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ABSTRACT

AI-based methods for solving high-dimensional partial differential equations
(PDEs) have garnered significant attention as a promising approach to overcoming
the curse of dimensionality faced by traditional techniques. This work establishes
complexity estimates for the Barron norm of solutions of d-dimensional second-
order linear PDEs, explicitly capturing the dependence on dimension. By lever-
aging well-developed theory for elliptic and parabolic equations, we represent the
solutions of second-order linear equations using Green’s functions. From these
representations, we derive complexity bounds for the Barron norm of the solu-
tions. Our results extend the prior work of Chen et al. (2021) in two key aspects.
First, we consider more general elliptic and parabolic equations; specifically, we
address both time-independent and time-dependent equations. Second, we provide
sufficient conditions on the coefficients of the PDEs under which the solutions be-
long to Barron space rather than approximating the solutions via Barron functions
in the H1 norm. As a result, our approach yields theoretically improved results,
providing a more intuitive understanding when approximating the solutions of
PDEs via two-layer neural networks.

1 INTRODUCTION AND MAIN RESULTS

1.1 INTRODUCTION

Partial differential equations (PDEs) are foundational equations used in modeling complex phe-
nomena across numerous fields, including physics, social sciences, and engineering. Traditionally,
numerical methods such as the finite element method (FEM) and the finite difference method (FDM)
have been the primary tools for solving PDEs numerically. However, these methods suffer from the
curse of dimensionality, which is an exponential increment of computational cost as the dimension
of the equation increases. Motivated by these interesting results, we investigate whether a neural
network can effectively approximate the solutions of given PDEs without suffering from the curse
of dimensionality.

The theoretical analysis of PDEs has traditionally relied on classical function spaces, such as
Sobolev spaces (W k,p(Rd)) and Hölder spaces (Ck,α(Rd)). However, approximating functions
in these spaces with neural networks requires O(ε−d/k) parameters to achieve an accuracy of ε
(Gühring et al., 2020; Lu et al., 2021; Yarotsky, 2017; Yarotsky & Zhevnerchuk, 2020). This indi-
cates that approximating classical function classes by neural networks can be challenging and suffers
from the curse of dimensionality. This limitation has motivated the search for alternative function
spaces better suited for neural network approximations.

The Barron space, introduced in the seminal work of Barron (1993), is a potential alternative that
consists of a collection of all two-layer functions. Approximating functions in Barron space us-
ing neural networks can achieve dimension-free convergence rates. These spaces have recently at-
tracted significant attention for their applicability in the approximation theory of two-layer neural
networks, also known as shallow networks. Shallow networks play an essential role in developing
diverse machine-learning theories. Notable research areas are memory capacities, the representer
theorem, and the cost of representation, which are discussed in (Ardeshir et al., 2023; Madden &
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Thrampoulidis, 2024; Parhi & Nowak, 2021). In the context of Physics-Informed Neural Networks
(PINNs), several advancements have been made in utilizing two-layer network structures to solve
PDEs, as shown in (Gao et al., 2023; Li et al., 2023; Xu et al., 2024). Building upon this line of
research, estimates of the Barron norm for solutions of PDEs with explicit dependency on the di-
mension provide significant theoretical value.

Chen et al. (2021) establishes that if the coefficients and the source term of an elliptic PDE lie in
Barron space, then the solution of the PDE is ε-close to a Barron function in the Sobolev norm. This
result has been extended to nonlinear elliptic equations under linear growth conditions in (Marwah
et al., 2023). Additionally, Weinan & Wojtowytsch (2022) demonstrate that several model equations
belong to Barron space under appropriate assumptions through representation formulas. They also
provide counterexamples where the solutions of PDEs do not belong to the Barron space.

Despite these intriguing results, research on the regularity of time-dependent equations, such as
parabolic equations, within the framework of Barron space remains scarce. To the best of our
knowledge, Barron norm estimates for the solution of parabolic equations have only been studied in
Weinan & Wojtowytsch (2022) for the heat equation. The main reason for the scarcity of results is
that the theoretical analysis of parabolic equations presents several key challenges, including time
dependencies, handling function spaces involving time, and the anisotropic nature of parabolic equa-
tions. We have leveraged and adapted recent advancements in both elliptic and parabolic regularity
theory to address these difficulties.

Regularity theory for elliptic and parabolic equations aims to understand the smoothness of solu-
tions under various assumptions regarding the coefficients, forcing terms, and boundary conditions.
For a comprehensive overview of the regularity theory of PDEs, we refer the reader to (Gilbarg
et al., 1977; Ladyženskaja, 1968). Among the many techniques in the regularity theory of PDEs, the
estimates of Green’s functions for elliptic and parabolic equations are the primary technique used in
this work.

