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ABSTRACT

The excessive energy and memory consumption of neural networks has inspired
a recent interest in quantized neural networks. Due to the discontinuity, training
binary neural networks (BNNs) requires modifications or alternatives to standard
backpropagation, typically in the form of surrogate gradient descent. Multiple
surrogate methods exist for feedforward BNNs; however, their success has been
limited when applied to recurrent BNNs, but successful when used in binary-
like spiking neural networks (SNNs), which contain intrinsic temporal dynamics.
We show that standard binary activation approaches fail to train when applied to
layer with explicit recurrent weights, and present a theoretical argument for the
necessity of temporal continuity in network behavior. By systematically incorpo-
rating mechanisms from SNN models, we find that integrative state enables recur-
rent binary activation networks to reach similar performance as floating-point ap-
proaches, while explicit reset and leakage terms do not affect performance. These
results show how spiking units enable the training of binary recurrent neural net-
works and identify the minimally complex units required to make recurrent binary
activations trainable with current surrogate methods.

1 INTRODUCTION

As large neural network models continue to permeate both data center and edge application spaces,
counteracting the increasing energy and memory demands of these networks is critical. Quantized
neural networks are one such method, which attempt to balance the increased size of the networks
with decreased precision in activation functions and weights (Hubara et al.l |2017). Today, sev-
eral software ecosystems exist to perform quantization-aware training and post-training fine-tuning,
enabling the reduction of weights and activations to 4-bit or lower resolution for deployment to spe-
cialized hardware for inference (Pappalardol[2023)). The limit of decreased precision is binary neural
networks (BNN), which may use binary activation functions (BANN) or binary weights (BWNN)
(Hubara et al.| 2016), and enable extremely energy efficient inference (Zhu et al.| [2024). Binary
weights and binary activations provide different advantages over their floating-point equivalents. In
digital devices, replacing inter-unit activity transmission from floating-point to binary can drastically
reduce the large energy overhead of data transfers to and from memory (Orchard et al.,[2021). Both
activity and weight quantization reduce the memory requirements of networks. In machine learning
accelerators based on analog in-memory computing (Aguirre et al.,[2024)), quantized weights enable
tolerance to intrinsic variability in the stored analog memory states, while BANNs can eliminate the
complexity and overhead of multi-bit analog-to-digital converters (Xiao et al., 2023).

Recurrent Binary Activations While heavily quantized activations have been demonstrated in
a wide range of neural network topologies and BWNNs have been trained in recurrent networks
(Alom et al., 2018)), standard BANNs have only been reported for feedforward topologies. How-
ever, in many edge computing tasks, where the low power consumption of BNNs is particularly
desirable, recurrent layers are critical (recurrent neural networks; RNNs). Examples include audio
and video processing applications, such as keyword spotting or object tracking. Other use-cases for
RNNs may rely on large networks; in video processing, for example, the network size must grow
proportionally with the size of the input videos, and therefore require minimized memory consump-
tion per unit. These varied use cases highlight the need for binary recurrent layers under a variety
of constraints. Though binary activations are typically absent from the RNN literature, a notable
exception is spiking neural networks (SNNs), which utilize temporal dynamics along with binary-
valued activations, and are often used as recurrent layers in neuromorphic computing studies (Bittar
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& Garner, [2022; Bellec et al.| [2018). These networks incorporate loosely biologically inspired tem-
poral dynamics to keep a pre-activation state within each neuronal unit. The state accumulates over
time, and the units communicate via binary ‘spikes’ only when this state reaches a critical threshold.

Previous Work Training BANNs Prior methods of training BANNs utilizing backpropagation
fall into three broad categories: surrogate gradient descent, probabilistic surrogates, and progressive
sharpening. Surrogate gradient descent, which uses an approximation of binary activations during
the backward pass, is the most reported and a variant of this method is used to train SNNs (Neftci
et al.,|2019; |[Eshraghian et al.,|2023)). Probabilistic approaches convert the input to an activation layer
to a probability function during activity propagation, and perform gradient descent on the underlying
probabilities rather than the stochastic activities themselves (Chung et al2017). The final method
uses a tuneable activation function which progresses from smooth to discrete over the course of
training (Severa et al.l 2019). Additional methods for training binary activation networks exist,
but these use training methods which are more removed from standard backpropagation, such as
random perturbations (Bengio et al., [2013}; |[Ma et al.,|2023)) or more complex biologically-grounded
local learning rules that rely on memory-intensive traces of recent activity (Nicola & Clopath,[2017).

