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Abstract

We introduce Einstein Fields, a neural representation that is designed to com-
press computationally intensive four-dimensional numerical relativity simulations
into compact implicit neural network weights. By modeling the metric, which is the
core tensor field of general relativity, Einstein Fields enable the derivation of
physical quantities via automatic differentiation. However, unlike conventional neu-
ral fields (e.g., signed distance, occupancy, or radiance fields), Einstein Fields
are Neural Tensor Fields with the key difference that when encoding the spacetime
geometry of general relativity into neural field representations, dynamics emerge
naturally as a byproduct. Einstein Fields show remarkable potential, including
continuum modeling of four-dimensional spacetime, mesh-agnosticity, storage effi-
ciency, derivative accuracy, and ease of use. We demonstrate these properties on sev-
eral canonical test beds of general relativity and release an open-source JAX-based
library, paving the way for more scalable and expressive approaches to numerical
relativity. Code is made available at https://github.com/AndreiB 137/EinFields.

1 Introduction

General relativity (GR) describes gravity as the curvature of spacetime, encoded in the metric tensor
and governed by the Einstein field equations (EFEs), a system of coupled, nonlinear hyperbolic-
elliptic PDEs. Exact solutions are often impossible for complicated astrophysical phenomena,
so numerical relativity (NR) has become essential for accurate modeling of astrophysical events.
Notable successes of NR include the high-precision modeling of black hole mergers [1-3], binary
neutron star mergers [4], and neutron star—black hole systems [5]. NR was also central to the
confirmation of gravitational waves (GWs) detected by LIGO and Virgo interferometers, leading to
Nobel-prize-winning discoveries.

Recent progress in machine learning for scientific computing has shown the potential of neural PDE
surrogates for spatiotemporal dynamics and forecasting algorithms [6—12]. On the other hand, neural
fields (NeFs) [13—15] have emerged as an ubiquitous toolkit for implicit, compact, and continuous
representations of high-dimensional explicit data, which includes images, shapes/geometries, and
physical fields. This raises the question of whether such hybrid approaches can advance next-
generation computational GR workflows, which are highly data-intensive, particularly when handling
tensorial quantities and their derivatives defined on high-resolution grids with adaptively refined

meshes.
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Main contributions: We present EinFields (short for Einstein Fields) — compact, implicit
neural network representations encoding four-dimensional (4D) spacetime geometries. Unlike
existing neural field applications, EinFields overfit on the metric tensor — falling under the class
of neural tensor fields, satisfying the properties enlisted in Eqs.((38), (44)). These are smooth,
differentiable neural networks allowing (i) memory-efficient compression, (ii) discretization-free
evaluation at arbitrary resolution, and, (iii) accurate automatic differentiation of differential geometric
quantities. Our models achieve up to E—7 — E—9 relative agreement with ground truth metric, while
being upto five orders of magnitude more accurate than finite-differencing methods on tensor
derivative downstream tasks (for e.g. curvature tensors and scalars — see Appendix (B.3.6) for
details) in FLOAT32. Our methodology reconstructs hallmark relativistic phenomena with high
fidelity, including perihelion precession around Schwarzschild solutions, geodesics around Kerr
blackholes, and gravitational wave signatures, such as an oscillating ring of particles and Weyl
scalars reconstruction associated with outgoing GWs radiation field . We further provide a fully
JAX-based [16] differential geometry library supporting tensor algebra, covariant derivatives, and
geodesic equation solvers.

Together, these novel contributions demonstrate neural implicits as being a powerful paradigm for
compact, accurate, and physically consistent modeling of NR simulations. The EinFields pipeline
is detailed in Figure (1).

2 Background

We stress the three key properties that pertain to our work: (i) GR is a field theory of tensor-valued
quantities whose arena is a Hausdorff manifold .# with a Lorentzian (pseudo-Riemannian) signature
(=,+,+,+), (ii) GR is intrinsically coordinate independent (diffeomorphism invariant — B.4.1),
and (iii) gravitational physics is entirely encapsulated in the metric and its first two derivatives.
We present a condensed version of the relevant concepts from differential geometry and general
relativistic physics in Appendix F, while referring to Appendix B and the sources therein for an
extremely detailed exposition.

Tensors. A rank (r, s) tensor 7" at a point € M is the multilinear map from r covectors and s
vectors to a real number:
T:V'Xx..xV'xVx..xV—->R. (D
T —copies s—copies
The r vectors and s covectors pair with the respective r covariant and s contravariant components

of the tensor. As such, a tensor is an element that lives in a tensor product of vector and dual
spaces, i.e., T € (V)®" @ (V*)®5. A tensor in a particular choice of basis {ea, }1<n<r € V and

{9Pn}1cpnes € V¥ is given by T = T‘“a"‘él'g;_ﬂseal Q@ ®ey @V ® - ®9% | where
Tm“%‘l‘gguﬂs =T(9, .-, 9% eg,, - ,eg,) are the components of the tensor in this particular

basis and transforms as shown in Eq.(20). A tensor field, on the other hand, assigns to each point
x € M amultilinear map T}, € V% @ (V*)24, with components 75" " (z) that vary smoothly
across the manifold.

General relativity formulated by Albert Einstein, extends Newtonian gravity with a geometric
interpretation of gravity, where mass and energy tell spacetime how to curve, and curved spacetime
tells objects how to move [17]. This is formalized by Einstein’s field equations (EFEs)

Gaﬁ + Aga[g = 81G Taﬁ . (2)

EFEs are a set of 10 coupled non-linear, tensor-valued, second-order partial differential equations and
can be viewed as a tensorial generalization of the Newton-Poisson equation for gravity V2®(r) =
—4nGp(r) [17, 18]. In EFEs, G5 = Rap — %Rgag is the Einstein tensor, formed from the metric
tensor field g 5(x*), which are solutions of the EFEs and tensorial generalization of the gravitational
potential ®. The Ricci curvature tensor 12,3, and the Ricci curvature scalar R are related by second-
derivatives g, 3. Thus, the left-hand side of EFEs is entirely described by the metric and its derivatives,
with A being the cosmological constant. The right-hand side depends on the stress-energy tensor 7,3
describing the matter distribution, with G being Newton’s constant. The backbone of these highly
complicated field equations is tensors, and the mathematical formalism is differential geometry.

Metric tensor and its derivatives. The metric is a rank (0,2) symmetric bilinear form g :
T,M x T, M — R that generalizes the notion of an inner product on the tangent space 7, M



of a differentiable manifold M [19]. It enables the computation of angles between vector fields and a
means to compute distances via the line element: ds? = g, s(x") dx®dz”. In GR, the components
gap In a particular coordinate system can be seen as a 4 x 4 symmetric matrix with ten indepen-
dent components. The metric defines the causal structure and contains all geometric information
of spacetime. Importantly, its partial derivatives 0 yield the Christoffel symbols I, (z") (see
Appendix (B.3.4) and Eq.(50)), which describe the notion of parallel transport (see Def.12) on the
Lorentzian manifolds defining a covariant derivative operation V,, = 0, +1 ', (see Appendices (B.3.3
for details). The connection’s derivatives (i.e., metric second-derivatives) yields the Riemann curva-

ture tensor Ri 57(3:“) (see Egs.((56), (57)), which encodes tidal forces of gravity. The trace part of

Ri By (index contraction w.r.t. metric: Tr, — see Eq.(44)) is the Ricci tensor Rz, also a symmetric
rank (0, 2) tensor. Its subsequent contraction yields the Ricci scalar R (see Eqs.((60), (61)). This can
be summarized schematically as follows (a more detailed pictorial version is available in Figure 8:

4] v Tr Tr
gap = T05 = R0p — Rop —> R. 3)

Finite-difference (FD) methods with adaptive mesh refinement (AMR) [20] have long underpinned
tensor calculus in NR, discretizing space and time with high-order stencils (Appendix D). An n-th
order stencil yields truncation errors of O(h™), where h is the grid spacing. Widely used fourth- or
sixth-order schemes improve accuracy but incur larger communication costs due to broader stencil
footprints. Yet, despite their effectiveness for smooth fields, FD schemes remain vulnerable to Gibbs-
like oscillations [21] near discontinuities (e.g., neutron star surfaces or shocks), limiting convergence.
In contrast, modern NR increasingly employs (pseudo-)spectral methods [22-24], which represent
fields globally through polynomial bases such as Chebyshev or Legendre-Gauss-Lobatto (LGL) [25].
Spectral methods are ultimately bounded only by double-precision arithmetic, achieving orders-
of-magnitude gains in both accuracy and efficiency—up to 1000—5000x faster on CPUs than FD
approaches on GPUs at comparable accuracy [26].

Neural fields. NeF also known as implicit neural representations (INR) or coordinate-based neural
networks are multi-layer perceptrons (MLP) that are memory-efficient, implicit, continuous, infinitely
differentiable (C*° (R)) maps of discrete representations, capable of capturing high-fidelity detail
across complex domains [27]. These properties have motivated their primary development and
adoption in computer vision domains for representation, generation, and inversion tasks. Examples
include scene reconstruction and rendering [28, 29], shape generation [13—15]. NeFs have proven to
be highly versatile models for compressing large-scale data accompanied by ease of query at varying
resolutions (see Appendix E).

3 EinFields

Consider the four-dimensional spacetime, a Hausdorff manifold equipped with a Lorentzian metric
(A, g), corresponding to an exact or numerical solution of the EFEs': G,5 = 87G T,3. An
EinField models the 10 independent components of the metric tensor field as a compact NeF,
ultimately mapping the spacetime coordinates z = (2°, 2!, 2%, 2®) to the symmetric rank (0, 2)

metric tensor field (see Definition 8):
g:xEJ//%gag(x)ESym%T;//), )

We deploy an MLP gy with parameters 8, denoted ¢ (implicit representation of metric tensor field) for
simplicity, to over-fit on the ground truth signal. Methodologically, this enables directly compressing
the entire geometric information into storage-cheap NN weights, yielding continuous access (different
from the training grid points) at high-resolution of the metric and its non-trivial tensor differentiation
(for e.g. Lie derivative or covariant derivatives) information devoid of mesh (re)construction on
curvilinear manifolds. This generalizes to an arbitrary rank (r, s) tensor field 77" 5" (2#).

Thus, EinFields posit a neural alternative to address one or more of the challenges associated with
traditional methods (typically utilizing higher-order finite differencing schemes) in NR by not relying
on costly spatio-temporal discretizations. Our framework should be considered as a special case of
Neural Tensor Fields.

"From now on, we omit the cosmological constant term Age 8.
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Figure 1: A conceptual overview of EinFields training and downstream pipeline. (i) Premise: The
Einstein field equations (EFEs) in Equation (2) are highly non-linear partial differential equations
defined on a 4D spacetime manifold, describing the geometric nature of gravitation. Their solutions
define the metric tensor field gog(2*), which encodes the full spacetime geometry and serves as a
tensorial generalization of the gravitational potential. In this work, we parametrize g,g(z") using
a neural network. (ii) Training: The training is conducted on the metric tensor fields defined on a
4D spacetime grid. EinFields instead fit a continuous signal on these discrete representations, thus
modeling 4D spacetime as a continuum, and returning the metric tensor field for a 4D spacetime query
coordinate p = (¢,x) € ./ at arbitrary resolution. (iii) Sobolev supervision: The reconstruction
quality of the metric and its derivatives is improved by augmenting Sobolev losses, i.e., metric
Jacobian (neighborhood structure) and Hessian (curvatures). (iv) Validation and downstream
tasks: Sobolev improved EinFields’ AD-based derivatives enable accurate point-wise retrieval of
differential geometric quantities, such as the Levi-Civita connection (covariant derivative), geodesics,
curvature tensors, and their invariants.



3.1 Distortion
We define the distortion as the algebraic deviation of the spacetime metric from flat space,

Aaﬁ =9Gap — NaB (5)

with the Minkowski background 1), in that particular coordinate system. From a learning perspective,
this decomposition acts as a preprocessing step that removes the offset (fixed background metric).
Flat contributions, that may even dominate numerically (e.g., g« ~ 1/7, goo ~ r?), are removed,
leaving only the non-trivial geometric content: curvature, horizons, and rotation. Thus, the network
focuses its representational capacity on meaningful deviations rather than redundantly relearning
flat-space structure. This improves scaling, accelerates convergence, and emphasizes the dynamic,
physically relevant features of the metric during training.

3.2 Retrieving physics via neural tensor field derivatives

Beyond the metric tensor itself, its first- and second-order derivatives are central to GR, as they
govern geodesic motion, tidal forces, and curvature invariants. Accurate recovery of these quantities
requires point-wise precise evaluation of Christoffel symbols and Riemann tensors, making their high-
fidelity extraction from EinFields essential for reliable downstream analysis. This is facilitated by
Sobolev training [30, 31], a loss formulation that explicitly incorporates derivatives (see Section G.2
for details). The supervision on the metric Jacobian 0,,¢.s (40 independent components) and
Hessian 0,0, g5 (100 independent components) rectifies irregularities in the metric field and its
derivatives, yielding substantial accuracy gains and consequentially improving the precision of point-
wise Christoffel symbols I") ﬁ(at“) and Riemann tensors 17 5. (z*) queries by up to “two orders” of
magnitude. This is given by the modified loss function:

2 . ] 2
E2l8) = Bx [Nl gas(0) = das @I + 30y [0 05(0) - e[| ©
j=1

We use the succinct notation 0% = 0, and oY = 0,0,. The expected losses in Algorithm 1
) . . . 2

E((’)g(c] )g, 8% §) are short-hand for E,, 09 gos () — 09 Gop () H . Instead of implementing higher-

order FD methods, our framework enables access to exact higher-order tensor derivatives via automatic

differentiation (AD) [32]. This is illustrated in the AD workflow for differential geometry in Figure 2.

Reconstructing dynamics. Free-fall trajectories follow the geodesic equation (Eq.(55)), which
depends on Christoffel symbols I'(g, dg). These enter the covariant derivative V, = 04 + T,
governing parallel transport (Appendix B.3.3). In our AD-based workflow (Figure 2), EinFields
reconstruct f( g, 0g) with Jacobian supervision, enabling V,, = 0, +1', and, thus, accurate modeling

of geodesics and direct evaluation of curvature objects, such as the Riemann tensor (VI', see
Appendix B.3.6).

Characterizing intrinsic geometry. Beyond dynamics, EinFields must reproduce the intrinsic
geometry encoded in curvature tensors: Riemann R, -5, Weyl Cngs, Ricci R, g, scalar curvature
R, and invariants such as the Kretschmann scalar (Figure 2). With Jacobian- and Hessian-level
supervision, the learned fields achieve strong agreement with analytic solutions across the domain,
except near singular regions where curvature diverges. Detailed comparisons of curvature tensors and
invariants appear in Appendix B.3.6.

4 Experiments

The performance of EinFields is assessed along two axes: (i) compression, i.e., the reduction in
storage requirements for implicit representations of NR tensor-valued grids with high-accuracy —
including the metric (10 independent components) and higher-order derivatives (20—100 components)
across millions of collocation points, and (ii) reconstruction fidelity, evaluated through key GR
benchmarks: geodesic dynamics around compact objects (Section F) and curvature diagnostics such
as the curvature scalars or invariants (see Appendix B.3.6). The evaluation criteria used are either
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Figure 2: The directed-acyclic graph (DAG) for computing the differential geometric quantities
from the metric tensor g in analogy to Figure 8 and Eq. (??). The transformations include re-
peated differentiation implemented via forward-mode Jacobian jacfwd and tensor index contractions
implemented via einsum. Branches compute the Weyl tensor C and enforce Bianchi identities
( jacfwd + 1") Riem = 0. This framework leverages automatic differentiation and tensor algebra to
enable scalable symbolic-numeric computations in geometric deep learning and physics-informed
models.

mean absolute error (MAE) or relative {5 (Rel. ¢5) between the ground truth and NeF parametrized
tensors (see Eqgs. (104a, 104b)).

4D training and validation grid. We overfit the NeFs over synthetic data generated from exact
analytic solutions of the Einstein field equations (2): (i) Schwarzschild (69) (static, spherically
symmetric), (i) Kerr (79) (rotating (spin parameter a > 0), oblate spheroidal), and (iii) linearized
gravitational waves (85). Grid resolution, parameter ranges utilized to generate the distortion-part of
the metric tensor grid, i.e., Eq. (5) are detailed in Appendix G.1.

