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Abstract: Latent Action Models (LAMs) have rapidly gained traction as an impor-
tant component in the pre-training pipelines of leading Vision-Language-Action
models. However, they fail when observations contain action-correlated distractors,
often encoding noise instead of meaningful latent actions. Humans, on the other
hand, can effortlessly distinguish task-relevant motions from irrelevant details in
any video given only a brief task description. In this work, we propose to utilize
the common-sense reasoning abilities of Vision-Language Models (VLMs) to pro-
vide promptable representations, effectively separating controllable changes from
the noise in unsupervised way. We use these representations as a targets during
LAM training and benchmark a wide variety of popular VLMs. Our results show
that simply asking VLMs to ignore distractors can substantially improve latent
action quality, yielding up to a six-fold increase in downstream success rates on
Distracting MetaWorld.
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Ask and it will be given to you; seek and you will find;
knock and the door will be opened to you.

Matthew 7:7-8

1 Introduction

Latent action models [1, 2] have quickly become integral to the pre-training pipelines of leading
Vision–Language–Action (VLA) systems [3, 4, 5, 6, 7]. By inferring compact, semantically mean-
ingful latent action representations at scale, Latent Action Models (LAM) mitigate the scarcity of
high-quality action-labeled data, giving a promise to unlock vast amounts of unlabeled videos [8].
Removing the data bottleneck facilitates further scaling in embodied AI and robotics; consequently,
any improvements to LAMs can have outsized downstream impacts.

Unfortunately, most LAMs [1, 2, 9, 10] to date have been trained on relatively clean datasets, where
changes between observations can be explained almost entirely by ground-truth actions—such as
in static scenes with a single manipulator. In contrast, real-world data often contains numerous
action-correlated distractors, including background human movement or other spurious correlations.
As shown by Nikulin et al. [11], Zhang et al. [12], without explicit supervision, LAMs struggle to
disentangle controllable changes from noise, completely failing to produce meaningful latent actions



in the presence of action-correlated distractors. While providing supervision via true actions can be
effective [11], it is not scalable — especially in domains where these actions are impossible to obtain,
such as egocentric human videos.

Humans, however, interpret the world through semantics rather than raw pixels, and with only a
brief task description can easily separate task-relevant features from irrelevant details in any video.
Wouldn’t it also be convenient to simply ask LAM to focus on the relevant features, e.g. robotic
arm, and ignore any other details? Inspired by the work of Chen et al. [13], Huang et al. [14] on
promptable representations, we propose to utilize the common-sense reasoning abilities of modern
Vision-Language Models (VLMs) as an unsupervised approach for effectively separating controllable
changes from noise, thereby restoring the LAM’s ability to recover ground-truth actions even in the
presence of distractors.

In this work, we present our preliminary investigation on whether promptable representations pro-
duced by prompting VLMs to focus on task-specific details can serve as an effective target for latent
action learning in the presence of distractors. Using Distracting MetaWorld as our main environment,
we begin from a simple demonstration experiment, showing that limitations of LAM can be mitigated
with the right target. We further conduct large-scale benchmarking of different VLMs to assess
their effectiveness at providing promptable representations. Finally, using the best setup found, we
demonstrate that without any supervision, promptable representations can significantly improve latent
action quality and downstream performance, increasing success rate six-fold.

2 Background

Problem setting. We consider a setting of offline imitation learning from observation [15, 16],
which closely matches the regime increasingly utilized by the field of embodied AI [8, 4, 3] (e.g.
robotics). Our goal is to pre-train a policy π(o|a), given a large dataset of expert trajectories
D := {(oni )}τi=1, containing observations but not actions (e.g. videos), and a limited number of real
action labels. Ideally, the pre-trained agent should achieve maximum performance (e.g. success rate)
in the environment after fine-tuning with a minimum amount of action-labeled data. The commonly
considered ratio of labeled to unlabeled data is around 2− 10% in the existing work [17, 11], while
in our experiments, we consider a ratio as low as < 1%.

Latent action models. Given the dataset of observations D := {(oni )}τi=1, latent action models
(LAM) [18, 19, 1] try to infer latent actions zt such that they are maximally predictive of observed
transitions (ot, ot+1) while being minimal [1], i.e. describe changes only relevant to control. After
pre-training, LAM is used to supply latent actions for imitation learning on unlabeled dataset to obtain
useful behavioral priors. As a final stage, small decoder is trained to map from latent to ground-truth
actions on a small number of labels.

