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Abstract

Large language models (LLMs) have demon-
strated exceptional performance across a wide
range of natural language processing tasks.
However, their capabilities in linguistically di-
verse, low-resource contexts remain underex-
plored—particularly for languages that do not
use Latin scripts. This study evaluates nine pub-
licly accessible LLMs across 14 low-resource
languages (LRLs), encompassing both Latin
and non-Latin scripts (e.g., Ge’ez, Devanagari,
Cyrillic), focusing on three key tasks: machine
translation, text summarization, and question
answering. Our analysis reveals significant
performance disparities: languages with Latin
scripts (e.g., Somali, Swahili, Yoruba) perform
better compared to those with non-Latin scripts
(e.g., Pashto, Nepali, Sinhala, Amharic), par-
ticularly in text summarization, with ROUGE
scores differing by up to 39% across languages.
These disparities are strongly correlated with
the type of tokenizer used: the majority of to-
kenizer models in this study are not effective
when dealing with languages outside their pri-
mary training distribution or those with distinct
linguistic features (e.g., non-Latin scripts, com-
plex morphology). This highlights a critical
need for language-specific tokenizers—or mul-
tilingual tokenizers explicitly designed to ac-
commodate a broader range of linguistic char-
acteristics—for optimal LLM performance on
linguistically diverse LRLs.

1 Introduction

Large language models (LLMs) have demonstrated
state-of-the-art performance across various natural
language processing (NLP) tasks. Several stud-
ies indicate that providing LLMs with specific
task instructions, such as summarizing or trans-
lating text, significantly enhances their capabilities
(Muennighoff et al., 2023). This method, known
as instruction tuning, has been shown to improve
LLMs’ performance in both English and multilin-
gual contexts (Shaham et al., 2024, Wu et al., 2023).

Despite significant advancements, most LLMs re-
main English-centric, focusing primarily on En-
glish tasks (Brown et al., 2020a). Major gaps re-
main in evaluating public LLMs across diverse lan-
guages and tasks, particularly for under-resourced,
script-diverse contexts (Zhang et al., 2020).

Recent studies highlight growing efforts to
benchmarking LLMs across languages and tasks.
For instance, Chang et al. (2023) presented a com-
prehensive study on benchmarking LLMs related
to NLP tasks, methods, and benchmarks, which
are commonly used to assess performance in En-
glish settings. To extend beyond English, Lai
et al. (2023a) evaluated ChatGPT on seven differ-
ent tasks, covering 37 diverse languages with high,
medium, low, and extremely low resources. How-
ever, these evaluation studies analyzed the perfor-
mance of LLMs either in English settings or using
non-public LLMs, leaving a major gap in under-
standing public LLM capabilities for low-resource,
script-diverse languages (Liu et al., 2024; Brown
et al., 2020b; Liang et al., 2023).

Low-resource languages (LRLs) are defined by
limited linguistic resources and data, posing chal-
lenges for LLMs in learning robust language pat-
terns (Magueresse et al., 2020). Joshi et al. (2021)
categorize languages in six classes based on the
availability of labeled and unlabeled data: (0) The
Left-Behinds, (1) The Scraping-Bys, (2) The Hope-
fuls, (3) The Rising Stars, (4) The Underdogs, and
(5) The Winners. In a simplified form, class O lan-
guages have neither labeled nor unlabeled data;
class 1-4 languages have unlabeled data, but their
labeled data quantity varies from virtually non-
existent to high and, class 5 languages have both
high volumes of labeled and unlabeled data.

While prior work identifies cross-lingual exem-
plars and unintentional bilingualism as drivers of
LLM translation, our study uniquely highlights
script type as a systemic bias, demonstrating its cor-
relation with pretraining data scarcity by evaluating



public! LLMs on 14 LRLs (classes 0 to 2) span-
ning diverse scripts, including Amharic, Telugu,
Burmese, Nepali, Kannada, Pashto, Tajik, Swabhili,
Yoruba, Somali, Sinhala, Marathi, Punjabi, Kyrgyz.
These languages cover diverse linguistic families
and resource levels, enabling analysis of script and
data disparities.

We designed our experiments to answer the re-
search question: How robust are public LLMs
across NLP tasks in LRLs and script diversity set-
tings? To answer this question, we benchmark nine
public LLMs on three high-impact NLP tasks: Ma-
chine Translation, Text Summarization and Ques-
tion Answering.

Our analysis demonstrates two major factors
shaping LLM performance: the type of tokenizer
and the script type. Models fine-tuned with min-
imal data (e.g., mT5) excel on languages well-
represented in their training. However, some to-
kenizers still struggle to handle languages that fall
outside their primary training distribution or ex-
hibit distinct linguistic characteristics, such as non-
Latin scripts or complex morphology, and models
evaluated on Latin-script languages (e.g., Swahili)
consistently outperform those tested on non-Latin-
script languages (e.g., Nepali), with performance
gaps exceeding 39% in the text summarization task.

We summarize the main contributions of this
paper as follows:

* We provide a comprehensive evaluation of
nine public LLMs on different NLP tasks
across 14 languages ranging from class 0 to 2.

* We conduct tokenization errors analysis to un-
derstand the model capability to generalize on
the selected languages and report the results
analysis.

* The evaluation results highlight the challenges
of benchmarking LL.Ms on LRLs in each task.

» We provide our benchmark source code?.

The remainder of this paper is organized as follows.
We provide a review of recent work on benchmark-
ing LLMs in Section 2. In Section 3, we detail our
methodology and task definitions, while Section 4
presents the experimental setup. Section 5 presents
our results. Section 6 presents our tokenization

"Public LLMs are openly accessible via APIs or reposito-
ries like Hugging Face and GitHub.