Training specifics. For our tasks, the most effective architectures are MLPs with SiLU activa-
tions [33], which excel under derivative-based supervision. Given the sensitivity of training dynamics
to the choice of optimizer [34], we employ SOAP [35], a scalable quasi-Newton method shown to
enhance gradient alignment in PINNs [36]. We adopt a GradNorm-based scheme [37], enforcing
unit-norm gradients mitigating gradient imbalances induced by Sobolev supervision. The explored
models span widths and depths from 64 x 3 to 512 x 8, totaling less than 1.9 x 10° parameters
(~ 7MiB). The NeF training (NVIDIA H200 SXM GPU) ranges between 100s (w/o Sobolev training)
to 2000s (Sobolev training including metric Hessian).

Accuracy and storage efficiency of EinFields: metric and its covariant-derivatives. Furthermore,

Representation Rel. 4 MAE Storage  Compression
EinFields 2.37E-7 3.93E-7 85KiB 4035
EinFields (+ Jac) 1.51E-7 220E-7 1.1MiB 311
EinFields (+ Jac + Hess) 1.40E-7 6.89E-8 202KiB 1698
Explicit grid — — 343 MiB —

Table 1: Performance evaluation (measured in Rel. /5 and MAE metrics) and storage efficiency
of EinFields parametrized metric tensor fields under different representations (i.e., with and w/o
Sobolev trainings). The model with the lowest MAE is selected in each row.

accurate reconstruction of higher-rank tensors from neural tensor fields is critical for recovering
geodesics, tidal forces, and related physical quantities. We evaluate EinFields by comparing accu-
racy—memory tradeoffs for the metric (Figure 3a) and Christoffel symbols (Figure 3b), using the setup
of Table 1. Against higher-order FD baselines in FLOAT32, EinFields achieves systematically lower
mean absolute error (MAE), avoiding truncation and instability issues that limit FD stencils at small



h. Through AD, we compute Christoffel symbols (Eq.(50)), tensor covariant derivatives (Eq.(49)),
Riemann tensor (Eq.(57)), and contracted quantities (Weyl, Ricci tensors, Ricci scalar, Kretschmann
invariant; Sec. B.3.6). Table 2 shows that EinFields outperforms FD stencils by 10—10° in accuracy
across these quantities, while all being unpacked merely from the implicit NN weights.

Geometric quantity

Storage [GiB]

MAE

Full Sym. GT (FD) EinFields (AD) GT (AD)
Christoffel symbol 26 16 5.37E-6 4.87E-7 5.83E-9
Riemann tensor 103 8.0 1.78E-2 2.53E-7 2.86E-8
Weyl tensor 103 4.0 1.72E-2 5.71E-7 5.89E-8
Ricci tensor 6.5 4.0 4.81E-2 1.02E-6 9.02E-8
Ricci scalar 0.4 0.4 5.35E-2 5.66E-5 1.31E-8
Kretschmann invariant 0.4 0.4 1.33E-2 1.71E-5 3.32E-8

Table 2: Performance evaluation of EinFields reconstructed differential geometric quantities for
the Schwarzschild geometry in spherical coordinates. Columns 2-3 report memory usage for full
and symmetry-reduced components. Columns 4-6 report MAE relative to analytical solutions: FD
stencils for h = 0.01 on the ground-truth (GT (FD)), EinFields via AD, and AD applied directly to
the analytic solution (GT (AD)).
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(a) Accuracy of EinFields for different NN sizes
(measured in KiBs required to store all FLOAT32 pa-
rameters) as trendlines for different training schemes.
Each metric tensor component has MAE values rang-
ing from 1E-6 to 1E-8. Apart from high accuracy, one
additionally acquires ~ 1000 — 4000 times compres-
sion factors in storage memory gain, as detailed in

Memory (KiBs)

(b) Accuracy of EinFields’ Christoffel symbols de-
rived from the metric tensor, shown as trendlines for
different training schemes in FLOAT32 (KiBs). The
trendlines show different training schemes (with and
without Sobolev training) with MAE values ranging
from 1E-4 to 1E-7. We benchmark against fourth-
order and sixth-order stencils with truncation errors

Table 1. O(h®) and O(h"), respectively. Our framework out-
performs FD stencils by more than an order of magni-

tude in accuracy.

Figure 3: Trendlines of accuracy versus storage memory (KiB) requirement for the met-
ric tensor and Christoffel symbols. For the explicit grid storage this is computed as
num of grid collocation points X 4, with 4 bytes for single precision (FLOAT32). For the NeFs,
this corresponds to the storage memory of the compact implicit NN weights.

Reconstructing seminal tests of GR. As a part of validation, we demonstrate here the reconstruction
quality of EinFields for recovering seminal tests associated with general relativistic dynamics on
curved manifolds, i.e., geodesics motion — refer Eq.(55) around Schwarzschild — Fig.(4a) and Kerr
solutions — Fig.(4b) (see Appendices G.7.1 and G.7.2 for details) and geodesic deviation — Eq.(59)
describing oscillating ring of test particles due to gravitational wave distortions — refer Eq.(108)
and Appendix G.9 for details. Each of these use-cases shows excellent agreement with the analytic
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(c) Stretching and squeezing of a circular ring of test particles due to “+” polarization of weak gravitational wave
strains detected at future null-infity 7 * (i.e. extraction at r — 00, at fixed retarded time).

results, although, are subject to accumulated temporal rollout errors (see Appendix (G.8)) and heavily
affected by floating-point errors requiring FLOAT64 precision.

Curvature tensor and scalar reconstruction. EinFields enable high-fidelity retrieval of curvature
tensors and scalars (necessitate Hessian-augmented Sobolev training). This includes the Kretschmann
invariant % for the Kerr geometry — a ring curvature singularity (true singularity corresponding to
infinite curvature) analytically defined by Eq.(83). This ring singularity is also captured by our NeFs
in Figs. (17b, 17¢). Similarly, Weyl scalar W,(¢,7) — Eq.(109), a primary scalar quantity used for
observable GW signals extraction from simulations are shown in Fig. 20b (Rel. {5 == E—5).

5 Conlusion

EinFields provide an efficient and continuous representation of 4-dimensional spacetime. By
combining neural tensor fields with the exactness of automatic differentiation, it yields a scalable,
discretization-free, and resolution-invariant framework that faithfully captures the underlying physics.
Our framework enables achieving E—7 —E—9 decimal digit accuracy with a compression factor on
the order of 1000—4, 000 relative to explicit grids in numerical relativity, while supporting training
across diverse coordinate charts, thereby enhancing its applicability to general relativistic simulations.
Our framework is validated across several canonical test beds of GR. Compared to finite-difference
schemes, EinFields deliver up to five orders of magnitude improvement in the accuracy of the
tensor derivative (in FLOAT32), positioning it as a compelling neural alternative for current and
next-generation NR simulation workflows.
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Technical Appendices and Supplementary Material

Introduction to General Relativity

This appendix provides the mathematical background and intuition on differential geometry (covering every
aspect of the paper and the library), and general relativity. We remark that the reader may appreciate several
related works, such as [19, 38—40] for mathematically rigorous coverage of differential geometry. For more
physics-oriented readers, the following books extensively cover general relativity and numerical relativity [17,
41, 18] as alternative resources. Additionally, the Geometric Deep Learning (GDL) community can also find
more ML-centric introduction to differential geometry in the following work [42, 43].
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Table 3: Table of notations

Symbol Description

M Arbitrary manifold

M 4-dimensional spacetime manifold
Nuw Flat Lorentzian metric

xt Original coordinates

e Transformed coordinates

e Basis set

g+ Dual basis set

M Transformed basis set

g Transformed dual basis set

% Coordinate basis (equivalent to partial derivative operator)
T,M Tangent space at point p

M Cotangent space at point p

Q' (M) Space of one-forms
I(TM) Smooth sections of a tangent bundle (collection of vector fields)

I'(T*M)  Smooth sections of a cotangent bundle (collection of one-forms)
o Pullback operation

D, Pushforward operation

Riem(M) Set of (pseudo-)Riemannian metrics on M
Diff(M) Set of diffeomorphism maps on M

X Cartesian (tensor) product

® Kronecker (tensor) product

D, Directional derivative

L, Lie derivative with respect to vector field v
V, Covariant derivative

or Kronecker delta (identity matrix)

c Speed of light

G Newton’s constant

B.1 Fundamental concepts of differential geometry & and tensor calculus
The main concepts covered in this appendix are:

1. Fundamental concepts of differential geometry and tensor calculus: We introduce contravariance and
covariance, and further vector and dual vector spaces. This allows us to define tangent and cotangent
spaces.

2. Tensors and tensor fields: Next, we define tensors and tensor fields, operations on tensor fields, and
the Lie derivative as a generalization of the directional derivative for tensor fields.

3. Riemannian and Lorentzian geometry: This is the meat of Appendix B. We introduce 4-dimensional
spacetime as a continuous differentiable manifold. Via the metric, we can define Riemannian manifolds,
and finally Lorentzian manifolds as a pseudo-Riemannian manifold. Next, we discuss connections,
covariant derivatives, and Christoffel symbols. This is all mathematical background that is required to
introduce parallel transport, geodesics, the Riemann curvature tensor, the Ricci tensor, the Ricci scalar,
the Weyl tensor, and finally curvature invariants and the stress-energy-momentum tensor. We end with
Einstein field equations, reflecting back on the coordinate-independency of GR.

B.1.1 Contravariant and covariant components

Loosely speaking, an n—dimensional vector v € R™ can be expanded in its basis as v = vier+vlest. . +v"en,
or v = v'e; if we use Einstein sum convention. In general relativity, we write v = v*e,,, where Greek indices
indicate 4— dimensional space-time. Thus, in this non-Euclidean setting, it is necessary to distinguish objects
that carry an upper index (contravariant) versus objects that carry a lower index (covariant), since they satisfy
different geometric properties and transformation laws.

Definition 1 (Contravariance of vector components): Let X C R" be a coordinate system (frame) that is

spanned by a coordinate basis set {e, }1<.<n, i.€., each basis vector can be expressed as e, = %u. A vector
v € X can be expanded in its coordinate basis as v = v¥(z)e,, := v*(x)52;. When transforming the vector
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o

v to a new coordinate system, spanned by another coordinate basis set {€, }1<,<n, i.€., & = 55, one can
express the vector components in the new coordinate system v° = 0” (i) as
oz”
—V =\ I
v (T) = —"(x) . 7
(@)=Y 5o (@)
"

The ratio of change of the vector components is the inverse of the ratio of the base components. In other words,
vector components transform inversely — or contravariantly — with respect to basis transformations, i.e., transform
in the opposite way to the change in the coordinate system. Most contravariant objects represent physical
quantities like displacement, velocity, and momentum, which must adjust when the coordinate basis changes.

Definition 2 (Covariance of basis set): Let X C R" be a coordinate system (frame) that is spanned by a
coordinate basis set {e, }1<,<n. i.€., each basis vector can be expressed as e, = z7z. A vector v € X can
be expanded in its coordinate basis as v = v (z)e, = v“(;r)a%. When transforming the vector v to a new
coordinate system, spanned by another coordinate basis set {&, }1<v<n, i.€., & = %, then, the basis set itself
transforms as,

s
o _ Ox 8. @)

oz oz Oxh
m

Note that we have introduced the concept of contravariant and covariant transformation by the example of vector
components and the respective basis set. In general, we speak of contravariant w.r.t. their corresponding basis
sets. L.e., contravariant components have covariant basis sets and covariant components have contravariant basis
sets. As we introduce next, an object with covariant components is an object of the dual space. These covariant
vectors, or covectors, typically represent gradients, such as the gradient of a function. A gradient represents the
change w.r.t. an infinitesimal change in a direction. It is intuitive that if we make the direction larger, the change
becomes larger as well. In other words, if we change the basis vectors in which we measure this change, the
gradient transforms covariantly w.r.t. the basis vectors.

B.1.2 Dual space

While the concept of a vector space is well known in the machine learning community, there is a closely
associated concept of a dual vector space (succinctly called dual space), which is an algebraic dual to the vector
space itself with the same dimensions.

Definition 2 (Dual vector space): Let (V, =+, ) be a vector space over a field F' (e.g., R, C). The (algebraic)
dual space (V*, +, -) is a vector space of linear functionals (maps) V* := {v* |[v*(v) = cVv € V,Vc € F},
satisfying:

(V" +w")(v) = v (v) +w(v) ©)
v (av + fw) = av”* (v) + pw* (w) (10
(cv™)(v) = e(v”(v)) (11

for all v*,w* € V*, v,w € V, «a,,c € F. Elements of the dual space V* are sometimes referred to as
covectors or one-forms [44].2.

For example, suppose, we are given a basis {e1, ..., e, } of a vector space V. Then, one can introduce a dual
basis set {191, ..., 0"} of the dual space V*. Let v = (a1e1 + azez + ... + anen) € V, V{aiti<i<n € F.
Thus, the action of the linear functionals ¥ on the vector reads: ¥ (v) = 9% (a1e1 + ases + ... + anen) =
a9 (ei) = ', i =1,...,nand ¥ (e;) = 8%, where we have used the orthonormality condition, and &/ is the
Kronecker delta symbol. Conceptually, the covector ¢ is a (complex-conjugated if /' = C) row-vector, which
acts on a column vector v to produce o € F'. Colloquially speaking, an element of the dual space V* “eats up”
an element of the vector space V and returns a scalar (duality pairing).

B.1.3 Tangent and cotangent spaces

Definition 1 (Tangent space): Let M be a smooth (C°°) manifold of dimension n. The tangent space T, M
at point p € M is a set of d-dimensional vectors (called tangent vectors) attached at point p, defined as
TpM = {(p,v) : v € R%Y, and carries the structure of a real vector space. Every tangent space is spanned by
)

Yty g
P

an ordered basis {e,.|p}1<u<n = {527 } € T, M, and vectors can be expanded in this basis as:
p

2A finite dimensional vector space is isomorphic to its double dual, i.e. V = (V*)*.
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vlp = v (z) —| , (12)

Ozt |p
where v* () are the components of the vector in this basis {€,|p }1<u<n 0f the tangent space Tp M.

It is worth noting that dim (7}, M) = dim(M). With this setup, we can now formally introduce the definition of
tangent vectors.

Definition 2 (Tangent vector): A vector v|, € T, M is called as a tangent vector if it acts as a derivation,
i.e, a linear map acting on smooth functions f € C*(M) at a point p € M. Specifically, the map v|, :
C>=(M,R) — R satisfies *:

Do(f+g)=v(f)+v(g)V f,g € C™(M,R) (linearity)
ii)v(f) = 0, when f is a constant function, i.e., v acts trivially on constants.

iii)v(fg) = f(p)v(g) + g(p)v(f) Vf,g € C(M,R) (Leibniz product rule)

From the definition above, it follows that tangent vectors should be regarded as derivation maps. This is
equivalent to the notion of a “directional derivative” [39]

d of 0
S ok M oo
(Do f)(p) := pr (p+tvlp) o =Y (a:)axu . Yo =v (x)(’):c“ ) e T,M,VfeC®(M,R). (13)
Directional derivatives are traditionally defined only for scalar-valued functions. This shall be revisited rigorously
for a more generalized concept called the “Lie-derivatives”, which operates on general tensors, c.f. Section B.2.3.

Thus, T, M is the space of directional derivatives. The disjoint union of all the tangent spaces at every point
p € M forms a structure called tangent bundles [39]:

™M= | | ;M= ] {(vlp):vlp € T,M}. (14)

peEM peEM

Tangent vectors as vector fields. In physics, quantities that vary spatiotemporally as a continuum
representation are defined as fields, featuring in domains such as electrodynamics, gravity, fluid dynamics, or
continuum mechanics.

A vector field V' is a smooth assignment of a tangent vector v|, to each point p € M. Thus, a vector field is a
map V : C°(M) — C°°(M), and is defined as:

(V(N) () = vln(f) - (15)
Theorem 1 (Cotangent space): Let M be a smooth (C°°)-manifold (differentiable). The cotangent space

Ty M = {(p,v"|p)|(v"|p,v|p) = K, YVp &€ M,v|, € LM,k € R} at point p € M is the set of all linear
maps v*|p : TpM — R, i.e., dual to the tangent space. The cotangent space T,; M is spanned by an ordered

basis set {d:r‘lp, dm|2p, ..... , d:c‘dp}. Thus, any v*|p, € Ty M can be expanded as:
v |p = v, (x)dz" = v, (x)dz"| . (16)
p
0 oz*
It follows that dz" (617” ) = <8x“ > = ¢4, and dim Ty M = dim T, M = dim M. The disjoint
p P p

union of all the cotangent spaces at every point p € M are known as cotangent bundles [39]:

M = |_| TyM = U {(p,v*\p):v*hg ET;M}' a7

peEM peEM

One can also construct fields of cotangent vectors (cotangent fields) by picking up an element of T,y (M) V p €
M in a smooth manner. Le., by assigning one cotangent vector smoothly at each point of the manifold, one
obtains a cotangent field (i.e., a smooth section of the cotangent bundle). These cotangent fields are known in
mathematical literature as one-forms. The set of all smooth one-forms on M is commonly denoted as Q* (M).

