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Abstract. Fully-Homomorphic Encryption (FHE) has been touted as
the ultimate solution for preserving user data privacy in Machine Learn-
ing as a Service (MLaaS) applications. Under this scheme, the server
never sees the user data in clear, but executes the ML model on en-
crypted data instead. Unfortunately, efficient FHE schemes only support
addition and multiplication operations, which cannot exactly represent
common activation functions in neural networks. Substituting activation
functions with polynomial approximations may cause significant output
deviations. In this paper, we propose ZonoPoly, an efficient algorithm
to compute guaranteed bounds on the maximum output deviation of
FHE neural networks. We implement our algorithm in the VeryDiff
framework by extending its zonotope-based reachability analysis prim-
itives to support high-degree polynomials. Experimental results show
that ZonoPoly produces approximately 3× tighter bounds than exist-
ing methods in most cases.

Keywords: Fully-homomorphic encryption · Privacy-preserving machine
learning · Neural network verification · Equivalence checking.

1 Introduction

The past decade has seen an increasing use of cloud computing services to run
large machine learning models, a product often referred to as Machine Learning
as a Service (MLaaS) [37]. On the one hand, MLaaS has the advantage of lifting
the high computational requirements of machine learning away from edge devices
and providing on-demand infrastructure for large-scale use cases. On the other
hand, MLaaS introduces privacy risks, as the user data is transferred to a third-
party server for processing.

While there are many ways to mitigate the privacy risk in MLaaS, including
anonymising the data prior to transmission, the most principled solution is Fully-
Homomorphic Encryption (FHE). This family of cryptographic primitives allows
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Fig. 1: In FHE-enabled MLaaS, the server operates on encrypted data.

a third party – the server – to execute a computer program on encrypted data,
without ever accessing the plaintext. After that, the still-encrypted output can
be sent back to the user, who decrypts it and recovers the plaintext output
(see Figure 1). With such FHE scheme, a MLaaS provider could offer fully-
confidential execution of arbitrary ML models.

In this light, the introduction of modern FHE schemes has rapidly sparked
interest in the feasibility of running large ML models and neural networks with
it [22]. In addition to the considerable computational overhead [12], a key chal-
lenge with FHE is that it imposes strict limitations on the operations that can
be performed on encrypted data [35]. For the most ML-friendly FHE schemes
like CKKS [11], these restrictions can go as far as allowing only the execution
of additions and multiplications, but not the non-linear activation functions of
neural networks like ReLU. Consequently, activation functions must be replaced
with approximating high-degree polynomials, often also requiring a retraining of
the network.

After a number of early attempts at training and fine-tuning neural networks
with quadratic and low-degree polynomial activations, the field has realised that
they degrade the accuracy of the model too much. As a result, the state of
the art solution is replacing each activation function in a neural network with a
high-degree polynomial approximation. Since higher-degree polynomials increase
FHE’s computational cost, an acceptable compromise between accuracy and
execution time needs to be found via repeated experimentation.

Attempts at computing verified error bounds between the original and mod-
ified network exist [28], but have not yet become mainstream.

In this paper, we present ZonoPoly, an efficient algorithm to compute ver-
ified error bounds between a neural network and its polynomial counterpart.
With it, we demonstrate that it is possible to derive tighter bounds on the error
of FHE polynomial approximations of neural networks, improving upon existing
approaches. We believe that our algorithm represents an important step towards
integrating neural network verification methods into the design of FHE-enabled
neural networks for ML-as-a-Service (MLaaS) applications.

More in detail, we make the following contributions to the state of the art:

– We propose ZonoPoly, a zonotope-based method capable of both synthe-
sizing neural networks with polynomial activation functions and computing
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verified bounds on the output difference between the original and polynomial
approximated networks.

– We implement our ZonoPoly algorithm in the VeryDiff framework, thus
extending its reachability analysis engine to support polynomial transforma-
tions.

– We compare ZonoPoly with LiGAR [28], the only existing formal method
baseline in this domain, and show that we can derive 3.37× tighter bounds
on average.

2 Background

For the sake of simplicity, we will assume that our ML model is a feedforward
neural network N : Rm → Rn with L fully-connected layers hl, such that N =
hL ◦ hL−1 ◦ · · · ◦ h1. Each layer hl has the following form:

hl(xl) = σ
(
Wlxl + bl

)
, (1)

where Wl is a matrix, bl a column vector, and σ(x) = max(x, 0) the element-wise
ReLU activation function. Our algorithm is – in principle – extensible to more
sophisticated neural architectures, but we leave that effort to future work (see
Section 5).

2.1 Fully-Homomorphic Encryption (FHE) Schemes

We define a homomorphic encryption scheme as follows.

Definition 1 (Homomorphic Encryption). Let E = (Gen,Enc,Dec) be an
encryption scheme, m1,m2 two plaintext messages, and g a function. Further
assume that m3 = g(m1,m2) is the result of applying function g to the plain-
text messages m1,m2, and c3 ≡ g(c1, c2) is the result of applying function g
on the corresponding cyphertexts c1 ≡ Enc(m1) and c2 ≡ Enc(m2). Then E is
homomorphic with respect to function g if we have Dec(c3) = m3.

