
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STATEFUL DYNAMICS FOR TRAINING OF BINARY AC-
TIVATION RECURRENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The excessive energy and memory consumption of neural networks has inspired
a recent interest in quantized neural networks. Due to the discontinuity, training
binary neural networks (BNNs) requires modifications or alternatives to standard
backpropagation, typically in the form of surrogate gradient descent. Multiple
surrogate methods exist for feedforward BNNs; however, their success has been
limited when applied to recurrent BNNs, but successful when used in binary-
like spiking neural networks (SNNs), which contain intrinsic temporal dynamics.
We show that standard binary activation approaches fail to train when applied to
layer with explicit recurrent weights, and present a theoretical argument for the
necessity of temporal continuity in network behavior. By systematically incorpo-
rating mechanisms from SNN models, we find that integrative state enables recur-
rent binary activation networks to reach similar performance as floating-point ap-
proaches, while explicit reset and leakage terms do not affect performance. These
results show how spiking units enable the training of binary recurrent neural net-
works and identify the minimally complex units required to make recurrent binary
activations trainable with current surrogate methods.

1 INTRODUCTION

As large neural network models continue to permeate both data center and edge application spaces,
counteracting the increasing energy and memory demands of these networks is critical. Quantized
neural networks are one such method, which attempt to balance the increased size of the networks
with decreased precision in activation functions and weights (Hubara et al., 2017). Today, sev-
eral software ecosystems exist to perform quantization-aware training and post-training fine-tuning,
enabling the reduction of weights and activations to 4-bit or lower resolution for deployment to spe-
cialized hardware for inference (Pappalardo, 2023). The limit of decreased precision is binary neural
networks (BNN), which may use binary activation functions (BANN) or binary weights (BWNN)
(Hubara et al., 2016), and enable extremely energy efficient inference (Zhu et al., 2024). Binary
weights and binary activations provide different advantages over their floating-point equivalents. In
digital devices, replacing inter-unit activity transmission from floating-point to binary can drastically
reduce the large energy overhead of data transfers to and from memory (Orchard et al., 2021). Both
activity and weight quantization reduce the memory requirements of networks. In machine learning
accelerators based on analog in-memory computing (Aguirre et al., 2024), quantized weights enable
tolerance to intrinsic variability in the stored analog memory states, while BANNs can eliminate the
complexity and overhead of multi-bit analog-to-digital converters (Xiao et al., 2023).

Recurrent Binary Activations While heavily quantized activations have been demonstrated in
a wide range of neural network topologies and BWNNs have been trained in recurrent networks
(Alom et al., 2018), standard BANNs have only been reported for feedforward topologies. How-
ever, in many edge computing tasks, where the low power consumption of BNNs is particularly
desirable, recurrent layers are critical (recurrent neural networks; RNNs). Examples include audio
and video processing applications, such as keyword spotting or object tracking. Other use-cases for
RNNs may rely on large networks; in video processing, for example, the network size must grow
proportionally with the size of the input videos, and therefore require minimized memory consump-
tion per unit. These varied use cases highlight the need for binary recurrent layers under a variety
of constraints. Though binary activations are typically absent from the RNN literature, a notable
exception is spiking neural networks (SNNs), which utilize temporal dynamics along with binary-
valued activations, and are often used as recurrent layers in neuromorphic computing studies (Bittar

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

& Garner, 2022; Bellec et al., 2018). These networks incorporate loosely biologically inspired tem-
poral dynamics to keep a pre-activation state within each neuronal unit. The state accumulates over
time, and the units communicate via binary ‘spikes’ only when this state reaches a critical threshold.

Previous Work Training BANNs Prior methods of training BANNs utilizing backpropagation
fall into three broad categories: surrogate gradient descent, probabilistic surrogates, and progressive
sharpening. Surrogate gradient descent, which uses an approximation of binary activations during
the backward pass, is the most reported and a variant of this method is used to train SNNs (Neftci
et al., 2019; Eshraghian et al., 2023). Probabilistic approaches convert the input to an activation layer
to a probability function during activity propagation, and perform gradient descent on the underlying
probabilities rather than the stochastic activities themselves (Chung et al., 2017). The final method
uses a tuneable activation function which progresses from smooth to discrete over the course of
training (Severa et al., 2019). Additional methods for training binary activation networks exist,
but these use training methods which are more removed from standard backpropagation, such as
random perturbations (Bengio et al., 2013; Ma et al., 2023) or more complex biologically-grounded
local learning rules that rely on memory-intensive traces of recent activity (Nicola & Clopath, 2017).

Figure 1: Explicit versus intrinsic recurrence. Left In explicit recurrence individual units are feed-
forward, but recurrent weights allow the layer as a whole to be dynamic. Middle Intrinsic recurrent
units are each a dynamical system with multiple internal pathways. The layer as a whole however is
arranged in a feedforward manner, such that each unit processes inputs independent of the activity
of other units. Right In combined recurrence dynamical units are arranged in a recurrent topology,
resulting in hierarchical levels of temporal processing.