3For sake of ease, we will drop |, whenever possible.
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B.2 Tensors and tensor fields

Definition 3 (Tensors): A rank (r, s) tensor T at a point p € M is described as a multilinear map:

T:V'Xx..xV'xVx..xV-=R, (18)
", N
T—coples Ss—copies

where x denotes the Cartesian product and the resultant tensor has a total rank of r + s. A tensor takes in 7
covectors and s vectors, returning a real number, in a multilinear way (linear in each argument separately). The
r and s input vectors and covectors pair with the r and s being the convariant and contravariant components,
respectively. Equivalently, a tensor is an element that lives in a tensor product of vector and dual spaces, i.e.,
T € (V)®" @ (V*)®°. A tensor in a particular basis choice {ea,, }1<n<r € V and {977 }1<n<s € V™ is given
by

T=T""0" ea, ®...Q¢ea, @9 ... @97 (19)
where 79125 07 5 = T(9%1,..., 9%, eq,, ..., ep,) are the coefficients of the tensor w.r.t. the basis set.

B.2.1 Tensor transformation properties

A pivotal criterion for an object to be classified as a tensor(field) is that it transforms according to a well-
defined rule under changes of coordinates. Let {ea,, }1<n<r € V, {0°" }1<n<s € V*, and {€a, }1<n<r € V,
{957} <n<s € V* be two coordinate systems on a smooth manifold M, related by a smooth invertible
map. Consider a tensor field of type (r, s) with components Tal“ﬁ‘;)‘f' 3. in the original coordinate system
{ean }1<n<r € V, {ﬁﬁ”’}lgngs € V*. Under a change of coordinate systems, the components in the

new coordinate system {€q,, }1<n<r € V, {155 "}<n<s € V" transform according to the following tensor
transformation law:

L - g =\ _ n JIrs Q... -1\ 51 —1\Bs
TH1 V1~»l/s($) _ a11 c Jhr T ﬁln_ﬁs(gj) (j )Vl (j )VS , (20)
FhE _ 8 . .. . . .
where J4 o= gi;z and (J l)fl’ = g;—yi are the Jacobian and Jacobian inverse matrices in the coordinate

e,

basis, respectively. 74" is the contravariant transformation of the contravariant components of 7% ;%" ;

whereas (J -1 ) fl is the covariant transformation of the covariant components of 7! 'L_‘,‘“
1

label components in the new coordinates and ay, §; are dummy indices summed over the old coordinates. A

key feature of a tensor is that, if it is zero in one coordinate system, it is zero in every other coordinate system.

This transformation law ensures that the tensorial nature of the object is preserved independent of the coordinate

chart chosen.

B The indices pg, v

Tensor fields. A tensor field is a collection of tensor-valued rank quantities (r, s) such that at each point
ar

p € M, the multilinear function associates a value 7,, € V"™ ® (Vy) ®°_ Thus, the components 71" 5 5.(D)
are functions of the points of the manifold.

By definition, some known examples of tensor fields in physics and machine learning are:

¢ Rank 0 tensor, e.g., temperature field ¢ : R” — R (scalar field)

¢ Rank (1, 0) tensor, e.g., (velocity, momentum, displacement) vector fields v: R — R™ (contravariant
vector field). These rank (1, 0) tensors have one component that transforms contravariantly, and “eats
up” a covariant component, e.g., v” to produce a scalar.

¢ Rank (0, 1) tensor, e.g., gradient vector fields V : R — R™ (covariant vector field). These rank (0, 1)
tensors have one component that transforms covariantly, and “eat up” a contravariant component to
produce a scalar.

* Rank (0, 2) tensor, e.g., a matrix representing a bilinear form that takes in two vectors and outputs
a scalar. We will see the metric tensor g, as an example. In continuum and structural mechanics,
a known example is the strain tensor €;; representing the deformation of a crystal (body) caused by
external forces such as stress.

¢ Rank (2, 0) tensor, e.g., a matrix as a multilinear map that takes in two covectors and outputs a scalar.
An example for a rank (2, 0) tensor is the outer product of two vectors. An example is the Cauchy
stress tensor o*? from structural mechanics, which represents the internal forces per unit area acting
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inside a material body. The stress tensor takes in two vectors, i.e., the normal vector to the surface
(describing orientation), and the direction vector along which the force acts (projection), and returns a
scalar (force per unit area in that direction).

B.2.2 Operations on tensor fields

For multiple tensors of the same type (r, s), the algebraic operations such as addition, subtraction or multiplica-
tion by functions are straightforward. Here, we address multiplication of tensors of different ranks.

Let T be a rank (r, s) tensor and S a rank (p, ) tensor. One can construct a tensor product T'® S resulting in a
new tensor of rank (r + p, s + q), defined by

T®S(ea1,...,ea,,,em,...,e7,p,<p61,...,apm,cpél,.‘.,goéq) 21

:T(eoqv"'?ear?e”h?"'767]p)S(90517'"7@657@617"'3§06q)a (22)

and the components of this composite tensor read,

QL. QpMN1.-Mp . Q] ... O N1---Mp
(T®S) 5, Bsrs, =T 5 5,5 505, - (23)

Another useful rule is that of contracting over repeated index/indices each from the vector and dual space
respectively. Consider a rank (r, s) tensor

Ql...Qp...0p _ pa...ap
T s aps =T 5 L - @4

IL.e., oy is summed-over in the contravariant and covariant indices, and, thus it gets contracted. The resulting
tensor is of rank (r — 1,5 — 1) .

B.2.3 Lie derivative: Generalizing the notion of directional derivatives for tensor fields

Directional derivatives are of great importance and often appear in domains such as fluid dynamics, where a
scalar field is differentiated with respect to a vector flow field, capturing infinitesimal dragging of scalar fields
along flows generated by a vector field. Flows can be viewed as “diffeomorphisms” [18] induced by these vector
fields.

However, generalizing the notion of directional derivatives require defining derivatives of a set of tensor fields of
arbitrary rank (7, s) w.r.t. a set of vector fields. This is often not possible on arbitrary manifolds, and requires a
concept of differentiating in a tensorial setting. Geometrically, to compare tensors at infinitesimally separated
points on a manifold V, say at points p, ¢ € M requires to “drag” the tensor from p to ¢ (also called parallel
transporting, c.f. Section 2?2.

Alternatively, a simpler approach to describe the dragging is via coordinate transformation from p to g. This is
the idea behind the Lie derivative. The Lie derivative along a vector field v|, € T, M measures by how much
the changes in a tensor along v differ from a mere infinitesimal passive coordinate transformation of the tensor
generated by v. In other words, the Lie derivative compares the actual rate of change of the tensor as you move
along v against the change you’d get if everything were just shifted passively via a coordinate transformation.
We provide a rough sketch of the derivation, but detailed explanations can be found here [40, 18].

Consider an infinitesimal coordinate transformation which maps the vector with coordinates z*|, at point p to
zH|q at point ¢:

g = a¥|p + € V" (@), - (25)
It is to explicitly note that the original coordinates z*|, and the transformed coordinates Z* |, are components of
the same set of basis vectors. Such transformations fall under the category of active coordinate transformations
that map points (or tensors at those points) at old locations to new locations in the old coordinate system — in this
case by “moving” a small amount §¢ along the vector field v|, € T, M. In other words, an active coordinate
transformation maps points (and tensors) to new locations in the old coordinate system keeping the basis set
intact. Whereas, passive transformations assign new coordinates to the old points (and tensors) by transforming
the basis set itself.

Assuming a coordinate basis, one can differentiate the transformation w.r.t. the original coordinates, which yields

oz" ovt(x)
=60 +66——~ . 26
gz = O TS0 (26)
The result contains the identity matrix 6% and a small correction due to the flow field v*(z). To the first order,
v n
the inverse of the above Jacobian is 84 =4 — 55M_
Oz oxv

The Lie-derivative of a tensor field T} with respect to v* follows a similar pattern and is defined via the limes:
T (z) — TH(z
LTY = Jim = @) —17(@)

—0 (55 (27)
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In this scheme, it is important to distinguish three distinct tensor field evaluations: a) T}’ (x) (original tensor
in untransformed coordinates), b) T} (Z) (transformed tensor in the transformed coordinates) and ¢) T (Z)
(original tensor in transformed coordinates).

In order to compute Equation (27), we need two important concepts from differential geometry called push-
forward and pull-back operations. We direct the interested readers to more advanced literature [39, 40, 38]

These three separate tensors fields can be related in the following manner: Firstly, the tensor mapped to the new
set of coordinates T} (T) can be obtained via Equation(20),

ot o ov?
0x° T (@) - Oxv

T2(0) = (77 75 T2(e) = T o) + 6 1)) +06E). )

Secondly, the original tensor in transformed coordinates T (Z) can be evaluated at g, by a Taylor expansion:

o OTY
ox°

TH(Z) = THE") = TF (27 + 66 0v7) = T (z) + 8¢ v + 0(56%) . (29)

Substituting Equations (28) (29) into the Lie-derivative definition of Equation (27), and §§ — 0 one finds the
following final expression:

SOTH  Ov* o’ .,
L= ST (o) + o T (@) 30)
N— N——

pullback pushforward

LT =v

The pushforward and pullback operations drag the transformed tensor field onto the original point, where
differences can be computed.

Thus, tensors are being compared in the same tangent/cotangent space. Mathematically, for smooth maps*
(diffeomorphisms) ® : M — N the pushforward ®. : T, M — T () pushes vector fields forward from one
tangent space of a domain T3, M to the tangent space of another tangent space T (). The pullback, a dual linear
map to pushforward, drags covectors (one-forms) living in cotangent spaces (®.)* = @™ : Tq’;(m/\/' - T, M
in the reverse direction to the domain. Hence, the contributions from the pushforward on the vector field
components and pullback on the covector field components jointly determine the structure of the Lie derivative of
a mixed tensor field, as expressed in Equation (30). These operations offer a coherent mathematical framework
for transitioning between tangent and cotangent bundles mapped onto other tangent and cotangent bundles via
smooth maps, acting appropriately on vector fields and one-forms, respectively.

For any arbitrary rank (r, s) tensor, Equation (30) can be generalized to:

0 - vt >
1.t _ 1y z : J75 - 7} z : SR
(EUT) ul_TjuS =v 8.’KUT 1/1“71/3 - T Vi...Vg " 8&:" + T 1/1._7‘0.“

i=1 j=1

(€29}

Lie-derivatives do not require the notion of a connection. Connections will be introduced in detail in Section B.3.3
and intuitively stating, connects two distinct Tangent spaces at different points, which is not to be confused
with a pullback operation. Here, is an instructive comparison table for that compares different differentiation
schemes:

Feature Dire-ctio-nal Co‘tarie-lnt !Jie -
derivative derivative derivative

Input function Scalar fields Tensor fields Tensor fields

Connection dependence X v (Explicit) X

Captures curvature X v X

Measures Scalar changes | Intrinsic curvature | Diffeomorphisms (flows)

Table 4: Comparison between actions of directional, covariant, and Lie derivatives.

B.3 Riemannian and Lorentzian Geometry

B.3.1 Four dimensional spacetime as a continuous differentiable manifold

The fabric of spacetime according to general relativity is a combination of three-dimensional space and a strictly
positively progressing time direction into a single four-dimensional continuum. Thus, space and time mix
between each other through special orthogonal transformations SO(1, 3) called the Lorentz transformations. In
order to rigorously define the four-dimensional spacetime, it is necessary to define the following:

“for e.g., dragging of coordinates as in Equation (25) due to flows induced by vector fields.
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Definition 4 (Manifold): A n-dimensional manifold M is a space, that, locally resembles the n-dimensional
Euclidean space R"™. However, combining these local patches together, globally, the space deviates from R".

Definition 5 (Hausdorff space): Let K be a topological space. Then K is said to be a Hausdorff space if: For
every pair of distinct points x,y € K with x # vy, there exist open sets U,V C K such that:

zeU, wyeV, and UNV =0. (32)
Definition 6 (Differentiable manifold): An n-dimensional differentiable manifold is a Hausdorff topological
space K such that:

i) Locally K is homeomorphic to R™. Thus, ¥ p € K there is an open set U such that p € U and a homeomor-
phism ¢ : U — Z with Z an open subset of R".

ii) For two subsets Un and U with U (\Us # 0, the homeomorphisms (topologically isomorphic) ¢o : Ua —
Z, and ¢ : Ug — Zg are compatible, i.e., the map dg 0 ¢5" : Pa (U NUB) — ¢ (U NUs) is smooth
(infinitely differentiable C*°), and so is its inverse map.

The ¢, are often called charts and a collection (union) of them |J,, ¢« is called an atlas. These charts provides
a coordinate system, labeling U/, C K. The coordinate associated to p € U, is:

¢a(p) = (z'(p),2°(p), ..., 2" (p))

Mathematically, the spacetime continuum denoted as M, is a differentiable manifold with the structure of an
Hausdorff topological space.

To summarize, a differentiable manifold is a space that may be curved or complicated globally, but looks like
Euclidean space up close, and allows for smooth calculus to be done on it. The Hausdorff space ensures than one
can separate points nicely with open sets. This avoids weird pathological cases and makes limits and continuity
well-behaved. Locally Euclidean means that one can do calculus as if we were on flat space — even if the whole
space is curved. And finally, the compatibility between overlapping charts ensures that one can do calculus
consistently across different charts.

B.3.2 Metric tensor

Definition 7 (Metric): A metric g is a rank (0, 2) tensor field that is defined as a symmetric bilinear map that
assigns to each p € M a positive-definite inner product g : Ty M x T, M — R such that

) g0y, wlp) = 90, ) = 9(w,v) Yo, w € Ty M (symmetric)
ii) For any p € M, g(v,w) = 0 Yw|, € T, M implying v|, = 0 (non-degenerate).

Represented in the basis set of the tangent space, the metric components at each point p is given by

0 0
v = Qop i= — == 33
Iu Gvp gp(am“ o Ozv p> (33)
and the metric can be expanded as,
g = gu(z) dz" ® dx”. 34)

Geometrically, the metric defined in Equation (34) generalizes the notion of distances and induces a norm
[I|lp : TpM — R for generic coordinates such as curvilinear and/or manifolds possessing geometries that are
intrinsically non-Euclidean in nature, for e.g., spaces of constant positive sectional curvature X = 1 (e.g., a
2-sphere S* embedded in R?), spaces of constant sectional curvature ' = —1 such as hyperbolic geometry
(Bolyai-Lobachevsky spaces H?).

The distance between two points in such cases is called the line element, which is defined as,
ds® = g (x)dz"dz” . (35)

For an n-dimensional manifold M, the metric tensor g, is a n X n symmetric matrix, g(¢., ¢v) := {du, du),
with w independent components (not necessarily expanded in the coordinate basis):

(¢0, o) (b0, 1) -+ {bo, Pn-1)

<¢1a¢0> <¢1a¢1> <¢17¢n71>
. . . . (36)

Guv =

<¢n7.17¢0> <¢n7.1,¢1> <¢n71;¢n71>
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Definition 8 (Metric bundle): Let M be a smooth manifold and (xo, - - - , xn) be local coordinates ontd C M.
The bundle of symmetric (0, 2)-tensors on M is the subbundle Sym®(T* M) C T**M = T*M x T* M.

In fact, sections of Sym? (T M) contains all the symmetric bilinear forms, i.,e. symmetric (0, 2)-tensor fields,
and includes the pseudo-Riemannian metrics on M.

Riemannian manifolds. A metric g where all diagonal entries of the metric are positive, i.e., g, > 0, u =
0,...,dim(M) — 1 is called a Riemannian metric. Thus, a manifold M endowed with a Riemannian metric g
is known as a Riemannian manifold denoted as a tuple (M, g) [19].