Early attempts at creating a homomorphic scheme are limited to one oper-
ation g alone [3]. For example, the scheme in [32] supports only homomorphic
addition g(m1,m2) = m1 + m2, whereas RSA encryption [38] supports only
multiplication g(m1,m2) = m1m2. The first scheme that supports both ad-
dition and multiplication, while also allowing the computation of programs of
arbitrary depth, is by Gentry [20]. After that, the field has focused on leveraging
more efficient computational problems, i.e. Learning With Errors (LWE) [7] and
Ring Learning With Error (RLWE) [8], to reduce the computational overhead
of FHE.

Introduction of approximate FHE schemes like CKKS [11] has enabled prac-
tical execution of machine learning algorithms. Instead of representing individual
binary values, the CKKS scheme and its variants are able to manipulate vectors
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of real numbers m = (x1, x2, . . . , xn), which makes them more efficient for ma-
chine learning purposes [35]. The downside is that the results are not exact [15]:
for each homomorphic operation g, we have Dec(g(c1, c2)) = g(m1,m2) + η,
where the error term η depends on the user’s encryption key and the value of
the plaintext messages m1, m2. For the purpose of MLaaS, the error η can be
arbitrarily reduced by changing the parameters of the FHE scheme, at the cost
of increasing the computational overhead [1,6]. As such, we assume the intrinsic
encryption error η is negligible and focus on the error introduced by approxi-
mating activation functions by polynomials (see Section 2.2) in the remainder
of the paper.

2.2 Design of FHE Neural Networks

One of the main challenges in the execution of FHE neural networks is dealing
with activation functions, as they cannot be represented as a computational cir-
cuit of additions and multiplications [35]. Instead, early attempts try to replace
all activations with approximating low-degree polynomials, such as quadratic
activations [10,22,29]. Unfortunately, any polynomial activation of degree d ≥ 2
has unbounded derivatives, which cause gradient instability during training and
fine-tuning. Furthermore, reusing the original weights is not viable as the ap-
proximation error at each activation accumulates, yielding low overall predictive
accuracy [19].

Fig. 2: Polynomial approximations
quickly deviate to ±∞ outside of the
approximation interval.

A more recent approach consists
of keeping the trained model unmod-
ified and building close approxima-
tions pd(x) ≈ σ(x) of the activation
functions with high-degree polynomi-
als (d ≈ 100 or more) [26,27]. In
order to improve numerical stability,
some authors prefer to build approx-
imations in Chebyshev basis [39] or
employ custom hierarchical factorisa-
tions [25]. Still, these approximations
minimize the error for a specific in-
put range x ∈ [l, u], while becoming
increasingly worse outside of it (see
Figure 2). To our knowledge, the ex-
isting literature does not explore the problem of correctly estimating the ranges
[l, u]. Instead, most works seem to rely on symmetric ranges [−c,+c] and either
fix their width a priori (e.g. c = 3) [10,30] or use some unspecified empirical
approach to estimate its value (up to c = 50 for a CIFAR-10 model) [27,39].

Certified Design The only existing attempt at designing a FHE neural network
with formal guarantees is the LiGAR algorithm [28]. Its authors propose to
abstract the polynomial approximation error by injecting an additional symbolic
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input after every activation function. Then, they compute a certified bound on
the activation ranges [l, u], and estimate the numerical stability of the network
by computing its Lipschitz constant (for a definition see, e.g., [28]). With it,
they can optimize the polynomial degree of each activation to achieve a desired
output error bound.

Still, LiGAR employs relatively inefficient neural network verification tech-
niques, including parallel linear bounds for reachability analysis [45] and Lip-
schitz bounds for equivalence checking [40]. Furthermore, it simplifies the op-
timisation problem by replacing the objective function with an asymptotic ap-
proximation of its value [44]. Together, these factors cause LiGAR to yield very
conservative estimates, as we show in Section 4.3.

2.3 Equivalence Checking of ReLU Neural Networks

In this paper, we cast the problem of analysing the difference between polynomial
FHE networks and original ReLU networks as an equivalence checking problem.
Specifically, we are interested in the following definition of equivalence:

Definition 2 (ε-Equivalence). The neural networks N 1 and N 2 are equiva-
lent in the domain D according to norm ∥·∥p, if for any input x ∈ D we have
∥N 1(x)−N 2(x)∥p ≤ ε.

In general, checking the equivalence of two ReLU networks N 1 and N 2

is a coNP-complete problem [42]. As such, exact verification techniques, such
as mixed integer programming [23] and SMT solving [17], struggle to scale to
reasonably-sized networks. Popular alternatives use incomplete verification tech-
niques that over-approximate the set of outputs that are reachable from the input
domain D [33,34,43], as detailed in Section 2.4.

2.4 Zonotope-Based Reachability Analysis

In this paper, we use zonotopes [21,41,43] to represent reachable sets:

Definition 3 (Zonotope). A zonotope Z = (c, G) with n generators and di-
mension m is an affine transformation of the hypercube [−1, 1]n described by

Z = {x ∈ Rm | Gϵ+ c = x, ϵ ∈ [−1, 1]n} , (2)

where G ∈ Rm×n and c ∈ Rm are the generator matrix and center of the zono-
tope, respectively. The columns of G are called generators of the zonotope.