2h'ctps ://anonymous. 4open.science/r/
Benchmarking-LLM-B12C

analysis. We conclude in Section 7 and provide
limitations in Section 8.

2 Related Work

2.1 Evaluation of Multilingual LL.Ms

Evaluating multilingual LLMs is a challenging task
due to the lack of comprehensive and language-
agnostic benchmarks. Recent studies have focused
on creating and evaluating benchmarks (includ-
ing datasets and frameworks) for LLMs in dif-
ferent domains. For example, in the medical do-
main, Alonso et al. (2024) introduced MedExpQA,
the first multilingual benchmark based on med-
ical exams to assess LLM performance in four
high-resource languages. Additionally, Liang et al.
(2020) presented XGLUE, a cross-lingual evalua-
tion benchmark with 11 tasks across 19 languages,
where training data is available only in English. Hu
et al. (2020) introduced XTREME, which covers
40 languages and includes 9 tasks to evaluate cross-
lingual transfer in multilingual encoders. More-
over, Lai et al. (2023b) developed Okapi, a bench-
mark for evaluating multilingual instruction-tuned
LLMs with reinforcement learning from human
feedback for 43 distinct tasks across 26 languages.
Ahuja et al. (2023) introduced MEGA, the first
comprehensive benchmark for generative LLMs,
covering 16 NLP datasets across 70 topologically
diverse languages. Further, Liang et al. (2023) pro-
posed HELM, a holistic evaluation for 30 language
models on 42 scenarios and 7 metrics. However,
these scenarios primarily focus on high-resource
languages like English or its dialects, leading to po-
tential grammatical structure bias, where syntactic
patterns from higher-resource languages influence
those of LRLs.

2.2 Evaluation on Low-resource Languages

Evaluation methodologies excel in high-resource
languages but often fail to generalize to LRLs, par-
ticularly those with non-Latin scripts (Bang et al.,
2023a). Models such as ChatGPT, GPT-3.5, and
BLOOMZ, have been evaluated, and the translation
capabilities of these models perform well in high-
resource languages but are limited in LRLs (Bang
et al., 2023b; Chowdhery et al., 2023; Muennighoff
et al., 2023) . This is because a larger vocabulary is
needed to represent tokens in many languages, and
a lack of language standardization leads to varia-
tions in grammar, vocabulary and writing systems
is observed across languages. To address these chal-
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Figure 1: An overview of the tasks, datasets, public
LLMs, and languages used in our evaluation study.

lenges, NLP communities have developed bench-
marks covering specific language families, such
as IndicXTREME (Doddapaneni et al., 2023) for
Indian languages, MasakhaNER (Adelani et al.,
2021) for African languages, and IndoNLU (Wilie
et al., 2020) for Indonesian languages.

Despite progress in benchmarking LLMs, most
studies include only a few samples of low-resource
language and non-Latin scripts in their pre-training
corpora, and focusing primarily on non-public
LLMs in high-resource scenarios.

In contrast, our study addresses theses gaps by
systematically evaluating nine public multilingual
LLMs across a diverse set of low-resource (class 0
to 2) and non-Latin script languages on three NLP
benchmarks.

3 Multilingual Large Language Models

Our study benchmarks different LLMs based on
two criteria: i) they are publicly available, and ii)
they can be employed in multilingual NLP tasks.
An overview of the tasks, datasets, LLMs, and
languages considered in our study is given in Fig-
ure 1. More details are given in Appendix A. We in-
clude the following LLMs in our study: LIaMA 23
(Touvron et al., 2023), BLOOM* (Workshop et al.,
2023), Mistral® (Jiang et al., 2023), XGLM?® (Lin
et al, 2022), mT5’ (fine-tuned) (Xue et al.,
2021), mT5-base? (Xue et al., 2021), mBART-
large-50-many-to-many-mmt° (Tang et al., 2020),

3https://huggingface.co/huggyllama/llama—7b
4https://huggingface.co/bigscience/bloom—7b1
5https://huggingface.co/mistralai/
Mistral-7B-v@.1
6https://huggingface.co/facebook/xglm—7.SB
"https://huggingface.co/csebuetnlp/mT5_
multilingual_XLSum
8https://huggingface.co/google/mtS—base
https://huggingface.co/facebook/

NLLB'? (Team et al., 2022) and Qwen'! (Yang
et al., 2025). LLaMA?2 and Mistral have the small-
est token vocabulary (32K), followed by Qwen
(152K), BLOOM (250K), and XGLM (256K),
which has the largest vocabulary among them.

We examine three tasks: Machine Translation,
Text Summarization, and Question Answering. For
each task, we evaluate LLMs of the same size, us-
ing three multilingual benchmark datasets related
to each task: OPUS100, XL-Sum, and Belebele.

Machine Translation: is the task of translat-
ing text from one language to another without
human intervention. For LRLs, machine transla-
tion poses significant challenges due to the lack
of parallel data. Recent studies have highlighted
the remarkable multilingual translation capabili-
ties of LLMs such as GPT-4 for LRLs, even with-
out explicit fine-tuning (Hendy et al., 2023; Garcia
et al., 2023). In this task, we specifically evalu-
ate LLMs trained on a wide range of languages
to assess the effectiveness of their pre-training ap-
proaches, which involve predicting subsequent text
based on the provided context in an autoregressive
manner—particularly for LRLs. Models evaluated
include NLLB, mBART-large, mT5-base, Mistral,
BLOOM, and LLaMA 2, which we use to translate
text from English into various LRLs.

