
Volley Revolver: A Novel Matrix-Encoding Method
for Privacy-Preserving Neural Networks (Inference)

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work, we present a novel matrix-encoding method that is particularly1

convenient for neural networks to make predictions in a privacy-preserving manner2

using homomorphic encryption. Based on this encoding method, we implement a3

convolutional neural network for handwritten image classification over encryption.4

For two matrices A and B to perform homomorphic multiplication, the main idea5

behind it, in a simple version, is to encrypt matrix A and the transpose of matrix6

B into two ciphertexts respectively. With additional operations, the homomorphic7

matrix multiplication can be calculated over encrypted matrices efficiently. For8

the convolution operation, we in advance span each convolution kernel to a matrix9

space of the same size as the input image so as to generate several ciphertexts,10

each of which is later used together with the ciphertext encrypting input images11

for calculating some of the final convolution results. We accumulate all these12

intermediate results and thus complete the convolution operation.13

In a public cloud with 40 vCPUs, our convolutional neural network implementation14

on the MNIST testing dataset takes ∼ 287 seconds to compute ten likelihoods of15

32 encrypted images of size 28× 28 simultaneously. The data owner only needs to16

upload one ciphertext (∼ 19.8 MB) encrypting these 32 images to the public cloud.17

1 Introduction18

Machine learning applied in some specific domains such as health and finance should preserve privacy19

while processing private or confidential data to make accurate predictions. In this study, we focus on20

privacy-preserving neural network inference, which aims to outsource a well-trained inference model21

to a cloud service in order to make predictions on private data. For this purpose, the data should22

be encrypted first and then sent to the cloud service that should not be capable of having access to23

the raw data. Compared to other cryptology technologies such as Secure Multi-Party Computation,24

Homomorphic Encryption (HE) provides the most stringent security for this task.25

Combining HE with Convolutional Neural Networks (CNN) inference has been receiving more26

and more attention in recent years since Gilad-Bachrach et al. [6] proposed a framework called27

Cryptonets. Cryptonets applies neural networks to make accurate inferences on encrypted data28

with high throughput. Chanranne et al. [2] extended this work to deeper CNN using a different29

underlying software library called HElib [7] and leveraged batch normalization and training process30

to develop better quality polynomial approximations of the ReLU function for stability and accuracy.31

Chou et al. [4] developed a pruning and quantization approach with other deep-learning optimization32

techniques and presented a method for encrypted neural networks inference, Faster CryptoNets.33

Brutzkus et al. [1] developed new encoding methods other than the one used in Cryptonets for34

representing data and presented the Low-Latency CryptoNets (LoLa) solution. Jiang et al. [9]35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



proposed an efficient evaluation strategy for secure outsourced matrix multiplication with the help of36

a novel matrix-encoding method.37

Contributions In this study, our contributions are in three main parts:38

1. We introduce a novel data-encoding method for matrix multiplications on encrypted matrices,39

Volley Revolver, which can be used to multiply matrices of arbitrary shape efficiently.40

2. We propose a feasible evaluation strategy for convolution operation, by devising an efficient41

homomorphic algorithm to sum some intermediate results of convolution operations.42

3. We develop some simulated operations on the packed ciphertext encrypting an image dataset43

as if there were multiple virtual ciphertexts inhabiting it, which provides a compelling new44

perspective of viewing the dataset as a three-dimensional structure.45

2 Preliminaries46

Let “⊕” and “⊗” denote the component-wise addition and multiplication respectively between47

ciphertexts encrypting matrices and the ciphertext ct.P the encryption of a matrix P . Let I(m)
[i][j]48

represent the single pixel of the j-th element in the i-th row of the m-th image from the dataset.49

Homomorphic Encryption Homomorphic Encryption is one kind of encryption but has its char-50

acteristic in that over an HE system operations on encrypted data generate ciphertexts encrypting51

the right results of corresponding operations on plaintext without decrypting the data nor requiring52

access to the secret key. Since Gentry [5] presented the first fully homomorphic encryption scheme,53

tackling the over three decades problem, much progress has been made on an efficient data encoding54

scheme for the application of machine learning to HE. Cheon et al. [3] constructed an HE scheme55

(CKKS) that can deal with this technique problem efficiently, coming up with a new procedure56

called rescaling for approximate arithmetic in order to manage the magnitude of plaintext. Their57

open-source library, HEAAN, like other HE libraries also supports the Single Instruction Multiple Data58