Affine Layers. A zonotope Z = (c, G) can be propagated through an affine
transformation x 7→ Ax + b without introducing any over-approximation. The
resulting zonotope Ẑ can be computed as

Ẑ = AZ + b = (Ac+ b, AG) . (3)
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Fig. 3: Zonotope propagation (black) over-approximates the reachable sets (gray)
at every layer. Differential verification keeps track of the explicit difference Z∆.

ReLU Layers. A zonotope Z = (c, G) cannot be propagated through a non-
linear function like ReLU without over-approximation [41]. More specifically,
assume that σ : R → R is a non-linear activation function. Also, assume that
σ is bounded in the interval domains Ii = [li, ui], 1 ≤ i ≤ m, such that ∀xi ∈
Ii : |αixi + βi − σ(xi)| ≤ γi for some αi, βi ∈ R and error bounds γi ∈ R. The
resulting over-approximated zonotope Ẑ becomes:

Ẑ = α⊙Z +β + γ ⊙ ϵ, ϵ ∈ [−1, 1]m (4)

=
(
α⊙ c+ β,

[
α⊙G diag(γ)

])
, (5)

where ⊙ represents element-wise multiplication and diag(·) turns a vector into
a diagonal matrix. The fresh variables ϵ in Eq. (4) allow each dimension to
independently vary within its error bounds [14]. To capture this concept in the
zonotope formalism, the error bounds γ are appended as a diagonal matrix to
the end of the scaled original generator matrix G.

2.5 Differential Verification

Computing the output sets of N 1 and N 2 may not be enough to prove their
equivalence, since the over-approximation grows due to the contribution of γ
at every ReLU layer (see Equation (4)). Instead, both the pioneering work of
Paulsen [33,34] and the VeryDiff tool [43] show that we should keep track of a
third reachability set over the difference function between N 1 and N 2 (see Figure
3). When N 1 and N 2 have similar architecture and weights, this differential
verification approach allows us to greatly reduce the over-approximation.
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Affine Layers. Given affine transformations yi = Wixi + bi for i ∈ {1, 2} and
∆x = x1 − x2, the difference function ∆y = y1 − y2 can be written as

∆y = y1 − y2 (6)
= W1x1 + b1 − (W2x2 + b2) (7)
= W1 ((x1 − x2) + x2) + b1 − (W2x2 + b2) (8)
= W1 (∆x + x2) + b1 − (W2x2 + b2) (9)
= (W1 −W2)x2 +W1∆x + (b1 − b2) (10)

which depends only on x2 and ∆x = x1 − x2 as inputs.

Proposition 1 (Affine Differential Zonotope [43]). Given zonotopes Z1

with x1 ∈ Z1 (written in the following as Z1 ∋ x1), Z∆ ∋ x1−x2,Z2 ∋ x2 and
affine transformations yi = Wixi + bi for i ∈ {1, 2}, the zonotopes

Ẑ1 = W1 Z1 +b1 (11)

Ẑ∆ = (W1 −W2)Z2 +W1 Z∆ +(b1 − b2) (12)

Ẑ2 = W2 Z2 +b2 (13)

over-approximate y1,y1 − y2 and y2.

ReLU Layers. Similarly to the propagation through the affine layer, the ReLU-
difference function ∆R

y = ReLU(x1)− ReLU(x2) can again be expressed as

∆R
y =ReLU(x1)− ReLU(x2) (14)

=ReLU ((x1 − x2) + x2)− ReLU(x2) (15)
=ReLU(∆x + x2)− ReLU(x2) (16)
=ReLU(x1)− ReLU (x1 − (x1 − x2)) (17)
=ReLU(x1)− ReLU(x1 −∆x) (18)

which depends on either x1 and ∆x (Equation (18)) or x2 and ∆x (Equation
(16)).

Proposition 2 (ReLU Differential Zonotope [43]). Given zonotopes Z1 ∋
x1,Z∆ ∋ x1 − x2,Z2 ∋ x2 and y1 = ReLU(x1),y2 = ReLU(x2), the zonotopes

Ẑ1 = λ1 ⊙Z1 +ξ1 + ξ1ϵ1 (19)

Ẑ∆ = a1 ⊙Z1 +a2 ⊙Z2 +a∆ ⊙Z∆ +b+ cϵ∆ (20)

Ẑ2 = λ2 ⊙Z2 +ξ2 + ξ2ϵ2 (21)

over-approximate y1,y1−y2 and y2. Where ϵ1, ϵ2, ϵ∆ are new independent gen-
erators,

λi =
ui

ui − li
, ξi =

−liλi

2
(22)

for li ≤ Zi ≤ ui element-wise and the values of a1, a2, a∆, b, c are set according
to Table 1.
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Table 1: Case distinction for differential ReLU propagation. Different ReLU
phases are denoted by − (negative), + (positive) and ∼ (unstable). The values for
λi, ξi are defined in (22). αi =

−li
ui−li

, µi =
1
2λiui and λ∆ = clamp

(
u∆

u∆−l∆
, 0, 1

)
,

µ∆ = 1
2 max(−l∆, u∆), ν∆ = λ∆ max(0,−l∆)

ReLU Factor
σ1 σ2 a1 a2 a∆ b c

− − 0 0 0 0 0
− + 0 −1 0 0 0
+ − 1 0 0 0 0
+ + 0 0 1 0 0

∼ − λ1 0 0 ξ1 0
− ∼ 0 −λ2 0 −ξ2 0

∼ + −α1 0 1 µ1 µ1

+ ∼ 0 α2 1 −µ2 µ2

∼ ∼ 0 0 λ∆ ν∆ − µ∆ µ∆

3 Methodology

In this section, we present ZonoPoly, an algorithm to synthesise polynomial ap-
proximation networks with certified error bound. In contrast to previous work [28],
ZonoPoly constructs concrete polynomials instead of abstracting them away.
As such, ZonoPoly produces tighter error estimates than [28] at the expense
of increased computational cost (see Section 4.3). At the same time, manipulat-
ing high degree polynomials can lead to numerical instability: we show how to
mitigate such risk in Section 3.3.