Modern LAMs [6, 2, 20, 21, 9, 10] mostly follow the same high-level architecture introduced by
LAPO [1], which uses a combination of inverse (IDM) and forward (FDM) dynamics models to
infer latent actions. Given a transition (ot, ot+1), IDM first infers latent action zt ∼ fIDM(·|ot, ot+1),
which FDM further uses to predict the next observation ôt+1 ∼ fFDM(·|ot, zt). Both models are
trained jointly to minimize the loss LMSE = E(ot,ot+1)∼D

[
∥fFDM(fIDM(ot,ot+1),ot)− ot+1∥2

]
.

Limitations of latent action models. Recent studies highlighted LAM failure when action-correlated
distractors are present [11, 22, 12]. While they can recover ground-truth actions when only control-
lable changes are present, real-world videos typically involve both controllable factors and exogenous
noise (e.g., people moving in the background). In such cases, LAMs cannot disentangle the dynamics,
leading latent actions to primarily capture noise, which makes them useless for imitation learning.
Both Nikulin et al. [11], Zhang et al. [12] proposed providing supervision with a small number of true
actions during LAM training to help identify controllable changes. While this solution is effective, it
is not generalizable, as in many domains, such as egocentric human videos [23], it is not possible to
obtain true actions in a reasonable way.
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3 Experimental Setup

Environments and datasets. In contrast to Nikulin et al. [11], we use MetaWorld Multi-Task 10
[24] as our primary benchmark, as it provides greater realism than Distracting Control [25], while
being lightweight enough to allow experimentation with VLMs under limited resources. We modify
MetaWorld to include distracting dynamics videos in the background, using the same DAVIS videos
as in Nikulin et al. [11]. We also move the default camera position farther back to include more of the
background video in the observation, making latent action learning more challenging. See Figure 1
for a visualization.

Figure 1: Visualization of observations
with and without distractors in our modi-
fication of MetaWorld environment.

We follow the standard three-stage pipeline [1, 2, 11]: (1)
pre-train the LAM, (2) train BC on latent actions, and
(3) train a decoder head on a small number of true-action
labels. For each task, we collect 5k trajectories from the
scripted experts provided by MetaWorld and up to 16
additional labeled trajectories for the final stage, which is
less than 1% of the full datasets.

Evaluation. For evaluation, we follow standard metrics
similar to Nikulin et al. [11]: linear probing and success
rate. Specifically, we train linear probes to predict real
actions from the latent ones during LAM training, while stopping the gradient through the latent
actions. The final MSE serves as our quality metric, as it indicates whether the latent actions encode
the real ones. This metric is also used for hyperparameter tuning, which may be impractical in
real-world settings but allows us to estimate the upper-bound performance of each method for fair
comparison.

However, as Nikulin et al. [11] notes, linear probing has a key limitation: it can reveal whether true
actions are present in the latent space, but it does not guarantee minimality, meaning that exogenous
noise may still be encoded. To preserve this guarantee, we fix the latent action dimensionality to 128
for all methods, which at least allows us to rank quality under equal information bottleneck. Finally,
to measure the true usefulness of latent actions, we evaluate the success rate in the environments after
fine-tuning on true action labels.

Promptable representations. We follow the Chen et al. [13] and define promptable representations
simply as a process of obtaining observation embeddings from the VLMs given a task-specific prompt
and some extraction and aggregation strategy. We obtain such representations from the last and
next-to-last layers [13]. In contrast to the Chen et al. [13], Huang et al. [14] we cannot learn pooling
from the data to better predict true actions or obtain better reward. Thus, we experiment only with
simple fixed strategies such as taking the mean over all embeddings or taking only the embedding of
the last token from either prompt or the generated answer.

Latent action model architecture. We use the architecture proposed by Schmidt and Jiang [1],
omitting action quantization, due to its harmful effect [11, 26, 27]. We use frame stacking, but only
in IDM, while FDM uses only the current frame to predict the next, as in Chen et al. [9]. Other
than that, in our main experiments, we do not use any improvements upon LAPO (if not explicitly
stated otherwise), such as augmentations or multi-step predictions in FDM [11, 9, 2, 20], to remove
possible confounders on latent action quality. When predicting in the latent space instead of images,
we follow Nikulin et al. [11] and use multiple MLP blocks similar to those used in Transformers [28].
For action decoder head, we use a small three-layer MLP. See Appendix C for hyperparameters used.