Text Summarization: is the process of condens-
ing long texts into concise summaries that capture
the most salient information. In our study, we focus
on abstractive summarization, one of the most chal-
lenging NLP tasks, as it requires advanced capabil-
ities such as understanding lengthy passages and
generating coherent summaries. Although several
fine-tuned LLMs for abstractive summarization
have been proposed recently, most are designed for
monolingual settings (e.g., English) Askari et al.,
2024; Zhang et al., 2024. In our work, we con-
sider publicly available LLMs—such as mT5-base,
mTS5 fine-tuned on the XLSum dataset'?, LLaMA
2, Mistral, and BLOOM—across different LRLs.
Our goal is to assess the ability of these models
to generate coherent summaries without prior fine-
tuning for these languages.

Question Answering: is a system that interprets
and responds to natural language queries, lever-
aging advanced models and datasets to enhance

mbart-large-50-many-to-many-mmt

Yhttps://huggingface.co/facebook/nllb-200-3.
3B

11https://huggingface.co/Qwen/Qwen3—8B

Phttps://github.com/csebuetnlp/x1-sum
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contextual understanding and accuracy Rajpurkar
etal., 2016; Yang et al., 2015; Campese et al., 2023.
We focus on the multilingual question-answering
task, as it represents a crucial step toward cross-
lingual machine comprehension in LRLs.

For this task, we evaluate LLMs such as LLaMA
2, Mistral, XGLM, BLOOM, mT5-base, and
Qwen3. By comparing models of similar sizes
trained on different benchmark datasets, we iden-
tify their relative strengths and weaknesses in han-
dling multilingual contexts—particularly for LRLs
across each task.

4 Evaluation Methodology

Two significant techniques can be used for prompt-
ing LLMs for a given NLP task. First, in-context
prompting (Brown et al.,, 2020a), which is a
straightforward approach for leveraging LL.Ms in
solving a given NLP task with few-shot examples
provided in the context without the need for train-
ing of fine-tuning. The second technique, instruc-
tion tuning (Mishra et al., 2022; Ouyang et al.,
2022), which is a novel approach to guides LLMs
to follow instructions and solve new tasks based
on textual instructions provided in prompt. In our
study, we use both techniques as follow:

Machine Translation: For this task, we employ
both instruction tuning and in-context prompting by
evaluating LLMs that are either explicitly trained
on translation data using src — tgt pairs or de-
signed as sequence-to-sequence translation mod-
els. In instruction tuning, no explicit prompts are
used—the translation is handled directly through
the model’s input/output format. In contrast, in-
context prompting involves constructing a textual
prompt; the model generates translations based on
its understanding of the instruction embedded in
the prompt, without any additional fine-tuning. We
use OPUS100 (Zhang et al., 2020) as benchmark
dataset and ChrF++ (Popovié, 2017) as metric.

Text Summarization: We also use both instruc-
tion tuning and in-context prompting for this task.
In the first case, we evaluate supervised models
trained on summarization datasets, using standard
input/output formats. In the second case, we con-
struct manual prompts that rely on the model’s gen-
eral language understanding to infer the summariza-
tion task from the prompt without fine-tuning. We
use XL-Sum (Hasan et al., 2021) as the benchmark
dataset and ROUGE (Lin, 2004) as metric.

Question Answering: For this task, we use
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Figure 2: The 14 languages in our experiments catego-
rized to language families.

zero-shot in-context prompting, where the model
is not fine-tuned for the specific QA task but
is instead prompted in a zero-shot format us-
ing the structure: (context), (question), (answer).
Each multiple-choice answer is scored indepen-
dently using a text classification model, such as
BART-MNLI, trained for natural language infer-
ence (NLI)—which judges entailment between a
premise and a hypothesis. We use Belebele (Ban-
darkar et al., 2024) as the benchmark dataset and
the F1 score as the evaluation metric.
Low-resources Languages: By consider-
ing diverse linguistic distributions and language
scripts—spanning a variety of language fami-
lies—we selected 14 LRLs, ranging from class 0
to 2, to assess the capabilities of LLMs to general-
ize, even to unseen languages (see Table 4). Each
selected language belongs to at least one distinct
language family, as shown in Figure 2, and the over-
all language distribution is presented in Figure 3.

5 [Evaluation Results

In the following evaluation results, N L and L de-
note languages with non-Latin and Latin scripts,
respectively. Dashes (i.e., —) in the results mark
unsupported languages in the dataset, and results
in bold indicate the highest scores.

5.1 Evaluation on Machine Translation

Learning Strategy: With 14 translation pairs, we
report the performance of each LLM in machine
translation from English to the target languages.
Results: Table 1 shows translation performance
(ChrF++) across LRLs. With an average between



. Dravidia
Afro-Asiatic

Indo-European

Nepali
j > Sinhali
Sinhalla
Punjabi
Punjabi

Marathi (Pashto

Tajik .e \

Sino-Tibetan

Yoruba \ ‘

Kyrkis Kyrgyz

Swahili
Yoruba

Turkic
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4.91 for NLLB and 13.62 for Llama2, the perfor-
mance across all models for all languages is poor.
For example, NLLB performs better on Telugu;
mBART-large performs better on Yoruba, Sinhala,
Marathi, and Burmese; Mistral performs best on
Pashto, Tajik, and Kyrgyz; while LLaMA 2 ex-
cels in Kannada, Punjabi, Burmese, and Nepali.
We also observe poor performance from NLLB,
mT5-base, and BLOOM. Additionally, the Llama2
model achieves the highest average score compared
to the others. Overall, the results reveal that trans-
lation performance is significantly worse for lan-
guages with non-Latin scripts.