Explicit Versus intrinsic Recurrence In order to process temporal relationships among the data,
RNNs must have a mechanism for retaining information over time. This mechanism can come in the
form of explicit recurrence or intrinsic recurrence, as shown in Fig. 1. Explicit recurrence, where
the layer’s output is used as part of the same layer’s input on the next timestep, is more common in
standard machine learning frameworks. In the simplest case of a dense recurrent (Elman) layer this
follows the form of:

y(t+ 1) = Θ(Wffx(t) +Wrecy(t)) (1)
Where y is the output of of the layer, Θ is a nonlinear activation function that operates on the sum
of weighted inputs, Wff is the feedforward weight matrix that operates on the feedforward activity
x, and Wrec is the recurrent weight matrix. The recurrent matrix takes the output of a neural layer
at one timestep and re-presents them on the next timestep, to be summed with input from earlier
layer of a network. This ability to mix partially-processed information from previous timesteps with
current information, often in a trained manner, allows high-dimensional temporal relationships to
be learned. If the recurrent weights of an explicit-RNN were set to zero, the network would operate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as a feedforward network. Intrinsic recurrence, in contrast, stores a set of units with time-varying
state, just as the spiking neural networks outlined above do. An intrinsic recurrent layer may be
expressed as the dynamical system:

v(t+ 1) = F (v(t)) +G(y(t)) +Wffx(t)

y(t+ 1) = Θ(v(t+ 1))
(2)

Here the term v(t) represents a local state which accumulates information over time without an
explicit recurrent connection. F and G are terms which change the state in response to the pre- (F)
or post-(G) activation state in the previous timestep. Finally, the nature of this equation prevents the
local state (v(t)) from instantaneously changing in response to Wffx(t).

Explicit without intrinsic recurrence is typical of standard machine learning approaches such as the
gated recurrent unit, where the recurrent weights directly determine the interaction of the previous
activity and current inputs. intrinsic without explicit recurrence can act on temporal locality in
the processed data, and may occur in applications which emphasize speed of processing, but operate
primarily on spatial features with simple temporal patterns (Pedersen et al., 2023; Subramoney et al.,
2023; Bing et al., 2020). However, many SNN models utilize both explicit and intrinsic recurrence,
which can be written in the general form:

v(t+ 1) = F (v(t)) +G(y(t)) +H(Wrec, y(t)) +K(Wff , x(t))

y(t+ 1) = Θ(v(t+ 1))
(3)

This equation includes terms from both equations 1 and 2. In the case of all-to-all layers, the func-
tions H and K are standard matrix multiplication, but may also take other forms, such as convolu-
tion. Utilizing this unified equation allows us to drop various terms to more exhaustively investigate
the sub-dynamics which are necessary for training.

Related Work As noted above, several lines of research have investigated binary activation func-
tions in feedforward topologies. Additional work has investigated recurrent layers that received
binarized inputs, but which still use real-valued activation in recurrent transmission (Edel & Köppe,
2016). Recent work has also combined the explicit recurrence of more advanced networks such
as GRUs with intrinsic recurrence, including spike-based transmission, but still use a real-valued
pre-activation state (Dampfhoffer et al., 2022). While spiking neural networks have utilized ex-
plicit recurrence, the multiple differences between these studies have so far led to an incomplete
understanding of the required dynamics for training more general BARNNs.

Contributions Observing that SNNs constitute a subset of BARNNs, specifically combining mul-
tiple intrinsic dynamics with explicit recurrent weights, we sought to determine the essential com-
ponents of SNN-based training which would allow backpropagation-like training. Our main contri-
butions are to:

• Illustrate temporal discontinuities for binary activation explicit recurrent layers, leading to
unsuccessful backpropagation through time (section 4.1).

• Demonstrate that surrogate gradient methods fail to converge when employed with a binary
activation in a recurrently connected layer (section 4.2).

• Demonstrate, across multiple surrogate approaches, that incorporating pre-activation inte-
grative state allows training of recurrent binary activation networks (section 4.2).

• Show robustness of performance when including additional state dynamics such as explicit
reset and proportional leakage of sub-threshold state (section 4.3).

2 BINARY ACTIVATION TRAINING METHODS

We implemented three classes of methods which have been used to train binary activation feed-
forward networks, and compare them amongst each other and with SNN approaches. To enable
comparison across these methods, we use the terminology of Equation 3, as summarized in Table
1. Most notably, we will refer to the input to an activation function as v. In the case of a standard
feedforward network this is simply Wx, while for any system with intrinsic recurrence, v is the
aforementioned local state. We write the activation function used during the forward pass as Θ and,
where appropriate, the surrogate function used in the backward pass as Θ̂. To further ease compar-
ison, and to allow the same parameter initialization across methods, we utilize activation functions
with inflection points centered on zero for each method.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Variable Role
x Feedforward input to the layer

Wff Feedforward weight from lower layers
Wrec Explicit recurrent weight within the layer
v State of the layer
Θ Activation function of the layer
Θ̂ Surrogate function of Θ, used for backward pass
α Tuneable parameter that changes over the course of training
y Output of layer, which is forwarded to other layers, and through Wrec if present

Table 1: Standardized variable notations

Figure 2: Illustration of the training methods. Left: Straight Through Estimate approach, with
the true activation function in black, surrogate activation in blue, and derivative of the surrogate as
dashed. Middle: In the probabilistic training method, the activation function follows a stochastic
distribution. The surrogate (solid blue) is a centered and bounded linear function, and the activation
on each step is drawn according to a Bernoulli of the function. Right: In the progressive sharpening
approach, the activation function is a tuneable bounded linear function where the parameter α deter-
mines the level of sharpening. At baseline (α = 1) this is identical to the standard hardtanh function,
and progresses towards the Heaviside function when α = 0. There is no surrogate activation for this
approach.