4 The Importance of Right Target

We begin with a demonstration experiment to show that the limitation of LAMs in the presence of
distractors arises entirely from the poor target used in the forward dynamics model (FDM), rather than
from any flaw in the overall idea or architecture. By LAM construction, latent actions are optimized
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Figure 2: Demonstration that quality of latent actions learned by LAPO completely degrades in the
presence of distractors, which results in almost zero success rate. We show that with the ideal target
for FDM, which perfectly disentangles controllable features from the noise, performance may be
restored, serving as a main motivation for us to explore promptable representations. We use three
random seeds and report IQM and 95%-CI based on stratified bootstrapping, following the Agarwal
et al. [29]. See Section 4 for details.

to maximally explain the dynamics. Therefore, the root of the failure to recover true actions lies in
the dynamics we predict, which is directly determined by the target in FDM: ôt+1 ∼ fFDM(·|ot, zt).
What would be the ideal target for FDM? And if it exists, what would be the final performance?
Could LAM recover the ground-truth actions despite distractors in the input observations to IDM and
FDM? If not, the idea with promptable representations would be impractical.

To answer these questions we construct a special dataset with twin observations for each task: during
data collection we render and save same observation with and without distractors. Next, during
training we feed observations with distractors as inputs to IDM and FDM, but as the target for FDM
we use next observation without distractors. As the actual controllable changes are preserved (the
underlying state is the true next state), it serves as a target with ideal disentanglement of controllable
features from exogenous noise (see Figure 1). To show that existing limitations are agnostic to the
architecture of FDM and IDM, we explore both ResNet [1] and spatio-temporal transformer [6, 2]
backbones.
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Figure 3: Baseline LAPO ac-
tion probes on MT10. Aver-
aged over 3 random seeds.

Results. First of all, as can be seen in Figure 3, we confirm that in our
domain simply adding distractors results in complete degradation of
latent actions quality regardless of backbone used. This subsequently
leads to almost zero success rate after fine-tuning on true actions
(see Figure 2c), which does not happen without distractors. Ideally,
probes should be close to each other, as real underlying actions are
identical between both settings.

Next, in Figures 2a and 2b we show the effect of using perfect
targets during LAPO training (with -Twin postfix). To better illus-
trate the trend, in Figure 2a we report the ratio of probes with and
without distractors for each method. With the ideal target probes
immediately drop to the level of LAPO without distractors, and
ratio converges to one. To our surprise, it is in fact possible to get
even better result, as LAPO-ResNet achieves ratio below one, i.e.
outperforming LAPO-ResNet without distrators. We attribute this to
the implicit augmentation effect of distractors. Finally, improvement
in latent action quality directly results in leveling success rates (see
Figure 2c).

Overall, we confirm that the right target is key to unlock latent action learning in the presence of
distractors. Although these experiments may seem obvious in hindsight, they allow us to convey
a key empirical observation about latent action learning, one that provides the same intuition that
originally led us to explore promptable representations.
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Figure 4: Benchmarking the effectiveness of promptable representations provided by different VLMs
for latent action learning on all tasks from MT10. Results aggregated over ∼ 14k experiments.
Overall, all VLMs provide some improvement over LAPO, with Molmo performing the best and
Gemma-3 the worst. For details and exact experimental protocol see Section 5. We additionally
provide the ranking for each combination of hyperparameters in the Figure 5.

5 The Promise of Promptable Representations

Our main hypothesis is that VLMs, due to their common-sense reasoning abilities, can serve as an
effective unsupervised way of obtaining clean observation representations, which would disentangle
controllable features from the noise. As we demonstrated in the previous section, it would be enough
to unlock latent action learning in the presence of distractors.

We have no doubt that most modern VLMs would easily identify the robotic arm location in the
image (like Figure 1) and describe it in detail, even in the presence of background noise. However, the
ability to generate valid text does not necessarily imply that the underlying embeddings are suitable
for our purposes. For a representation to serve as an effective target for LAM, it should (1) contain
task-centric visual information, (2) be minimal by filtering out visual details irrelevant to the prompt,
and (3) remain consistent across dynamics to mimic changes caused by real actions. Unfortunately,
current VLMs are known to struggle with visual focus [30, 31] and pixel-level understanding [32, 33].
Given these limitations, we begin by benchmarking a wide variety of modern VLMs to assess their
viability, conducting ∼ 14k experiments in total. Based on this benchmark, we then select the most
effective VLM along with the best hyperparameters (e.g., prompt, aggregation strategy, and others).