Language @NLLB mBART mT5 Mistral Bloom Llama2
Somalir, - - - - - -
Swahiliy, - - - - - -
Yorubay, 10.07 44.22  5.10 13.06  12.13 13.45
Pashtop, 2.80 1.82 1042 1528 12.23 13.85
Kannaday, 1.83 11.36  12.50 15.40 9.53 17.32
Sinhalayr, 1.91 3499 692 7.80 4.84 12.60
Marathiyy, 4.76 1271 5.10 10.31 6.51 8.93
Punjabipy g, 2.90 1.73 547 11.17  10.28 15.68
Tajikyr, 9.58 2.60 10.36 21.10  20.36 21.05
Kyrgyznr, 4.23 544 949 15.80 9.31 13.04
Telugupny, 11.67 347  8.62 9.47 9.08 11.11
Ambaricyy, ] o = © = °
Burmesen, 2.80 1.69 521 8.93 5.87 16.00
Nepaliyy, 1.46 .12 6.56 5.84 6.82 6.86
AVG 491 11.01  7.79 12.19 9.72 13.62
Median 2.90 347 692 11.17 9.31 13.45

Table 1: Translation performance (average ChrF++
score) of LLMs across languages on Opus100 dataset.

Performance analysis: no single model dom-
inates across all languages; performance largely

depends on the overlap between the model’s train-
ing data and the target language. Llama2’s strong
average performance is likely due to its robust ar-
chitecture, which includes dense attention and ef-
ficient decoding mechanisms. A critical insight
from our analysis is the impact of script dispar-
ity—specifically, Latin vs. non-Latin scripts. Non-
Latin languages often suffer due to several factors:

* Tokenizer bias: BPE or SentencePiece vocab-
ularies are typically dominated by Latin-script
tokens, leading to inefficient tokenization of
other scripts.

* Data scarcity: LRLs written in non-Latin
scripts generally have less high-quality par-
allel data available.

* Model bias: Models may favor outputs in
high-resource, often Latin-script languages,
resulting in language interference or degraded
fluency in other languages.

Our findings illustrate that multilingual model per-
formance is uneven, shaped by language scripts,
data representation, and model architecture. Even
the strongest models frequently underperform in
non-Latin, low-resource settings—underscoring
the urgent need for more balanced training corpora
and improved tokenization strategies.

5.2 Evaluation on Text Summarization

Results: Table 2 shows the performance (ROUGE
score) of different LLMs in summarizing text
across the selected languages. The results indi-
cate that the mT5-multilingual-XLSum model con-
sistently outperforms the others in almost all lan-
guages and achieves the highest average score.
However, overall, all models perform worse on
languages with non-Latin scripts—such as Nepali,
Ambharic, Telugu, Sinhala, and Pashto—compared
to languages with Latin scripts like Somali, Swahili,
and Yoruba, highlighting a bias toward Latin-script
languages in this task.

Performance analysis: The mT5-multilingual-
XL-Sum model is based on the mT5 checkpoint,
fine-tuned on the XLSum dataset, which includes
high-quality news summaries in over 45 languages,
many of which are low-resource and use Latin
scripts. This specialization makes it well-suited
for summarization, unlike general-purpose models
such as LLaMA?2, Mistral, or Bloom, which are
primarily trained for open-ended text generation.



Llama-2 Mistral mT5-multi Bloom mT5-base
Language R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L
Somaliy, 742 519 7.03 4.82 3442 2584 7.18 528 12.01 9.68
Swahiliy, 6.56 4.87 650 4.77 39.02 31.75 620 5.04 1332 11.21
Yorubay, 8.66 6.28 8.68 625 39.32 2999 7.77 6.16 16.88 13.57
Pashtoy, 0.01 0.01 0.02 0.02 000 0.00 0.00 0.00 0.00 0.00
Kannaday, - - - - - - - - - -
Sinhalay;,  0.57 0.57 081 0.81 233 233 077 0.77 0.03 0.03
Marathiy;, 0.85 085 085 0.85 416 416 120 1.15 077 0.77
Punjabiy;, 1.39 139 143 143 500 5.00 1.06 1.04 0.83 0.64
Tajiky, - - - - - - -
Kyrgyzyr, 1.69 1.67 158 156 8.63 863 234 225 1.21 1.21
Teluguyr, 1.80 1.80 197 197 3.06 3.06 1.06 1.06 026 0.26
Amharicy;, 0.71 071 0.68 0.68 3.00 3.00 096 0.82 053 0.51
Burmesey; 3.89 3.89 4.05 4.05 727 727 421 421 030 030
Nepaliyz, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AVG 2.80 227 280 227 1218 10.09 273 232 385 3.18
Median 1.54 153 151 150 458 458 1.13 1.11 0.65 058

Table 2: Text summarization performance (ROUGE) of LLMs across languages on the XL-Sum dataset.

Moreover, mT5-multilingual-XL-Sum is explicitly
multilingual and designed to support LRLs by lever-
aging a shared vocabulary and cross-lingual trans-
fer, helping it generalize better to low-resource
Latin-script languages compared to models like
LLaMA?2 or Bloom, which may have limited expo-
sure to such languages during pretraining. Addi-
tionally, this model benefits from better tokenizer
compatibility with Latin scripts, as Latin-script lan-
guages tend to be tokenized more efficiently by
subword tokenizers like SentencePiece—especially
when the model has encountered similar orthogra-
phies during training.

It is worth mentioning that LLaMA 2 and Mistral
seem to perform similar to Bloom with a much
smaller token vocabulary.