(aka SIMD) manner [11] to encrypt multiple values into a single ciphertext.59

Given the security parameter, HEAAN outputs a secret key sk, a public key pk, and other public keys60

used for operations such as rotation. For simplicity, we will ignore the rescale operation and61

deem the following operations to deal with the magnitude of plaintext automatedly. HEAAN has the62

following functions to support the HE scheme:63

1. Encpk(m): For the public key pk and a message vector m, HEAAN encrypts the message m64

into a ciphertext ct.65

2. Decsk(ct): Using the secret key, this algorithm returns the message vector encrypted by the66

ciphertext ct.67

3. Add(ct1, ct2): This operation returns a new ciphertext that encrypts the message Decsk(ct1)68

⊕ Decsk(ct2).69

4. Mul(ct1, ct2): This procedure returns a new ciphertext that encrypts the message Decsk(ct1)70

⊗ Decsk(ct2).71

5. Rot(ct, l): This procedure generates a ciphertext encrypting a new plaintext vector obtained72

by rotating the the original message vector m encrypted by ct to the left by l positions.73

Database Encoding Method For brevity, we assume that the training dataset has n samples with74

f features and that the number of slots in a single ciphertext is at least n× f . A training dataset is75

usually organized into a matrix Z each row of which represents an example. Kim et al. [10] propose76

an efficient database encoding method to encrypt this matrix into a single ciphertext in a row-by-row77

manner. They provide two basic but important shifting operations by shifting 1 and f positions78

respectively: the incomplete column shifting and the row shifting. The matrix obtained from matrix79

Z by the incomplete column shifting operation is shown as follows:80

2



Z =


z[1][1] z[1][2] . . . z[1][f ]

z[2][1] z[2][2] . . . z[2][f ]

...
...

. . .
...

z[n][1] z[n][2] . . . z[n][f ]

 incomplete column shifting7−−−−−−−−−−−−−−→


z[1][2] z[1][3] . . . z[2][1]

z[2][2] z[2][3] . . . z[3][1]

...
...

. . .
...

z[n][2] z[n][3] . . . z[1][1]

 .
Han et al. [8] summarize another two procedures, SumRowVec and SumColVec, to compute the81

summation of each row and column respectively. The results of two procedures on Z are as follows:82

SumRowVec(Z) =


∑n
i=1 z[i][1]

∑n
i=1 z[i][2] . . .

∑n
i=1 z[i][f ]∑n

i=1 z[i][1]

∑n
i=1 z[i][2] . . .

∑n
i=1 z[i][f ]

...
...

. . .
...∑n

i=1 z[i][1]

∑n
i=1 z[i][2] . . .

∑n
i=1 z[i][f ]

 ,

SumColVec(Z) =


∑f
j=1 z[1][j]

∑f
j=1 z[1][j] . . .

∑f
j=1 z[1][j]∑f

j=1 z[2][j]

∑f
j=1 z[2][j] . . .

∑f
j=1 z[2][j]

...
...

. . .
...∑f

j=1 z[n][j]

∑f
j=1 z[n][j] . . .

∑f
j=1 z[n][j]

 .

We propose a new useful procedure called SumForConv to facilitate convolution operation for every83

image. Below we illustrate the result of SumForConv on Z taking the example that n and f are both84

4 and the kernel size is 3× 3:85

Z =

z[1][1] z[1][2] z[1][3] z[1][4]

z[2][1] z[2][2] z[2][3] z[2][4]

z[3][1] z[3][2] z[3][3] z[3][4]

z[4][1] z[4][2] z[4][3] z[4][4]

 SumForConv(·,3,3)7−−−−−−−−−−→

s[1][1] s[1][2] 0 0
s[2][1] s[2][2] 0 0

0 0 0 0
0 0 0 0

 ,
where s[i][j] =

∑i+2
p=i

∑j+2
q=j z[p][q] for 1 ≤ i, j ≤ 2. In the convolutional layer, SumForConv can help86

to compute some partial results of convolution operation for an image simultaneously.87

3 Technical details88

We introduce a novel matrix-encoding method called Volley Revolver, which is particularly89

suitable for secure matrix multiplication. The basic idea is to place each semantically-complete90

information (such as an example in a dataset) into the corresponding row of a matrix and encrypt91

this matrix into a single ciphertext. When applying it to private neural networks, Volley Revolver92

puts the whole weights of every neural node into the corresponding row of a matrix, organizes all the93

nodes from the same layer into this matrix, and encrypts this matrix into a single ciphertext.94

3.1 Encoding Method for Matrix Multiplication95

Suppose that we are given anm×nmatrixA and a n×pmatrixB and suppose to compute the matrix96

C of size m× p, which is the matrix product A ·B with the element C[i][j] =
∑n
k=1 a[i][k] × b[k][j]:97

A =


a[1][1] a[1][2] . . . a[1][n]

a[2][1] a[2][2] . . . a[2][n]

...
...