Surrogate Gradient Descent Of the three approaches, the surrogate gradient descent is the most
commonly used and has the most variants, each of which utilizes a different surrogate function (Θ̂)
to approximate a non-differentiable activation (Θ) used during the forward pass. Here, we utilized
the Heaviside function:

Θste(v) =

{
1 if v ≥ 0

0 if v < 0
(4)

For the surrogate function, we utilized a variant of the common straight-through estimator (STE)
(Hubara et al., 2017):

Θ̂ste(v) =

0 if v ≤ −1.0

0.5 ∗ x+ 0.5 if |v| < 1.0

1 if v ≥ 1.0

(5)

which is identical to a shifted hardtanh function and has a piecewise constant derivative.

Probabilistic The probabilistic approach takes the pre-activation summed activity v and creates a
Bernoulli random variable with mean equal to v (Ma et al., 2023). During the backward pass, the
activity is approximated as the real-valued probability (v), rather than the stochastic activity. We
again utilized a transformation on v before the activation function, in order to achieve zero-centered
activity:

P (v) = 0.5 + 0.5 ∗ hardtanh(v)
ΘP (v) ∼ Bern(P (v))

Θ̂P (v) = P (v)

(6)

While alternative transformation functions exist, the bounded piecewise linear has the advantage of
containing no additional hyperparameters and having a simple piecewise constant derivative with
respect to the inputs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sharpening Over Training In the progressive sharpening approach, no surrogate function is uti-
lized. Instead, the activation function is chosen to be a differentiable and tuneable function, where
the tuning parameter causes the function to ‘sharpen’ and more closely approximate a Heaviside
function. The tuning parameter is changed over the course of training such that at the beginning of
training the activation function is maximally smooth, and progressively sharpened to the Heaviside
at the end of training. Here we will use a tuneable piecewise-linear activation:

Θsharp(v) = 0.5 + 0.5 ∗ hardtanh
(
v + α

α
− 1

)
(7)

Where α is the sharpening parameter. As illustrated in the right-most panel of Figure 2, this is
identical to a straight-through estimate within the range [−α, α]. When α is 1 this is identical to
the shifted standard hardtanh, and when α reaches zero this function is identical to the Heaviside.
Following previous approaches (Severa et al., 2019), we start with α = 1 and keep it set as such for
the first 10 epochs. Afterwards α decreases by 0.01 on each epoch until training error increases by
more than 1% greater than the previous minimum, at which point the sharpening is paused for one
epoch. When reporting performance of a sharpened network, the metrics are always based on a fully
sharpened activation (α = 0), regardless of the value at that point in training.

Spiking Neural Networks We also train spiking neural networks which implement a binary-like
communication scheme in the form of discrete spikes. These networks can be thought of as replacing
the feedforward activation functions of standard neural networks with a temporally evolving pre-
activation value (state) which integrates the weighted inputs at each point in time. When this state
reaches a critical threshold, the unit emits a spike, and resets the state. We specifically utilized
the first-order leaky integrate-and-fire (LIF), as implemented via ‘LIFBox’ in the Norse software
package (Pehle & Pedersen, 2021):

v(t+ 1) = (1− gL
τ
)(v(t))− y(t) +

1

τ
Wrecy(t) +

1

τ
Wffx(t)

y(t+ 1) = Θspk(v(t+ 1)) = v(t+ 1) ≥ 1
(8)

These terms are arranged in the same order as Equation 3. As with the methods above, v is the pre-
activation state, but now acts as a stateful leaky-integrator with time-constant τ . gL is a term which
regulates the speed with which v decays to zero in the absence of inputs and is typically referred to as
”leak”. It is typically set to one, but can also be set to zero to create an non-leaky integrate-and-fire
unit. The term −y(t) represents an explicit reset mechanism upon reaching threshold.

The spiking units utilize the “SuperSpike” (Zenke & Ganguli, 2018) surrogate gradient, which op-
erates on the pre-activation state and has the form:

Θ̂spk(v) =
1

|v + 1|2
(9)

Surrogate gradient methods are then applied as above for each method, where the partial derivative
of state (v) is now taken through time.

3 EXPERIMENTS

We utilize three exemplar tasks, illustrated in Figure 3, to evaluate the performance of the various
training methods and demonstrate the required intrinsic recurrence required to train explicit recur-
rent weights. These tasks are chosen to span static and time-varying domains, with various levels of
difficulty, but for which relatively simple recurrent connectivity patterns have shown moderate suc-
cess. Each task uses a slightly different network architecture, which was chosen for a combination
of task appropriateness and simplicity, rather than attempting to utilize state-of-the-art architectures.
Data augmentation was not utilized.