Proper way to evaluate VLMs via small scale experiments. Conducting large scale VLMs
evaluation on the full datasets would be prohibitively expensive. Chen et al. [13] proposed assessing
prompts via linear probing on small datasets, for example by asking whether task-relevant entities
are present in the image and measuring probe accuracy. While feasible, this approach is suboptimal
in our setting. Probing representations to predict real actions may help rank prompts for a single
VLM, but it cannot reliably compare across multiple VLMs or hyperparameters, since probing
does not capture the minimality of representations, an essential property for LAMs. Instead, we
directly train LAPO+VLM on a small subset of trajectories, e.g. 64 instead of full 5k, and measure
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Action probe

(Do not describe background features. Focus on the robot arm and the [task obj]., -2, mean, prompt)
(Do you see a robot gripper?, -2, mean, prompt)

(Point to the robotic arm gripper., -2, mean, prompt)
(Point to where I should grasp to accomplish the following task - [task] ., -2, mean, prompt)

(Robot [doing task] on a table., -2, mean, prompt)
(Is there [task obj] and a robot in the image?, -2, mean, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, mean, prompt)
(Segment a robot., -2, mean, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, mean, prompt)
(Point to the robotic arm gripper., -1, mean, prompt)

(Point to where I should grasp to accomplish the following task - [task] ., -1, mean, prompt)
(Is there [task obj] and a robot in the image?, -1, mean, prompt)

(Do not describe background features. Focus on the robot arm and the [task obj]., -1, mean, prompt)
(Segment a robot., -1, mean, prompt)

(Do you see a robot gripper?, -1, mean, prompt)
(Robot [doing task] on a table., -1, mean, prompt)

(Do not describe background features. Focus on the robot arm and the [task obj]., -1, last, prompt)
(Point to where I should grasp to accomplish the following task - [task] ., -1, last, prompt)

(Do not describe background features. Focus on the robot arm and the [task obj]., -2, last, prompt)
(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, last, prompt)

(Robot [doing task] on a table., -1, last, prompt)
(Segment a robot., -1, last, prompt)

(Robot [doing task] on a table., -2, last, prompt)
(Do you see a robot gripper?, -2, last, prompt)

(Point to the robotic arm gripper., -2, last, prompt)
(Do you see a robot gripper?, -1, last, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, last, prompt)
(Point to the robotic arm gripper., -1, last, prompt)

(Point to where I should grasp to accomplish the following task - [task] ., -2, last, prompt)
(Is there [task obj] and a robot in the image?, -1, last, prompt)

(Segment a robot., -2, last, prompt)
(Is there [task obj] and a robot in the image?, -2, last, prompt)

(Is there [task obj] and a robot in the image?, -1, mean, output)
(Is there [task obj] and a robot in the image?, -2, mean, output)

(Do you see a robot gripper?, -1, mean, output)
(Point to the robotic arm gripper., -1, mean, output)

(Do you see a robot gripper?, -2, mean, output)
(Point to where I should grasp to accomplish the following task - [task] ., -1, mean, output)

(Do you see a robot gripper?, -1, last, output)
(Robot [doing task] on a table., -2, mean, output)
(Robot [doing task] on a table., -1, mean, output)

(Point to the robotic arm gripper., -2, mean, output)
(Point to where I should grasp to accomplish the following task - [task] ., -2, mean, output)

(Do you see a robot gripper?, -2, last, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -1, mean, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, mean, output)
(Segment a robot., -1, mean, output)

(Do not describe background features. Focus on the robot arm and the [task obj]., -2, mean, output)
(Segment a robot., -2, mean, output)

(Is there [task obj] and a robot in the image?, -1, last, output)
(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, mean, output)

(Is there [task obj] and a robot in the image?, -2, last, output)
(Point to where I should grasp to accomplish the following task - [task] ., -1, last, output)

(Point to the robotic arm gripper., -1, last, output)
(Point to where I should grasp to accomplish the following task - [task] ., -2, last, output)

(Point to the robotic arm gripper., -2, last, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -1, last, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, last, output)
(Robot [doing task] on a table., -1, last, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, last, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -2, last, output)

(Robot [doing task] on a table., -2, last, output)
(Segment a robot., -1, last, output)
(Segment a robot., -2, last, output)

Figure 5: Action probe rankings across all explored hyperparameter combinations. Reported values
are averaged over all VLMs, tasks, and settings (with and without distractors).

the resulting latent action quality. We validated that hyperparameter rankings obtained in this way
transfer reasonably well to the full dataset, although probes can have different values.