. . .
...

a[m][1] a[n][2] . . . a[m][n]

 , B =


b[1][1] b[1][2] . . . b[1][p]

b[2][1] b[2][2] . . . b[2][p]

...
...

. . .
...

b[n][1] b[n][2] . . . b[n][p]

 .
For simplicity, we assume that each of the three matrices A, B and C could be encrypted into98

a single ciphertext. We also make the assumption that m is greater than p, m > p. We will99

not illustrate the other cases where m ≤ p, which is similar to this one. When it comes to the100

homomorphic matrix multiplication, Volley Revolver encodes matrix A directly but encodes101

the padding form of the transpose of matrix B, by using two row-ordering encoding maps. For102

matrix A, we adopt the same encoding method that [9] did by the encoding map τa : A 7→ Ā =103

(a[1+(k/n)][1+(k%n)])0≤k<m×n. For matrix B, we design a very different encoding method from [9]104

for Volley Revolver : we transpose the matrix B first and then extend the resulting matrix in105

3



the vertical direction to the size m × n. Therefore Volley Revolver adopts the encoding map106

τb : B 7→ B̄ = (b[1+(k%n)][1+((k/n)%p)])0≤k<m×n, obtaining the matrix from mapping τb on B:107


b[1][1] b[1][2] . . . b[1][p]

b[2][1] b[2][2] . . . b[2][p]

...
...

. . .
...

b[n][1] b[n][2] . . . b[n][p]

 τb7−→



b[1][1] b[2][1] . . . b[n][1]

b[1][2] b[2][2] . . . b[n][2]

...
...

. . .
...

b[1][p] b[2][p] . . . b[n][p]

b[1][1] b[2][1] . . . b[n][1]

...
...

. . .
...

b[1][1+(m−1)%p] b[2][1+(m−1)%p] . . . b[n][1+(m−1)%p]


.

Homomorphic Matrix Multiplication We report an efficient evaluation algorithm for homomorphic108

matrix multiplication. This algorithm uses a ciphertext ct.R encrypting zeros or a given value such109

as the weight bias of a fully-connected layer as an accumulator and an operation RowShifter to110

perform a specific kind of row shifting on the encrypted matrix B̄. RowShifter pops up the first row111

of B̄ and appends another corresponding already existing row of B̄:112 

b[1][1] b[2][1] . . . b[n][1]

b[1][2] b[2][2] . . . b[n][2]

...
...

. . .
...

b[1][p] b[2][p] . . . b[n][p]

b[1][1] b[2][1] . . . b[n][1]

...
...

. . .
...

b[1][r] b[2][r] . . . b[n][r]


RowShifter(B̄)7−−−−−−−−−→



b[1][2] b[2][2] . . . b[n][2]

...
...

. . .
...

b[1][p] b[2][p] . . . b[n][p]

b[1][1] b[2][1] . . . b[n][1]

...
...

. . .
...

b[1][r] b[2][r] . . . b[n][r]

b[1][(r+1)%p] b[2][(r+1)%p] . . . b[n][(r+1)%p]


.

For two ciphertexts ct.A and ct.B̄, the algorithm for homomorphic matrix multiplication has p113

iterations. For the k-th iteration where 0 ≤ k < p there are the following four steps:114

Step 1. This step uses RowShifter on ct.B̄ to generate a new ciphertext ct.B̄1 and then com-115

putes the homomorphic multiplication between ciphertexts ct.A and ct.B̄1 to get the resulting116

product ct.AB̄1. When k = 0, in this case RowShifter just return a copy of the ciphertext ct.B̄.117

Step 2. In this step, the public cloud applies SumColVec on ct.AB̄1 to collect the summation of118

the data in each row of AB̄1 for some intermediate results, and obtain the ciphertext ct.D.119

Step 3. This step designs a special matrix F to generate a ciphertext ct.F for filtering out the120

redundancy element in D by one multiplication Mul(ct.F , ct.D), resulting the ciphertext ct.D1.121

Step 4. The ciphertext ct.R is then used to accumulate the intermediate ciphertext ct.D1.122

The algorithm will repeat Steps 1 to 4 for p times and finally aggregates all the intermediate cipher-123

texts, returning the ciphertext ct.C. Algorithm 1 shows how to perform our homomorphic matrix124

multiplication. Figure 1 describes a simple case for Algorithm 1 where m = 2, n = 4 and p = 2.125