For the the Euclidean space R™ with Cartesian coordinates representation

g=dr' @dz' + ... + dz" @ dz" (37)

the metric tensor amounts to g;; = J;;. and boils down to Pythagoras’ theorem. A general Riemannian metric

prescribes a method to measure the norm of a vector v as /g(v,v) = ||v|| and also allows for measuring angles
g(v,w)

V9(v,v)g(w,w)

the metric tensor transform under a coordinate change according to Equation (20):
_ _ _ T 1\
Gas(®) = (DAL g (@) (T 75 - (38)

Definition 9 (Arc length): Let v : [0,1] — M be a piecewise smooth curve on a differentiable manifold M,
with v(0) = p and (1) = q. The velocity vector along the curve is denoted by +(t), which lives in the tangent
space T, ;) M. If the curve is expressed in local coordinates x" (t), then the components of the tangent vector

%. The arc length L(v) (distance) of the curve is then defined by

e = [ 10l = [ foutae) o0 O g (9)

This arc length’ is reparameterization invariant, i.e., it does not depend on the choice of parameterization of the
curve (t). It is a very important result that every smooth manifold admits a Riemannian metric.

between any two vectors v, w at each point cost = . Like any other tensor, the components of

4(t) are given by

Lorentzian manifolds. Unlike Riemannian manifolds, spacetime is actually a pseudo-Riemannian mani-
fold®, that is, the metric is not positive definite. Thus, the underlying metric carries a signature (—, +, +, +),
meaning, g¢+ < 0. Consequently, spacetime is a Lorentzian manifold .#, and, forms the basis for electromag-
netism and special relativity. The simplest example of a Lorentzian manifold of arbitrary dimension is the
Minkowksi metric, which is flat (meaning no curvature):

n=—-d2’®ds® +dz' @dz' + ...+ dz" ' @dz""", (40)
where, the components of the Minkowksi metric are 7, = diag(—1, +1,...,+1). It is possible to find an
orthonormal basis {e,, } of T, M around a small neighborhood of point p of a Lorentzian manifold such that,
“locally”, the metric resembles the Minkowski metric

guﬂ|p = Npv - 1)

In the case of Lorentzian manifolds .#, the arc length £(~y) in Eq.(39) is modified due to non positive-definiteness
v dzr(a’) dzv(a')

= —Guv () ————~ ———=do’, 42

)= [ ) T ) “2)

and is sometimes T is referred to as proper-time. The minus sign under the square root ensures the integrand is

positive for timelike paths, since for timelike intervals, the inner product of the velocity vector with itself (under
the Lorentzian metric) is negative, i.e.,

ds® = g,dztdz”. (43)

Natural isomorphism between vector spaces and dual spaces. The metric provides a natural
isomorphism between vector spaces and dual spaces and allows the switch between contravariant and covariant
components’. This is done via the following mapping g : T, M — T, M, where at each point p, a one-form
(covectors) is obtained via contraction operation of a vector field v|, with the metric g.

31t is also called an action in physics.
%In general, a pseudo-Riemannian manifold has a signature (=5 ey =y ey +).
——— ——

m n
"In the context of numerical relativity the switch between contravariant and covariant components is called
“raising and lowering indices”.
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a

M
For a vector v, = v* 57

and the covector v*|, = v, dz", the components are related by

_ v
Uy = Guv .

Since g is non-degenerate, it is invertible. We denote the inverse metric as g"”, such that g*° g»,, = %. This

. A~ o o . . . . .
lsua ranl; 11(2’ 0) tensor of the form § = g"” 557 ® 5. Through the inverse metric indices can be raised, e.g.
zt = g'z,.

Such index contraction rules with the metric apply to tensors of rank (r, s) or even quantities that are not tensors:
S T
B1....Bs _ Bivi 51000
Sl o, = (Hg ”)(Hgai&)SI e - (44)
i=1 i=1

B.3.3 Connections & covariant derivative

Transporting vector and tensor fields systematically on manifolds requires mapping vector spaces at one point to
vector spaces at another. While this can be done trivially in the Euclidean setting, for Riemannian and Lorentzian
manifolds this is a non-trivial since these vector fields and tensor fields live in different vector spaces. This
necessitates a geometric object that behaves as a “connector” between vector spaces. This is achieved via a
geometric entity called the affine-connection, which is a vector-valued one-form.

Definition 10 (Affine connection): Let M be a smooth manifold and T'(T' M) be the space of vector fields on
M, that is the space of smooth sections of the tangent bundle (i.e., the collection of all tangent spaces). An
affine connection is a bilinear map

V:I'(TM) xT(TM) —T(TM)
(v,w) = Vyw.
The differential operator V,, is the covariant derivative satisfying the following for tangent vectors v, w (short
Jor v|p, w|p):
i) Vo(w+2) = Vyw+ Vyz
ii) Viow = fVow Vf € C°(M,R)
iii) Vo (fw) = (Do flw + fVow Vf € C°(M,R), D,f = v(f) is the directional derivative.

The affine connection is completely independent of the metric. However, if a manifold is endowed with a metric,
this enables expressing the connection in terms of the metric. In GR, one looks at a special subclass of affine
connections called Levi-Civita connection, due to the symmetry property of the metric tensor.

Definition 11 (Levi-Civita connection): An affine connection is an Levi-Civita connection for tangent vectors
v, w (short for vy, wlp) if:

Vg =0 Yv € D(TM) (metricity condition) (45a)

Vow — Vv = [v,w] Yu,w € T'(TM) (torsion-free condition), (45b)

where, [v,w] = (vV*Ouw” — w"duv") 0, is the Lie-bracket of vector fields [38].

Intuition behind the torsion-free condition. Imagine you are moving on a smooth surface (like walking
on a hill), and you have two “directions” v|, and w|, at a point p. Now: First move along v a tiny bit, then
subsequently along w. Alternatively, move along w first, then along v, akin to constructing a parallelogram. In
flat, Euclidean space, doing these two moves would land you at the same final point, because partial derivatives
commute. On a curved surface (a manifold M), they don’t generally commute — you end up slightly shifted.
The Lie bracket [v, w] measures how far off (deficit) you are after moving in v and then w, compared to w and
then v. It captures the “non-commutativity” of the vector transport along the two distinct directions, which
leads to a non-closure of the parallelogram. Thus, the Lie bracket is intrinsic to the manifold, and shows how
the transport of v and w interact. In torsion-free connections, the “commutation failure” is purely due to the
manifold’s structure — not any extra “twisting” introduced by the connection itself.

Definition 12 (Parallel transport): Let ~y : [0,1] — M be a smooth curve on the manifold, and let T be a
smooth (r, s)-rank tensor field defined along the curve ~y. The parallel transport of T along the curve v(7) is
defined by the condition that its directional covariant derivative along the curve’s tangent vector vanishes:
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In local coordinates {x* (7)}, the parallel transport condition for the components of the tensor field T):%: ;" (7)
along the curve ~(¢) is:

d TS - i 0] A e . A TS
S TEN () + Y TRl (T (r) = D T0, @ ()T, (1) = 0. 47
i=1 j=1

These equations are a set of coupled ODEs, and can be solved uniquely for an initial condition to find a unique
vector at each point along the curve (7). This ensures that as the tensor is transported along the curve, its
components change in such a way that their covariant rate of change along the curve vanishes.

B.3.4 Christoffel symbols

The Levi-Civita covariant derivative contains, apart from the partial derivative term, a correction field that
calibrates the deficit between vector (tensor) fields transported along a path on the manifold. For a basis {e,, }
that is transported the covariant derivative is given by,

Ve eu(x) =T, (x)es () . (48)

The covariant derivative, denoted by V., = V, = 9, + T'y, defines a “modified” differentiation operator
that preserves tensorial character under general coordinate transformations. The quantities I'},,,, known as the
Christoffel symbols, represent the components of the Levi-Civita connection, which is uniquely determined by
the requirement that the connection is torsion-free and compatible with the metric. Notably, these symbols are
symmetric in their lower two indices, i.e., I';,, = I'7,,. The action of the covariant derivative on a general tensor
field of type (7, s) ensures that derivatives of tensors transform covariantly, thereby extending the notion of
differentiation from vector calculus to curved manifolds.

QY ...0p 0 Qp...Op . oy QY ...O...Qp
v.T lﬁl...ﬁs(x) = @T 1514.‘55 (z) "‘ZF fio ()T B1...Bs (z) (49)
i=1

- Z FGHBJ' (w)TOCl“BA?.T‘.a.‘ﬂS (CIZ’) .
j=1

The action of the covariant derivative on a scalar field, simply reduces to a partial derivative

9¢(x)
Vu = .
n9() Ok
Christoffel symbols can be solely expressed in terms of the metric and its partial derivatives:
1 oo
i (@) = 56" (0uow () + 0ugou(®) = Os g (x)) = Thu(@) - (50)

A crucial feature of any connection is that it is not a tensorial quantity. Connections don’t obey the transformation
law in Equation (20) under coordinate changes. This can be easily seen through the components of the Christoffel
symbols in the coordinate basis:

=P (e B 2, .0 =p
o (7) = 0z 0z~ 0x” _, () + 0z’ 0% 1)
a oz oz 9zv~ °F ozrozY Ox°
tensorial contribution non-tensorial contribution

Christoffel symbols play a significant role in defining most stationary trajectories (shortest or longest) in the
non-Euclidean setting.

Lie derivatives revisited: Levi-Civita connection included. In case of a nonzero Levi-civita connec-
tion, the partial derivatives of an ordinary Lie derivative in Equation(31) is replaced by the covariant derivatives:

(LT, = 0 VT, = TRl Vaokt 43 T, Ve” . (52)

The first term advects (drags) the tensor along the flow of v, i.e., this is the “naive” directional derivative part.
The second and third terms account for how the basis vectors themselves are changing, due to curvature and due
to the vector field v, respectively. It is easy to show that the three terms lead to pair-wise cancellations between
the Christoffel symbols present in the three different covariant derivative terms of Equation(52). Due to this, the
whole expression boils down to Equation(31), thus corroborating the connection independence of this derivative
operator. Differently put, in the covariant derivatives, the Christoffel symbols introduce extra terms. However,
the extra Christoffel terms cancel out between the different contributions (first, second, and third terms). One
ends up getting exactly the same final expression for the Lie derivative as if only partial derivatives had been
used — this is what is meant by “connection independence”.
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B.3.5 Geodesic equation

Geodesics are paths that correspond to the most stationary trajectories (shortest or longest distance) that connect
two points p and ¢ on a manifold. Often, we only consider locally distance minimizing curves, and refer to them
as geodesics. Geodesics are obtained by solving a calculus of variations problem on the distance metric £(7) in
Equation (39), i.e.,

0L(y) =0, (53)

(or alternatively on 7(o) in the Lorentzian setting of Equation (42)). Solving the calculus of variations problem
boils down to solving the Euler-Lagrange equations, which mathematically is equivalent to the condition

Vi ¥(t) =0, (54

where (t) is the curve (path) on the manifold, +(¢) the tangent vector (velocity vector), and V the covariant
derivative. Equation (54) intuitively says that the tangent vector is parallel transported along itself — meaning,
one is moving without “acceleration” relative to the curved space. Thus, parallel transporting the tangent vector
along the curve preserves the tangent vector. In numerical relativity, these corresponds to the equations of
a2zt
dr?

motion, i.e. a generalization of the Newton’s acceleration equation = F*/m. For full derivations, we

direct the readers to refer to [41, 17, 18].

We shall present the final form of a very central second-order ODE describing motion (acceleration) of objects
executing geodesic paths around heavy gravitating bodies, namely, the geodesic equation
2 o
D) 2
dr? dr dr
where, 7 is some affine paramter (typically, chosen to be the proper-time in Equation (42)), d®z* /dr? is the
four-acceleration vector, dx” /dr is the four-velocity and I';, is the Christoffel symbols as seen in Equation (50)).

(55)

Importantly, Equation (54) is the geometric statement of the geodesic equation. It’s coordinate-free, i.e., it’s
expressed entirely in terms of geometric objects. Equation (55) is the coordinate version of the same idea. Here,
one chooses a coordinate system x* on the manifold, and the covariant derivative V acting on a vector becomes
the partial derivative plus correction terms involving the Christoffel symbols®.

B.3.6 Curvature tensors and scalars

Curvature tensors arise naturally in differential geometry as tensorial objects that capture the intrinsic and,
where appropriate, extrinsic geometric properties of a manifold. They provide a coordinate-independent way
to quantify the curvature of space or spacetime by encoding how the geometry deviates from flatness through
the second derivatives, constructed out of Hessians of the metric tensor. Unlike artifacts that may arise from
curvilinear coordinate choices on flat manifolds, curvature tensors reflect the true geometric content of a space.
These generalize classical notions such as Gaussian curvature to higher dimensions and arbitrary signature.
Being multilinear objects containing several tensor components, curvature tensors systematically characterize
the variation of the metric across different directions. We shall introduce the key curvature related quantities,
which include the Riemann relevant ones used in our paper in the following section.

Riemann curvature tensor The Riemann curvature tensor Rf  (x) e, ® 97 @ 9% ® ¥” is arank (1, 3) tensor,
which quantifies the measure to which a vector that is transported along a small loop (also called holonomy)
fails to return to its original orientation — due to the effect of the intrinsic curvature that the vector field picks
up during the transport. The Riemann curvature tensor is defined via the commutators of covariant derivatives
acting on components of a vector field v:
s s 5

(Ve Velo' (2) = (Va Vs — VsVa)v' () = Rig, ()0 (x) (56)

The components of the Riemann curvature tensor are expressed in terms of the Christoffel symbols

ard (z)  ary,(z)
S _ ay _ By
R (@) = 9z Oz

The Riemann tensor Rapys = gao R Obeys the following identities:

+ T4 (2)0 3, (x) — T8, (@)1 0 () . (57)

Ragys = —Ragsy
Ragys = —Rgays
Raﬁ’yé - _R'yéaﬁ .

81deally, concepts such as connections, parallel transport and covariant derivatives are metric-independent
formulation

24



The Riemann tensor in a n-dimensional manifold has n*(n? — 1)/12 independent components. Importantly, it
satisfies two additional identities, called the Bianchi identities

Rap~s + Ravysg + Rassy = 0 (Bianchi Identity I) , (58a)
VaRgyso + VaRyaso + VyRapse = 0 (Bianchi Identity IT) . (58b)

Unlike the Christoffel symbols, which may be non-zero purely due to the choice of coordinates — e.g., when
imposing curvilinear coordinates such as polar coordinates (r,) on the flat Cartesian plane — the Riemann
curvature tensor encapsulates the true geometric curvature of a manifold. Since Christoffel symbols represent
connection coefficients rather than tensorial objects, their non-vanishing components can give the false impression
of intrinsic curvature, even on a flat manifold. In contrast, the Riemann tensor is a bona fide tensor and its
vanishing is a coordinate-invariant statement: if the Riemann tensor vanishes in one coordinate system, it
vanishes in all coordinate systems. Thus, it provides a definitive criterion for distinguishing truly curved spaces
from flat ones, independent of coordinate artifacts.

Geodesic deviation. An important consequence of the existence of a non-zero Riemann tensor is that it
encapsulates directional information about how geodesics path converge or diverge. Intuitively, it implies that
in Euclidean space R?, parallel lines always remain parallel, but in the case of spherical geometry, say S?~*
(constant positive curvature) the parallel lines converge at a point, while for hyperbolic spaces H? , the parallel
lines continue diverging. This is captured by the geodesic deviation equation (sometimes referred to as Jacobi
equation) [39, 19, 18], which shows how an infinitesimal neighborhood of a given geodesics diverge or converge.
Here, we shall give the equation with a brief sketch.

Theorem 2 (Jacobi equation): Let vs(7) be a family of closely spaced geodesics indexed by a smooth one-
paramter family s and T € R the affine parameter. Let x* (s, T) be the coordinates of the geodesics vs(7), then

. . . . . . . ® &
the tangent vector field is a directional derivative expressed in these coordinates as X" = w. Let the

set of deviation vector fields S* = L(ST’S) |-
equation are called (Jacobi fields) and read

. Then, the deviation vector fields that satisfy the acceleration

D2s*

_ pH a8 gy
D2 = RanX XPsT (59
where, % = X%V, is the directional covariant derivative, i.e., the derivative of a vector field along a given

direction on a manifold, while accounting for the manifold’s curvature.

Contracted curvature tensors, scalars and invariants

Ricci tensor. From the rank (1,3) Riemann tensor, one can construct a traced (contracted) symmetric
curvature tensor of rank (0, 2), called the Ricci tensor Rag 9% ® 9°,

RZ%B = Trg(Rl(w) = Rag . (60)
Mathematically, the Ricci tensor aggregates directional curvature along orthogonal planes. Thus, it can be

considered as a curvature average of the Riemann tensor. It is closely related to the concept of sectional curvature
and reflects how volume deformations occurs as one evolve under geodesic flow.