5.3 Evaluation on Question Answering

Results: Table 3 shows QA performance (F1 scores
in %) across different language scripts on the Bele-
bele dataset. The averaged F1 scores, (i.e., mean)
over all languages across all models range between
32 and 36, with median values between 33 and 36.
Bloom and Qwen have the highest median
(36.22 and 36.10) and averaged F1 score (35.59
and 34.54) values, indicating that these models may
offer the best performance overall in this evalua-
tion. XGLM has the lowest averaged F1 score and
median, potentially the least performance system.
LLaMA?2 and mT5 appear to have balanced data
distributions, showing the smallest difference be-
tween the averaged F1 scores and median scores,
with the median slightly below the average. In con-
trast, the other models contain low-value outliers
that pull the averaged F1 score below the median.

For all models, the F1 scores for Burmese fall
below the model-specific median, suggesting it’s
among the most challenging languages tested.

A closer examination shows that LLaMA?2 out-
performs other models on Somali, Pashto, Punjabi,
and Telugu; Mistral performs best on Amharic;
Bloom excels on Swabhili, Sinhala, Tajik, Kyrgyz,
and Nepali; Qwen leads on Kannada, Marathi, and
Burmese; and mT5-base performs best on Yoruba.

Some models seem to archive more concise
performance on Latin-script languages compared
to non-Latin, where performance decreases—for
instance, LLaMA2 on Kannada, Kyrgyz, and
Burmese; Mistral on Telugu and Tajik; Bloom on
Somali and Burmese; Qwen on Tajik and Kyrgyz;
and mT5-base on Telugu, Amharic, and Nepali.

Language Llama2 Mistral Bloom Qwen mT5 Xglm
Somaliy, 4143 3537 2653 37.57 32.84 29.03
Swahiliz, 3899  37.14 48.84 3593 3853 34.38
Yorubar, 3344 3793 3861 3024 44.03 24.06
Pashtoy . 4128 3840 37.60 3898 33.06 40.66
Kannadayy, — 24.63 3393  31.94 4297 3333 27.17
Sinhalay, 3551 2822 3894 3823 3406 26.59
Marathiy, 2893 3070 3175 39.00 31.87 33.07
Punjabiy, 4120 3699 3486 36.64 3807 2857
Tajik 7, 3130 2950 37.58 23.55 3453 3343
Kyrgyzyr, 2662 3619 37.60 27.59 3027 3820
Teluguyr, 3831 2158 3237 3626 2551 34.60
Amharicy;, 2924 3642 3353 3124 28.06 2397
Burmesey; ~ 27.02  31.00 28.83 33.04 2920 32.12
Nepaliyz, 3352 3652 3934 3237 2865 43.97
AVG 33.67  33.56 3559 3454 3300 32.13
Median 3348 3578 3622 3610 3295 32.60
Table 3: QA performance (F1 score) of LLMs across

languages on the Belebele dataset.

Performance analysis: Each model appears to
have language-specific strengths, reflecting differ-



ences in pretraining data, architecture, or cross-
lingual generalization ability. Additionally, the va-
riety of languages (Afro-Asiatic, Indo-Aryan, Dra-
vidian, etc.) indicates that these models exhibit par-
tial generalization, likely influenced by the distribu-
tion of their training data. Script sensitivity—Latin
versus non-Latin scripts—is also apparent, likely
due to sparse pretraining data in non-Latin scripts
(e.g., Kannada, Telugu, Burmese, Amharic) and to-
kenizer inefficiencies, as many LLMs use subword
tokenizers trained predominantly on Latin-based
corpora. This highlights that non-Latin scripts con-
tinue to pose challenges for LLMs, mainly in QA.

6 Tokenization Analysis

We conducte further experiments on the CulturaX
dataset to assess how well a tokenizer understands
diverse LRLs.

Our analysis considers the following metrics:

OOV Rate: Indicates the proportion of words not
found in the vocabulary; higher values suggest
lower coverage.

Vocab Coverage: Higher values indicate better
vocabulary coverage.

Sub-word Fragmentation: Higher values indicate
that more words are segmented into multiple sub-
word units, suggesting less efficient tokenization.

Tokens/Word: Lower values mean fewer tokens
per word on average, suggesting more concise word
representations.

6.1 Opverall Results

Appendix B contains full details and results for all
LRLs, with Figures 5 to 8 illustrating the metrics
across models and languages.

Our tokenization analysis reveals consistently
very high OOV rates and very low vocabulary cov-
erages across all models and languages. XGLM
achieved the best average score for both, with the
lowest OOV rate (0.84) and the highest vocabulary
coverage (0.15), both for Yoruba, a Latin-script
language. These rates indicate limited generaliza-
tion and semantic understanding of the evaluated
models on LRLs.

Across all models, the highest OOV rates and
lowest vocabulary coverages, i.e., indicating the
most challenging languages, were observed for
Amharic (Ge’ez script), Pashto (Arabic script),
Tajik (Cyrillic script), and Kyrgyz (Cyrillic script).

Regarding sub-word fragmentation, LLaMA2
and Mistral exhibited the highest values (over 0.68)
across all languages. This may be due to the
small vocabulary size of both models compared
to the other models. Notably, BLOOM and Qwen
showed more efficient tokenization compared to
other models for Nepali and Marathi. BLOOM
further reached below 0.1 for Telugu, Kannada,
Marathi, and Punjabi.

XGLM achieved the best token-per-word ratios
(i.e., the lowest values) across the majority of lan-
guages, while LLaMA?2 consistently showed the
worst performance in this regard.