Results. We summarize our benchmarking results in Figure 4 and provide full per-hyperparameter
rankings in Figure 5. For each VLM, we evaluated eight prompt variants designed in different styles
to exploit diverse VLM capabilities (e.g., CLIP-style captions, pointing, segmentation; see Table 1 in
Appendix B). We further varied the source of representations (last vs. next-to-last layer, prompt vs.
generated embeddings) and the aggregation strategy (averaging vs. last non-padding token). This
yields 64 runs per VLM, per task, per dataset, amounting to roughly 14k experiments in total. The full
list of VLMs, including exact model names, sizes, and prompt templates, is provided in Appendix B.

As can be seen in Figure 4a, overall all VLMs provide some degree of improvement over LAPO in
terms of the median action probe. However, some of them, especially Molmo [34], are generally
preferable and have lower variance, indicating higher robustness to different hyperparameters. In
Figure 4b we visualize ranking by aggregating best scores for each task. While this changes ranking
a bit, we still observe that Gemma-3 [35] is the worst and Molmo [34] is consistently the best.
Based on Figure 5, we observe that in general, promptable representations aggregated by averaging
next-to-last layer prompt embeddings perform the best. Ironically1, the best prompt is Do not describe
background features. Focus on the robot arm and the [task-obj], which explicitly asks VLM to filter
out distractors.

This brings us to a striking conclusion that state-of-the-art VLMs do not necessarily provide better
promptable representations. For example, InstructBLIP [36] outperforms both Gemma-3 [35] and
Pixtral [37], despite being considerably older. Furthermore, Cosmos-Reason [38] results indicate
that explicit fine-tuning on robotics data is not sufficient to guarantee improved representations. We
believe that our results, besides relevance to latent action learning, reveal a large blind spot in how
VLMs are currently evaluated, with critical implications for robotics and Vision-Language Action
(VLA) models.

6 Promptable Representations Unlock Task-Centric Latent Actions

Based on the benchmark results (see Figure 4), we selected Molmo as our primary VLM for further
experiments. Although it achieved the lowest median action probe on the small datasets, it remains

1This result is the main inspiration for the paper epigraph.
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Figure 6: Action probes comparison for LAPO and LAPO+VLM (Molmo) on full datasets for
all tasks in MT10. Results are averaged over three random seeds. As can be seen, LAPO+VLM
significantly improves upon LAPO in terms of the latent actions quality, and without any supervision
closes the gap with LAPO without distractors. For resulting success rates see Figure 7.

necessary to validate whether this performance transfers to the full 5k datasets and yields improved
success rates, as this is not guaranteed [11]. We chose the best hyperparameters for Molmo and
trained LAPO+VLM on the full datasets, using three random seeds. As this work is preliminary, we
currently report results only with a ResNet backbone.
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Figure 7: Success rate on MT10
for LAPO and LAPO+VLM (Molmo),
which uses promptable representations.
We use three random seeds and report
IQM and 95%-CI based on stratified
bootstrapping, following the Agarwal
et al. [29].

Results. We present the resulting action probes for each
task in Figure 6 and final success rates after fine-tuning on
16 trajectories with real actions in Figure 7. LAPO+VLM
achieves a substantial improvement in latent action qual-
ity, both with and without distractors. With distractors, it
nearly closes the gap to LAPO trained without distractors,
while without distractors it even slightly outperforms it.
Crucially, this improvement carries over to downstream
performance: success rates increase by a factor of six in the
presence of distractors, while remaining unchanged with-
out them. These results confirm the viability of promptable
representations as a clean target for latent action modeling
under distracting conditions.