Layers and Hyperparameterization Each task utilized a different network architecture as out-
lined below, but all of these are based on convolutional (conv), convolutional-recurrent (crnn), and
dense layers. Convolutional layers all use a kernel size of 3, with zero padding to conserve input-
output shape consistency. Convolutional recurrent layers contain two convolutional kernel sets, a
feedforward and an explicit recurrent (Ballas et al., 2015):

Hcrnn(Wrec, y(t)) = Wrec ∗ y(t)
Kcrnn(Wff , x(t)) = Wff ∗ x(t) (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of the three tasks. Left: CIFAR10, a demonstrative static-image classification
task. For temporal networks the same image is presented 64 times, and the activity on the final time-
step is used to measure performance. Middle: Spoken-commands task, demonstrative of temporal
classification tasks. The data has been pre-processed to give spectrograms binned into 64 timesteps.
Networks are presented with a full spectrum (a column as illustrated here) on each timestep, and the
activity on the final time-step is used to measure performance. Right: The small-object-tracking
task, demonstrative of spatiotemporal tracking tasks. Each image represents the same trial taken at
different timesteps. The red circle indicates the position of the target object, for human-reference
only. Performance is measured as the L 2 distance between network prediction and ground-truth on
each timestep.

Where ∗ is the convolutional operator, and the terms ‘H’ and ‘K’ are the explicit recurrence and
feedforward activity of Equation 3. Such layers allow recurrent processing in a topologically ordered
manner, decreasing the total number of parameters compared to an all-to-all recurrent layer.

The penultimate activation of each network follows a leaky-integrator (LI) equation:

v(t+ 1) =

(
1− 1

τ

)
(v(t)) +

1

τ
Wffx(t) (11)

Which is similar to Equation 8, but without an additional nonlinear activation. These equations al-
low integration of inputs from lower layers to form an output based on all time steps without the
addition of additional recurrent layers. The time constant τ was set to four frames in all cases. All
other floating-point layers followed the sigmoid activation function, which has the same bounds
and inflection points as the surrogate functions described above. For all approaches, training was
performed over the course of 200 epochs for five independently initialized random networks, and
performance is reported on the average of these. Optimization was performed with the ADAM opti-
mizer (Kingma & Ba, 2017), and learning rates were initialized to 0.001. All other hyperparameters
and parameter initializations followed PyTorch defaults (Paszke et al., 2019).

CIFAR10 (Krizhevsky et al., 2009) The CIFAR10 dataset serves as a baseline to demonstrate
the performance of our implementation of binary training methods when applied to non-temporal
datasets, as is commonly done in the literature. We utilize a VGG-like architecture (Simonyan &
Zisserman, 2014), with [3, 32, 64, 128] two-dimensional convolutional channels, followed by dense
layers with [2048, 128, 10] units. An additional CNN-RNN approach replaces the first dense layer
with a recurrent layer, allowing comparison to the spiking networks. For networks with temporal
dynamics, the entire image was presented for 16 timesteps and the network output was taken as
activity on the final step. This repeated input of the image allows activity to travel through the
network. CIFAR10 results were optimized with cross-entropy loss and we report top-1 accuracy
scores.

Speech Commands (SC) (Warden, 2018) This dataset is a temporal classification task, allowing
measurement of how well the training methods allow incorporation of spatial convolution with later
recurrent processing. Individual trials are clipped, but not explicitly aligned, such that keywords
tend to begin about halfway through a trial. Trials which were less than one second long were
zero-padded at the beginning of the trial. We preprocess by creating spectrograms with 64 time
bins that had 50% overlap and 64 frequency bands from 0 kHz to 4 kHz. On each timestep all 64
frequency bands (a single column of Figure 3B frames) were presented, and the activity of the output
layer on the final timestep was used as the network classification. Networks for this task utilized
1-dimensional convolutional-recurrent layers with [1,8,16] channels followed by dense layers with
[1024, 128, 35] units, with the exception of the CNN-RNN baseline which utilized 1-dimensional

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

convolutional layers in place of the convolutional-recurrent layers. These networks were optimized
with cross-entropy loss on the output at the final time-step, and we report top-1 accuracy.

Small Object Tracking (SOT) (Chapman et al., 2024) We utilize a recently introduced small ob-
ject tracking (SOT) task, in which inputs are the frames of a video and target output are the location
of a small moving object. This task has been shown to require early recurrent connectivity in neural
networks. Briefly, the task utilizes the DIOR remote imaging dataset (Li et al., 2020) and creates a
temporal video by introducing camera drift, and pixel-by-time independent noise. This background
scene is then scaled [0, 0.5]. A trajectory is then generated which follows a ballistic trajectory with
random velocity equal to one fourth of a pixel per timestep. The object’s intensity was 0.25 at every
time point, giving a single frame a signal-to-noise-ratio of 0.5, and leading to the necessity of early
temporal processing. Networks for this task followed a 2-dimensional convolutional(-recurrent) lay-
ers with [1,8,16] channels, followed by dense layers with [15376, 128, 2] units, with the final output
being the predicted location of the tracked object on a given frame. The loss and reported metric
for this task is the mean-square-error (MSE) of readout location averaged across a given 100-frame
trial. Importantly, while this loss function is a single value for a given trial, optimization requires
minimizing the MSE on each frame, assuring that the task is temporal in nature.