The calculation process of this method, especially for the simple case where m = p, is intuitively126

similar to a special kind of revolver that can fire multiple bullets at once (The first matrix A is127

settled still while the second matrix B is revolved). That is why we term our encoding method128

"Volley Revolver". In the real-world cases where m mod p = 0, the operation RowShifter can129

be reduced to only need one rotation RowShifter = Rot(ct, n), which is much more efficient and130

should thus be adopted whenever possible. Corresponding to the neural networks, we can set the131

number of neural nodes for each fully-connected layer to be a power of two to achieve this goal.132

3.2 Homomorphic Convolution Operation133

In this subsection, we first introduce a novel but impractical algorithm to calculate the convolution134

operation for a single grayscale image of size h× w based on the assumption that this single image135

can happen to be encrypted into a single ciphertext without vacant slots left, meaning the number N136

of slots in a packed ciphertext chance to be N = h× w. We then illustrate how to use this method to137

compute the convolution operation of several images of any size at the same time for a convolutional138

layer after these images have been encrypted into a ciphertext and been viewed as several virtual139

4



Algorithm 1 Homomorphic matrix multiplication

Input: ct.A and ct.B̄ for A ∈ Rm×n, B ∈ Rn×p and B
Volley Revolver Encoding7−−−−−−−−−−−−−−−−→ B̄ ∈ Rm×n

Output: The encrypted resulting matrixs ct.C for C ∈ Rm×p of the matrix product A ·B
1: Set C ← 0 . C: To accumulate intermediate matrices
2: ct.C ← Encpk(C)
. The outer loop (could be computed in parallel)

3: for idx := 0 to p− 1 do
4: ct.T ← RowShifter(ct.B̄, p, idx)
5: ct.T ← Mul(ct.A, ct.T )
6: ct.T ← SumColVec(ct.T )

. Build a specifically-designed matrix to clean up the redundant values
7: Set F ← 0 . F ∈ Rm×n
8: for i := 1 to m do
9: F [i][(i+ idx)%n]← 1

10: end for
11: ct.T ← Mul(Encpk(F ), ct.T )

. To accumulate the intermediate results
12: ct.C ← Add(ct.C, ct.T )
13: end for
14: return ct.C

·
a0 a1 a2 a3 b0 b2 b4 b6

a4 a5 a6 a7 b1 b3 b5 b7

×

b0 b1

a0 a1 a2 a3 b2 b3

a4 a5 a6 a7 b4 b5

b6 b7

0 0 0 0

0 0 0 0

⊗
a0 a1 a2 a3 b0 b2 b4 b6

a4 a5 a6 a7 b1 b3 b5 b7

c0 = a0 · b0 + a1 · b2 + a2 · b4 + a3 · b6
c0 c0 c0 c0

c3 c3 c3 c3

c3 = a4 · b1 + a5 · b3 + a6 · b5 + a7 · b7

c0 0 0 0

0 c3 0 0

⊗
a0 a1 a2 a3 b1 b3 b5 b7

a4 a5 a6 a7 b0 b2 b4 b6

c1 = a0 · b1 + a1 · b3 + a2 · b5 + a3 · b7
c1 c1 c1 c1

c2 c2 c2 c2

c2 = a4 · b0 + a5 · b2 + a6 · b4 + a7 · b6

0 c1 0 0

c2 0 0 0

×

b0 b1

a0 a1 a2 a3 b2 b3

a4 a5 a6 a7 b4 b5

b6 b7

⊕
c0 0 0 0 0 c1 0 0

0 c3 0 0 c2 0 0 0

c0 c1 0 0

c2 c3 0 0

c0 c1

c2 c3

Encrypt

Encoding

R
o
t
(0)

R
o
t
(4)

SumColVec(·) Clean up the

redundant values

SumColVec(·) Clean up the

redundant values

⊕
⊕

Decoding

Decrypt

Figure 1: Our matrix multiplication algorithm with m = 2, n = 4 and p = 2

ciphertexts inhabiting this real ciphertext. For simplicity, we assume that the image is grayscale and140

that the image dataset can be encrypted into a single ciphertext.141

An impractical algorithm Given a grayscale image I of size h× w and a kernel K of size k × k142

with its bias k0 such that h and w are both greater than k, based on the assumption that this image143

can happen to be encrypted into a ciphertext ct.I with no more or less vacant slots, we present an144

efficient algorithm to compute the convolution operation. We set the stride size to the usual default145

value (1, 1) and adopt no padding technique in this algorithm.146

Before the algorithm starts, the kernel K should be called by an operation that we term147