7 Conclusion

In this work, we demonstrated that promptable represen-
tations provided by Vision-Language Models can effec-
tively filter out action-correlated distractors, enabling task-
centric latent actions. Our experiments on the Distracting MetaWorld benchmark confirmed that
using task-centric promptable representations as targets for LAPO substantially improves both latent
action quality and downstream success rates. We hope that our results will inspire the community
to explore promptable representations at scale for the next generation of Vision-Language-Action
models.
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Figure 8: Aggregation over all hyperparameters for each task in MT10.
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Figure 9: Probe values for best hyperparameters for each task in MT10.
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Action probe

(Segment a robot., -2, mean, prompt)
(Point to the robotic arm gripper., -2, mean, prompt)

(Robot [doing task] on a table., -2, mean, prompt)
(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, mean, prompt)

(Point to where I should grasp to accomplish the following task - [task] ., -2, mean, prompt)
(Is there [task obj] and a robot in the image?, -2, mean, prompt)

(Do you see a robot gripper?, -2, mean, prompt)
(Point to where I should grasp to accomplish the following task - [task] ., -1, mean, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, last, prompt)
(Point to where I should grasp to accomplish the following task - [task] ., -1, last, prompt)

(Point to the robotic arm gripper., -2, mean, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -1, mean, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, mean, prompt)
(Do not describe background features. Focus on the robot arm and the [task obj]., -2, mean, prompt)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, last, prompt)
(Do not describe background features. Focus on the robot arm and the [task obj]., -2, last, prompt)
(Do not describe background features. Focus on the robot arm and the [task obj]., -1, last, prompt)

(Is there [task obj] and a robot in the image?, -1, mean, prompt)
(Point to the robotic arm gripper., -1, mean, output)

(Robot [doing task] on a table., -2, last, prompt)
(Do you see a robot gripper?, -1, mean, prompt)

(Is there [task obj] and a robot in the image?, -1, last, prompt)
(Robot [doing task] on a table., -1, mean, prompt)

(Robot [doing task] on a table., -1, last, prompt)
(Do you see a robot gripper?, -1, last, prompt)
(Do you see a robot gripper?, -2, last, prompt)

(Point to where I should grasp to accomplish the following task - [task] ., -2, last, prompt)
(Point to the robotic arm gripper., -1, last, prompt)

(Point to where I should grasp to accomplish the following task - [task] ., -1, mean, output)
(Point to the robotic arm gripper., -1, mean, prompt)

(Is there [task obj] and a robot in the image?, -2, last, prompt)
(Point to where I should grasp to accomplish the following task - [task] ., -2, mean, output)

(Segment a robot., -2, mean, output)
(Segment a robot., -2, last, prompt)

(Segment a robot., -1, mean, prompt)
(Segment a robot., -1, last, prompt)
(Segment a robot., -2, last, output)

(Point to where I should grasp to accomplish the following task - [task] ., -2, last, output)
(Point to the robotic arm gripper., -2, last, prompt)

(Segment a robot., -1, mean, output)
(Point to where I should grasp to accomplish the following task - [task] ., -1, last, output)

(Segment a robot., -1, last, output)
(Do you see a robot gripper?, -1, mean, output)

(Is there [task obj] and a robot in the image?, -1, mean, output)
(Robot [doing task] on a table., -2, mean, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, mean, output)
(Do you see a robot gripper?, -2, mean, output)

(Do not describe background features. Focus on the robot arm and the [task obj]., -1, mean, output)
(Robot [doing task] on a table., -1, mean, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, mean, output)
(Is there [task obj] and a robot in the image?, -2, mean, output)

(Do not describe background features. Focus on the robot arm and the [task obj]., -2, mean, output)
(Point to the robotic arm gripper., -2, last, output)
(Point to the robotic arm gripper., -1, last, output)

(Do you see a robot gripper?, -2, last, output)
(Is there [task obj] and a robot in the image?, -1, last, output)
(Is there [task obj] and a robot in the image?, -2, last, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -2, last, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -2, last, output)

(The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?, -1, last, output)
(Robot [doing task] on a table., -2, last, output)

(Do you see a robot gripper?, -1, last, output)
(Do not describe background features. Focus on the robot arm and the [task obj]., -1, last, output)

(Robot [doing task] on a table., -1, last, output)

Figure 10: Action probes ranking for all combinations of hyperparameters explored for Molmo VLM.
Values are averaged over all tasks and settings, e.g. with and without distractors.
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B Vision-Language Models Details

Table 1: Prompt templates used in our experiments. We adapt them to each task by inserting
information relevant to the task. All VLMs explored share the same prompts per task.