The Green’s functions of linear differential operators, denoted by N , are solutions of N G = δ,
where δ is the Dirac delta function. Section 2.2 provides a detailed definition of these operators
for parabolic and elliptic equations. Taking advantage of linearity of the operator, the solution of
N u = f can be represented as u = f ∗ G. The construction of Green’s functions for elliptic
and parabolic equations has been extensively studied. See for instance (Grüter & Widman, 1982;
Littman et al., 1963; Kim & Sakellaris, 2019; Hofmann & Lewis, 2001; Davey et al., 2018) for
elliptic equations, and (Nash, 1958; Moser, 1964; Cho et al., 2008; Semenov, 2006; Qian & Xi,
2019; Kim & Xu, 2021) for parabolic equations under various assumptions such as coefficients,
domain regularity and so on. In this study, we primarily build upon the methodologies proposed by
(Kim & Xu, 2021).

The main contributions of this paper are summarized as follows.

1. Barron norm complexity estimates for time-dependent parabolic equations: We estab-
lish, for the first time, estimates on the complexity of the Barron norm for the solutions of
general second-order linear parabolic equations the explicit dependency on the dimension.

2. Improvement of theoretical results for elliptic equations: Even for time-independent
elliptic equations, our results represent a significant advancement over existing work (Chen
et al., 2021). We establish that, under appropriate assumptions, the solutions of these PDEs
belong directly to Barron space rather than merely approximating them in the Sobolev sense
within Barron space. Please refer to Remark 3. This refinement constitutes a theoretical
improvement, offering deeper insights into the structure of the solutions.

3. Theoretical foundation: Our research provides a theoretical foundation demonstrating that
AI-based PDE solvers or Green’s function learning methods can represent solutions without
suffering from the curse of dimensionality.

Before introducing the results of this paper, we remind the reader that all mathematical notations are
summarized in Appendix A.
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1.2 BARRON NORM ESTIMATES FOR PARABOLIC EQUATIONS

Our first main result concerns parabolic equations. To this end, for A(t, x) ∈ Rd×d,b(t, x) ∈ Rd

and c(t, x) ∈ R, we define a parabolic operator, P as follows:

Pu :=∂tu−
d∑

i,j=1

Di

(
aij(t, x)Dju+ bi(t, x)u

)
+

d∑
i=1

ci(t, x)Diu+ d(t, x)u,

=∂tu− div (A(t, x)Du) + bu) + c ·Du+ d(t, x)u.

(1)

Throughout this work, we denote D = (0, t) × Rd ⊂ Rd+1, which is a cylindrical domain with
0 < t <∞. We assume that the coefficients satisfy the following conditions.

Assumptions 1. Suppose that the coefficients on P satisfy the following assumptions:

(1) The matrix [A(t, x)]ij = (aij(t, x)) is a symmetric matrix, i.e., aij(t, x) = aji(t, x),
satisfying the following ellipticity and boundedness conditions for some 0 < λ ≤ Λ <∞:

λ|ξ|2 ≤
d∑

i,j=1

aij(t, x)ξiξj and
d∑

i,j=1

|aij(t, x)|2 ≤ Λ2.

(2) We assume that the coefficients A(t, x), b(t, x), c(t, x) and d(t, x) belong to the
VMO(Rd+1) space (Defintion 4). That is, we assume that

lim
r→0

sup
Dr⊂Rd+1

1

|Dr|

∫
Dr

|A(t, x)− (A)Dr
|2 dx dt = 0,

lim
r→0

sup
Dr⊂Rd+1

1

|Dr|

∫
Dr

|b(t, x)− (b)Dr
|2 dx dt = 0,

lim
r→0

sup
Dr⊂Rd+1

1

|Dr|

∫
Dr

|c(t, x)− (c)Dr |2 dx dt = 0,

lim
r→0

sup
Dr⊂Rd+1

1

|Dr|

∫
Dr

|d(t, x)− (d)Dr
|2 dx dt = 0.

In this work, Dr(t0, x0) = (t0 − r2, t0 + r2)×Cr(x0), where Cr(x0) denotes a cube with
side length 2r and center at x0. When it is clear from the context or not important, we shall
omit the points t0 and x0.

(3) We assume that in a distribution sense

d(t, x)− div b(t, x) ≥ 0

and ∫
D

(ci(t, x)− bi(t, x)))φ1Diφ2 dx dt ≥ 0

for all smooth functions satisfying φ1, φ2 ≥ 0.

(4) We assume that

b(t, x), c(t, x) ∈ L∞(D) ∩ L1(D) and d(t, x) ≥ 0, d(t, x) ∈ L∞(D).