Ricci scalar. The traced (contracted) Ricci tensor yields a scalar field called the scalar curvature, also called
the Ricci scalar. It is defined as

R® = Try(Rug) == R . ©1)
Mathematically, the scalar curvature corresponds to the sum/average over all sectional curvatures, i.e., R(p) =
> 48 Sec(ea, es)|p Vp € M. For a point p, in an n-dimensional Riemannian manifold (M, g), it characterizes
the volume of an e-radius ball in the manifold to the corresponding ball in Euclidean space, given by,

n R 2 3
Vol (B. = Vol(B:(0) CR 11— —— @) .
ol(Be(p)) C M) ol(B.(0) C )( 6(n+2)6+ (e))

Weyl tensor. Another important tensor field of rank(0,4) is the Weyl tensor, which is obtained as the
“trace-free” part of the Riemann tensor. Physically, the Weyl tensor describes the tidal force experienced by a
body when moving along geodesics, and quantifies the shape distortion a body experiences due to tidal forces
(e.g., water tides caused by the gravitational pull of the moon). In an n-dimensional manifold it is defined as:

1
Capys = Rapys — m-2 (Raég,@'y — Ravgps + Rgygas — Rﬂégaw) (62)

1

* mR(gawgﬁé — Gas98y) -
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Mathematically, the Weyl tensor corresponds to the only non-zero components of the Riemann tensor when
looking at Ricci-flat manifolds, i.e. R,s = 0. This become relevant for e.g., vaccum solutions, a class of exact
solutions where R,3 = 0 of the Einstein equations in the absence of matter distribution.

Curvature invariants. Curvature invariants play a central role in the analysis of spacetime geometries
in general relativity. These scalar quantities are constructed from contractions of curvature tensors and are
manifestly invariant under general coordinate transformations. As such, they serve as powerful diagnostic tools
for characterizing the local and global geometric and physical properties of spacetime, which includes the
identification of “true” (genuine spacetime singularities) and “false” singularities (artifact of choice of coordinate
charts).

Among the most prominent quadratic curvature invariants that is relevant to our simulations and features in our
paper is the Kretschmann scalar, defined as the full contraction of the Riemann curvature tensor with itself:

H (x) = Raﬁw(fb)Raﬁw(m) = gap(x)gﬁa(x)g’yc(“’)gé"(w)RPGCW(x)RaB%(x) . (63)

The Kretschmann scalar provides a coordinate-independent measure of the magnitude of the curvature of
spacetime and the singularity becomes blows-up, due to infinite curvature. Examples are Kretschmann scalars
& for blackholes, and Weyl scalars W4 for gravitational wave astrophysics. They capture the presence of
intrinsic curvatures even when the Ricci tensor itself vanishes. Thus, the Kretschmann scalar encodes geometric
information in a frame-independent manner.

B.3.7 Stress-energy-momentum tensor

The stress-energy-momentum tensor (or simply called the energy-momentum tensor) is a symmetric rank (2, 0)
tensor

T =Te, @ ep . (64)

Physically, T is a generalization of the stress tensor in continuum and fluid mechanics. It stores the information
of distribution of matter fields, i.e., sources or sinks as a 4 X 4 tensor, such as energy-density, energy-flux,
momentum density, and momentum flux.

These matter fields satisfy the conservation laws, i.e., conservation of mass and energy via the four-dimensional
continuity equation and corresponds to the divergence-free condition of the energy-momentum tensor

VaT*?(z) =0. (65)

The stress-energy-momentum tensor features on the right hand side of the Einstein field equations, and influences
spacetime geometry by causing distortions on it.

B.4 Einstein field equations

The Einstein field equations (EFEs) are a set of second-order non-linear PDEs containing geometry on the left
hand side and the source on the right hand side. EFEs are obtained by combining all the differential geometric
quantities from Equations ((36), (60), (61), (64)), together with the conservation laws for matter distribution of
Equation (65), resulting in

Gop = 817G Tap . (66)

Here, Gog = Rap — % gasR + Agap is called the Einstein tensor and also satisfies the divergence-free
condition Vo G*? = 0, which, is a consequence of the IInd Bianchi identity of Equation (58b).

B.4.1 Coordinate-independence of GR

Fundamentally, GR posits a deeper symmetry class: diffeomorphism covariance [17]. It asserts that the laws of
physics are independent of any particular choice of coordinates or parametrization of the underlying smooth
manifold. For example, the metric around the star, say sun, can be expressed in terms of the Schwarzschild
metric (introduced in Section C.1). Here, the diffeomorphism acts as a gauge transformation [45] between two
sets of metrics defined on the Lorentzian manifold ./, in this case an equivalence class of Lorentzian metrics
Riem(.#') describing the same spacetime geometry. This makes sure equations of motion, conservation laws,
physical fields, etc. remain intact, hence, the term “covariance”. In mathematical terms, Let, ® € Diff(.#) be

a smooth, invertible map between .# with a smooth inverse, ® : .Z =,  such that:
(279) (v, w) := g(Ps(v), Ps(w)) - (67)
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Here, @, : T.# — T.#, is the pushforward map defined on the tangent bundles. This means under diffeomor-
phisms the metric transforms via a pullback operation ®*g = ¢'. Le., gag(Z) = g% g%; guv () are gauge
equivalent. Additionally, GR also admits changes of local frames or bases (external symmetries) via the general
linear group GL(4,R), i.e., invertible linear transformations at each point p € .#. Thus, GR enjoys coordinate
independence from two symmetry transformations, i.e., (i) between any particular choice of coordinates or
parameterization of the underlying smooth manifold .#, and (ii) general linear group transformations that locally
change frames of reference.

C Exact Solutions of the Einstein Field Equations

This Appendix contains a detailed description of the exact solutions of EFEs corresponding to a class of metrics
guv that are solutions of Equation (66). While there exist several geometries that satisfy the EFEs, we shall
consider three prominent geometries: the Schwarzschild metric, the Kerr metric, and gravitational waves. These
solutions not only have a high theoretical and historical relevance, but are also of great interest in computational
black hole astrophysics and gravitational wave and multi-messenger astronomy. From here on, we work in
naturalized units by setting ¢ = G = 1.

Our work predominantly uses the exact solutions for generating synthetic training data, which are analytic
expressions for (i) Schwarzschild, (ii) Kerr, and (iii) linearized gravity metrics, on which we fit the NeFs.

C.1 Schwarzschild metric

The Schwarzschild metric is the simplest non-trivial solution to the EFEs. It describes the geometry around a
non-rotating spherical body, such as a star or a black hole, constituting spherically symmetric vacuum solutions,
i.e., T}, = 0. A famous result of GR called the Birkhoff’s theorem [46] proves that any spherically symmetric
vacuum solution corresponds to a static (non-rotating), time-independent (stationary), and asymptotically flat
metric (i.e., for r — oo the metric converges to the flat Minkowski spacetime), and must essentially be equivalent
to the Schwarzschild solution.

C.1.1 Coordinate systems for Schwarzschild metrics

Spherical polar coordinates. Schwarzschild solution is typically written in the convential spherical polar
coordinates (¢,7,6,¢) where t € R, 7 € R", 8 € (0,7), and ¢ € [0,27). The metric can be written either
using the quadratic line element

2M 2M\ !
ds? = — <1 - T)dt2 + (1 - T) dr? +1r*(d6” + sin®0d¢”) . (68)
or in the equivalent matrix notation
- (1 - Lj”) 0 0 0
-1
g = 0 (1 - 2—1”) o o |- (69)
0 0 r? 0
0 0 0 r%sin%f

The true singularity of the Schwarzschild metric is at the origin and can be identified from the divergent
Kretschmann scalar (Eq. (63)):

48M? 0
= — 0
7.6

(1) (70)
Although a (fake) coordinate singularity exists at » = rs = 2M, where the Kretschmann scalar is well defined.
This special radius 7, is called the Schwarzschild radius. It demarcates the location of the event horizon of a
non-rotating black hole and delineates a region from which no causal signal can escape to asymptotic infinity,
meaning, it is a point of no return for any body (including light) once it crosses this critical radius.

Cartesian Kerr-Schild coordinates. The Kerr-Schild (KS) form is a beneficial representation for finding
exact solutions to the EFEs. These are perturbative corrections to a spacetime metric only upto the linear
order [47]. The KS form enables the following simplifications to the nonlinear field equations : (i) It expresses
the resultant metric as a linearized perturbation to the background metric, and (ii) gets rid of the coordinate
singularities, which are mere artifacts of an unsuitable choice of coordinate systems. The corresponding line
element expressed in the KS form reads

ds® = (Gap + V(x)lals)dzdz" (71)
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where gop is some background metric, [, are the components of a null vector £ with respect to the background
metric and V() is a scalar.

For a spherically symmetric non-rotating blackhole such as Schwarzschild, the Cartesian Kerr-Schild line

element is obtained by setting o = Nag, £ = (1 z Y %) and V = %:

Y

2

s> = —di® +do® + dy? + d + 21 {dt +Yar+ Yay + 2az| . 72)
r r r r

Unlike the spherical coordinate form in Equation (68), » = 2M is not singular, hence removing the coordinate

singularities. The metric tensor components read:

2Mz 2My 2M =z
—14+2M/r e 2 2
2Mzx 2M 2> 2Mzy 2Mxz
2 I+ —3 3 3
XS r T r r
g = , : (73)
2My 2Mxy 14 2My 2Myz
r2 3 r3 r3
2Mz 2Mxz 2Myz 2M 2>
2 3 3 I+ —3
r T r r

74

Ingoing (advanced) Eddington-Finkelstein coordinates The ingoing version of the Eddington-
Finkelstein (EF) coordinates is obtained by replacing time ¢ with an advanced time coordinate v = ¢ + 7. (r),
where r, =r+ M 10g’ r—2M } Thus, dt in these transformed coordinates amounts to:

oM
~1
dt = dv —dr. =dv — (1—%) dr

The ingoing EF version of the Schwarzschild metric reads:
2 2M 2 27 192 .2 2
ds” = — 1—7 dv® 4+ 2dvdr+r (dG +sm9d¢>), (75)

With the metric tensor being:

|
/N
—
|
[\
S
—
—
[en)
o

1 0 0 0

g = . (76)
0 0 r? 0
0 0 0 7r%sin?®

This metric is smooth (and non-degenerate), devoid of coordinate singularities at the event horizonr = r, = 2M,
and can be continued down to the curvature singularity at » = 0 [41, 48, 49].

C.2 Kerr metric

The Kerr solution describes a massive gravitating body rotating with an angular momentum J. From the physics
perspective, it is not symmetric under time-reversal symmetry, i.e., ¢ — —t, hence corresponds to a stationary but
a non-static solution [50]. Due to a finite angular momentum J, or equivalently, rotation parameter a = A—J{ >0,

the Kerr metric introduces an asymmetry, and is oblate. Thus, the Kerr metric corresponds to an oblate spheroid
geometry.

C.2.1 Coordinate systems for Kerr metric

Boyer-Lindquist coordinates. The Boyer-Lindquist (BL) coordinates are a special and convenient rep-
resentation for the Kerr metric [51, 52, 50]. The BL form (¢, 7,9, ¢) is described by oblate spheroidal coordi-

nates [53]:
T = \/1r2 + a? sind cos¢ (77a)
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y = V12 + a? sind sing (77b)

z =1 cosV . (77¢)

Notice that the zenith angle ¥ # 0 differs from the Schwarzschild case, while the azimuthal angle ¢ is the same
in both. As a — 0, the Kerr metric boils down to the non-rotating spherical case of the Schwarzschild metric.

2M 4Marsin® ) 2Mra’sin®
ds? = —(1— T)dtQ— arsinY gt Zdr® 4 5d0? + (12 +a? + 2SN (29402  (78)
b)) b)) A by
where the length scales are a = % (angular momentum per unit mass), ¥ = 72 4+ a®cos®9, and A =

™

r2 — 2M7r + a®. The Kerr curvature singularity occurs at 3 := 72 4+ acos?9 = 0, implying r = 0 and ¥ = 5
The metric tensor of Equation (78) is:

2Mr 2Mar sin? ¥

_(1- 0 0 -

(-5) :
0 % 0 B

g = )

0 0 X 0
) 2r sin?

M (g 2D ey

In the Boyer-Lindquist form of the metric, there also exist coordinate singularities at A = r* — 2Mr + a® = 0.
Thus, the roots of A = 0 are r— = M =+ +/M?2 — a2, which demarcate the outer and inner horizons.

It is easy to see the existence of a curvature singularity at » = 0 on the equatorial plane corresponding to the
zenith angle ¥ = 7. Thus, unlike Schwarzschild, the singularity in Kerr geometry takes the form of a ring, also
known as a ring singularity.

Cartesian Kerr-Schild coordinates. The Cartesian KS form of the Kerr metric is obtained by setting
in Equation (71) £ = (1, Z&tay ry—az 3) and V = > in Equation (71). The Kerr metric in Kerr

mr3
' 24020 r244a20 ¢ rdta2z
coordinates are often used to write initial data for hydro simulations. The line-element in the Cartesian Kerr-
Schild form reads [50]:

2

+2dz| . (80)
™

ds® = —dt® + da® + dy® + d2° +

2ma3 r(zdx + ydy)  al(ydzr — xdy)
™t 222 a2 + 12 a? + 12

. . L . . . 24,2 2
Here, r = r(z, y, z) is not a coordinate, and is given implicitly by solving the quadratic equation fziig +5 =
1: The solution for the implicit function r is given by the discriminant [52]:

T2(m7yvz) = I2 +y2—2’_Z2 _a2 + \/(I2 +y2+Z2Za’2)2 +4a222 .

The corresponding Cartesian coordinates are expressed as:

x = (r cosp — a sing)sing = /72 + a? sind cos(p + tan"~ (a/r)) ,

y = (r sing + a cosp)sind = v/r? + a2 sind sin(y + tan"~ (a/r)) ,
z =1 cosv .

™

In the BL coordinates the ring singularity for Kerr exists at 7 = 0 & ¥ = 7, translating to z =

0 (equatorial-plane), and the ring occurring at > 4 y* = a®. In contrast, the KS representation is devoid of
coordinate singularities, making it suitable to work in numerics, especially around the event-horizons.

Ingoing Eddington-Finkelstein coordinates. In the original formulation, the Kerr metric is written in
the advanced time coordinates/ingoing EF coordinates v. The line element in this representation reads [50]:

r2 4+ a2cos?0
+ 2(dv 4 a sin®0d¢) (dr + a sin*0dg)
+ (r* + a*cos?6) (d6” + sin®0de?)

ds? = — (1 - Wi’") (dv + a sin’@ do)? (81)
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where the ingoing EF coordinates are related to the Boyer-Lindquist coordinates Equation (77) by the following

transformation:
2 2
r“+a
v=t + / %d'f 5
~ dr
b=o+a [T
where, A = 12 — 2Mr + a?. and the metric tensor components corresponding to the line element is given by
. 2
B 1_2Mr 1 0 2Mar sin” 0
% b
1 0 0 asin® 9
EF
F = . 82
I 0 0 X 0 (82
2Mar sin® 6

2Ma?r sin?
. a;sm 0>sin29
The coordinate (fake) singularities (Z~ < oo) of the Kerr metric is given by the zeros of A = r2—2Mr+a® = 0.

Solving for the zeros, one finds
re =ME+/M?—a?,
where, 4 is the outer event horizon, while »_ demarcates the inner event horizon.

asin?0 0 (7"2—1—112 +

Apart from that, rotating metrics also possess a highly interesting region known as the ergosphere, which
fundamentally captures the non-Euclidean and non-inertial nature of general relativistic effects induced by
rotation. This domain is situated outside the outer event horizon r, and is created owing to the frame-dragging
(Lense-Thirring) effect. Consequently, no physical observer (test body) can remain static within the ergosphere
and is compelled to co-rotate with the black hole depending on the value of a. The location of the ergosphere is
given by

r () = M £ v/ M? — a2cos?d

ergo

where, r(*° is the outer ergosphere, while r

regions of the Kerr metric are demarcated:

demarcates the inner ergosphere. In Figure (5), the following

1.0
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R
5 00
|G}
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Figure 5: Kerr metric 2D slice in the x-z plane (y = 0) for a spin parameter a = 0.99. The following
regions plotted are: i) inner ergosphere r¢°: red region, ii) inner event-horizon r_: green region, iii)

outer event-horizon r : blue region and iv) outer Ergosphere rj:goz purple region.