Prompt
The robot task is to [task]. Briefly, what is the next logical action for the robotic arm?
Do not describe background features. Focus on the robot arm and the [task-obj].
Do you see a robot gripper?
Is there [task-obj] and a robot in the image?
Robot [doing task] on a table.
Point to the robotic arm gripper.
Point to where I should grasp to accomplish the following task - [task].
Segment a robot.

Table 2: Exact HuggingFace IDs for all VLMs we used. We shortened their names in Figures to save
some space.

Name HuggingFace ID
InstructBLIP Salesforce/instructblip-vicuna-7b
Molmo allenai/Molmo-7B-D-0924
Gemma-3 google/gemma-3-12b-it
Llama-3.2 unsloth/Llama-3.2-11B-Vision-Instruct
Qwen2.5-VL Qwen/Qwen2.5-VL-7B-Instruct
InternVL3 OpenGVLab/InternVL3-8B
Cosmos-Reason nvidia/Cosmos-Reason1-7B
Phi-4 microsoft/Phi-4-multimodal-instruct
LLaVA-OneVision llava-hf/llava-onevision-qwen2-7b-ov-hf
SmolVLM HuggingFaceTB/SmolVLM2-2.2B-Instruct
Pixtral mistral-community/pixtral-12b
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C Hyperparameters

Table 3: LAPO-ResNet hyperparameters. Names are exactly follow the configuration files used in
code.

Part Parameter Value

General

frame stack 4
probe learning rate 0.0003
disable distractors True
seed 0
eval seed 0
eval episodes 50

Latent action learning

latent action dim 128
idm encoder scale 5
idm encoder num res blocks 1
idm encoder channels [16, 16, 32, 32, 128, 128, 256]
fdm encoder scale 1
fdm encoder num res blocks 1
fdm encoder channels [16, 16, 32, 32, 128, 128, 256]
num epochs 10
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 1
grad norm -

Latent behavior cloning

num epochs 10
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 0
encoder scale 5
encoder num res blocks 1
encoder channels [16, 16, 32, 32, 128, 128, 256]

Latent actions decoding

total updates 100000
batch size 64
learning rate 0.001
hidden dim 128
num labeled trajectories [16, 8, 2, 4]
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Table 4: LAPO-Trans hyperparameters. Names exactly follow the configuration files used in code.

Part Parameter Value

General

frame stack 4
probe learning rate 0.0003
disable distractors True
seed 0
eval seed 0
eval episodes 50

Latent action learning

latent action dim 128
patch size 32
fdm use cross attn False
idm hidden dim 896
idm num layers 4
idm num heads 16
fdm hidden dim 256
fdm num layers 4
fdm num heads 8
normalize qk False
pre norm True
num epochs 10
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 1
grad norm -

Latent behavior cloning

num epochs 10
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 0
encoder scale 5
encoder num res blocks 1
encoder channels [16, 16, 32, 32, 128, 128, 256]

Latent actions decoding

total updates 100000
batch size 64
learning rate 0.001
hidden dim 128
num labeled trajectories [16, 8, 2, 4]
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Table 5: LAPO+VLM hyperparameters. Names exactly follow the configuration files used in code.

Part Parameter Value

General

frame stack 4
probe learning rate 0.0003
disable distractors True
seed 0
eval seed 0
eval episodes 50

VLM (example)

type molmo
prompt Point to the robotic arm gripper.
layer 27
target output
reduce strategy mean

Latent action learning

latent action dim 128
idm encoder scale 5
idm encoder num res blocks 1
idm encoder channels [16, 16, 32, 32, 128, 128, 256]
fdm hidden dim 1024
fdm num layers 4
fdm expand 4
num epochs 200
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 1
grad norm -

Latent behavior cloning

num epochs 10
batch size 64
learning rate 0.0001
weight decay 0.0
warmup epochs 0
encoder scale 5
encoder num res blocks 1
encoder channels [16, 16, 32, 32, 128, 128, 256]

Latent actions decoding

total updates 100000
batch size 64
learning rate 0.001
hidden dim 128
num labeled trajectories [16, 8, 2, 4]
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