At high level, the process of running ZonoPoly can be divided in two stages.
First, we construct a polynomial network using verified bounds, as described in
Section 3.1. We output not only the polynomial degrees (as in [28]), but the
concrete coefficients of the polynomial activation functions as well as the bounds
used for approximation. Second, we compute a certified bound on the output
difference between the original network N 1 and the corresponding polynomial
network N 2. To do so, we augment the zonotope-based differential verification
approach of VeryDiff with a novel relaxation for p(x) − ReLU(x − ∆), as
described in Section 3.2.

3.1 Verified Construction of Polynomial Networks

In order to synthesize networks with polynomial activation functions, we need
estimates over the pre-activation ranges [l, u] of each neuron (see Section 2.2).
Then, we can compute the polynomial approximation p(x) ≈ ReLU(x) that
minimises the absolute error over [l, u], by using the Remez algorithm [36]. Since
the approximation error quickly diverges to ±∞ outside of [l, u] (see Figure 2),
we need verified bounds over the ranges [l, u] that contain all possible values
attainable by concrete execution of the network.
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Algorithm 1 Construction of network with polynomial approximations as ac-
tivation functions using verified bounds
1: function construct_network(⟨Wl, bl⟩Ll=1, l0, u0, d)

Require: ⟨Wl, bl⟩Ll=1 neural network parameters, l0,u0 concrete bounds on the net-
work inputs, d degree of the polynomial approximations

Ensure: Pre-activation bounds ⟨ll⟩L−1
l=1 , ⟨ul⟩L−1

l=1 , list of vectors of polynomials ⟨pl⟩L−1
l=1

2: Z ← zonotope(l0,u0)
3: for l← 1, . . . , L− 1 do
4: Z ←Wl Z +bl
5: ll,ul ← bounds(Z)
6: pl,_ = remez(ReLU, ll,ul, d) ▷ element-wise for each neuron
7: Z ← p(Z) ▷ Proposition 3
8: end for
9: end function

Fig. 4: Two zonotope relaxations of a
polynomial activation p(x). Note how
the zonotope relaxation for a smaller in-
put domain (orange) might not be fully
contained in the one for a larger input
domain (green).

Furthermore, the bounds [l, u] on
the ranges of neurons at layer l ∈
[2, L] depend on the error introduced
by all approximations p(x) at previous
layers j ∈ [1, l−1]. Therefore, it is not
sufficient to compute the bounds by
running reachability analysis on the
original network with ReLU activa-
tions. Instead, we have to track the
approximation error we introduce at
each layer l and propagate it correctly
to the next layers. We formally de-
scribe the resulting procedure in Al-
gorithm 1.

There, we use the zonotope propa-
gation rules for affine layers presented
in Equation (3) (Line 4). The result-
ing zonotope gives us an easy way to
compute bounds on the pre-activation ranges (Line 5). With them, we can com-
pute polynomial approximations of the activation functions (Line 6). Finally, we
need to propagate the zonotope through the polynomial activations (Line 7). For
this purpose, we propose a way to over-approximate each univariate polynomial
activation p(x) with linear parallel bounds (see Figure 4). More formally:

Proposition 3 (Linear Relaxation of Polynomials). Given y = p(x) for
a vector of univariate polynomials p(x) = (p1(x1), . . . , pn(xn)) and a zonotope
Z ∋ x, we obtain a linear relaxation (a polynomial of degree 1) using

p̂,γ = remez(p, l,u, 1) , (23)

where p̂(x) = α⊙x+β and l ≤ x ≤ u are obtained from Z and α⊙x+β−γ ≤
p(x) ≤ α⊙ x+ β + γ for all x ∈ [l,u]. The new zonotope Ẑ ∋ y is then given
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by

Ẑ = α⊙Z +β + γ ⊙ ϵ , (24)

where ϵ ∈ [−1, 1]n are new error symbols.