For a parabolic operator P , as defined in equation 1, let u ∈ V̊2(D) be a weak solution of{
Pu = f in D ,

u(0, ·) = g(·) on Rd.
(2)

The definition of a weak solution is stated below.

3
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Definition 1 (Weak solution of equation 2). Let D = (0, t)× Rd and f ∈ Lp′,q′(D), where p′ and
q′ are Hölder conjugates of p and q, respectively, and p and q satisfy d/p + 2q = d/2 with ranges
specified in equation 18. We say that u ∈ V̊2(D) is a weak solution of equation 2 if for almost all
t1 ∈ (0, t) the identity

I(t1;u, ϕ) :=

∫
Rd

u(t1, x)ϕ(t1, x) dx−
∫ t1

0

∫
Rd

u∂tϕdx dt

+

∫ t1

0

∫
Rd

(aijDju+ biu)Diϕdx dt+

∫ t1

0

∫
Rd

(ciDiu+ du)ϕdx dt

−
∫ t1

0

∫
Rd

fϕ dx dt =

∫
Rd

g(x)ϕ(0, x) dx

(3)

holds for all ϕ ∈ C1,1
c (D).

Remark 1. It is worth mentioning that if we choose a test function inC1,1
c (D\∂pD), then equation 3

changes to:
I(t1;u, ϕ) = 0, ∀ϕ ∈ C1,1

c (D \ ∂pD).

Theorem 1. Suppose that P is a parabolic operator defined in equation 1 with Assumption 1,
f ∈ L 2d+2

d+4
(D)∩B(D) and g ∈ L2(Rd)∩B(Rd). If the weak solution u ∈ V̊2(D) is the continuous

function, then we have

∥u(t, ·)∥B(Rd)

≤ 2(1 + ∥c− b∥L∞(Rd) + Λ
1
2

√
t)∥g∥B(Rd)

+ 2∥f∥B((0,t)×Rd)

(
t+

t2

2
+ Λ

1
2

(
2t

3
2

3
+

2t
5
2

5

)
+ ∥c− b∥L∞(D)

(
t2

2
+
t3

6

))
.

The theorem states that if 0 < Λ < ∞ and u is a continuous function, then the curse of dimension-
ality can be avoided when approximating u(·, t) using two-layer networks. Additionally, it asserts
that the Barron norm of u(·, t) grows at most at a rate of t3. For the comparison with the model
equations, we refer to Appendix N.

1.3 BARRON NORM ESTIMATES FOR ELLIPTIC EQUATIONS

The second main result is to extend the existing results for elliptic equations. Let L be an elliptic
operator defined as

Lu :=−
d∑

i,j=1

Di

(
aij(x)Dju

)
+ d(x)u,

=− div (A(x)Du) + d(x)u.

(4)

Note that we choose b = c = 0 and remove ∂tu in P to get L.
Assumptions 2. Suppose that the coefficients on L satisfy the following assumptions:

(1) The matrix [A(x)]ij = (aij(x)) is a symmetric matrix, i.e., aij(x) = aji(x), satisfying the
following ellipticity and boundedness condition for some 0 < λ ≤ Λ <∞:

λ|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj and
d∑

i,j=1

|aij(x)|2 ≤ Λ.

(2) We assume that the coefficients A(x) and d(x) belongs to the VMO(Rd) space :

lim
r→0

sup
Cr⊂Rd

1

|Cr|

∫
Cr

|A(x)− (A)Cr
|2 dx = 0,

lim
r→0

sup
Cr⊂Rd

1

|Cr|

∫
Cr

|d(x)− (d)Cr
|2 dx = 0.
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(3) There exists dmin, dmax > 0 satisfying dmin ≤ d(x) ≤ dmax.

Below, we introduce the equations considered in this subsection.

Lu = f in Rd. (5)

The weak solution of the elliptic equation is defined similarly to the parabolic equations.
Definition 2 (Weak solution of equation 5). Suppose that f ∈ L2∗(Rd), where 2∗ = 2d/(d − 2).
We say that u ∈ W̊ 1

2 (Rd) is a weak solution of equation 5 if the identity

J(u, ϕ) :=

∫
Rd

aijDjuDiϕdx+

∫
Rd

duϕ dx dt−
∫
Rd

fϕ dx dt = 0

holds for all ϕ ∈ C1,1
c (D).