6.2 LLaMA2 Tokenizer Results

The radar chart in Figure 4 provides valuable in-
sights how LLaMA?2 might perform across LRLs,
such as Ambharic, Kannada, Nepali, Pashto, Tajik,
Swahili, and Punjabi, based on the analyzed lin-
guistic characteristics:

Ambharic: Ambharic’s extremely high average to-
kens per word (10.00) and highest OOV rate (0.99),
even with the LLaMA?2 tokenizer, strongly sug-
gest that the tokenizer is highly inefficient for

Normalized Language Metrics Radar Chart
1-Avg Tokens/Word

Avg Subword Fragmentation

Figure 4: Token analysis with respect to the average
out-of-vocabulary (OOV) rate, average tokens per word,
average vocabulary coverage, and average sub-word
fragmentation rate per language was performed using
the LLaMA?2 tokenizer. Inverted values mean that a
value closer to 0 on the chart axis corresponds to a higher
actual OOV rate, while a value closer to 1 indicates a
lower actual OOV rate. The same inversion applies to
the average tokens per word metric.



Ambharic. This is likely due to its unique Ethiopic
script and complex morphology, which do not align
well with the BPE patterns learned by LLaMA?2.
The tokenizer breaks words into many small, often
character-level tokens that do not form meaningful
subword units for the LLM.

Pashto and Tajik: Similar to Amharic, their high
OOV rates (0.98) and low vocabulary coverage
with the LLaMA?2 tokenizer indicate inefficiency.
While their average tokens per word is lower than
Ambharic’s, it remains notably higher than in lan-
guages like Nepali or Punjabi. This suggests that
despite being trained on diverse data, the LLaMA2
tokenizer struggles with these Persian-derived lan-
guages, possibly due to script variations or mor-
phological features not well represented in the tok-
enizer’s BPE training.

Swabhili: Swahili’s lower subword fragmentation
rate (0.68) compared to other languages, combined
with a high OOV rate (0.97), suggests that the
LLaMAZ2 tokenizer is not effectively segmenting
Swahili words into useful subword units that are
well-covered in its vocabulary. This may be due to
its Bantu agglutinative morphology, which forms
word structures that LLaMA?2’s BPE does not opti-
mally capture.

Nepali and Punjabi: These languages gener-
ally show more favorable characteristics with the
LLaMA?2 tokenizer. They exhibit high subword
fragmentation rates (0.98 for Nepali, 0.96 for Pun-
jabi), which are accompanied by lower OOV rates
and better vocabulary coverage. This indicates that
for these languages, the tokenizer’s BPE method
effectively breaks down words into meaningful and
well-covered subword units.

Kannada: Good vocabulary coverage and high
subword fragmentation suggest that the LLaMA?2
tokenizer handles Kannada relatively well in break-
ing down words into known subwords. However,
its average tokens per word is still moderate, indi-
cating some degree of fragmentation.

The analysis clearly shows that the effectiveness of
the LLaMA?2 tokenizer varies significantly across
languages, particularly for those outside its primary
training distribution or with distinct linguistic fea-
tures (e.g., non-Latin scripts or complex morphol-
ogy). While it performs reasonably well for lan-
guages like Nepali and Punjabi—benefiting from

effective subword fragmentation—it presents sub-
stantial challenges for languages such as Amharic,
Pashto, and Tajik. In these cases, inefficient to-
kenization negatively affects the model’s context
understanding, increases computational cost, and
reduces overall output quality. These findings high-
light the critical need for language-specific tokeniz-
ers or multilingual tokenizers explicitly designed
to handle a wider range of linguistic features, es-
pecially for low-resource and linguistically diverse
languages, to ensure optimal LLM performance.

7 Conclusion

In this work, we present a comprehensive study
evaluating nine publicly available LLMs, com-
monly used via Hugging Face, on three core NLP
tasks—machine translation, text summarization,
and question answering—with a particular focus
on LRLs. We assessed the performance of these
LLMs across 14 languages ranging from class 0
to class 2. In addition, we conducted a tokeniza-
tion analysis on LRLs. Our findings highlight the
challenges and limitations of evaluating LLMs on
LRLs, primarily due to the scarcity of training data
and the diversity of writing scripts. To address
these limitations and advance the state of the art,
future research should explore the development
of specialized models tailored to LRLs, including
those that use non-Latin scripts.

8 Limitations

While our study provides valuable insights into the
performance of multilingual LLMs on LRLs, We
acknowledge two main limitations: (i) our eval-
uation focused on a subset of publicly available
LLMs and multilingual benchmark datasets. Given
the vast number of models and resources avail-
able, we selected widely used and openly acces-
sible LLMs from the Hugging Face Hub; and (ii)
the multilingual LLMs and tokenizers analyzed in
this study were not specifically optimized or cus-
tomized for the selected LRLs. We believe future
research should explore the development of LLMs
tailored to LRLs, incorporating native speakers as
human-in-the-loop feedback mechanisms during
model training.
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A General Appendix

ISO Language Script Family Speakers C
am Ambharic Ge’ez Afro-Asiatic 5SIM 2
te Telugu Telugu Dravidian 96M 1
my Burmese Burmese Sino-Tibetan 429M 1
ne Nepali Devanagari  Indo-European-Indo-Aryan 32M 1
kn Kannada Kannada Dravidian 44M 1
ps Pashto Arabic Indo-European 5M 1
tg Tajik Cyrillic Indo-European 10.5M 1
SW Swahili Latin Atlantic-Congo 200M 2
yo Yoruba Latin Atlantic-Congo 46M 2
S0 Somali Latin Afro-Asiatic 2M 1
si Sinhala Sinhala Indo-European 16M 0
mr Marathi Devanagari Indo-European 83M 2
pa Punjabi Gurmukhi Indo-European 150M 2
ky Kyrgyz Cyrillic Turkic 4.12M 2

Table 4: We provide a few selected LRLs used in
our evaluation including the ISO-639-3 language code
(ISO), language script (Script), language family, total
numbers of speakers, and language class (C).