4 RESULTS

4.1 RECURRENT BINARY ACTIVATIONS ARE DISCONTINUOUS THROUGH TIME

We hypothesized that the recurrent connections of binary activation recurrent networks (BARNN)
result in temporal discontinuities which prevent successful backpropagation through time. While
surrogate methods accommodate for discontinuities in activation functions, they do no correct for
discontinuities in time. To demonstrate this, consider the equation for the gradient of a loss (L) with
respect to Wrec

∂L

∂Wrec
=

T∑
t

t+1∑
k=1

∂Lt+1

∂yt+1

∂yt+1

∂vt+1

∂vt+1

∂vk

∂vk
∂Wrec

(12)

This equation notably contains the partial derivative of the output (y) with respect to the pre-
activation value ‘v‘, as well as the partial derivative of v with respect to the previous value of v,
posing two issues. First, in the case of the surrogate gradient training, ∂yt+1

∂vt+1
is implemented as

∂Θ̂(vt+1)
∂vt+1

, meaning that this term is an approximation of the activation function. While surrogate
gradient training in feedforward networks has been shown to overcome this, when chained through
time and multiplied this term will multiplicatively increase the error of this approximation. This
result is similar to the ‘vanishing gradient’ issues of recurrent neural networks due to multiplicative
terms. Secondly the term ∂vt+1

∂vk
may be ill-defined if the value of ‘v’ changes rapidly. This rapid

change in ‘v’ can be seen in Figure 4, which compares a trained RNN, BARNN, and SNN. In the
case of the RNN and SNN the input and output of the activation function are smooth with respect
to time, while the BARNN case shows numerous discontinuities and long periods of static output
values. These static values and discontinuities lead to this partial derivative term evaluating to zero
on the majority of timesteps.

Table 2 demonstrates how these discontinuous dynamics affect training. The top section of this table
reports the performance of a baseline sequential CNN-RNN and a floating-point CRNN (Equation
10) network across all three tasks. The next section reports all three BARNN training methods
across our three tasks. All three stateless methodologies show a notable decrease in performance
across both temporal tasks (GSC and SOT), while image classification performance is within a few
percentage points of the baseline CNN-RNN approach. This confirms previously published results
that BANNs, trained using these three methods, can perform non-temporal tasks, but they explicitly
demonstrate a lack of convergence for recurrent layers, which has largely been omitted from the
literature.

Meanwhile, the SNN-based dynamics of Equation 8 perform substantially better than the stateless
BARNN approaches, and only slightly below floating-point CRNN approaches. Previous publica-
tions have shown higher performance on the GSC and CIFAR tasks with SNNs, but notably use
significantly more complex models with increased number of layers (Bittar & Garner, 2022) or
trained delays between units (Hammouamri et al., 2023), which could be combined with the train-
ing approaches explored here.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Illustration of activity flow in recurrent networks. Each row indicates activity of a single
channel of a convolutional-recurrent network on a keyword spotting task. ‘v’ is the pre-activation
state, which per Equation 3 is simply the summed input activity for the floating point and binary
activation rows. ‘y’ is the corresponding output, and the last column shows the temporal derivatives
of surrogate activation functions. Top: A standard (‘tanh’) recurrent network. The pre-activation
value ‘v’ is smooth within each row, indicating a temporally smooth input. Likewise, the output
value ‘y’ is smooth. The final column shows that the surrogate temporal derivatives are less smooth,
but take on a number of unique values. Middle: Observing the same values for a BARNN-based
network, the pre-activation inputs and outputs are largely discrete, due to the recurrent binary activ-
ity. The resulting approximate temporal derivatives are discontinuous, with large portions of rows
showing no change between timesteps. Bottom: In the spiking network, internal dynamics limit
the rate of change of ‘v’ such that it is discontinuous only at spike events. While the output ‘y’ has
discontinuities at event times, the surrogate gradient operation is smooth over time. Overall: When
performing backpropagation through time the floating-point and spiking network temporal deriva-
tives will be able to differentiable through the majority of timesteps, while the binary activation will
primarily be non-differentiable and fail to optimize.

4.2 STATE ENABLES RECURRENT ARCHITECTURES

Based on the observations of temporal discontinuities in the previous section, we sought to test
whether the stateful dynamics of the LIF activations above can enable training of other recurrent
binary-activation layers. For each of the binary training methods (surrogate gradient, probabilis-
tic, and progressive sharpening) the pre-activation input is now stateful and follows the temporal
dynamics:

v(t+ 1) =

(
1− 1

τ

)
v(t)− y(t) +

1

τ
Wrecy(t) +

1

τ
Wffx(t)

y(t+ 1) = Θste(v(t+ 1))

(13)

Table 3 reports the results of incorporating these dynamics into the recurrent layers, including the
floating-point network to enable fair comparison between networks. We found that the surrogate
gradient descent and probabilistic activation functions reach performance on par with the floating-
point and LIF-based networks. The progressive sharpening method showed minimal performance
increase with the introduction of pre-activation state, and remained approximately as inaccurate as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method CIFAR10 GSC SOT
(Accuracy) (Accuracy) (MSE)

FP
CNN-RNN 81.44% 54.96% 0.091
CRNN 84.33% 81.59% 0.007

SNN LIF 81.20% 78.33% 0.017

BARNN
Sharpening 82.20% 49.00% 0.102
Surrogate 78.72% 29.28% 0.153
Probabilistic 80.23% 54.96% 0.095

Table 2: Performance of floating point (FP) and binary activations across all three tasks. All net-
works, with the exception of the sequential CNN-RNN, utilize the CRNN architecture. Metrics
reported are averaged over 5 runs and reported on the final values. Performance is substantially
impaired in the temporal tasks for BARNNs, but not for LIFs.

the floating-point CNN-RNN method of Table 2. An extensive search was performed on sharpening
schedules (see Appendix A), without success. We conclude that pre-activation integrative state is
necessary to enable training of binary activations by surrogate gradients and probabilistic activation,
and omit sharpening approaches from further analyses below.