3.2 Differential Verification of Polynomial and ReLU Networks

In Section 2.5, we reviewed how existing work models the difference between
two ReLU activation functions. Here, we instead consider the difference ∆y =
p(x1) − ReLU(x2) between a polynomial and a ReLU activation. We can still
take inspiration from Equations (14)–(18) and write the following:

∆y = p(x1)− ReLU(x2) (25)
= p(∆x + x2)− ReLU(x2) (26)
= p(x1)− ReLU(x1 −∆x) , (27)

While Equation (26) requires reasoning over a multivariate polynomial of possi-
bly high degree, Equation (27) is much easier to handle. Indeed, we can analyse
the two linear segments of ReLU(x1 − ∆x) separately, thus splitting Equation
(27) into two cases:

p(x1)− ReLU(x1 −∆x) =

{
p(x1) x1 ≤ ∆x

(p(x1)− x1) +∆x x1 > ∆x

(28)

The advantage of Equation (28) is that we only need to reason about the uni-
variate polynomials p(x1) and p(x1)−x1, while treating the addition of ∆x inde-
pendently. Furthermore, we are left with only three possible activation patterns,
rather than the nine required when comparing two ReLU networks (see Table
1). More specifically, let the pre-activation ranges be x1 ∈ [l1, u1], x2 ∈ [l2, u2]
and ∆x ∈ [l∆, u∆]. Then, we can distinguish between always inactive, always
active, and unstable ReLU as follows.

Inactive ReLU If u2 ≤ 0, then ReLU(x2) is always inactive. In this case,
the difference function simplifies to p(x1) − ReLU(x2) = p(x1). As such, the
difference zonotope is identical to the zonotope of the polynomial network, which
we compute according to Proposition 3.

Active ReLU If l2 ≥ 0, then ReLU(x2) is always active. In this case, the
difference function simplifies to p(x1) − ReLU(x2) = (p(x1)− x1) + ∆x. Thus,
we can first compute a linear over-approximation of the univariate polynomial
p(x1)− x1 and then add the linear term ∆x. In particular, let:

p̂, γ = remez(p(x1)− x1, l1, u1, 1) , (29)

where p̂(x1) = αx1+β and αx1+β−γ ≤ p(x1)−x1 ≤ αx1+β+γ for x1 ∈ [l1, u1].
Then, the final linear relaxation is:

αx1 +∆x + β − γ ≤ (p(x1)− x1) +∆x ≤ αx1 +∆x + β + γ . (30)



Certified Error Analysis of Homomorphically Encrypted Neural Networks 11

Unstable ReLU If l2 < 0 < u2, then we do not know whether ReLU(x2) is
active or inactive. In this case, we need to find a linear relaxation a1x1+a∆∆x+
b± c that satisfies:

a1x1 + a∆∆x + b− c ≤ p(x1)− ReLU(x1 −∆x) ≤ a1x1 + a∆∆x + b+ c (31)

In ZonoPoly, we construct a valid over-approximation by guessing the val-
ues of a1, a∆ and optimising for the values of b, c. Specifically, we take the values
of a1, a∆ from Table 1, which are the slopes VeryDiff uses for comparing
ReLU activations [43]. Since we have p(x) ≈ ReLU(x) for all neurons, the values
of a1, a∆ are not far from optimal.

Relaxation Error. Given the values of a1, a∆, the relaxation error is:

g(x1, ∆x) = (p(x1)− ReLU(x1 −∆x))− (a1x1 + a∆∆x) (32)

and we can set:

b =
max g +min g

2
, c =

max g −min g

2
(33)

For simplicity, we only describe how to compute the maximum relaxation error.
The minimum can be computed in a similar fashion.

Error Maximisation. Since Equation 32 contains a ReLU activation, we split
the domain of the maximisation problem into two regions: x1 ≤ ∆x (inactive)
and x1 ≥ ∆x (active). More formally, we have max g(x1, ∆x) = max{µ≤, µ≥},
where:

µ≤ = max p(x1)− a1x1 − a∆∆x, s.t. x1 ≤ ∆x (34)
µ≥ = max p(x1)− (1 + a1)x1 − (a∆ − 1)∆x, s.t. x1 ≥ ∆x (35)

with x1 ∈ [l1, u1] and ∆x ∈ [l∆, u∆]. Note that both objective functions can be
expressed as p(x1) + αx1 + β∆x for suitable choices of α and β. Thus, solving
the above optimization problems requires finding the maximum of a polynomial
on a compact bounded set.

Critical Points. Since g(x1, ∆x) = p(x1) + αx1 + β∆x is a linear function in
∆x, the maximum is always located at one of the three boundaries ∆x = l∆,
∆x = u∆, or ∆x = x1. For the first two boundaries, define the critical points of
the univariate polynomial g(x1, 0) as follows:

C∆x=0 =

{
x :

d

dx

(
p(x) + αx

)
= 0

}
∪
{
l1, u1

}
(36)

For the latter boundary ∆x = x1, define the critical points of another univariate
polynomial g(x1, x1) as:

C∆x=x1
=

{
x :

d

dx

(
p(x) + αx+ βx

)
= 0

}
∪
{
l1, u1, l∆, u∆

}
(37)



12 P. Kern et al.

(a) inactive case (x1 ≤ ∆) (b) active case (x1 ≥ ∆) (c) overall

Fig. 5: Critical points for g(x1, ∆x) = (p(x1)− ReLU(x1 −∆x)) − (−1/7x1 +
8/10∆x). The two subproblems are shown on the left with the boundary of their
domain shown as green lines. The overall relaxation error function with its critical
points computed via the subproblems is shown on the right.

Then, we can build our final set of critical points, which is guaranteed to contain
the solution to the optimisation problems in Equations 34 and 35:

Ĉ =
{
(x1, ∆x) : x1 ∈ C∆x=0, ∆x ∈ {l∆, u∆}

}
∪
{
(x1, x1) : x1 ∈ C∆x=x1

}
(38)

Since Ĉ is finite, ZonoPoly simply searches over its feasible subset.