Explicit Intrinsic Both

Unit

Layer

Figure 1: Explicit versus intrinsic recurrence. Left In explicit recurrence individual units are feed-
forward, but recurrent weights allow the layer as a whole to be dynamic. Middle Intrinsic recurrent
units are each a dynamical system with multiple internal pathways. The layer as a whole however is
arranged in a feedforward manner, such that each unit processes inputs independent of the activity
of other units. Right In combined recurrence dynamical units are arranged in a recurrent topology,
resulting in hierarchical levels of temporal processing.

Explicit Versus intrinsic Recurrence In order to process temporal relationships among the data,
RNNs must have a mechanism for retaining information over time. This mechanism can come in the
form of explicit recurrence or intrinsic recurrence, as shown in Fig. [I| Explicit recurrence, where
the layer’s output is used as part of the same layer’s input on the next timestep, is more common in
standard machine learning frameworks. In the simplest case of a dense recurrent (Elman) layer this
follows the form of:

y(t+ 1) = @(Wffx(t) +W7'ecy(t)) (1)
Where y is the output of of the layer, © is a nonlinear activation function that operates on the sum
of weighted inputs, W is the feedforward weight matrix that operates on the feedforward activity
x, and W, is the recurrent weight matrix. The recurrent matrix takes the output of a neural layer
at one timestep and re-presents them on the next timestep, to be summed with input from earlier
layer of a network. This ability to mix partially-processed information from previous timesteps with
current information, often in a trained manner, allows high-dimensional temporal relationships to
be learned. If the recurrent weights of an explicit-RNN were set to zero, the network would operate
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as a feedforward network. Intrinsic recurrence, in contrast, stores a set of units with time-varying
state, just as the spiking neural networks outlined above do. An intrinsic recurrent layer may be
expressed as the dynamical system:

o(t+1) = F(u(t)) + Gy(t)) + Wyya(t)
yt+1)=0(v(t+1))
Here the term v(t) represents a local state which accumulates information over time without an
explicit recurrent connection. F' and G are terms which change the state in response to the pre- (F')

or post-(GG) activation state in the previous timestep. Finally, the nature of this equation prevents the
local state (v(t)) from instantaneously changing in response to Wy yx(¢).

2)

Explicit without intrinsic recurrence is typical of standard machine learning approaches such as the
gated recurrent unit, where the recurrent weights directly determine the interaction of the previous
activity and current inputs. intrinsic without explicit recurrence can act on temporal locality in
the processed data, and may occur in applications which emphasize speed of processing, but operate
primarily on spatial features with simple temporal patterns (Pedersen et al.,|2023;|Subramoney et al.,
2023; Bing et al.} 2020). However, many SNN models utilize both explicit and intrinsic recurrence,
which can be written in the general form:

v(t+1) = F(uo(t) + Gy(t) + HWree, y(t)) + K(Wyy, (1))
y(t+1)=0(v(t+1))
This equation includes terms from both equations[T]and[2] In the case of all-to-all layers, the func-
tions H and K are standard matrix multiplication, but may also take other forms, such as convolu-

tion. Utilizing this unified equation allows us to drop various terms to more exhaustively investigate
the sub-dynamics which are necessary for training.

3)

Related Work As noted above, several lines of research have investigated binary activation func-
tions in feedforward topologies. Additional work has investigated recurrent layers that received
binarized inputs, but which still use real-valued activation in recurrent transmission (Edel & Koppe!,
2016). Recent work has also combined the explicit recurrence of more advanced networks such
as GRUs with intrinsic recurrence, including spike-based transmission, but still use a real-valued
pre-activation state (Dampfhoffer et al., 2022). While spiking neural networks have utilized ex-
plicit recurrence, the multiple differences between these studies have so far led to an incomplete
understanding of the required dynamics for training more general BARNNS.

Contributions Observing that SNNs constitute a subset of BARNNS, specifically combining mul-
tiple intrinsic dynamics with explicit recurrent weights, we sought to determine the essential com-
ponents of SNN-based training which would allow backpropagation-like training. Our main contri-
butions are to:

* Illustrate temporal discontinuities for binary activation explicit recurrent layers, leading to
unsuccessful backpropagation through time (section .T)).

* Demonstrate that surrogate gradient methods fail to converge when employed with a binary
activation in a recurrently connected layer (section .2)).

* Demonstrate, across multiple surrogate approaches, that incorporating pre-activation inte-
grative state allows training of recurrent binary activation networks (section[d.2)).