Kernelspanner to in advance generate k2 ciphertexts for most cases where h ≥ 2 · k − 1 and148

w ≥ 2 · k − 1, each of which encrypts a matrix Pi for 1 ≤ i ≤ k2 , using a map to span the k × k149

kernel to a h×w matrix space. For a simple example that h = 4, w = 4 and k = 2, Kernelspanner150

5



generates 4 ciphertexts and the kernel bias k0 will be used to generate a ciphertext:151

[
k1 k2

k3 k4

]
Kernelspanner7−−−−−−−−−−→

Rk×k 7→k2·Rh×w

k1 k2 k1 k2

k3 k4 k3 k4

k1 k2 k1 k2

k3 k4 k3 k4

 ,
0 k1 k2 0

0 k3 k4 0
0 k1 k2 0
0 k3 k4 0

 ,
 0 0 0 0
k1 k2 k1 k2

k3 k4 k3 k4

0 0 0 0

 ,

[k0] 7→ Enc

k0 k0 k0 0
k0 k0 k0 0
k0 k0 k0 0
0 0 0 0

 .
0 0 0 0

0 k1 k2 0
0 k3 k4 0
0 0 0 0

 .
Our impractical homomorphic algorithm for convolution operation also needs a ciphertext ct.R to152

accumulate the intermediate ciphertexts, which should be initially encrypted by the kernel bias k0.153

This algorithm requires k × k iterations and the i-th iteration consists of the following four steps for154

1 ≤ i ≤ k2:155

Step 1. For ciphertexts ct.I and ct.Pi, this step computes their multiplication and returns the156

ciphertext ct.IPi = Mul(ct.I, ct.Pi).157

Step 2. To aggregate the values of some blocks of size k × k, this step applies the procedure158

SumForConv on the ciphertext ct.IPi, obtaining the ciphertext ct.D.159

Step 3. The public cloud generates a ciphertext encrypting a specially-designed matrix in order to160

filter out the garbage data in ct.D by one multiplication, obtaining a ciphertext ct.D̄.161

Step 4. In this step, the homomorphic convolution-operation algorithm updates the accumulator162

ciphertext ct.R by homomorphically adding ct.D̄ to it, namely ct.R = Add(ct.R, ct.D̄).163

Note that Steps 1–3 in this algorithm can be computed in parallel with k × k threads. We describe164

how to compute homomorphic convolution operation in Algorithm 2 in detail. Figure 2 describes a165

simple case for the algorithm where h = 3, w = 4 and k = 3.166

i11 i12 i13 i14

i21 i22 i23 i24

i31 i32 i33 i34

k1 k2 k3

k4 k5 k6

k7 k8 k9

k0

k0 k0 0 0

0 0 0 0

0 0 0 0

i11 i12 i13 i14

i21 i22 i23 i24

i31 i32 i33 i34

⊗

k1 k2 k3 0

k4 k5 k6 0

k7 k8 k9 0

c1 0 0 0

0 0 0 0

0 0 0 0

c1 = i11 · k1 + · · ·+ i33 · k9

i11 i12 i13 i14

i21 i22 i23 i24

i31 i32 i33 i34

⊗

0 k1 k2 k3

0 k4 k5 k6

0 k7 k8 k9

0 c2 0 0

0 0 0 0

0 0 0 0

c2 = i12 · k1 + · · ·+ i34 · k9

Input

Image Kernel

K
e
r
n
e
l
s
p
a
n
n
e
r
(·)

K
e
r
n
e
l
s
p
a
n
n
e
r
(·)

⊕

⊕

SumForConv(·)

SumForConv(·)

Output

Figure 2: Our convolution operation algorithm with h = 3, w = 4 and k = 3

Next, we will show how to make this impractical homomorphic algorithm work efficiently in real-167

world cases.168

6



Algorithm 2 Homomorphic convolution operation

Input: An encrypted Image ct.I for I ∈ Rh×w and a kernel K of size k × k with its bias k0

Output: The encrypted resulting image ct.Is where Is has the same size as I
. The Third Party performs Kernelspanner and prepares the ciphertext encrypting kernel bias

1: ct.S[i] ← Kernelspanner(K,h,w) . 1 ≤ i ≤ k2

2: Set Is ← 0 . Is ∈ Rh×w
3: for i := 1 to h− k + 1 do
4: for j := 1 to w − k + 1 do
5: Is[i][j]← k0