3.3 Numerical Stability

Polynomial Basis The methods we introduce in Sections 3.1 and 3.2 require
the manipulation of polynomials of arbitrary degree and rely on common prim-
itives such as evaluation, interpolation, and root finding. It is well known that
their implementation in monomial basis can lead to numerical instability [44].
We show an example of this in Figure 6.

To avoid these numerical difficulties, we follow the recommendations of [44]
and represent all polynomials in Chebyshev basis with inputs normalized to
[−1, 1]. Each polynomial is stored as a triple (c, l, u) of its Chebyshev coefficients
c and original input range x ∈ [l, u]. With it, we can implement the following:

Evaluation and Interpolation. For the former, we use Clenshaw recurrence [13].
For the latter, we implement the version of the Remez algorithm described in
[31], which was originally developed for the Chebfun system [16].

Root Finding. Given the Chebyshev coefficients, finding the roots of the poly-
nomial reduces to finding the eigenvalues of the corresponding colleague matrix
[44]. The correctness of the critical points in Equations 36 and 37 depends on
the soundness of the underlying eigenvalue solver. In our Julia implementation,
we use the built-in eigvals command [5].
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Fig. 6: Chebyshev approximation of de-
gree 100 of ReLU(x) for x ∈ [−4, 5]. De-
termining monomial coefficients by solv-
ing a linear system and standard evalu-
ation in monomial form vs. Chebyshev
coefficients and evaluation using Clen-
shaw recurrence.

Zonotope Monotonicity Zonotope
relaxations of activation functions are
not monotonic in the size of the in-
put domain (see Figure 4). As a con-
sequence, running differential verifica-
tion for a smaller input domain D′ ⊆
D may lead to non-overlapping in-
put range bounds [l′, u′] ̸⊆ [l, u] for
some neurons in the network. If the
new bounds [l′, u′] exceed the domain
where the polynomial activation is
well behaved (see Figure 2), numeri-
cal issues arise. We mitigate this risk
by storing the verified bounds [l, u]
that we compute via Algorithm 1, and
tightening any range estimate [l′, u′]
that exceeds them during differential
verification.

4 Experiments

We integrated the ZonoPoly algorithms for synthesis and differential verifi-
cation of polynomially approximated networks in the VeryDiff [43] tool im-
plemented in Julia [5]. The code of our implementation4 and experiments5 is
available on GitHub. All experiments were run on a 4-core Intel Xeon E5-2670
CPU and 128 GB of RAM using single-threaded execution.

In our evaluation, we examine the accuracy of the polynomial networks con-
structed by ZonoPoly and compare the tightness of their differential bounds
with the state-of-the-art tool LiGAR [28]. To ensure a fair comparison, we mod-
ify the latter to construct neural networks with uniform (rather than heteroge-
neous) polynomial degree. Furthermore, we introduce a LiGAR+Cheby variant
that outputs concrete polynomials in Chebyshev basis, rather than just asymp-
totic bounds over minimax polynomials.

4.1 Benchmarks

We evaluate our approach on neural networks trained for privacy critical appli-
cations like credit scoring and human activity recognition as well as standard
image classification:

MNIST. [24] The machine learning task in MNIST is to correctly classify the
handwritten digit shown on 28×28 pixel grayscale images. Each pixel can attain

4 https://github.com/samysweb/VeryDiff/tree/PolynomialEquivalence
5 https://github.com/phK3/VeryDiffPolyExperiments

https://github.com/samysweb/VeryDiff/tree/PolynomialEquivalence
https://github.com/phK3/VeryDiffPolyExperiments
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(a) Accuracy of polynomial networks (b) Synthesis runtime

Fig. 7: Accuracy of polynomial networks generated by ZonoPoly for different
polynomial degrees and base ReLU networks and runtime of ZonoPoly for
synthesis.

the values from [0, 1] leading to an input set of [0, 1]784. We use two base networks
of size 4 × 256 (4 hidden layers of 256 neurons each) and 6 × 256 taken from
the annual competition VNN-COMP6[9]. For each of the networks, we train two
networks of the same architecture, but with additional L1-regularization with
weights 2× 10−5 and 10−4.

HAR. [2] Given 561 statistical aggregates computed from smartphone gyroscopic
data, the goal is to correctly predict human activity out of 6 candidates (stand-
ing, sitting, lying, walking, walking downstairs and walking upstairs). Each input
dimension was normalized to [−1, 1]. We evaluate on the 1×500 network already
used in the evaluations of ReluDiff[33] and NeuroDiff[34]. We also train
two networks ourselves with the same structure and L1-penalties with weights
2× 10−5 and 10−4.

HELOC. The home equity line of credit dataset was part of the FICO explainable
machine learning challenge [18]. Given 23 features, the goal is to classify whether
or not a person is credit-worthy. We normalized all features to [0, 1] and trained
two neural networks – one with standard training and one with L1-penalty of
2× 10−5. Despite their small size (only two hidden layers of 64 and 32 neurons
respectively) the networks achieve comparable accuracy to the models submitted
to the FICO challenge [4].