» Show robustness of performance when including additional state dynamics such as explicit
reset and proportional leakage of sub-threshold state (section [4.3).

2 BINARY ACTIVATION TRAINING METHODS

We implemented three classes of methods which have been used to train binary activation feed-
forward networks, and compare them amongst each other and with SNN approaches. To enable
comparison across these methods, we use the terminology of Equation [3} as summarized in Table
Most notably, we will refer to the input to an activation function as v. In the case of a standard
feedforward network this is simply Wz, while for any system with intrinsic recurrence, v is the
aforementioned local state. We write the activation function used during the forward pass as © and,
where appropriate, the surrogate function used in the backward pass as . To further ease compar-
ison, and to allow the same parameter initialization across methods, we utilize activation functions
with inflection points centered on zero for each method.
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Variable Role

x Feedforward input to the layer

Wyy Feedforward weight from lower layers

Wree Explicit recurrent weight within the layer
v State of the layer
G} Activation function of the layer
) Surrogate function of ©, used for backward pass
« Tuneable parameter that changes over the course of training
y Output of layer, which is forwarded to other layers, and through W, if present

Table 1: Standardized variable notations

Surrogate Gradient Probabilistic Sharpening
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Figure 2: Illustration of the training methods. Left: Straight Through Estimate approach, with
the true activation function in black, surrogate activation in blue, and derivative of the surrogate as
dashed. Middle: In the probabilistic training method, the activation function follows a stochastic
distribution. The surrogate (solid blue) is a centered and bounded linear function, and the activation
on each step is drawn according to a Bernoulli of the function. Right: In the progressive sharpening
approach, the activation function is a tuneable bounded linear function where the parameter o deter-
mines the level of sharpening. At baseline (o = 1) this is identical to the standard hardtanh function,
and progresses towards the Heaviside function when v = 0. There is no surrogate activation for this
approach.

Surrogate Gradient Descent Of the three approaches, the surrogate gradient descent is the most
commonly used and has the most variants, each of which utilizes a different surrogate function ©)
to approximate a non-differentiable activation (©) used during the forward pass. Here, we utilized
the Heaviside function:

1 ifv>0

Oste(v) = {o ifv <0 @

For the surrogate function, we utilized a variant of the common straight-through estimator (STE)
(Hubara et al., 2017):

0 ifv <-1.0
Oste(v) =€ 05%x2 4+ 0.5 if [v| < 1.0 (5)
1 ifv>1.0

which is identical to a shifted hardtanh function and has a piecewise constant derivative.

Probabilistic The probabilistic approach takes the pre-activation summed activity v and creates a
Bernoulli random variable with mean equal to v (Ma et al.| 2023). During the backward pass, the
activity is approximated as the real-valued probability (v), rather than the stochastic activity. We
again utilized a transformation on v before the activation function, in order to achieve zero-centered
activity:
P(v) = 0.5 + 0.5 * hardtanh(v)
©p(v) ~ Bern(P(v)) (6)

©p(v) = P(v)
While alternative transformation functions exist, the bounded piecewise linear has the advantage of

containing no additional hyperparameters and having a simple piecewise constant derivative with
respect to the inputs.
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Sharpening Over Training In the progressive sharpening approach, no surrogate function is uti-
lized. Instead, the activation function is chosen to be a differentiable and tuneable function, where
the tuning parameter causes the function to ‘sharpen’ and more closely approximate a Heaviside
function. The tuning parameter is changed over the course of training such that at the beginning of
training the activation function is maximally smooth, and progressively sharpened to the Heaviside
at the end of training. Here we will use a tuneable piecewise-linear activation:

o
Where « is the sharpening parameter. As illustrated in the right-most panel of Figure [2] this is
identical to a straight-through estimate within the range [—a, a]. When « is 1 this is identical to
the shifted standard hardtanh, and when « reaches zero this function is identical to the Heaviside.
Following previous approaches (Severa et al.l|2019), we start with & = 1 and keep it set as such for
the first 10 epochs. Afterwards a decreases by 0.01 on each epoch until training error increases by
more than 1% greater than the previous minimum, at which point the sharpening is paused for one
epoch. When reporting performance of a sharpened network, the metrics are always based on a fully
sharpened activation (o = 0), regardless of the value at that point in training.