C.2.2 Kretschmann scalar associated with Kerr solution

The nontrivial part of the Kretschmann invariant — refer Equation (63) for the Kerr metric reads:
48M?(r® — a®cos®d) [(r® + a®cos®d)? — 16r°a*cos® V]

(r? + a%cos219)6 '
This guarantees that the curvature singularity (%~ — 00) occurs at the ring & = % + a*cos?9 = 0, with zeros
at:

Rapys R = Coprs O = (83)

g
=0,and, ¥ = — .
r ,and, 5
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C.3 Gravitational waves

Linearized gravity models the metric as tiny fluctuations or perturbations hqg of the flat background metric 73:

Gop X Nap + hap + O(hap)?

where |hag| < 1. To describe gravitational wave propagation, it is often convenient to reduce the linearized
field equations into a simplified form via two gauge fixing conditions, namely, a) harmonic gauge, and b)
transverse-traceless (TT) gauge. Thus, the Einstein field equations for gravitational waves assume a succinct
wave equation type form:

RS} = —167Tap .

Here, ha 5= = h! g 1 h(e)na 5 and O = %9, 05 is the d” Alembert operator (wave operator). It can be shown
that the PDEs in Equation (C.3) produce gravitational wave solutions.

The transverse-traceless (TT) perturbation (we drop the superscript (¢) for the sake of ease) satisfies the following
conditions:

Transverse: dgh™" «f = (), i.e., wave propagates perpendicular to perturbation direction,
Traceless: hTT* =0,
Purely spatial: hd.l = 0, i.e., no time components.

Thus, a gravitational wave propagating in the z-direction with frequency w is given in the TT gauge as:

0 0 0 0
0 hy hx O

hls = cos(w(t —2)) . (84)
0 hx hye O

0 0 0 0

h4 and hy are the amplitudes of the “+” (plus) polarization and “X” (cross) polarization.
The complete metric tensor in the linearized gravity setting is given by:
-1 0 0 0
0 1+ hycos(w(t—=z)) hx cos (w(t — 2)) 0

9ap = Nap + hajp = : (85)
0 hx cos (w(t — 2)) 14 hycos (w(t—2z)) 0

0 0 0 1

The corresponding line-element in the linearized gravity setting reads:
ds® = —dt*> + [1+ hy cos(w(t —2))] dx” + [1— hy cos(w(t —2))] dy®
+ 2hy cos(w(t — 2)) dz dy (86)

Spin-weighted spherical harmonics (SWSH) metric representation. We start from the decomposi-
tion of the complex gravitational wave strain with the spherical harmonic basis-set expansion [54]. With the
expansion in mode weights h'™ (¢, 7), one can ignore (remove) the angular dependence:

h(t,7,0,9) = h(t,r,0,8) — ihx(t,7,60,¢) = Z Z R (8) —2Yem (0, 6) , 87)

L=|s| |m|<e

where, h(t,7,0,¢) = h4(t,r,0,0) —ihx (t, 1,0, ¢) is the complex strain. Thus, for each orbital and azimuthal

indices (¢,m), one can extract the mode h*™ (t) at a fixed radius 7, one uses the orthogonality of the spin-
weighted spherical harmonics (SWSHs) elements:

—hf’“ / / (t,7,0,0) —2Yem (0, ¢) d2 (88)

where, dQ) = sin 6 df d¢ is the spherical volume element and _,Y;,, denotes the complex conjugate of the
s = 2 —n = —2 where (n = 4 for ¥,) spin-weighted spherical harmonics. One typically carries out the
integral over the 2-sphere S* numerically on a finite angular grid.
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The general formula for SWSHs is:

o ames [204 1+ mN = m) P 5 (0N e
Yem(6,9) = (1) {47r (e+s)!(e—s)!] sin <§>e (89)

L—s
l— l _ 0
Z(—I)T i e cot® o™ (7) )
= T r+s—m 2
where the parameters ¢, m are the familiar Laplace spherical harmonics (orbital-angular momentum and az-
imuthal indices), while s is the additional spin-weight introduced by some underlying gauge group such as U(1).

We especially plot for the integers s = —2,1 = m = 2, since they are relevant for GWs and are depicted in
Figure 6.
Figure 6: Spin weighted spherical harmonics for s = —2, and [ = 2 for |m| < [. The dominant

contributions for the Weyl scalar ¥, and the associated metric coefficients in the spherical harmonic
basis h>%2(t) are shown.

C.4 Minkowksi metric

C.4.1 Coordinate systems for Minkowski metric

The flat Minkowski metric, which is a spacetime that has no curvature (M — 0) can be expressed in other
coordinate systems as well.

Spherical polar coordinates. In spherical coordinates (¢, r, 1, ¢), the Minkowski metric is described by
the quadratic line element,

ds® = —2dt® + dr® + r*(d0® + sin®d¢?) (90)

here, 7 € RT, § € (0,7), and, ¢ € [0,27) are the usual spherical polar coordinates. Thus, the metric tensor
describing the Schwarzschild solution reads:

-1 0 0 0
0 1 0 0

=10 o 2 o oD
0 0 0 r2in0

Boyer-Lindquist coordinates. Setting M — 0 in the Boyer-Lindquist form of the Kerr metric (78), the
corresponding line element reduces to an unfamiliar “oblate-spheroidal” represtation:

2
ds® = —dt® + ————— dr® + (r* + a®cos®¥) d¥> + (r* + a*) sin®0 d¢” , (92)
r?+a

and the components of the

-1 0 0 0
2 2 2
BL 0 % 0 0
b= r?+a 93
(e 0 0 r? + a2cos?y 0 ©3)
0 0 0 (r? 4 a?) sin®9

The usual Cartesian coordinates can be related to the oblate spheroid ones via:

x=1+/r2+a?sin ¥ cos ¢
y = V7124 a?sin ¥ sin ¢

z=rcos¥.
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Eddington-Finkelstein coordinates. The Minkowski metric can be written in the ingoing (advanced)
Eddington-Finkelstein form in two different cases, namely for the non-rotating and the rotating case.

* i) non-rotating, a — 0 (Schwarzschild): :
ds® = —dv® + 2 dv dr + 2 (d6” + sin®9 d¢?)

and the metric tensor reads:

-1 1 0 0
1 0 O 0
Tw=10 0o 2 o0 (94)
0 0 0 r*sin®0
* ii) rotating: a > 0 (Kerr):
ds® = —(dv + a sin®0d¢)? + 2(dv + a sin®*Id¢) (dr + asin®9de)
+ (1 4 a® cos*9)(d6> + sin’dep?) , (95)
and the metric tensor reads:
-1 1 0 0
1 0 0 asin®y
me=lo o0 % 0 : (%6)
0 asin®® 0 (r® 4 a?)sin®9
C.5 Training on non-trivial metric fields (distortions)
Distortion part of Schwarzschild geometry in spherical coordinates:
* Spherical coordinates: obtained by subtracting (91) from (69):
L 0 00
r
Ts
0 ——— 0 0
G = Myt = (r—rs) : o7
0 0 0 0
0 0 0 0
* Kerr-Schild coordinates obtained by subtracting 7, = diag(—1, 41, +1, +1) from (73):
2M 2Mx 2My 2Mz
r r2 72 r2
oMz 2Mz? 2Mzy 2Maxz
2 3 3 3
i = T = ) : 98)
2My 2Mxy 2My 2Myz
2 3 3 3
2Mz 2Mxzz 2Myz 2M2z?
2 3 r3 3
 Ingoing Eddington-Finkelstein coordinates obtained by subtracting (94) from (76):
“ 00 0
r
EF EF 000
Guv — NMuv = . (99)
0 0 0 O
0 0 0 O

Distortion part of Kerr geometry:
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* Boyer-Lindquist coordinates: obtained by subtracting (93) from (79):

2Mr 2Mar sin® 6
0 0 —F
b)) by
BL BL 0 2]\22 0 0
Guv = Nuv = T . (100)
0 0 0 0
2Mar sin? 6 0 0 2Ma?rsin* 0
by by

 Kerr-Schild coordinates: obtained by subtracting » = diag (—1,+1, +1, +1) from Equation (80):
¢ Eddington-Finkelstein coordinates: obtained by subtracting (96) from (82):

2Mr 0 0 2Mar sin? 6

= =

0 0 0 0

EF EF
Guv — NMpv = . (101)

e 0 0 0 0
2Marsin? 6 0 2Ma®r sin* ¢

= p

D Finite-Difference Method (FDM) for Tensor Differentiation

The main concept in this appendix section details numerical differentiation methods for tensor-valued quantities,

focusing on the practical use of higher-order finite-difference schemes (in particular, sixth-order stencils). We
outline the treatment of discretization errors and the use of neighboring grid collocation points as part of a
numerical tensor calculus toolbox.

To compare the performance against automatic differentiation on tensor fields defined on the four dimensional
spacetime, throughout the paper we opt for the highly accurate sixth-order order forward difference (n = 6
accuracy). This scheme queries six neighboring points per evaluation and the general formula of the differential
operators are given by:

49 6 15 20
(0,1 f(x)] = *mihf(x) + Ef(er h) — %f(er 2h) + ﬁf(x+3h)
15 6 1 7
- (x+4h)+% (x+5h)7a (x+ 6h) + O(h") (102)
i-th index

Here, x = (x1,...,24) € R? and the h = he;, st.e; = (0,.., h ,..,0), depending with respect to the

variable x; the partial derivative is performed over. Thus, this is accurate upto @ (h®), and the truncation error
occurs at seventh-order.

In general, for an n-th order finite-difference approximation, the stencil is constructed by querying n neigh-
boring collocation points on the voxel grid. The resulting truncation error on function evaluated on the grid
(gridfunctions) scales as follows [55]:

&nlf] = O(h"10:7" f1) -

Thus, higher order stencils enable larger step size h choices since the error scales exponential to the stencil order,
i.e, & o< h™. This results in not only better accuracy, but also lesser memory consumption due to lower grid
resolution.

Finite-difference method bottlenecks in NR

* Higher-order finite-difference stencils require a collection of padded grid points exterior to the cube as
boundary handling. These are often called ghost cells (zones). For e.g., if ngy ghost cells are required
for the n-th order forward difference stencil, the grid size increases of a 3D spatial voxel grid [55]
Np X Ny X Nz = (Np +ng) X (Ny +ng) X (N2 4+ ng).

 Sensitive to numerical noise especially for tensor-valued functions defined on multidimensional voxel
grids.
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Comparing AD vs FD based methods. We quantify the performance of automatic-differentiation
operations on the ground truth metric against the 6-th order finite difference stencils. We test it against the
Kretschmann scalar 2 = RQM(;RC‘B”‘;, which is prone to errors, especially due to floating point errors
accumulated in the Riemann curvature tensor:

0 1014
> ¥ 10-15
100 S
A -16
0 100 10
X

Figure 7: Absolute error |Ji§na1ytic — Jap| profile plotted for z = 0.3 between the analytic
Kretschmann scalar and the ground truth Kretschmann scalar obtained via AD implemented on
the ground truth (analytic) metric.

E Implicit neural representations (neural fields)

A neural field (NeF), also called an implicit neural representation or coordinate-based network, is a neural network
that models a continuous signal over some domain, such as material density in 3D. Typically implemented as
multilayer perceptrons [56], NeFs provide memory-efficient, high-fidelity approximations that can be queried
at arbitrary resolutions and differentiated via automatic differentiation (AD). Unlike discrete representations
(voxels, meshes), NeFs naturally handle sparse or irregular samples and have become central in vision tasks such
as scene reconstruction [28, 29], shape modeling [13—-15], and compression of images, video, and audio [57, 58].
For surveys see Xie et al. [27], Essakine et al. [59], Papa et al. [60].

Beyond vision, NeFs are increasingly applied in the sciences, including molecular dynamics [61], acoustic
inverse problems [62], and PDE forecasting [63]. When combined with physics-informed losses, they serve as
PDE solvers, known as physics-informed neural networks (PINNs) [36, 64, 65]. NeFs have also been used in
differential geometry to represent smooth implicit surfaces and compute normals or curvatures via AD [66—68].

Applications to gravitational problems are emerging. 1zzo and Gémez [69] trained NeFs under Newtonian
gravity to infer the interior structure of small bodies from orbital acceleration data. Smith et al. [70] modeled
Earth’s gravitational potential field ¢(z, y, z) for geophysics, enabling interpolation of scattered measurements
and gradient queries corresponding to gravitational acceleration. In relativistic contexts, PINNs have been
explored for solving the Teukolsky equation [71] and for parameter estimation by learning metric components of
analytic EFEs [72].

F Succinct Introduction to General Relativity, Equations of Motion and
Exact Solutions

Derivative operators. The metric and its partial derivatives can be used to construct the Christoffel symbols
L o
Ffw(x) = §gp (8ug<w(x) + avgrw(x) — Oo G (55)) .

The Christoffel symbols denote how the metric varies across spacetime and define a parallel transport machinery
to translate tensor fields around the manifold. With these, it is possible to construct two pivotal modified tensor
differentiation operators, namely: (i) The covariant derivative (also called the Levi-Civita connection), which
can be seen as a “calibration” of the partial derivative operator for parallel transportation in the curvilinear
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setting:

0

.
a Q... a; a ...UH.QT o e
Vil 5 = g L b +ZF oI ZF P NP

(i1) The Lie derivative, which generalizes the notion of a directional derivative that is connection
independent (cf. Appendix B.3.4). The Lie derivative captures infinitesimal dragging of the tensor
field along the flow generated by the vector field &:

(LET) ™50, = €40,T7° ZT““"“'“‘”M +ZT“1@14..H... 05"

Differential geometric objects. Using the modified derivatives, we can construct a hierarchy of
higher-rank differential geometric quantities, such as the Riemannian curvature tensor R 3+ OF the
Ricci tensor R g, via a series of derivatives 0, covariant derivatives V := 0 4 I, and tensor index
contractions ¢’ : VI;1 — VI (typically, Tr,).

@ Caﬁvts
Hm (s y ")

\“@ Riapyic =0
VieRaglys =0

Figure 8: Differential geometry workflow in general relativity (only lhs of Equation (2)): We
describe each quantity starting left: The metric tensor g, defines the spacetime geometry. Its partial
derivatives 0 yield the Christoffel symbols I'? - Which describe the notion of parallel transport
and defines a covariant derivative operation V, = 9, + I',. The connection also defines the Lie
derivative L, along vector fields v. The connection’s derivatives V give the Riemann curvature tensor
Ra By which encodes tidal forces. The contraction operator 4 = Tr, contracts with the metric,
producing the trace part, i.e., the Ricci tensor I2,3. Its subsequent contraction yields the Ricci scalar
R. The Riemann tensor further splits into the Weyl tensor C,gs (trace-free curvature part) and
satisfies the algebraic and differential Bianchi identities R[,5+), = 0 and V|, R 1,5 = 0. Together,
these geometric objects form the backbone of general relativity, ultimately entering the Einstein field
equations through the Einstein tensor G 3.

Conservation laws. It follows from the contracted Bianchi identities, i.e., cyclic sum of Riemann
curvature tensor covariant derivatives (II Bianchi identity — see Equation (58b)) vanishes identically:

VQRB'\/(SU + vﬂR'ya(SO' + v’yRaﬂtsa =0.

This is a geometric identity that holds for any (torsion-free) connection compatible with the metric.
The identity above consequently leads to the covariant derivative of the stress-energy tensor vanishing,
that is, VgT“fB := 0 (see Equation (65)), which corresponds to the energy-momentum conservation
in general relativity. If required, conservation laws typically feature as soft constraints in PDEs, and
are relevant especially when matter distribution/fields are considered.

Equations of motion. The geodesic equation is a central second-order ODE that describes the
motion of objects following geodesic paths in the curved spacetime background

A2+ dx” dx®
+ P«U _
dr2 P9 dr dr
Here, 7 € R is some affine parameter (often the proper time; not to be confused with the coordinate
time t). The geodesic equation is the general relativistic analogue of Newton’s second law and

generalizes the concept of a “straight line” to curved spacetime by describing the trajectories of
bodies under the influence of a gravitational field. Related, the geodesic deviation equation describes
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how nearby geodesics diverge or converge due to the intrinsic curvature of the manifold, quantified
by the separation vector S*(T):
2q1
DS g
D72 aBy
where, X is a vector field and % = X*V, denotes the directional covariant derivative (see

Definition 2). Thus, it encodes information about the tidal forces of gravitation.