4.2 Synthesis of Polynomially Approximated Neural Networks

Predictive Accuracy To examine the quality of polynomial networks gener-
ated by ZonoPoly, we constructed an initial zonotope containing the whole
6 https://github.com/stanleybak/vnncomp2021

https://github.com/stanleybak/vnncomp2021
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Fig. 8: Accuracy of polynomial net-
works generated by ZonoPoly for dif-
ferent base ReLU networks and polyno-
mial degrees for HAR and HELOC.

Fig. 9: Runtime for computation of ver-
ified bounds on polynomially approxi-
mated MNIST networks

input set (e.g. [0, 1]784 for the MNIST networks) and propagated that zonotope
through the network to generate verified bounds and polynomial approximations
according to Algorithm 1 for polynomial degrees of 1, 2, . . . , 10, 20, 30, . . . , 200.
Subsequently, we statistically evaluated the accuracy of the generated networks,
as well as the maximum difference maxi ∥N̂ (xi) − N (xi)∥∞ between the poly-
nomially approximated and the original network over the associated dataset.
Results for verified bounds on the difference are reported in Section 4.3.

At least in the MNIST case, the most important factor for achieving good
accuracy and low statistical difference from the original network is whether stan-
dard training or training with L1 penalty was used. As shown in Figure 7a,
ZonoPoly was able to generate polynomial networks that match the accuracy
of the ReLU networks trained with some form of L1 penalty for polynomials of
degree 80 in the worst case. For the two networks that only used standard train-
ing, however, the accuracy of the generated polynomial networks never rises or
gets stuck on a plateau even for high degrees – despite small improvements in the
sampled maximum error shown in the left of Figure 10. Shallower networks also
achieved better accuracy for smaller polynomial degrees than deeper networks.

For the one-layer HAR networks and small HELOC networks, ZonoPoly is
also able to generate polynomial networks of matching accuracy for the ReLU
networks obtained via standard training. However, the networks trained with L1

penalty achieve better accuracy (Figure 8) and lower sampled error for smaller
polynomial degrees (deferred to Appendix A.2).

Overall, the quality of the synthesized polynomial networks seems to be good
whenever small bounds can be obtained via zonotope propagation. This in turn
allows the polynomial approximation to be fitted to a small approximation inter-
val and thus less error is incurred. Training using L1 regularization was already
shown to improve verification performance [46] by encouraging a smaller range
of attainable values at the neurons.
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Fig. 10: Verified error bounds for polynomially approximated networks of differ-
ent degree for different ReLU base networks for MNIST

Synthesis Time The synthesis time for a polynomially approximated network
is primarily influenced by the number of neurons in the network and the degree
of the polynomial approximation. This trend is illustrated in the MNIST case
(Figure 7b), where the runtime increases with the polynomial degree. Networks
with the same number of layers—corresponding to the same number of neurons
in this case—exhibit overlapping runtime curves. Runtime curves for the other
datasets are qualitatively similar and are deferred to Appendix A.1.

The dominant factor contributing to ZonoPoly’s synthesis time is the com-
putation of the approximation error between the current polynomial p(x) and
the ReLU function ReLU(x) over the interval x ∈ [l, u] during each step of the
Remez algorithm. This error must be evaluated for each neuron and becomes
increasingly costly for higher-degree polynomials.

4.3 Verified Error Bounds

Bound Tightness We now compare the verified bounds on the error ∥N̂ (x)−
N (x)∥∞ between the polynomially approximated and the original ReLU net-
works computed by ZonoPoly to the verified bounds produced by LiGAR and
LiGAR+Cheby. For ZonoPoly, we use the networks generated in the previous
section and let both LiGAR versions compute their own polynomial networks.
Here, we only log verification time, not generation time.

For each benchmark, we computed verified error bounds over the whole in-
put set (e.g. [0, 1]784 for the MNIST networks). Even for this large input set,
ZonoPoly was able to produce useful bounds especially for the HELOC and
HAR benchmarks and (to a lesser extent) also for the MNIST networks that
were trained using L1 regularization.

The change of the verified error for all tools as well as the sampled error over
the MNIST training dataset is illustrated in Figure 10 on the left for the 256×6
MNIST network trained using standard training and the network with the same
architecture trained with an L1 penalty of 10−4 on the right. Graphs for other
benchmarks follow a similar pattern and are deferred to Appendix A.2.

ZonoPoly was able to compute tighter bounds than LiGAR and LiGAR+
Cheby on all benchmarks. For higher polynomial degrees, the relative improve-
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Table 2: Verified bounds for the error |N̂ (x) −N (x)| betweem polynomial net-
works and different ReLU base networks

base network Error at degree 200 relative improvement

Structure L1 weight LiGAR LiGAR+Cheby ZonoPoly
LiGAR

ZonoPoly
LiGAR+Cheby

ZonoPoly

MNIST
256x4 0 14240.51 21342.21 3472.10 4.10 6.15
256x4 2× 10−5 29.00 41.14 10.39 2.79 3.96
256x4 10−4 5.55 8.06 2.15 2.58 3.74

256x6 0 1.25× 107 1.87× 107 1.21× 106 10.35 15.49
256x6 2× 10−5 131.68 187.80 42.16 3.12 4.45
256x6 10−4 17.94 27.54 7.42 2.42 3.71

HELOC
64− 32 0 0.54 0.80 0.31 1.73 2.57
64− 32 2× 10−5 0.19 0.29 0.11 1.73 2.69

HAR
500× 1 0 0.66 0.82 0.27 2.43 3.02
500× 1 2× 10−5 0.65 0.73 0.21 3.03 3.43
500× 1 10−4 0.63 0.72 0.23 2.79 3.18

ment of the bounds seems to converge to a constant factor for each base network
(parallel lines in the logarithmic plot in Figure 10), which is shown alongside the
absolute verified error for degree 200 in Table 2. The relative improvement for
smaller degrees is slightly larger.