Method CIFAR10 GSC SOT
(Accuracy) (Accuracy) (MSE)

FP CRNN-Stateful 83.24% 81.86% 0.006
SNN LIF 81.20% 78.33% 0.017

Stateful BARNN
Sharpening∗ 72.80% 67.22% 0.095
Surrogate 79.58% 80.49% 0.013
Probabilistic 82.30% 80.00% 0.014

Table 3: Performance of stateful networks across all tasks and training methods. These networks
dynamics follow the form of Equation 13 but otherwise have the same architecture as Table 2. Met-
rics are reported on the final validation values, except for the stateful sharpening approach (marked
by ∗) which reports the best performance at any point in training (see Appendix A). Performance
of the Stateful BARNN networks, with the exception of the sharpening approach, are close to the
FP-stateful entry.

4.3 RESETS, LEAKS, AND ACTIVATION VALUES DO NOT CHANGE PERFORMANCE

In addition to an integrative state, standard LIF units of Equation 8 also contain an explicit reset
mechanism and a leak term. The SNN literature has shown that a distribution of trainable leak rates
can increase the capacity of a network, while explicit resets allow for temporal sparsity of inter-unit
communication (Zheng et al., 2024; Zeldenrust et al., 2019). Here we test whether these mechanisms
can benefit BARNNs. In the context of the binarization methods introduced here, the reset and leak
can be integrated into the state dynamics of Equation 13 to become:

v(t+ 1) = I × (1− L

τ
)(v(t))−R× y(t) +

1

τ
Wrecy(t) +

1

τ
Wffx(t)

y(t+ 1) = Θ(v(t+ 1))
(14)

These dynamics are identical to those in Equation 8, except that the activation function Θ may now
be the STE or probabilistic mechanisms from section 2. The terms ‘I’,‘R’,and ’L’ allow enabling or
disabling the integration, reset, and leak mechanisms respectively. Table 4.3 reports the performance
across all possible combinations of dynamics-sets. We find no systematic differences in overall
performance in any of the tasks.

The dynamics-sets do however show significant differences in learned parameters, as outlined in
Appendix B Table 5. One particular learned parameter which we evaluate is the “autapse” which
represents the diagonal elements of Wrec, allowing learned explicit recurrence within a single unit,
and which may change pre-activation state on the next step, either strengthen or weaken the effects of
intrinsic recurrence. In particular, both the STE and probabilistic approaches contained significantly
more non-zero mean weights for the autapses compared to overall distributions of weights. This al-
lows the output activity of a unit to more strongly affect the pre-activation state on the next timestep.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

I L R CIFAR10 GSC SOT
LIF 1 1 1 81.20% 78.33% 0.017

Surrogate

1 0 0 79.58% 80.49% 0.013
1 1 0 80.85% 82.61% 0.011
1 0 1 80.43% 77.87% 0.016
1 1 1 83.61% 78.23% 0.017

Probabilistic

1 0 0 82.30% 80.00% 0.014
1 1 0 80.22% 78.89% 0.012
1 0 1 79.42% 80.60% 0.012
1 1 1 80.00% 76.64% 0.013

Table 4: Performance of binary activation functions with Integration (I), Leak (L), and Reset (R)
dynamics. Note that the [1,0,0] (integration-only) configuration is identical to the methods of the
previous section.

Overall, STE autapses were significantly positive across all tasks, while probabilistic networks had
negative autapse weights. This indicates that STE networks utilize autapses to retain accumulated
information, while probabilistic networks tend to self-inhibit after activity. Both of these trends are
decreased in dynamics sets containing reset terms, suggesting that the explicit post-activation reset
alters the processing of information in each layer.

Activation Values In order to match the {0,1} activation values of typical SNN approaches, our
activation functions (Θ) in the above examples have all used {0,1} outputs. However, the standard
BNN software packages may default to {-1,1} activation (Pappalardo, 2023) and some SNN work
has investigated the use of signed spikes, which are positive or negative events when a local state
reaches +/- 1 (Wang et al., 2022), while machine learning has investigated similar three-level acti-
vation functions ({-1,0,1}) (Zhu et al., 2024). As a final experiment of robustness of pre-activation
state to intrinsic dynamics, we evaluated the stateful-leaky model with these three activations. For
the {-1,1} case Θ was the ‘sign’ function, and Θ̂ was the same as Equation 5, but recentered about
the origin. For the three-level case the surrogate gradient was the same, but the forward activation
was:

Θtri =

{
sign(v) if |v| ≥ 0.5

0 if |v| < 0.5
(15)

The full table of performance for this experiment is in Appendix C, but overall we found no system-
atic difference in performance for the GSC task across activation values.