Osharp(v) = 0.5+ 0.5 * hardtanh <” tao 1) 7

Spiking Neural Networks We also train spiking neural networks which implement a binary-like
communication scheme in the form of discrete spikes. These networks can be thought of as replacing
the feedforward activation functions of standard neural networks with a temporally evolving pre-
activation value (state) which integrates the weighted inputs at each point in time. When this state
reaches a critical threshold, the unit emits a spike, and resets the state. We specifically utilized
the first-order leaky integrate-and-fire (LIF), as implemented via ‘LIFBox’ in the Norse software
package (Pehle & Pedersen, [2021)):

ot 1) = (1= ZE)(0(0) — y(t) + ~Wreey(t) + 2 Wyga(t)

y(t+1) =g (v(t+1)) =v(t+1) > 1
These terms are arranged in the same order as Equation[3] As with the methods above, v is the pre-
activation state, but now acts as a stateful leaky-integrator with time-constant 7. gz, is a term which
regulates the speed with which v decays to zero in the absence of inputs and is typically referred to as
“leak”. It is typically set to one, but can also be set to zero to create an non-leaky integrate-and-fire
unit. The term —y(t) represents an explicit reset mechanism upon reaching threshold.

(®)

The spiking units utilize the “SuperSpike” (Zenke & Ganguli, 2018)) surrogate gradient, which op-
erates on the pre-activation state and has the form:
A 1
O = —70 9
spk (V) v+ 12 )
Surrogate gradient methods are then applied as above for each method, where the partial derivative
of state (v) is now taken through time.

3 EXPERIMENTS

We utilize three exemplar tasks, illustrated in Figure 3] to evaluate the performance of the various
training methods and demonstrate the required intrinsic recurrence required to train explicit recur-
rent weights. These tasks are chosen to span static and time-varying domains, with various levels of
difficulty, but for which relatively simple recurrent connectivity patterns have shown moderate suc-
cess. Each task uses a slightly different network architecture, which was chosen for a combination
of task appropriateness and simplicity, rather than attempting to utilize state-of-the-art architectures.
Data augmentation was not utilized.

Layers and Hyperparameterization Each task utilized a different network architecture as out-
lined below, but all of these are based on convolutional (conv), convolutional-recurrent (crnn), and
dense layers. Convolutional layers all use a kernel size of 3, with zero padding to conserve input-
output shape consistency. Convolutional recurrent layers contain two convolutional kernel sets, a
feedforward and an explicit recurrent (Ballas et al., [2015)):

Hcr'mx,(WreCa y(t)) = Wiee * y(t)

10
Kcrnn(Wffa Qf(t)) = Wff * Jf(t) ( )
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Figure 3: Illustration of the three tasks. Left: CIFAR10, a demonstrative static-image classification
task. For temporal networks the same image is presented 64 times, and the activity on the final time-
step is used to measure performance. Middle: Spoken-commands task, demonstrative of temporal
classification tasks. The data has been pre-processed to give spectrograms binned into 64 timesteps.
Networks are presented with a full spectrum (a column as illustrated here) on each timestep, and the
activity on the final time-step is used to measure performance. Right: The small-object-tracking
task, demonstrative of spatiotemporal tracking tasks. Each image represents the same trial taken at
different timesteps. The red circle indicates the position of the target object, for human-reference
only. Performance is measured as the L 2 distance between network prediction and ground-truth on
each timestep.

Where * is the convolutional operator, and the terms ‘H’ and ‘K’ are the explicit recurrence and
feedforward activity of Equation[3] Such layers allow recurrent processing in a topologically ordered
manner, decreasing the total number of parameters compared to an all-to-all recurrent layer.

The penultimate activation of each network follows a leaky-integrator (LI) equation:

v(t+1) = (1 — 71_) (v(t)) + %Wffx(t) (11)
Which is similar to Equation 8] but without an additional nonlinear activation. These equations al-
low integration of inputs from lower layers to form an output based on all time steps without the
addition of additional recurrent layers. The time constant 7 was set to four frames in all cases. All
other floating-point layers followed the sigmoid activation function, which has the same bounds
and inflection points as the surrogate functions described above. For all approaches, training was
performed over the course of 200 epochs for five independently initialized random networks, and
performance is reported on the average of these. Optimization was performed with the ADAM opti-
mizer (Kingma & Ba,[2017), and learning rates were initialized to 0.001. All other hyperparameters
and parameter initializations followed PyTorch defaults (Paszke et al.,[2019).