6: end for
7: end for
8: ct.Is ← Encpk(Is)
. So begins the Cloud its work

9: for i := 0 to k − 1 do
10: for j := 0 to k − 1 do
11: ct.T ← Mul(ct.I, ct.S[i×k+j+1])
12: ct.T ← SumForConv(ct.T )

. Design a matrix to filter out the redundant values
13: Set F ← 0 . F ∈ Rm×n
14: for hth := 0 to h− 1 do
15: for wth := 0 to w − 1 do
16: if (wth− i) mod k = 0 and wth+ k ≤ w and
17: (hth− j) mod k = 0 and hth+ k ≤ h then
18: F [hth][wth]← 1
19: end if
20: end for
21: end for
22: ct.T ← Mul(Encpk(F ), ct.T )

. To accumulate the intermediate results
23: ct.Is ← Add(ct.Is, ct.T )
24: end for
25: end for
26: return ct.Is

Encoding Method for Convolution Operation For simplicity, we assume that the dataset X ∈169

Rm×f can be encrypted into a single ciphertext ct.X , m is a power of two, all the images are170

grayscale and have the size h × w. Volley Revolver encodes the dataset as a matrix using the171

database encoding method [10] and deals with any CNN layer with a single formation. In most cases,172

h× w < f , if this happened, zero columns could be used for padding. Volley Revolver extends173

this database encoding method [10] with some additional operations to view the dataset matrix X as174

a three-dimensional structure.175

Algorithm 2 is a feasible and efficient way to calculate the secure convolution operation in an HE176

domain. However, its working-environment assumption that the size of an image is exactly the length177

of the plaintext, which rarely happens, is too strict to make it a practical algorithm, leaving this178

algorithm directly useless. In addition, Algorithm 2 can only deal with one image at a time due to179

the assumption that a single ciphertext only encrypts only one image, which is too inefficient for180

real-world applications.181

To solve these problems, Volley Revolver performs some simulated operations on the ciphertext182

ct.X to treat the two-dimensional dataset as a three-dimensional structure. These simulated opera-183

tions together could simulate the first continual space of the same size as an image of each row of the184

matrix encrypted in a real ciphertext as a virtual ciphertext that can perform all the HE operations.185

Moreover, the number of plaintext slots is usually set to a large number and hence a single ciphertext186

could encrypt several images. For example, the ciphertext encrypting the dataset X ∈ Rm×f could187

7



be used to simulate m virtual ciphertexts vcti for 1 ≤ i ≤ m, as shown below:188

Enc


I

(1)
[1][1] I

(1)
[1][2] . . . I

(1)
[h][w] 0 . . . 0

I
(2)
[1][1] I

(2)
[1][2] . . . I

(2)
[h][w] 0 . . . 0

...
...

. . .
...

...
. . .

...
I

(m)
[1][1] I

(m)
[1][2] . . . I

(m)
[h][w] 0 . . . 0

 −→



vEnc


I
(1)
[1][1]

. . . I
(1)
[1][w]

...
. . .

...
I
(1)
[h][1]

. . . I
(1)
[h][w]

 0 . . . 0

...
...

. . .
...

vEnc


I
(m)
[1][1]

. . . I
(m)
[1][w]

...
. . .

...
I
(m)
[h][1]

. . . I
(m)
[h][w]

 0 . . . 0


.

Similar to an HE ciphertext, a virtual ciphertext has virtual HE operations: vEnc, vDec, vAdd,189

vMul, vRescale, vBootstrapping and vRot. Except for vRot, others can be all inherited from the190

corresponding HE operations. The HE operations, Add, Mul, Rescale and Bootstrapping, result191

in the same corresponding virtual operations: vAdd, vMul, vRescale and vBootstrapping. The192

virtual rotation operation vRot is much different from other virtual operations: it needs two rotation193

operations over the real ciphertext. We only need to simulate the rotation operation on these virtual194

ciphertexts to complete the simulation. The virtual rotation operation vRot(ct, r), to rotate all the195

virtual ciphertexts dwelling in the real ciphertext ct to the left by r positions, has the following196

simulation result:197

Enc


vEnc

[
I
(1)
[1][1]

. . . I
(1)
[r/w][r%w]

I
(1)
[(r+1)/w][(r+1)%w]

. . . I
(1)
[h][w]

]
0 . . . 0

...
...

. . .
...

vEnc
[
I
(m)
[1][1]

. . . I
(m)
[r/w][r%w]

I
(m)
[(r+1)/w][(r+1)%w]

. . . I
(m)
[h][w]

]
0 . . . 0


↓ vRot(ct, r)

Enc


vEnc

[
I
(1)
[(r+1)/w][(r+1)%w]

. . . I
(1)
[h][w]

I
(1)
[1][1]

. . . I
(1)
[r/w][r%w]

]
0 . . . 0

...
...