L ISO  Script Family Mono Data C
Amharic amh Ge’ez Afro-Asiatic 3.02M 2
Arabic ara  Arabic Afro-Asiatic 126M 5
Azerbaijani azj  Latin Turkic 414M 1
Bengali ben Bengali Indo-European 579M 3
Burmese mya Myanmar Sino-Tibetan 2.66M 1
Chinese (Simplified) zho Han Sino-Tibetan 2090M 4
Chinese (Traditional) zho Han Sino-Tibetan 852M 4
English en Latin Indo-European - 5
French fra  Latin Indo-European 428M 5
Gujarati guj  Gujarati Indo-European 94IM 1
Hausa Hau Latin Afro-Asiatic 5.8M 2
Hindi Hi Devanagari Indo-European 104M 4
Igbo ibo  Latin Atlantic-Congo 693K 1
Indonesian ind Latin Austronesian 1.0sB 3
Japanese jpn  Han, Hiragana, Katakana Japonic 2829M 5
Kirundi m - - -1
Korean kor  Hangul Koreanic 390M 4
Kyrgyz kir  Cyrillic Turkic 2.02M -
Marathi mar  Devanagari Indo-European 144M 2
Nepali npi  Devanagari Indo-European 179M 1
Oromo orm Latin Afro-Asiatic 752K 1
Pashto pus  Perso-Arabic Indo-European 2M 1
Persian fas  Perso-Arabic Indo-European 611M 4
Pidgin nfa - - - 0
Portuguese por  Latin Indo-European 340M 4
Punjabi pan  Gurmukhi Indo-European 5.02M 2
Scottish (Cyrillic) ad - - 1
Serbian (Latin) sIp Cyrillic Indo-European 225M 4
Sinhala si - - 0
Somali som Latin Afro-Asiatic 141M 1
Spanish spa  Latin Indo-European 379M 5
Swabhili swh Latin Atlantic-Congo 35.8M 2
Tamil tam  Tamil Dravidian 682M 3
Telugu tel Telugu-Kannada Dravidian 2829M 1
Thai tha  Thai Kra-Dai 319M 3
Tigrinya tir Ge’ez Afro-Asiatic -2
Turkish tur  Latin Turkic 128M 4
Ukrainian ukr  Cyrillic Indo-European 357M 3
Urdu urd  Perso-Arabic Indo-European 28M 3
Uzbek uzb  Latin Turkic 7.54M 3
Vietnamese vie  Latin Austro-Asiatic 992M 4
Welsh cym Latin Indo-European 127M 1
Yoruba yor  Latin Atlantic-Congo 1.59M 2

Table 5: List of languages included in the XLSum
dataset, along with the corresponding ISO 639-3 , Script,
Language family and Class.

A.1 Pre-training Model Details

We report the pre-training details of each model in
Table 6.

A.2 NLP tasks

* Machine translation: For this task, we
evaluate the 3.3B version of NLLB-200 de-
signed for single sentence translation among
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200 languages; mBART-large-50-many-to-
many-mmt fine-tuned for multilingual ma-
chine translation on 53 natural languages;
mT5-base, a model covering 101 natural lan-
guages; the 7B version of Llama2, trained
on 20 natural languages; the 7B version of
BLoom, trained on 46 natural languages and
the 7B version of Mistral, trained on 6 natural
languages.

e Text Summarization: For this task, we use
the fine-tuned variants of mT5 trained on 45
natural languages of XL-Sum; mT5-base; the
7B version of Bloom; the 7B version of Mis-
tral and the 7B version of Llama?2.

* Question Answering:: We use the 7B version
of Bloom; the 7B version of Mistral; the 7B
version of Llama2; the 7.5B version of XGLM
trained on 31 natural languages; mT5-base;
the 8B version of Qwen3 and the 7B version
of Mistral.

A.3 Language Details

In Table 4 we provide an brief overview of LRLs
we include in our evaluation.

A.4 XLsum languages

In Table 5, we list all the languages included in
XLSum benchmark dataset with some details in-
cluding the iso code, language family, script and
class.

B Token analysis

We report the token analysis for all models in Ta-
ble 7. For all models the train_samples are 50000,
analysis_samples are 10000, target_vocab_size is
30000, and min_frequency is 5.



Model Type Tokeni: Pre-training data (Tokens) L Low-resource strength

XGLM Decoder-only (GPT-style) SentencePiece (BPE) 500B 30 Excellent (gen/QA)
Qwen3 Decoder-only Custom BPE tokenizer (QwenTokenizer) 3T (estimated) Partial Moderate
Llama2 Decoder-only SentencePiece (BPE) 2T 20 (English-heavy) Weak

Bloom Decoder-only GPT2-style BPE 1.6T 46 Good

Mistral Decoder-only SentencePiece (BPE) 12T Some Limited
mT5-base Encoder-decoder (Seq2Seq) SentencePiece (Unigram) 250k 101 Strong

NLLB Encoder-decoder (based on mBART) SentencePiece 1.3T 200 Best (translation)
mBART-large Encoder-decoder entencePiece 250GB 25 Good (but limited)
mT5-multilingual-XLSum mT5-base fine-tuned for summarization SentencePiece (Unigram) 250k 45 Strong (summarization)

Table 6: Pre-training details of each model.