CIFAR10 (Krizhevsky et all [2009) The CIFAR10 dataset serves as a baseline to demonstrate
the performance of our implementation of binary training methods when applied to non-temporal
datasets, as is commonly done in the literature. We utilize a VGG-like architecture
2014), with [3, 32, 64, 128] two-dimensional convolutional channels, followed by dense
layers with [2048, 128, 10] units. An additional CNN-RNN approach replaces the first dense layer
with a recurrent layer, allowing comparison to the spiking networks. For networks with temporal
dynamics, the entire image was presented for 16 timesteps and the network output was taken as
activity on the final step. This repeated input of the image allows activity to travel through the
network. CIFARI1O results were optimized with cross-entropy loss and we report top-1 accuracy
scores.

Speech Commands (SC) This dataset is a temporal classification task, allowing
measurement of how well the training methods allow incorporation of spatial convolution with later
recurrent processing. Individual trials are clipped, but not explicitly aligned, such that keywords
tend to begin about halfway through a trial. Trials which were less than one second long were
zero-padded at the beginning of the trial. We preprocess by creating spectrograms with 64 time
bins that had 50% overlap and 64 frequency bands from 0 kHz to 4 kHz. On each timestep all 64
frequency bands (a single column of Figure[3B frames) were presented, and the activity of the output
layer on the final timestep was used as the network classification. Networks for this task utilized
1-dimensional convolutional-recurrent layers with [1,8,16] channels followed by dense layers with
[1024, 128, 35] units, with the exception of the CNN-RNN baseline which utilized 1-dimensional
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convolutional layers in place of the convolutional-recurrent layers. These networks were optimized
with cross-entropy loss on the output at the final time-step, and we report top-1 accuracy.

Small Object Tracking (SOT) (Chapman et al.,[2024) We utilize a recently introduced small ob-
ject tracking (SOT) task, in which inputs are the frames of a video and target output are the location
of a small moving object. This task has been shown to require early recurrent connectivity in neural
networks. Briefly, the task utilizes the DIOR remote imaging dataset (L1 et al.l[2020) and creates a
temporal video by introducing camera drift, and pixel-by-time independent noise. This background
scene is then scaled [0, 0.5]. A trajectory is then generated which follows a ballistic trajectory with
random velocity equal to one fourth of a pixel per timestep. The object’s intensity was 0.25 at every
time point, giving a single frame a signal-to-noise-ratio of 0.5, and leading to the necessity of early
temporal processing. Networks for this task followed a 2-dimensional convolutional(-recurrent) lay-
ers with [1,8,16] channels, followed by dense layers with [15376, 128, 2] units, with the final output
being the predicted location of the tracked object on a given frame. The loss and reported metric
for this task is the mean-square-error (MSE) of readout location averaged across a given 100-frame
trial. Importantly, while this loss function is a single value for a given trial, optimization requires
minimizing the MSE on each frame, assuring that the task is temporal in nature.

4 RESULTS

4.1 RECURRENT BINARY ACTIVATIONS ARE DISCONTINUOUS THROUGH TIME

We hypothesized that the recurrent connections of binary activation recurrent networks (BARNN)
result in temporal discontinuities which prevent successful backpropagation through time. While
surrogate methods accommodate for discontinuities in activation functions, they do no correct for
discontinuities in time. To demonstrate this, consider the equation for the gradient of a loss (L) with

respect to W
T t+1

OL 8Lt+1 8yt+1 thﬂ (%k
— 12
aVVT'ec zt:kz::l ayt-l-l aUt-{—l 8’Uk 8W’r‘ec ( )

This equation notably contains the partial derivative of the output (y) with respect to the pre-
activation value ‘v‘, as well as the partial derivative of v with respect to the previous value of v,

posing two issues. First, in the case of the surrogate gradient training, gg:i is implemented as
%ﬁl), meaning that this term is an approximation of the activation function. While surrogate

gradient training in feedforward networks has been shown to overcome this, when chained through
time and multiplied this term will multiplicatively increase the error of this approximation. This
result is similar to the ‘vanishing gradient’ issues of recurrent neural networks due to multiplicative
terms. Secondly the term 8(%:1 may be ill-defined if the value of ‘v’ changes rapidly. This rapid
change in ‘v’ can be seen in Figure Ml which compares a trained RNN, BARNN, and SNN. In the
case of the RNN and SNN the input and output of the activation function are smooth with respect
to time, while the BARNN case shows numerous discontinuities and long periods of static output
values. These static values and discontinuities lead to this partial derivative term evaluating to zero
on the majority of timesteps.