. . .
...

vEnc
[
I
(m)
[(r+1)/w][(r+1)%w]

. . . I
(m)
[h][w]

I
(1)
[1][1]

. . . I
(m)
[r/w][r%w]

]
0 . . . 0

 .
To bring all the pieces together, we can use Algorithm 2 to perform convolution operations for198

several images in parallel based on the simulation virtual ciphertexts. The most efficient part of199

these simulated operations is that a sequence of operations on a real ciphertext results in the same200

corresponding operations on the multiple virtual ciphertexts, which would suffice the real-world201

applications.202

4 Privacy-preserving CNN Inference203

Limitations on applying CNN to HE Homomorphic Encryption cannot directly compute func-204

tions such as the ReLU activation function. We use Octave to generate a degree-three polynomial205

by the least square method and just initialize all the activation layers with this polynomial, leaving206

the training process to determine the coefficients of polynomials for every activation layer. Other207

computation operations, such as matrix multiplication in the fully-connected layer and convolution208

operation in the convolutional layer, can also be performed by the algorithms we proposed above.209

Neural Networks Architecture We adopt the same CNN architecture as [9] but with some different210

hyperparameters. Our encoding method Volley Revolver can be used to build convolutional neural211

networks as deep as it needs. However, in this case, the computation time will therefore increase212

and bootstrapping will have to be used to refresh the ciphertext, resulting in more time-consuming.213

Table 1 gives a description of our neural networks architecture on the MNIST dataset.214

5 Experimental Results215

We use C++ to implement our homomorphic CNN inference. Our complete source code is publicly216

available at https://anonymous.4open.science/r/HE-CNNinfer-ECA4/ .217

8

https://anonymous.4open.science/r/HE-CNNinfer-ECA4/


Table 1: Description of our CNN on the MNIST dataset
Layer Description
CONV 32 input images of size 28× 28, 4 kernels of size 3× 3, stride size of (1, 1)
ACT-1 x 7→ −0.00015120704 + 0.4610149 · x+ 2.0225089 · x2 − 1.4511951 · x3

FC-1 Fully connecting with 26× 26× 4 = 2704 inputs and 64 outputs
ACT-2 x 7→ −1.5650465− 0.9943767 · x+ 1.6794522 · x2 + 0.5350255 · x3

FC-2 Fully connecting with 64 inputs and 10 outputs

Database We evaluate our implementation of the homomorphic CNN model on the MNIST dataset218

to each time calculate ten likelihoods for 32 encrypted images of handwritten digits. The MNIST219

database includes a training dataset of 60 000 images and a testing dataset of 10 000, each image of220

which is of size 28× 28. For such an image, each pixel is represented by a 256-level grayscale and221

each image depicts a digit from zero to nine and is labeled with it.222

Building a model in the clear In order to build a homomorphic model, we follow the normal223

approach for the machine-learning training in the clear — except that we replace the normal ReLU224

function with a polynomial approximation: we (1) train our CNN model described in Table 1 with225

the MNIST training dataset being normalized into domain [0, 1], and then we (2) implement the226

well-trained resulting CNN model from step (1) using the HE library and HE programming.227

For step (1) we adopt the highly customizable library keras with Tensorflow, which provides us228

with a simple framework for defining our own model layers such as the activation layer to enact the229

polynomial activation function. After many attempts to obtain a decent CNN model, we finally get a230

CNN model that could reach a precision of 98.66% on the testing dataset. We store the weights of231

this model into a CSV file for the future use. In step (2) we use the HE programming to implement232

the CNN model, accessing its weights from the CSV file generated by step (1). We normalize the233

MNIST training dataset by dividing each pixel by the floating-point constant 255.234

Classifying encrypted inputs We implement our homomorphic CNN inference with the library235

HEAAN by [3]. Note that before encrypting the testing dataset of images, we also normalize the236

MNIST testing dataset by dividing each pixel by the floating-point constant 255, just like the normal237

procedure on the training dataset in the clear.238

Parameters.We follow the notation of [10] and set the HE scheme parameters for our implementment:239

∆ = 245 and ∆c = 220; slots = 32768; logQ = 1200 and logN = 16 to achieve a security level240

of 80−bits. (see [8, 9] for more details on these parameters).241

Result.We evaluate the performance of our implementation on the MNIST testing dataset of 10242

