.1 44.0 49.7| 40.5 44.8 48.4| 39.5 429 46.3
Improvements +1.8 +0.8 -0.7| -02 +0.2 -0.1| +0.8 +4.3 +2.0| +1.0 +1.7 +1.4

Table 3: Long-tailed classification accuracy (%) Table 4: Fine-grained classification accuracy
on ImageNet-LT [21] with ResNet-50 backbone (%) on CUB-200-2011 [39] with different
and different training epochs. ResNet backbones pre-trained on ImageNet.
Training details are described in Appendix D.

Epoch | Methods | Acc. (%)

90 ‘ Learnable Classifier + CE | 34.6 Backbone | Methods | Acc. (%)
ETF Classifier + DR 41.8 ResNet-34 ‘ Learnable Classifier + CE| 82.2

120 ‘ Learnable Classifier + CE| 41.9 ETF Classifier + DR 83.0
ETF Classifier + DR 432 ResNet-50 ‘ Learnable Classifier + CE|  85.5

150 ‘ Learnable Classifier + CE | 42.5 ETF Classifier + DR 86.1
ETF Classifier + DR 43.8 ResNet-101 ‘ Learnable Classifier + CE |  86.2

180 ‘ Learnable Classifier + CE| 44.3 ETF Classifier + DR 87.0
ETF Classifier + DR 44.7

strong augmentation tool to alleviate the bias brought by adversarial training samples. When the DR
loss that is specifically designed for the ETF classifier is used, we achieve significant performance
improvements for 7 of 0.005, 0.01, and 0.02 both with and without Mixup. Generally our proposed
ETF classifier with the DR loss has better performances on multiple long-tailed cases than the
learnable classifier with the original or weighted CE loss.

In Table 2, the advantage of our method is further verified on more datasets with ResNet and DenseNet.
Concretely, we achieve an average improvement of 2.0% for ResNet and 1.1% for DenseNet. We also
test our method on the large-scale dataset, ImageNet-LT [2 1], which is an imbalanced version of the
ImageNet dataset [34]. As shown in Table 3, we compare our method with baseline by training the
models for different epochs. We observe that the superiority of our method is more remarkable when
training for less epochs. It can be explained by the fact that our method directly has the classifier in
its optimality and optimizes the features towards the neural collapse solution, while the learnable
classifier with the CE loss needs a sufficient training process to separate classifier vectors of different
classes. So our method can be preferred when fast convergence or limited training time is required.
The accuracy curves in training for the results in Table 3 are shown in Figure 6 in Appendix E.

5.3 Performances on Fine-grained Classification

Fine-grained classification can also be deemed as an imbalanced problem as the features of multiple
classes are close to each other. We surprisingly find that our method is also helpful for fine-grained
classification even though most of the analytical work is conducted under the case of class imbalance.
As shown in Table 4, our method achieves 0.7%-0.8% accuracy improvements on CUB-200-2011.

6 Conclusion

In this paper, we study the potential of training a network with the last-layer linear classifier randomly
initialized as a simplex ETF and fixed during training. This practice enjoys theoretical merits under
the layer-peeled analytical framework. We further develop a simple loss function specifically for the
ETF classifier. Its advantage gets verified by both theoretical and experimental results. We conclude
that it is not necessary to learn a linear classifier for classification networks, and our simplified
practice even helps to improve the long-tailed and fine-grained classification performances with no
cost. Our work may help to further understand neural collapse and the neural network architecture for
classification. Code address: https://github.com/NeuralCollapseApplications/ImbalancedLearning.


https://github.com/NeuralCollapseApplications/ImbalancedLearning

Limitations and societal impacts are discussed in Appendix F. As suggested by a reviewer of this
paper, we compare with [5, 30, 50] in more details in Appendix G.
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