Table [2|demonstrates how these discontinuous dynamics affect training. The top section of this table
reports the performance of a baseline sequential CNN-RNN and a floating-point CRNN (Equation
network across all three tasks. The next section reports all three BARNN training methods
across our three tasks. All three stateless methodologies show a notable decrease in performance
across both temporal tasks (GSC and SOT), while image classification performance is within a few
percentage points of the baseline CNN-RNN approach. This confirms previously published results
that BANN:Ss, trained using these three methods, can perform non-temporal tasks, but they explicitly
demonstrate a lack of convergence for recurrent layers, which has largely been omitted from the
literature.

Meanwhile, the SNN-based dynamics of Equation [§] perform substantially better than the stateless
BARNN approaches, and only slightly below floating-point CRNN approaches. Previous publica-
tions have shown higher performance on the GSC and CIFAR tasks with SNNs, but notably use
significantly more complex models with increased number of layers (Bittar & Garner, 2022)) or
trained delays between units (Hammouamri et al.| [2023), which could be combined with the train-
ing approaches explored here.
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Figure 4: Illustration of activity flow in recurrent networks. Each row indicates activity of a single
channel of a convolutional-recurrent network on a keyword spotting task. ‘v’ is the pre-activation
state, which per Equation [3]is simply the summed input activity for the floating point and binary
activation rows. ‘y’ is the corresponding output, and the last column shows the temporal derivatives
of surrogate activation functions. Top: A standard (‘tanh’) recurrent network. The pre-activation
value ‘v’ is smooth within each row, indicating a temporally smooth input. Likewise, the output
value ‘y’ is smooth. The final column shows that the surrogate temporal derivatives are less smooth,
but take on a number of unique values. Middle: Observing the same values for a BARNN-based
network, the pre-activation inputs and outputs are largely discrete, due to the recurrent binary activ-
ity. The resulting approximate temporal derivatives are discontinuous, with large portions of rows
showing no change between timesteps. Bottom: In the spiking network, internal dynamics limit
the rate of change of ‘v’ such that it is discontinuous only at spike events. While the output ‘y’ has
discontinuities at event times, the surrogate gradient operation is smooth over time. Overall: When
performing backpropagation through time the floating-point and spiking network temporal deriva-
tives will be able to differentiable through the majority of timesteps, while the binary activation will
primarily be non-differentiable and fail to optimize.

4.2 STATE ENABLES RECURRENT ARCHITECTURES

Based on the observations of temporal discontinuities in the previous section, we sought to test
whether the stateful dynamics of the LIF activations above can enable training of other recurrent
binary-activation layers. For each of the binary training methods (surrogate gradient, probabilis-
tic, and progressive sharpening) the pre-activation input is now stateful and follows the temporal
dynamics:

olt+ 1) = (1= ) olt) = y(0) + TWoee(t) + Wl

Yyt +1) = Oge(v(t + 1))
Table [3] reports the results of incorporating these dynamics into the recurrent layers, including the
floating-point network to enable fair comparison between networks. We found that the surrogate
gradient descent and probabilistic activation functions reach performance on par with the floating-
point and LIF-based networks. The progressive sharpening method showed minimal performance
increase with the introduction of pre-activation state, and remained approximately as inaccurate as

13)
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Method CIFAR10 GSC SOT
(Accuracy) (Accuracy) (MSE)
CNN-RNN 81.44% 54.96% 0.091

FP CRNN 84.33% 81.59% 0.007
SNN LIF 81.20% 78.33% 0.017
Sharpening 82.20% 49.00% 0.102

BARNN | Surrogate 78.72% 29.28% 0.153

Probabilistic 80.23% 54.96% 0.095

Table 2: Performance of floating point (FP) and binary activations across all three tasks. All net-
works, with the exception of the sequential CNN-RNN, utilize the CRNN architecture. Metrics
reported are averaged over 5 runs and reported on the final values. Performance is substantially
impaired in the temporal tasks for BARNNS, but not for LIFs.

the floating-point CNN-RNN method of Table[2] An extensive search was performed on sharpening
schedules (see Appendix [A), without success. We conclude that pre-activation integrative state is
necessary to enable training of binary activations by surrogate gradients and probabilistic activation,
and omit sharpening approaches from further analyses below.