OO0V Rate by Model and Language
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Figure 5: The avg. out-of-vocabulary rate by model and language.
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Figure 6: The avg. vocab coverage by model and language.
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Sub-word Fragmentation by Model and Language
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Figure 7: The avg. sub-word fragmentation by model and language.
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Figure 8: The avg. Tokens/Word by model and language.
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Language Tokenizer actual_tokenizer_vocab_size processed_analysis_texts avg_tokens_per_word avg oov_rate avg_vocab_coverage avg_subword_fragmentation_rate

Amharic ~ LLama2 32000 10000 10.67 0.99 0.005 0.91
Mistral 32000 10000 9.09 0.99 0.005 0.91

Xglm 256008 10000 2.11 0.98 0.011 0.60

Qwen 151669 10000 533 0.99 0.008 0.80

Bloom 250680 10000 6.52 0.99 0.009 0.89

Telugu LLama2 32000 10000 3.21 0.94 0.05 0.95
Mistral 32000 10000 2.11 0.93 0.06 0.95

Xglm 256008 10000 0.42 0.88 0.11 0.57

Qwen 151669 10000 1.89 0.90 0.09 0.70

Bloom 250680 10000 0.37 0.89 0.10 0.06

Burmese LLama2 32000 10000 2.07 0.94 0.05 0.98
Mistral 32000 10000 1.97 0.93 0.06 0.98

Xglm 256008 10000 0.45 0.89 0.10 0.54

Qwen 151669 10000 1.83 0.90 0.09 0.71

Bloom 250680 10000 2.14 0.90 0.10 0.91

Nepali LLama2 32000 10000 1.61 0.95 0.04 0.98
Mistral 32000 10000 1.54 0.95 0.04 0.98

Xglm 256008 10000 0.41 0.91 0.08 0.54

Qwen 151669 10000 1.40 0.93 0.06 0.20

Bloom 250680 10000 0.35 0.92 0.07 0.07

Kannada LLama2 32000 10000 3.17 0.94 0.05 0.92
Mistral 32000 10000 1.82 0.94 0.05 0.92

Xglm 256008 10000 0.47 0.89 0.10 0.58

Qwen 151669 10000 1.82 0.91 0.08 0.62

Bloom 250680 10000 0.39 0.90 0.09 0.08

Pashto LLama2 32000 10000 4.48 0.98 0.01 0.94
Mistral 32000 10000 4.42 0.98 0.01 0.94

Xglm 256008 10000 1.45 0.96 0.03 0.37

Qwen 151669 10000 2.61 0.98 0.01 0.68

Bloom 250680 10000 2.29 0.97 0.02 0.61

Tajik LLama2 32000 10000 3.20 0.98 0.01 0.72
Mistral 32000 10000 3.15 0.98 0.01 0.72

Xglm 256008 10000 2.14 0.96 0.03 0.69

Qwen 151669 10000 3.03 0.98 0.01 0.65

Bloom 250680 10000 3.39 0.98 0.01 0.65

Swahili LLama2 32000 10000 2.41 0.97 0.02 0.68
Mistral 32000 10000 242 0.97 0.02 0.68

Xglm 256008 10000 1.44 0.94 0.05 0.41

Qwen 151669 10000 2.19 0.96 0.03 0.67

Bloom 250680 10000 1.36 0.95 0.04 0.57

Yoruba LLama2 32000 192 2.50 0.92 0.07 0.81
Mistral 32000 192 2.54 0.92 0.07 0.82

Xglm 256008 192 1.54 0.84 0.15 0.50

Qwen 151669 192 2.17 0.93 0.06 0.56

Bloom 250680 192 1.08 0.91 0.08 0.28

Somali LLama2 32000 39 8.07 0.91 0.08 0.60
Mistral 32000 39 8.70 0.92 0.07 0.60

Xglm 256008 39 6.06 0.88 0.11 0.56

Qwen 151669 39 7.99 0.93 0.06 0.54

Bloom 250680 39 8.59 0.92 0.07 0.55

Sinhala LLama2 32000 10000 2.72 0.95 0.04 0.95
Mistral 32000 10000 2.51 0.94 0.05 0.95

Xglm 256008 10000 0.50 0.90 0.09 0.44

Qwen 151669 10000 2.14 0.91 0.08 0.64

Bloom 250680 10000 248 0.90 0.09 0.93

Marathi LLama2 32000 10000 1.47 0.95 0.04 0.96
Mistral 32000 10000 1.45 0.94 0.05 0.95

Xglm 256008 10000 0.43 0.89 0.10 0.56

Qwen 151669 10000 1.32 0.91 0.08 0.16

Bloom 250680 10000 0.36 0.90 0.09 0.06

Punjabi LLama2 32000 10000 3.17 0.93 0.06 0.96
Mistral 32000 10000 3.38 0.93 0.06 0.96

Xglm 256008 10000 0.57 0.87 0.12 0.56

Qwen 151669 10000 2.16 0.90 0.09 0.83

Bloom 250680 10000 0.43 0.88 0.11 0.07

Kyrgyz LLama2 32000 10000 3.44 0.98 0.01 0.77
Mistral 32000 10000 3.57 0.98 0.01 0.78

Xglm 256008 10000 1.91 0.97 0.02 0.67

Qwen 151669 10000 3.39 0.98 0.01 0.75

Bloom 250680 10000 3.70 0.98 0.01 0.75

Table 7: We report Token analysis of a batch of training samples by computing the average tokens per word, the
average out-of-vocabulary rate, the average vocabulary coverage and average sub-word fragmentation rate of each
of the language using Llama2, Mistral, Xglm, Qwen and Bloom tokenizers .
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