XoXPsY

F.0.1 Analytical (exact) solutions

Exact solutions of the EFEs are metric tensor fields g g that satisfy Equation (2). Many exact solutions
are known, which can be classified into exterior (vacuum) solutions and interior solutions [17]. While
there exist several geometries that satisfy the EFEs, we shall focus on three prominent vacuum
solutions: the Schwarzschild metric, the Kerr metric, and gravitational waves. These geometries not
only have a high theoretical and historical relevance, but are also of great interest in computational
black hole astrophysics and gravitational wave and multi-messenger astronomy. Appendix C discusses
these solutions in more detail, including other prominent coordinates, as well as real and fake
(coordinate) singularities. From here on, we work in naturalized units by setting c = G = 1.

Schwarzschild metric It is the simplest non-trivial solution to the EFEs and describes a static
spherically symmetric geometry around spherical non-rotating gravitating bodies, such as stars or
black-holes. Although simple, the Schwarzschild metric predicts many phenomena beyond Newtonian
gravity, most notably the precession of elliptical orbits and the bending of light rays. Both of these
predictions have been experimentally verified in the Solar system, using the motion of Mercury
perihelion and in the Eddington experiment during the 1919 Solar eclipse, respectively. The metric
is typically written in spherical polar coordinates (¢, 7,0, ¢) where t € R, 7 € RT, 0 € (0, ), and
¢ € [0,2m):

2M oM\ !
ds® = — (1 - r)dtQ - (1 — r) dr? 417 (df” + sin*0d¢?) .

Kerr metric generalizes the Schwarzschild solution to rotating bodies with the angular momentum
J or, equivalently, the rotation parameter ¢ = % The solution forms a rotating, stationary (but
not static) geometry, which is oblate around the rotation axis that breaks spherical symmetry. This
geometry again permits new phenomena, notably the geodetic effect and frame dragging, both of
which have been experimentally verified in the Earth’s orbit by the Gravity Probe B.

The metric can be described in the corresponding oblate spheroidal coordinates also known as the
Boyer-Lidquist (BL) coordinates (¢, 7,1, ¢) (see Equation (77)) [51]:

AM arsin®9
by

2Mr
h)

2Mra?sin?9
by

b
as? = — (1= 250 ) a2 dtdg+ 5 dr®+Tdi*+ <T2+a2+ >sin20d¢2.
Linearized gravity models the metric as tiny fluctuations or perturbations hqg, |haps| < 1 of the
flat background metric 7),3:

9oB = Nap + hap + O(hap)? .

Famously, this model can describe GW propagation using a periodic time-dependent perturbation,
which has served as the theoretical basis for the Nobel-prize winning detection of GWs generated
by binary black hole mergers [3]. As detailed in Appendix C.3, the choice of a certain gauge
essentially transforms the vacuum EFEs into the wave equation DES; = 0 where 0 = n®# 0403 is
the d’Alembert or wave operator and ES; = hgfg - %h(e)na g- This equation admits a family of GW
solutions: we will use the plane wave propagating in the z-direction with the angular frequency w
expressed in the Cartesian coordinates:

00 0 0
prt _ [0 ke b 0
8= (0 hy hy O

00 0 0

Here, h, and hy are the amplitudes of the “+4” (plus) polarization and “x” (cross) polarization

cos (w(t — 2)) .
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G Experimental details

This appendix provides detailed experimental specifics, including: (i) revisiting the concept of
Sobolev training and its application Einfields (ii) gradient alignment aspects relevant to SOAP
optimizers; (iii) error plots for the metric and higher-rank differential geometric quantities, with
component-wise tomography where applicable; (iv) training across varied coordinate systems to
illustrate the coordinate-choice flexibility of NeFs; (v) the hyperparameter configurations employed;
and (vi) the hardware and software environments used for these experiments.

G.1 Data

For our main set of experiments, we overfit EinFields against the analytic solutions introduced in
Section F.0.1, each having different features and spatio-temporal symmetries:

* Schwarzschild metric in spherical coordinates (Equation (97)),
» Kerr metric in Boyer-Lindquist and Kerr-Schild coordinates (Equations (100, 80)),
* gravitational waves metric (TT gauge) in Cartesian coordinates (Equation (84)).
For each, we compute the distortion after subtracting the flat background metric using the correspond-

ing equations summarized in the Appendix. Detailed information on data specifications is provided
in Table 5.

Additionally, in Section ??, we train each geometry in different coordinate systems to investigate how
the choice of coordinates impacts NeFs (recall: the physical laws do not depend on the coordinate
system).

Metric Coordinates Domain Resolution Parameters
Schwarzschild Spherical t=0 1 M=1
(t,r,60,0) r € [2.5,150] 128
0 € (0, ) 128
¢ € [0,2m) 128
Kerr Boyer- t=20 1 M=1
Lindquist r € [3,14] 128 a €[0.628,0.95]
(t,r, 9, ) 9 € (0, m) 128
¢ € [0, 2m) 128
Kerr-Schild t=20 1 M=1
(t,z,y,2) x € [-3,3] 128 a=0.7
y € [-3, 3] 128
z €10.1, 3] 128
Linearized gravity = Cartesian t € [0, 10] 140 w=1
(t,z,y, 2) x € [0, 10] 10 e=10"9
y € [0, 10] 10
z € [0, 10] 140

Table 5: Training data generation specifications: spacetime metric, coordinate system, domain extent,
grid resolution, and physical parameters.

G.2 Sobolev training

This refers to a class of learning paradigms where NN are trained not only to match target function
values but also additionally its derivatives [30]. Formally, given a target function f : X — R, and

a NN approximation fg, Sobolev training minimizes a joint loss involving the functional and its
derivatives:

N
Lsal0) = Bx | Nollf@) = Do)l + Yo7 D95 — D9 Gata)[ | a03)
j=1
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where DU) denotes the 5™ derivative operator, which in our case could be the partial derivatives 97
or covariant derivatives V7, and ); are weighting coefficients. This loss promotes alignment not only
in function space but also in the Sobolev space W*2(X'), which encodes both value and derivative
information. Sobolev training enhances generalization, stability, and accuracy of NeF derivatives [73].

Algorithm 1: EinField training

1: Input: Training dataset {(z*, g(z"), oW g(z), 082 g(z"))}7 |, number of epochs Nepochs
learning rate ), optimizer O, Sobolev order N € {0, 1,2}

2: Initialize neural field parameters # on device D (e.g., GPU) in single (FLOAT32) precision

3: for epoch = 1 t0 Nepochs do

4:  for each mini-batch (Zvach, Gbatch, Ba(cl) Goatchs 89(52) Jbateh) in dataset do
5: Move (Zpatch, Goatch) to device D

6: Jbateh < EinFields(@pagch; )

7 loss +— »C(gbatcm gbalch)

8: if N > 1 then {Jacobian supervision}

9: Compute 8&1) Gbateh through AD
10: loss < loss + A1 - E(&(El)gbatch, a;l)gbawh)
11: end if
12: if N > 2 then {Hessian supervision}
13: Compute 89(52) Gbatch through AD
14: loss < loss + Ao - ﬁ(af)gbmh, 33(52)§batch)
15: end if

16: Compute gradients: Jp <— Og loss

17: Update parameters: 0 < O(6, 0p, 1)

18: Optionally: synchronize gradients across devices if using distributed training
19:  end for

20:  Optionally: evaluate on validation set, log MAE and memory usage for monitoring
21:  Optionally: checkpoint 6 for fault tolerance and reproducibility

22: end for

23: return optimized parameters 6

The impact of the modified training loss is particularly evident when accurately querying higher-order
differential geometric quantities, which include the metric Jacobian, Christoffel symbols, metric
Hessian, Riemann tensor, and curvature invariants on an arbitrary set of validation points. We evaluate
the improvement in reconstruction quality and fidelity for these quantities on the Kerr metric in
Cartesian KS coordinates, which are free of coordinate singularities, using 2D tomographic slices
(see Section G.6 for details). Comparative results with and without Sobolev training are explicitly
reported in Figures ??-13.

G.3 Evaluation criteria

We flatten the ground truth tensor at point p € .# with its components indexed by & be denoted by
fe(p) € R, with 1 < k < n and the corresponding EinFields parametrized tensors are denoted by
fk (p). The dimensionality n depends on the tensor under consideration. For instance, for a symmetric
metric tensor n = 10, corresponding to its independent components, while for the Riemann curvature
tensor, n = 256 when considering all components explicitly, or n = 20 when accounting only for the
independent components under the symmetries inherent to the tensor, respectively.

We evaluated these quantities over a set of m ~ 125,000 validation collocation points D =
{Pihgigm and use standard error criteria in discretized form, which includes double sums: one over
the total number of tensor components { fj }1<x<n, While the other for the total number of collocation

points {p; b1<i<m:

m n

Mean-absolute error MAE) = — Z Z — ()| (104a)
1 k=1
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;11 ZZ=1 Ifk(pz) - fk(pi)|2 _

m n 104b
Zi:l k=1 |fk(pi)|2 ( )

Relative /5 error (Rel. {3) = \/ 2

These are applied to the metric tenors and their derived quantities, illustrated in Figures 8 and 2. Recall
that the tensor components are coordinate-dependent (and even more so, the metric Jacobian, metric
Hessian, and Christoffel symbols are not even tensors), and, hence, these errors lack an immediate
physical meaning. This is improved with the consideration of scalar quantities such as the Ricci
scalar, Kretschmann invariants, and Weyl scalars, which by definition are coordinate-independent
quantities.

The above error criteria are an aggregation of point-wise, i.e., local quantities. We additionally
assess the quality of free-falling trajectories obtained by evolving the geodesic equation (Equation
??) from the same initial condition on the exact and approximate metrics. Even small errors quickly
accumulate during the evolution of the trajectory, providing a sensitive assessment of the metric
quality. In addition, these trajectories provide a strong physical intuition, e.g., the number of stable
orbits.

G.4 Gradient alignment

Competing tasks is a well-known problem in multi-objective learning ([74], [75], [76]), the gradients
of the loss functions pull the weights in different directions. In Scientific Machine Learning (SciML), a
lot of work emerged in analyzing and mitigating gradient conflicts in the context of PINNs ([34], [77],
[78]). Although Sobolev training differs from PINNSs, particularly from a supervision perspective,
it exhibits the same problem where some loss terms dominate others. In PINNSs, the training is
highly dependent on first satisfying the initial/boundary conditions, which provide uniqueness to
the solution. The different levels of complexity between these and the residual loss create different
optimization priorities, but both losses are equally important. Similarly, Sobolev training faces
analogous challenges with competing loss components. The Jacobian data serve to constrain the
model’s derivatives, while the target function outputs determine the integration "constant", both
components being equally valuable. However, the sources of complexity differ between these
approaches. In PINNs, the primary challenge stems from determining a solution through unsupervised
learning on PDE losses, whereas in our Sobolev training specifically, the complexity arises from
managing optimization stability in high-dimensional spaces: a 16-dimensional output space, 64-
dimensional Jacobian, and 256-dimensional Hessian. Moreover, this complexity is accompanied by
the challenge of handling gradient imbalances. Depending on the point in spacetime, the metric or its
derivatives dominate in the loss. Generally speaking, an analogy is to think g,,,, o %,ap Gup X %2 and

OopGur X T%, making it clear how gradient magnitudes differ depending on the radius.

Mitigating gradient conflicts does not necessarily result in better accuracy, but it explains a possible
reason why the loss does not improve further, the optimization being stuck in the local minimum
of one of the objectives. The intra-step gradient alignment scores presented in [34] demonstrate
SOAP as a far superior alternative compared to other well-established optimizers, or at least for the
experiments considered in that study. To provide a direct comparison using the same methodology
as in [34], we evaluated both ADAM and SOAP on the Cartesian KS representation of the Kerr
metric, chosen as the most complex metric investigated in this work. The Sobolev training contains
only two objectives: metric and Jacobian supervision. For our experimental setup, we employed an
MLP architecture with 5 hidden layers, 190 hidden units per layer, and SILU activation function to
compare gradient conflicts between the two optimizers. The training utilized a cosine decay learning
rate schedule, starting from an initial learning rate of 1E—2 and decaying to a final rate of 1E—8
over 200 epochs. For weighting the losses, gradient normalization was used with and without an
exponential moving average. As shown in Figure 15, even though Adam is providing twice as much
gradient alignment score in almost all epochs, SOAP’s second-order and preconditioning capabilities
allow for a 100x training loss improvement.
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Figure 9: Average gradient alignment per epoch (left) and MSE loss during training for Adam
and Soap optimizers (right). The shaded light color in the alignment plot represents a minimum
and maximum deviation compared to using an exponential moving average or not for the weights
multiplying the gradients.

G.5 Kerr metric error visualization

To quantify the quality of EinFields parametrized metric tensor fields for the Kerr metric with spin
parameter a = 0.7°, we report the mean absolute error (MAE) between the ground truth and the NeF-
fitted metric tensors in Figure 10. The evaluation is performed on a validation grid with collocation
points sampled arbitrarily within the training range but distinct from the training collocation points.
Using a model configured with SiLU activations, SOAP optimizer, GradNorm, and without Sobolev
regularization, we observe agreement with the ground truth up to six decimal places, achieving an

MAE on the order of 1E—6.
gt tz le->5
- - 1 ‘0
Ixy Jxz

0.8

X

Figure 10: Kerr metric absolute error between ground truth (analytic) metric and the EinFields
parametrized metric. The metrics are depicted in the Cartesian Kerr-Schild (KS) representation as
presented in Equation (80). The 2D slice of all the metric components captured in the x-y plane at
fixed z = 1.4 for a spin parameter value a = 0.7.

°Cartesian Kerr-Schild coordinates are chosen to avoid coordinate singularities, enabling tomography over
larger coordinate ranges.
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G.6 Tomography: Metric, metric Jacobian and metric Hessian components

The effect of introducing losses pertaining to metric Jacobian and Hessian supervision, apart from the
metric loss that EinFields predominantly uses, can be quantified and visualized with the following
plots below. Here, for the sake of visualization, we do a tomography (2D cuts) of different metric
components along a particular axis for the Kerr metric in Cartesian KS coordinates (Equation (80)).

The first, second, and third columns in each figure correspond to EinFields training without Sobolev
supervision, EinFields (+Jac), and EinFields (+Jac + Hess) trained, respectively, for randomly
sampled components of differential geometric quantities.
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Figure 11: 2D Tomography of Kerr Christoffel symbols components in Cartesian KS representation.
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Figure 13: 2D Tomography of Kerr Kretschmann invariant in Cartesian KS representation.

G.7 Training on varied coordinate systems

NeFs take physical coordinates as inputs and map them directly to field values. Unlike traditional
machine learning architectures that ingest abstract learned feature spaces (such as token embeddings
or extracted features), INRs operate directly on the physical coordinate space, enabling them to
represent continuous signals in a domain-agnostic manner.

In the context of GR, this implies that a four-dimensional representation of metric tensor fields
by an INR explicitly depends on the input coordinate system, or more generally, on the chosen
frame of reference. Despite this apparent dependency, GR possesses the fundamental property of
diffeomorphism covariance (see Section B.4.1), which asserts that the laws of gravitation remain
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Figure 12: 2D Tomography of Kerr Riemann tensor components in Cartesian KS representation.

invariant under smooth coordinate transformations. However, the choice of coordinate system remains
an essential practical tool for simplifying the form of the metric tensor. For example, while the
Schwarzschild metric is diagonal in spherical coordinates (albeit with a coordinate singularity at
the event horizon), transforming to Cartesian KS coordinates produces a dense, off-diagonal metric
representation, or, for that matter, moving to Eddington-Finkelstein coordinates, which both remove
coordinate-related artifacts (see Paragraph B.3.6).

Understanding this behavior is essential for developing robust INR-based frameworks for represent-
ing geometric quantities in numerical relativity, while respecting the underlying diffeomorphism
invariance of general relativity.

For the Schwarzschild case, we initiate the training by sampling query spacetime coordinates in
spherical representation (¢, 7,6, ¢). These sampled collocation points are then transformed into
their corresponding collocation points in Cartesian coordinates (¢, z, y, z) and ingoing Eddington-
Finkelstein coordinates (v, , 6, ¢) (see Section C.1.1 for explicit transformation details). Subse-
quently, EinFields outputs the metric tensors corresponding to these coordinate systems, yielding
Equations ((69), (73), (76)).

For the Kerr metric, which is characterized by its oblate spheroidal geometry, we sample query
collocation points in the Boyer-Lindquist coordinates (¢, r, 9, ¢), followed by the collocation points
transformed into Cartesian (¢, z,y, z) and ingoing Eddington-Finkelstein coordinates (¢,7, 0, ¢).
EinFields then outputs the Kerr metric tensors in these respective coordinate systems, resulting in
Equations ((79), (80), (82)).