Method CIFAR10 GSC SOT

(Accuracy) (Accuracy) (MSE)
FP CRNN-Stateful 83.24% 81.86% 0.006
SNN LIF 81.20% 78.33% 0.017
Sharpening* 72.80% 67.22% 0.095
Stateful BARNN | Surrogate 79.58% 80.49% 0.013
Probabilistic 82.30% 80.00% 0.014

Table 3: Performance of stateful networks across all tasks and training methods. These networks
dynamics follow the form of Equation[I3|but otherwise have the same architecture as Table[2] Met-
rics are reported on the final validation values, except for the stateful sharpening approach (marked
by *) which reports the best performance at any point in training (see Appendix [A). Performance
of the Stateful BARNN networks, with the exception of the sharpening approach, are close to the
FP-stateful entry.

4.3 RESETS, LEAKS, AND ACTIVATION VALUES DO NOT CHANGE PERFORMANCE

In addition to an integrative state, standard LIF units of Equation [§] also contain an explicit reset
mechanism and a leak term. The SNN literature has shown that a distribution of trainable leak rates
can increase the capacity of a network, while explicit resets allow for temporal sparsity of inter-unit
communication (Zheng et al.,[2024; [Zeldenrust et al.|[2019). Here we test whether these mechanisms
can benefit BARNNS. In the context of the binarization methods introduced here, the reset and leak
can be integrated into the state dynamics of Equation [I3]to become:

o(t+1) =T x (1= 2)(0(t)) — R X y(t) + ~Wreey(t) + - Wyga()
y(t+1) =0(v(t+ 1))

(14)

These dynamics are identical to those in Equation[8] except that the activation function © may now
be the STE or probabilistic mechanisms from section E} The terms ‘I’,’R’,and * L’ allow enabling or
disabling the integration, reset, and leak mechanisms respectively. Table[d.3|reports the performance
across all possible combinations of dynamics-sets. We find no systematic differences in overall
performance in any of the tasks.

The dynamics-sets do however show significant differences in learned parameters, as outlined in
Appendix [B| Table [5] One particular learned parameter which we evaluate is the “autapse” which
represents the diagonal elements of W,..., allowing learned explicit recurrence within a single unit,
and which may change pre-activation state on the next step, either strengthen or weaken the effects of
intrinsic recurrence. In particular, both the STE and probabilistic approaches contained significantly
more non-zero mean weights for the autapses compared to overall distributions of weights. This al-
lows the output activity of a unit to more strongly affect the pre-activation state on the next timestep.
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I L R | CIFAR10 GSC SOT

LIF I 1 1 81.20%  78.33% 0.017

1 0 0] 7958%  80.49% 0.013

Surrogate I 1 0 80.85%  82.61% 0.011
I 0 1 80.43%  T77.87% 0.016

1 1 1 83.61%  78.23% 0.017

I 0 0 82.30%  80.00% 0.014

Probabilistic 1 1 0 80.22%  78.89% 0.012
1 0 1 79.42%  80.60% 0.012

1 1 1 80.00%  76.64% 0.013

Table 4: Performance of binary activation functions with Integration (I), Leak (L), and Reset (R)
dynamics. Note that the [1,0,0] (integration-only) configuration is identical to the methods of the
previous section.

Overall, STE autapses were significantly positive across all tasks, while probabilistic networks had
negative autapse weights. This indicates that STE networks utilize autapses to retain accumulated
information, while probabilistic networks tend to self-inhibit after activity. Both of these trends are
decreased in dynamics sets containing reset terms, suggesting that the explicit post-activation reset
alters the processing of information in each layer.

Activation Values In order to match the {0,1} activation values of typical SNN approaches, our
activation functions (©) in the above examples have all used {0,1} outputs. However, the standard
BNN software packages may default to {-1,1} activation (Pappalardo, 2023)) and some SNN work
has investigated the use of signed spikes, which are positive or negative events when a local state
reaches +/- 1 (Wang et al., 2022]), while machine learning has investigated similar three-level acti-
vation functions ({-1,0,1}) (Zhu et al.l 2024). As a final experiment of robustness of pre-activation
state to intrinsic dynamics, we evaluated the stateful-leaky model with these three activations. For
the {-1,1} case © was the ‘sign’ function, and © was the same as Equation but recentered about
the origin. For the three-level case the surrogate gradient was the same, but the forward activation
was:
sign(v) if |v| > 0.5
Otri {0 if [v] < 0.5 (15)

The full table of performance for this experiment is in Appendix [C] but overall we found no system-
atic difference in performance for the GSC task across activation values.