000 images. Since in this case Volley Revolver encoding method can only deal with 32 MNIST243

images at one time, we thus partition the 10 000 MNIST testing images into 313 blocks with the244

last block being padded zeros to make it full. We then test the homomorphic CNN inference on245

these 313 ciphertexts and finally obtain a classification accuracy of 98.61%. The processing of each246

ciphertext outputs 32 digits with the highest probability of each image, and it takes ∼ 287 seconds on247

a cloud server with 40 vCPUs. There is a slight difference in the accuracy between the clear and the248

encryption, which is due to the fact that the accuracy under the ciphertext is not the same as that under249

the plaintext. In order to save the modulus, a TensorFlow Lite model could be used to reduce the250

accuracy in the clear from float 32 to float 16. The data owner only uploads 1 ciphertext (∼ 19.8 MB)251

encrypting these 32 images to the public cloud while the model provider has to send 52 ciphertexts252

(∼ 1 GB) encrypting the weights of the well-trained model to the public cloud.253

6 Conclusion254

The encoding method we proposed in this work, Volley Revolver, is particularly tailored for255

privacy-preserving neural networks. There is a good chance that it can be used to assist the private256

neural networks training, in which case for the backpropagation algorithm of the fully-connected257

layer the first matrix A is revolved while the second matrix B is settled to be still.258

9



References259

[1] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.260

In International Conference on Machine Learning, pages 812–821. PMLR, 2019.261

[2] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel262

Prouff. Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint Arch.,263

2017:35, 2017.264

[3] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for265

arithmetic of approximate numbers. In International Conference on the Theory and Application266

of Cryptology and Information Security, pages 409–437. Springer, 2017.267

[4] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryp-268

tonets: Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953,269

2018.270

[5] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the271

forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.272

[6] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John273

Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and274

accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.275

[7] Shai Halevi and Victor Shoup. Helib design principles. Tech. Rep., 2020. https://github.276

com/homenc/HElib.277

[8] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic regression on278

homomorphic encrypted data at scale. In Proceedings of the AAAI Conference on Artificial279

Intelligence, volume 33, pages 9466–9471, 2019.280

[9] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix281

computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC282

Conference on Computer and Communications Security, pages 1209–1222, 2018.283

[10] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic regression284

model training based on the approximate homomorphic encryption. BMC medical genomics,285

11(4):83, 2018.286

[11] N.P. Smart and F. Vercauteren. Fully homomorphic simd operations. Cryptology ePrint Archive,287

Report 2011/133, 2011. https://ia.cr/2011/133.288

Checklist289

1. For all authors...290

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s291

contributions and scope? [Yes]292

(b) Did you describe the limitations of your work? [Yes]293

(c) Did you discuss any potential negative societal impacts of your work? [Yes]294

(d) Have you read the ethics review guidelines and ensured that your paper conforms to295

them? [Yes]296

2. If you are including theoretical results...297

(a) Did you state the full set of assumptions of all theoretical results? [Yes]298

(b) Did you include complete proofs of all theoretical results? [Yes]299

3. If you ran experiments...300

(a) Did you include the code, data, and instructions needed to reproduce the main experi-301

mental results (either in the supplemental material or as a URL)? [Yes]302

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they303

were chosen)? [Yes]304

10

https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://ia.cr/2011/133


(c) Did you report error bars (e.g., with respect to the random seed after running experi-305

ments multiple times)? [Yes]306

(d) Did you include the total amount of compute and the type of resources used (e.g., type307

of GPUs, internal cluster, or cloud provider)? [Yes]308

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...309

(a) If your work uses existing assets, did you cite the creators? [Yes]310

(b) Did you mention the license of the assets? [Yes]311

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]312

(d) Did you discuss whether and how consent was obtained from people whose data you’re313

using/curating? [Yes]314

(e) Did you discuss whether the data you are using/curating contains personally identifiable315

information or offensive content? [Yes]316

5. If you used crowdsourcing or conducted research with human subjects...317

(a) Did you include the full text of instructions given to participants and screenshots, if318

applicable? [N/A]319

(b) Did you describe any potential participant risks, with links to Institutional Review320

Board (IRB) approvals, if applicable? [N/A]321

(c) Did you include the estimated hourly wage paid to participants and the total amount322

spent on participant compensation? [N/A]323

A Appendix324

Optionally include extra information (complete proofs, additional experiments and plots) in the325

appendix. This section will often be part of the supplemental material.326

11


	Introduction
	Preliminaries
	Technical details
	Encoding Method for Matrix Multiplication
	Homomorphic Convolution Operation

	Privacy-preserving CNN Inference
	Experimental Results
	Conclusion
	Appendix