5 CONCLUSIONS

We investigated current methods for training binary activation neural networks, and their generaliza-
tion to recurrent networks. We found that without additional modifications, surrogate-based, prob-
abilistic, and progressive sharpening approaches to train BANNs could not be adapted for recurrent
layers due to the temporal discontinuities induced by binary activations. However, incorporating
an integrative state smooths these temporal dynamics, and results in successful training in recurrent
layers. Additional SNN-based dynamics, such as slow leak and explicit reset, did not substantially
alter the performance of such stateful networks. This demonstration, along with the theoretical ar-
gument of section 4.1 lead us to conclude that pre-activation state is necessary and sufficient for
training of binary recurrent networks.

The ability to train binary activation RNNs has the ability to resolve several constraints currently
facing their widespread use. The reduced activation precision can reduce the memory usage of
existing CPU/GPU and FPGA accelerators, allowing larger RNN networks to be utilized in both
edge and HPC scenarios. These benefits could be further increased by informed quantization of the
state (Venkatesh et al., 2024; Apolinario et al., 2024), allowing it to be implemented with a simple
register shift. Probabilistic binary activation functions open the possibility of deployment to highly
efficient but noisy emerging devices (Ma et al., 2023). When designing a network for inference
on a hardware accelerator, the inherent properties of the device will determine the best choice of
dynamics which show otherwise show similar performance. These additional findings illustrate
how non-standard neural network models can open additional use-cases and influence the design of
emerging accelerators.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY

We have included the necessary details to ensure the reproducibility of our empirical results. Custom
activation functions are described in the equations of section 2. Network topologies, loss functions,
and training hyperparameters are described in section 3. Data for the CIFAR10 and Speech Com-
mands datasets are openly available by the cited source papers. Underlying images for the SOT
task can be downloaded by the cited DIOR paper, and the methods for generating video data are
described in the final paragraph of section 3.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Fernando Aguirre, Abu Sebastian, Manuel Le Gallo, Wenhao Song, Tong Wang, J Joshua Yang,
Wei Lu, Meng-Fan Chang, Daniele Ielmini, Yuchao Yang, et al. Hardware implementation of
memristor-based artificial neural networks. Nature communications, 15(1):1974, 2024.

Md Zahangir Alom, Adam T Moody, Naoya Maruyama, Brian C Van Essen, and Tarek M. Taha.
Effective Quantization Approaches for Recurrent Neural Networks. In 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, Rio de Janeiro, July 2018. IEEE. ISBN 978-
1-5090-6014-6. doi: 10.1109/IJCNN.2018.8489341.

Marco Paul E. Apolinario, Adarsh Kumar Kosta, Utkarsh Saxena, and Kaushik Roy. Hard-
ware/Software Co-Design With ADC-Less In-Memory Computing Hardware for Spiking Neural
Networks. IEEE Transactions on Emerging Topics in Computing, 12(1):35–47, January 2024.
ISSN 2168-6750, 2376-4562. doi: 10.1109/TETC.2023.3316121.

Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks
for learning video representations. arXiv preprint arXiv:1511.06432, 2015.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Zhenshan Bing, Claus Meschede, Guang Chen, Alois Knoll, and Kai Huang. Indirect and direct
training of spiking neural networks for end-to-end control of a lane-keeping vehicle. Neural
Networks, 121:21–36, January 2020. ISSN 08936080. doi: 10.1016/j.neunet.2019.05.019.

Alexandre Bittar and Philip N. Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16:865897, August 2022. ISSN 1662-453X. doi: 10.
3389/fnins.2022.865897.

G. William Chapman, Corinne Teeter, Sapan Agarwal, T. Patrick Xiao, Park Hays, and Srideep S.
Musuvathy. Biological dynamics enabling training of binary recurrent networks. In 2024 Neuro
Inspired Computational Elements Conference (NICE), pp. 1–7, 2024. doi: 10.1109/NICE61972.
2024.10549632.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical Multiscale Recurrent Neural
Networks. arXiv:1609.01704 [cs], March 2017.

Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Investigating
current-based and gating approaches for accurate and energy-efficient spiking recurrent neural
networks. In International Conference on Artificial Neural Networks, pp. 359–370. Springer,
2022.

Marcus Edel and Enrico Köppe. Binarized-blstm-rnn based human activity recognition. In 2016
International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE,
2016.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-
hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023.

Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning Delays in Spik-
ing Neural Networks using Dilated Convolutions with Learnable Spacings, December 2023.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
Neural Networks: Training Neural Networks with Low Precision Weights and Activations. The
Journal of Machine Learning Research, 18(1):6869–6898, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei Han. Object detection in optical remote
sensing images: A survey and a new benchmark. ISPRS journal of photogrammetry and remote
sensing, 159:296–307, 2020.

Siming Ma, David Brooks, and Gu-Yeon Wei. A binary-activation, multi-level weight RNN and
training algorithm for ADC-/DAC-free and noise-resilient processing-in-memory inference with
eNVM. IEEE Transactions on Emerging Topics in Computing, 2023.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Wilten Nicola and Claudia Clopath. Supervised learning in spiking neural networks with
FORCE training. Nature Communications, 8(1), 2017. ISSN 20411723. doi: 10.1038/
s41467-017-01827-3.

Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal processing with loihi 2. In
2021 IEEE Workshop on Signal Processing Systems (SiPS), pp. 254–259. IEEE, 2021.

Alessandro Pappalardo. Xilinx/brevitas. Zenodo, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library, December 2019.