5 CONCLUSIONS

We investigated current methods for training binary activation neural networks, and their generaliza-
tion to recurrent networks. We found that without additional modifications, surrogate-based, prob-
abilistic, and progressive sharpening approaches to train BANNs could not be adapted for recurrent
layers due to the temporal discontinuities induced by binary activations. However, incorporating
an integrative state smooths these temporal dynamics, and results in successful training in recurrent
layers. Additional SNN-based dynamics, such as slow leak and explicit reset, did not substantially
alter the performance of such stateful networks. This demonstration, along with the theoretical ar-
gument of section 4.1 lead us to conclude that pre-activation state is necessary and sufficient for
training of binary recurrent networks.

The ability to train binary activation RNNs has the ability to resolve several constraints currently
facing their widespread use. The reduced activation precision can reduce the memory usage of
existing CPU/GPU and FPGA accelerators, allowing larger RNN networks to be utilized in both
edge and HPC scenarios. These benefits could be further increased by informed quantization of the
state (Venkatesh et al., 2024; |Apolinario et al.| 2024), allowing it to be implemented with a simple
register shift. Probabilistic binary activation functions open the possibility of deployment to highly
efficient but noisy emerging devices (Ma et al., [2023). When designing a network for inference
on a hardware accelerator, the inherent properties of the device will determine the best choice of
dynamics which show otherwise show similar performance. These additional findings illustrate
how non-standard neural network models can open additional use-cases and influence the design of
emerging accelerators.

10
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6 REPRODUCIBILITY

We have included the necessary details to ensure the reproducibility of our empirical results. Custom
activation functions are described in the equations of section [2] Network topologies, loss functions,
and training hyperparameters are described in section [3] Data for the CIFAR10 and Speech Com-
mands datasets are openly available by the cited source papers. Underlying images for the SOT
task can be downloaded by the cited DIOR paper, and the methods for generating video data are
described in the final paragraph of section 3]

11
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A APPENDIX: SHARPENING OPTIMIZATION SEARCH

The sharpening paradigm described in section [2| was successful in training feedforward networks
on CIFAR10 classification task, but did not perform better than baseline for the recurrent tasks after
introduction of pre-activation state. The previous work of |Severa et al.|(2019) demonstrated that the
sharpening approach schedule can have drastic effects on even feedforward networks, leading us to
perform an exhaustive grid search of components of the scheduling:

 Sharpening Schedule:
— Relative error: [0.1%, 1%]
— Regular Interval (epochs): [1, 2, 5] (maximum epochs adjusted accordingly)
e Initial a: [1, 0.5, 0.25]
* Aa: [.01,.005, .001]
¢ Optimizers: [ADAM, SGD]
* Learning rate: [le-3, Se-4, le-4]

In every case we found that training error steadily decreased until approximately v was in the range
of [0.2 - 0.15], after which it significantly steadily increased with decreasing o and recovered only
slightly with extended periods of frozen sharpening. Validation error (with o = 0) was minimal dur-
ing this period where it matched training error once the training error had significantly increased. It is
possible that future work finds additional modifications to the training method, such as population-
coded output layers or layer-wise sharpening, that allow the sharpening approach to benefit from
pre-activation state for training recurrent layers.

B APPENDIX: LEARNED WEIGHTS AND AUTAPSES

Dynamics CIFAR10 SC SOT
I L R All Autapses All Autapses All Autapses
1 0 0]000,.21 086,30 000,.11 0.13,.14 | 0.00,.57 3.53,1.89
Surrogate 1 1 01]002,24 059,49 | 0.00,.10 0.11,.12 | -0.02,.39 217,91
1 0 1/|000,.19 056,.51  -000,.15 0.13,.14 | -0.07,.68 0.64,.81
1 1 11]0.09,27 058,.31 | 0.00,.08 0.01,.08 | 0.09,.89 147,3.1
1 0 0] 001,20 0.08,.17 | -0.02,.34 -0.37,.24 | 0.05,047  0.07,.52
Probabilistic 1 1 0] 001,23 0.19,.28 | 0.01,.19 -0.36,.32 | -0.11,.60  -0.51,.55
1 0 1]-001,.18 0.01,.28 | 0.05,.11 -0.42,.48 | 0.04,.46 -0.52,0.78
1 1 1] 000.23 0.07.15 | 012,.34 -0.25,.29 | -0.00,.50 -0.25,.39

Table 5: Final weights learned across all model x task combinations, showing [mean, standard
deviation] across all recurrent layers. Distributions which are significantly non-zero at the p<.001
level are indicated by bolded values.

C APPENDIX: LEARNED WEIGHTS AND AUTAPSES

Task | Heaviside Sign  Tri-Value
GSC ‘ 80.49 79.13  82.75
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