Metric Spherical-like  Cartesian-like  Lightcone-like
Schwarzschild v 4 4
Kerr v v v

Table 6: Coordinate charts used for NeF training on Schwarzschild and Kerr metrics.
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Metric Representation Coordinate Rel. L2

Spherical 2.26E-7

EinFields Cartesian Kerr-Schild ~ 1.37E-5
Eddington-Finkelstein ~ 9.21E-9

. Spherical 1.37E-7
Schwarzschild gy Fields (+ Jac) Cartesian Kerr-Schild ~ 3.00E-6
Eddington-Finkelstein  6.47E-9

Spherical 1.20E-7

EinFields (+ Jac + Hess)  Cartesian Kerr-Schild  1.53E-6
Eddington-Finkelstein ~ 9.08E-9

Boyer-Lindquist 6.95E-8

EinFields Cartesian Kerr-Schild ~ 4.47E-6
Eddington-Finkelstein ~ 6.44E-8

K Boyer-Lindquist 4.72E-8
err EinFields (+ Jac) Cartesian Kerr-Schild  8.83E-7
Eddington-Finkelstein =~ 4.95E-8

Boyer-Lindquist 4.69E-8

EinFields (+ Jac + Hess) Cartesian Kerr-Schild ~ 4.95E-7
Eddington-Finkelstein ~ 4.72E-8

Table 7: Relative L2 error considered on a grid of validation collocation points (i) EinFields, (ii)
EinFields (+Jac) and, (iii) EinFields (+Jac + Hess) supervision. As described above in the text,
we quantify the effect of inputs queries in varied coordinate charts and how EinFields training
generalizes over these different metric (geometry) representations.

This multi coordinate training strategy (shown in Figure (6) and the numbers recorded in Table (7))
ensures that the neural tensor field learns consistent representations across coordinate systems while
maintaining geometric and physical consistency under diffeomorphisms, facilitating generalization
and stability in downstream geometric learning tasks.

G.7.1 Schwarzschild metric

Geodesics in the Schwarzschild spacetime are of fundamental interest, as they underlie phenomena
such as gravitational lensing and the perihelion precession of Mercury, as well as the motion of
planets in the solar system more generally.

The initial conditions of the trajectories chosen in the experiments are fully specified by the initial
position

(t,r,0,0)(t =0) = (0,aors, 7/2,0) (105)

and the initial four-velocity

1
0,0,00—<5% ) (106)

V(@ =ry/ro)(1 - v3) rg (1 —vg)

(vt 0", 0?0 (t =0) = (

Where vy = bgy/1/(ro — rs) and ag, by € R can be chosen freely to select the desired orbit in the
6 = /2 plane. The geodesics in Figure 14 demonstrate a good qualitative agreement over several
orbits. The error is quantified and discussed further in Section G.8.
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(a) Circular orbit for r = 3.857;. (b) Eccentric orbits.

Figure 14: Geodesics in Schwarzschild spacetime simulated in spherical coordinates (Equation (69)).
The filled black circle indicates » < ry = 2M. The purple dashed line marks the innermost stable
circular orbit (ISCO) at r = 3r,. Green solid lines represent the ground-truth geodesics, while the
red dotted lines represent EinFields reconstructed ones. We find very close agreement between the
orbits up to a chosen time of running the geodesics.

Being able to compute geodesics is sufficient to perform rendering. We use the Schwarzschild
EinFields metric to render a black-hole on a celestial background. This requires propagating
geodesics from the camera observer via the spacetime terminating at the distant background. The
resulting image in Figure 15 provides visual evidence for the global consistency and quality of the
metric and the derived Christoffel symbols.

Figure 15: Render of a Schwarzschild black-hole in front of a celestial background constructed from
the EinField metric.

G.7.2 Kerr metric

Geodesics in a Kerr spacetime around a rotating body (see details in Appendix C.2) play a central role
in several key astrophysical observations and experimental tests of GR. Notably, photon geodesics
determine the black hole shadow images captured by the Event Horizon Telescope [79], and frame-
dragging (Lense-Thirring) effects [17] are a hallmark of the Kerr geometry. These have been measured
experimentally by the Gravity Probe B mission [80] and recently via radio pulses arriving from
pulsars [81]. Here we also show the capacity of our model to reproduce prograde orbits (stable
geodesics with smaller radii), and arbitrary eccentric orbits, which depend on the initial conditions,
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including choice of energy E and angular momentum L, of the test particle. The geodesics in Figure
16 demonstrate a good qualitative agreement over several orbits.
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(a) Prograde orbit for a = 0.90. (b) Eccentric orbit for a = 0.628.

Figure 16: Geodesics in Kerr spacetime simulated in Boyer—Lindquist coordinates (Equation (79)).
Distinct regions of the geometry are indicated in solid colors. Green solid lines represent ground
truth geodesics, while the red dotted lines represent our NeFs reconstructed orbits.

Kretschmann invariant. The Kretschmann invariant (scalar), # = R (21)R,p,6(z?), is
a key curvature invariant distinguishing true (curvature) singularities from coordinate (apparent)
singularities (see Appendix B.3.6). For the Kerr geometry, the rotation parameter a induces a
ring singularity at radius @ on the equatorial plane § = 7/2, where the curvature diverges (see
Equation (83) and Section C.2.2). Accurately capturing this geometric structure requires isolating
true singularities from coordinate artifacts, which can otherwise lead to incorrect classification of
singularities.

We perform training in Cartesian KS coordinates (see Equation (80)) to eliminate coordinate singular-
ities that would otherwise impede convergence. We first train EinFields (+Jac + Hess) on Cartesian
KS coordinates, subsequently constructing the Riemann tensor (see Section B.3.6) via successive
automatic differentiation steps and raising indices using the parametrized metric § (see Equation (83)).
The NeF reconstructed J#~ captures the ring singularity structure and agrees well with the analyt-
ical solution, as shown in Figures 17a and 17b. However, the reconstruction remains sensitive to
floating-point errors and requires high NeF accuracy for stability (see Limitations, Section 2?).
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Figure 17: The Kretschmann scalar %~ of the Kerr metric computed in Cartesian Kerr-Schild form
(Equation (80)) in the z-y plane for z = 0.3.

G.8 Accumulation of rollout errors for geodesics

Minute floating-point inaccuracies (around 1E-5 to 1E-6) arising from Christoffel symbols retrieved

via EinFields autoregressively accumulate when evolving the equations of motion for test particles
along geodesics.
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To quantify the inaccuracies between the ground truth and NeF-evolved geodesics, we compute
the deviation between the position vectors 7(7) € R? as a function of the affine parameter (proper
time) 7 in Cartesian coordinates. Specifically, for the ground truth trajectory, the spatial coordinates
corresponding to the position vector are given by r(7) = (z(7),y(7), (7)), while for the NeF-
evolved trajectory, we denote #(7) = (2(7),§(7), 2(7)). The deviation at each proper time 7 is then
computed as the Euclidean norm,

2

or(r) = [Ir(r) = #(n)ll, = \/(17(7) — (M) + (y(r) —9(m)" + (1) — 2(7)°. (107

In practice, the geodesic trajectories are computed in (7,9, @) (e.g., Boyer-Lindquist) coordinates
and subsequently transformed into Cartesian coordinates before evaluating the deviation using the
above expression.

Given the high sensitivity of time-stepped trajectories to such numerical inaccuracies, we quantify
this error accumulation by explicitly presenting the deviation as a function of the affine parameter 7,
especially for eccentric orbits for both Schwarzschild (see Figure 14b) and Kerr metric for a = 0.628
(see Figure 16b). These are reported for the Schwarzschild use case in Figure 18a, and Figure 18b
for the Kerr metric use case, respectively. For Schwarzschild, the error accumulates stably, while
for Kerr it is erratic. We hypothesize this is likely due to the stable versus chaotic nature of orbits in
the respective spacetimes. Eventually, orbits diverge significantly, especially when leaving the NeF
training domain.
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(a) Schwarzschild eccentric orbits. (b) Kerr eccentric orbits for a = 0.628.

Figure 18: Geodesic rollout deviation dr over proper time 7.

The results suggest that incorporating the Hessian supervision into training may introduce noise
that can hinder convergence, performing worse than using metric Jacobian supervision or, for that
matter, metric alone. For geodesic equations, supervising second derivatives is often unnecessary, and
Jacobians alone provide significant improvements in trajectory reconstruction. However, Hessians
become essential when computing Riemann tensors and curvature-related quantities, and are required
in applications such as numerically solving the geodesic deviation equation (see Equation (??)),
which are typically encountered for solving for the test ring oscillation in linearized gravity use cases.

G.9 Validation problems for GW metric and derivatives quality.

Compared to Schwarzschild and Kerr metrics, a key distinction of the linearized gravity setting
describing gravitational waves is its time dependence (see Equation (84)). Although it does not
depend on x and y, the temporal dependence motivates us to consider our model trained on a full
spacetime grid of size Ny x Ny x Ny x N.

Distortion of ring of test-particles. When the described gravitational wave interacts with a ring of
freely falling test particles initially at rest in the x-y plane, it induces periodic deformations of the
ring. For a purely + polarized wave, the resulting motion causes the ring to stretch and squeeze along
the x- and y-axes, leading to a characteristic “plus” deformation pattern.

The motion of the test particles under the influence of this gravitational wave is obtained by solving
the geodesic deviation equation, up to leading order in the strain amplitude h. As a result, the
particle trajectories in the TT gauge are
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x(t) = (1 + %lu_ cos (w(t — z)))x(O) , y(t) = (1 - %h+ cos (w(t — z)))y(()) . (108)

Here, z(0) and y(0) denote the initial coordinates of a test particle, and the time-dependent pertur-
bations reflect the tidal nature of gravitational waves. The cosine dependence captures the periodic
stretching and squeezing of spacetime caused by the wave as it traverses the particle ring. Figure 4c
and Table 8 show how the famous ring oscillation experiment can be reproduced with EinFields.
This is done by parametrizing the perturbation ATL o and captures the famous stretching and squeezing
effect.

Weyl scalars of gravitational radiation field. The Weyl scalars are five complex quantities
Wo, Wy, Uy, Uy, Uy that arise in the Newman—Penrose formalism of GR [54]. They encode all
the independent components of the Weyl tensor C,,3+5 (see Equation (62)), representing the “free”
gravitational field — the part of spacetime curvature that can propagate as gravitational waves, distinct
from the curvature directly caused by matter. In NR and GW modeling, W,(t) is the primary scalar
quantity used to extract observable GW signals from simulations. It is defined as

Uy := Copysn®k’n7k? (109)

with n, k being a particular choice of Newman—Penrose (NP) tetrads and k its complex conjugate '
The central relation in an asymptotically flat spacetime (cf. Boyle et al. [82] for details) is that ¥ 4(t)
is equivalent to the second coordinate-time derivative of the strain h(t) = hy (t) + thx (t):

Uy =—hy +ihy . (110)

We compute ¥, from the NeF-parameterized strain % g in two distinct ways:

1. indirectly via the Weyl tensor obtained with the differential-geometric chain (see also Figures

o 109
gand 2): AT 1% gos BTT, Vo RO s Cuprs s Wy

. . . o Eq. (110
2. directly via the second time-derivative: h/) Ee 010 g

Spin-weighted spherical harmonic representation for GW extraction. A quantity of central
interest in gravitational waveform construction is the mode decomposition of the GW strain into
its angular components. The complex strain h(t,7,0,¢) = hy(t,r,0,¢) — i hy (t, 7,0, ) can be
expanded in terms of spin-weighted spherical harmonics (SWSHs) as

oo

h(t,r,0,¢) = JYZZMW oY (0, 0), (111)

=2 m=—1¢

where _2Yr,, (6, ¢) are the SWSHs (see Equation (89)) with spin-weight s = —2 reflecting the
helicity of GWs in the TT gauge (see Equations (87) and (88)). In practice, the dominant contributions
to the strain arise from the quadrupole (¢ = 2, m = 4-2) modes, denoted by h%¥2(t), which capture
the leading-order gravitational radiation (detailed in Section C.3). Figure 19

19Note that the Weyl scalars are not invariant and depend on a particular choice of the tetrad fields.
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Figure 19: The absolute error of the amplitude between the EinFields and analytic values
|R/Mh?*2(t)| (see Equation (88)) at a fixed radial distance R = 1 plotted against /M. The
amplitudes agree to 1E-8, indicating that EinFields can capture the complex strain A and subse-
quently h?*2(t) GW signals.

Radiated power of GWs. Another important physical observable for GWs is the radiated power
loss given by the famous quadrupole formula [41]. The time-averaged power or luminosity radiated
by GWs is given by

dE 1?2 SrriTT g Lo ;
= 320 dQ(hiTATT ) = (b3 + hY) - (112)

The particular perturbation metric in the above experiments (see Equation (84)) has equal amplitude
A = hy = hy for both + and x polarizations. As a consequence, the radiated power loss simplifies
to

dE _ w2

11
dt 4 (13)
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Figure 20: Comparison of the real part of the Weyl scalar (V) (Equation (109)) computed from
the EinFields and the analytic metric. The errors are on the order of E-10 and E-11, respectively,
indicating highly accurate gravitational waveform reconstruction capacities of EinFields. Refer to
Table 8 for more details.

For GW tasks, we also compare against two other relevant models, which utilize periodic activations
functions: (i) WIRE architecture [83] with a continuous real Gabor wavelet activation function
(x5 o, S0) = cos((ox)e_(s"”)z, with {y and sq controlling the frequency of the wavelet and the
spread, respectively (i.e., signal width localized in both the spatial and frequency domains), and (ii)
SIREN [58] architecture with the periodic activation function sin((pz), and (o being the modulating
frequency.

The SiLU activation function exhibits a lower frequency bias and lacks oscillatory behavior in its
higher-order derivatives, which directly feature in the Sobolev norms used during training. In contrast,
sinusoidal activations employed in SIREN and WIRE architectures inherently possess oscillatory
behavior, with their k-th derivatives scaling as (%, where (y denotes the base frequency. This scaling
amplifies high-frequency components and can lead to instability when minimizing Sobolev norms,
as high-frequency errors become disproportionately emphasized. In practice, the smoothness and
non-oscillatory nature of SiLU activations result in more stable training and improved generalization
under Sobolev training objectives. These trends are quantitatively reflected in our experiments, as
reported in Table 8.

hlj (+Jac +Hess) Ricciscalar Weyl scalar ~ Luminosity

Model (GradNorm) R R(V,) dE/dt
SiLU 8.56E-4 5.90E-13 2.53E-5 2.71E-4
SIREN 3.78E-2 1.08E-12 9.56E-5 3.34E-4
WIRE 1.68E-2 1.55E-13 1.81E-5 3.69E-4

Table 8: Rel. ¢5 for key quantities in the linearized gravity case with two different NeF architectures:
(i) perturbation metric, (ii) perturbation metric trained with Sobolev loss and gradient normalization,
(iii) reconstructed Ricci scalar, and (iv) reconstructed real part of the Weyl scalar ¥4, where ¥4
h(t,x). The final column reports the absolute difference in the predicted gravitational radiation
energy loss, integrated over the unit sphere.
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G.10 Training hyperparameters

Table 9: Training configurations for Schwarzschild, Kerr, and GWs used in the geodesics,
Kretschmann plots, Table 8, and linearized gravity section.

Parameter Schwarzschild Kerr GWs
Architecture MLP

Depth 3/3/5/17 5 5
Width 64/128/256/512 190 128 /128 /90
Activation SiLU SiLU SiLU / SIREN / WIRE
Input dimension 4 4 4
Output dimension 10/16 16 16

# Parameters 13.5K /50K /332K / 1.5M 185K 85K
Optimizer SOAP

051 0.95

B2 0.95

Precondition frequency 1

Learning rate schedule

Initial learning rate E-2/E-3

Decay steps 10* 6 x10%/2,4,6 x 10* 4 x 10%/4 x 10*
Final learning rate E-5/E-6 E-7/E-8 E-9
Training

Epochs 100 200 200
Number of batches 100 30/100/200/300 20/200
Gradient weighting scheme None / GradNorm

G.11 Hardware

For our primary computational work, we utilize a high-performance CPU system equipped with
2x32-core Intel® Xeon® Platinum 8452Y+ processors, each operating at 4.1 GHz, and 2048 GiB of
RAM. All NeF-related training is performed on a single NVIDIA H200 SXM GPU with 144 GiB of
HBM3e memory. For prototyping and preliminary experiments, we employ a single NVIDIA Tesla
A100 GPU with 40 GiB of memory.
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