Jens Egholm Pedersen, Raghav Singhal, and Jorg Conradt. Translation and Scale Invariance for
Event-Based Object tracking. In Neuro-Inspired Computational Elements Conference, pp. 79–
85, San Antonio TX USA, April 2023. ACM. ISBN 978-1-4503-9947-0. doi: 10.1145/3584954.
3584996.

Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library for spiking neural
networks. Zenodo, January 2021.

William M. Severa, Craig M. Vineyard, Ryan Dellana, Stephen J. Verzi, and James B. Aimone.
Training deep neural networks for binary communication with the Whetstone method. Nature
Machine Intelligence, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Anand Subramoney, Khaleelulla Khan Nazeer, Mark Schöne, Christian Mayr, and David Kappel.
Efficient recurrent architectures through activity sparsity and sparse back-propagation through
time, March 2023.

Sreyes Venkatesh, Razvan Marinescu, and Jason K Eshraghian. SQUAT: Stateful quantization-
aware training in recurrent spiking neural networks. In 2024 Neuro Inspired Computational Ele-
ments Conference (NICE), pp. 1–10. IEEE, 2024.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ANN-SNN conversion. In IJCAI, pp. 2501–2508, 2022.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

TP Xiao, WS Wahby, CH Bennett, P Hays, V Agrawal, MJ Marinella, and S Agarwal. Enabling
high-speed, high-resolution space-based focal plane arrays with analog in-memory computing.
In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp.
1–2. IEEE, 2023.

Fleur Zeldenrust, Boris Gutkin, and Sophie Denéve. Efficient and robust coding in heterogeneous
recurrent networks. Preprint, Neuroscience, October 2019.

Friedemann Zenke and Surya Ganguli. SuperSpike: Supervised Learning in Multilayer Spiking
Neural Networks. Neural Computation, 30(6):1514–1541, June 2018. ISSN 0899-7667, 1530-
888X. doi: 10.1162/neco a 01086.

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15(1):277, 2024.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable MatMul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX: SHARPENING OPTIMIZATION SEARCH

The sharpening paradigm described in section 2 was successful in training feedforward networks
on CIFAR10 classification task, but did not perform better than baseline for the recurrent tasks after
introduction of pre-activation state. The previous work of Severa et al. (2019) demonstrated that the
sharpening approach schedule can have drastic effects on even feedforward networks, leading us to
perform an exhaustive grid search of components of the scheduling:

• Sharpening Schedule:

– Relative error: [0.1%, 1%]

– Regular Interval (epochs): [1, 2, 5] (maximum epochs adjusted accordingly)

• Initial α: [1, 0.5, 0.25]

• ∆α: [.01, .005, .001]

• Optimizers: [ADAM, SGD]

• Learning rate: [1e-3, 5e-4, 1e-4]

In every case we found that training error steadily decreased until approximately α was in the range
of [0.2 - 0.15], after which it significantly steadily increased with decreasing α and recovered only
slightly with extended periods of frozen sharpening. Validation error (with α = 0) was minimal dur-
ing this period where it matched training error once the training error had significantly increased. It is
possible that future work finds additional modifications to the training method, such as population-
coded output layers or layer-wise sharpening, that allow the sharpening approach to benefit from
pre-activation state for training recurrent layers.

B APPENDIX: LEARNED WEIGHTS AND AUTAPSES

Dynamics CIFAR10 SC SOT
I L R All Autapses All Autapses All Autapses

Surrogate

1 0 0 0.00 , .21 0.86 , .30 0.00 , .11 0.13 , .14 0.00 , .57 3.53 , 1.89
1 1 0 0.02 , .24 0.59 , .49 0.00 , .10 0.11 , .12 -0.02 , .39 2.17 , .91
1 0 1 0.00 , .19 0.56 , .51 -0.00 , .15 0.13 , .14 -0.07 , .68 0.64 , .81
1 1 1 0.09 , .27 0.58 , .31 0.00 , .08 0.01 , .08 0.09 , .89 1.47 , 3.1

Probabilistic

1 0 0 0.01, .20 0.08, .17 -0.02 , .34 -0.37 , .24 0.05, 0.47 0.07, .52
1 1 0 0.01, .23 0.19, .28 0.01, .19 -0.36, .32 -0.11, .60 -0.51, .55
1 0 1 -0.01, .18 0.01, .28 0.05 , .11 -0.42 , .48 0.04, .46 -0.52, 0.78
1 1 1 0.00, .23 0.07, .15 0.12, .34 -0.25, .29 -0.00, .50 -0.25, .39

Table 5: Final weights learned across all model x task combinations, showing [mean, standard
deviation] across all recurrent layers. Distributions which are significantly non-zero at the p<.001
level are indicated by bolded values.

C APPENDIX: LEARNED WEIGHTS AND AUTAPSES

Task Heaviside Sign Tri-Value
GSC 80.49 79.13 82.75

15

	Introduction
	Binary Activation Training Methods
	Experiments
	Results
	Recurrent Binary Activations are Discontinuous Through Time
	State Enables Recurrent Architectures
	Resets, Leaks, and Activation Values Do Not Change Performance

	Conclusions
	Reproducibility
	Appendix: Sharpening Optimization Search
	Appendix: Learned Weights and Autapses
	Appendix: Learned Weights and Autapses