Verification Time However, the improvements in the verified bounds do not
come for free. While LiGAR works on an efficient abstraction of the polyno-
mial activations, ZonoPoly has to consider their actual coefficients and com-
pute roots and linear approximations to these possibly high degree polynomials.
Therefore – as illustrated in Figure 9 for MNIST – verification time grows much
quicker with the degree of the polynomials compared to LiGAR whose runtime
is constant in that regard.

It is also expected that ZonoPoly is slower than LiGAR+Cheby since
this augmentation of LiGAR only has to fit the Chebyshev approximation and
compute its error once for each neuron whereas ZonoPoly has to compute
the error between the linear relaxation and the polynomial for every iteration
of the Remez algorithm. The number of Remez iterations required can also be
dependent on the width of the approximation interval of a polynomial. This may
also explain, why differential verification for the MNIST network trained with
standard training takes more time than verification of the L1 trained networks
of the same structure.

4.4 Verified Error for Samples

Neural network verifiers are commonly evaluated in the context of adversarial
robustness for small ϵ-balls around points in a training dataset. We also perform
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Fig. 11: Verified error bounds for ϵ-balls of different radii around the first 10
samples of the MNIST training dataset. The solid lines represent the globally-
valid bounds (for the total input set of [0, 1]784) for each tool.

a small comparison of the difference bounds computed by ZonoPoly against
LiGAR and LiGAR+Cheby for ϵ-balls of different radii around samples of
MNIST images. Due to ZonoPoly’s runtime, we only evaluated on the first
10 samples of the MNIST training dataset. While equivalence is only checked
for the ϵ-balls around the samples, we consider polynomial networks that were
generated using verified bounds for the whole MNIST input set.

Figure 11, shows the bounds computed by each tool for the whole MNIST
input set as solid horizontal lines, while the dashed lines represent the maximum
verified difference among the ϵ-balls around the 10 center images. The bounds
computed by ZonoPoly for the whole MNIST input set are already tighter
than the verified bounds for LiGAR and LiGAR+Cheby for radius 0.01. With
smaller radii, ZonoPoly also improves its bounds more than both other tools.

5 Conclusions

In this paper, we tackle the problem of designing polynomial activations for
FHE neural networks. Our ZonoPoly algorithm employs a zonotope-based dif-
ferential verification approach to propagate the approximation error through the
network. As a result, ZonoPoly can construct a stable polynomial network with
verified neuron ranges and output error. Our evaluation shows that ZonoPoly
produces tighter bounds than existing certified techniques such as LiGAR.
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A.1 Synthesis of Polynomially Approximated Networks

(a) Accuracy for polynomially approxi-
mated HELOC networks for polynomi-
als of different degrees and different base
ReLU networks.

(b) Runtime of ZonoPoly to synthesize
polynomially approximated networks for
different degrees and base ReLU networks

Fig. 12: Accuracy of runtime of ZonoPoly for different synthesized polynomially
approximated networks for HELOC.

(a) Accuracy for polynomially approxi-
mated HAR networks for polynomials of
different degrees and different base ReLU
networks.

(b) Runtime of ZonoPoly to synthesize
polynomially approximated networks for
different degrees and base ReLU networks

Fig. 13: Accuracy of runtime of ZonoPoly for different synthesized polynomially
approximated networks for HAR.
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A.2 Verified Error Bounds

(a) no L1 penalty (b) 2× 105 L1 penalty (c) Verification time

Fig. 14: Verified error bounds for networks trained on the HELOC dataset and
runtime for their computation.

(a) no L1 penalty
(b) 2 × 10−5 L1

penalty (c) 10−4 L1 penalty (d) Verification time

Fig. 15: Verified error bounds for networks trained on the HAR dataset and
runtime for their computation.

Fig. 16: Verified error bounds for polynomially approximated networks of differ-
ent degree for different ReLU base networks for MNIST
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A somewhat surprising effect which can be seen in Figure 16 is that for the
MNIST networks, the output error of the degree-1 (linear) approximations is
often smaller than for quadratic polynomials. This is because the zonotopes
we use during synthesis of the polynomial networks, can exactly represent linear
transformations, resulting in tight bounds for neuron inputs. In contrast, higher-
degree approximations introduce overapproximation error, which causes wider
input intervals and poorer polynomial fits. While this difference is minor in most
networks, it is significant for the MNIST networks from VNN-COMP [9], where
the true output ranges are very narrow. As less overapproximation is introduced
for linear approximations, they lead to smaller output ranges and thus to smaller
absolute output errors. While the output ranges are small for the linear networks,
the outputs themselves are not necessarily useful. As shown in Figure 7a, the
classification accuracy is still not high.
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