The following theorem is the second main theorem of this work.
Theorem 2 (Barron norm estaimtes). Suppose that L is an elliptic operator defined in equation 4,
with Assumption 2. We further assume that f ∈ L 2d

d+2
(Rd) ∩ B(Rd). Then if the weak solution

u ∈W 1
2 (Rd) is a continuous function, then u belongs to the Barron space with the estimate

∥u∥B(Rd) ≤ 2

(
1

dmin
+

Λ
1
2
√
πΓ(d+1

2 )

2d
3
2
minΓ(

d
2 )

)
∥f∥B(Rd).

Remark 2. Before we proceed further, let us highlight add some remarks on the assumptions As-
sumption 1, Assumption 2 and notations.

• In the context of the regularity theory of elliptic and parabolic equations, VMO or small
BMO coefficients are extensively studied topics. For instance, we refer (Byun & Wang,
2004; Dong & Kim, 2010; Bramanti & Cristina Cerutti, 1993) for details. VMO space
includes a wide range of functions, including uniformly continuous functions. Also, there
exists a function in VMO that has a discontinuity. Therefore in the local sense, Barron
function belgons to thenVMO space. For the overall remark on the VMO space, we refer
to Appendix D.

• The Assumption 1 - (4) and Assumption 2-(4) is to ensure that I(t1, u, u) < ∞ with u ∈
V̊2(D) in the parabolic equations and J(u, u) < ∞ with u ∈ W 1

2 (Rd) in the elliptic
equations. Different assumptions may be imposed on the coefficients of the lower-order
terms, but the exponents in Assumption 1 -(2) and Assumption 2 - (2) need to be changed.

• By the Assumption 1 - (3), we have the energy estimates, Lemma 6 where the constant
Cenergy does not depend on the b, c and d(t, x), which is crucial crucial for establishing
the existence and the uniqueness of the weak solution.

• The letter d is used for the dimension and the coefficient functions for P and L. To avoid
confusion, we shall use notations such as d(t, x), d(x), dδ(t, x), dδ(x) if it is not a constant,
and d if it is a constant coefficient.

Remark 3 (Comparison with the result of Chen et al. (2021)). The main difference from the result
in (Chen et al., 2021) is worth mentioning. The Barron space used in (Chen et al., 2021) is slightly
different from ours, so we shall refer to it as B̃. Chen et al. (2021) assume the followings:

• Regularity assumptions: A(x), d(x), f(x) ∈ B̃,

• An activation function σ is chosen such that the function h(y1, y2) = σ(y1)σ(y2) belongs
to the Barron space in R2,

• σ′(·) and σ′′(·) belong to the Barron space, B̃.

Then, for all ε ∈ (0, 1/2), there exists um ∈ B̃ satisfying

∥um − u∥W 1
2 (Rd) ≤ ε and ∥um∥B ≤ C1

(
d

ε

)C2| log ε|

.

5
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In this work, we assume that the coefficients are not required to belong to B(Rd). We assume the
activation function is σ(x) = ReLU(x), which does not satisfy the multiplicity condition. We then
demonstrate that u ∈ B(Rd), without encountering the curse of dimensionality in the estimates,
provided that u is a continuous solution. For remarks on the continuity of the solution, we refer to
the following Remark and Appendix E. For technical remarks on the activation functions, we refer
to Appendix F.

Remark 4 (Continuity of the weak soltuion). The continuity of the solution holds in many cases,
even with minimal assumptions on the regularity of elliptic and parabolic equations. For this reason,
we believe our approach significantly advances the theory of existing research and can also be
effectively applied to parabolic equations. We summarize some well-known conditions under which
weak solutions of elliptic and parabolic equations are continuous in Appendix E.

2 PRELIMINARIES

In this section, we introduce the preliminaries used in the subsequent sections.

2.1 BARRON SPACE

Roughly speaking, the Barron space is a function space comprising all two-layer networks, first
introduced by Barron (1993). There are many variations, and precise definitions depend on the con-
text. For the exploration of the mathematical properties of Barron space and its generalizations, we
refer to (Wojtowytsch et al., 2021; Chen, 2024; Ma et al., 2022; Meng & Ming, 2022; Xu, 2020;
Wu, 2023). We shall focus on the ReLU activation function for technical reasons. For remarks on
the Barron space with differnt activation functions, we refer to Appendix F.

For a choosen activation σ : R → R and a probability distribution π over the parameters (a,w, b) ∈
R× Rd × R, we denote

fπ(x) =

∫
Rd+2

a σ(w⊤x+ b)π(da⊗ dw ⊗ db).

For any subset Ω ⊂ Rd and f : Ω → R, we define a set of probability distributions as

Af (Ω) := {π ∈ P(R× Rd × R) : fπ|Ω = f}.
Here, P(X) denotes a probability space onX . Then we define the Barron space B(Ω) equipped with
the norm ∥f∥B(Ω) as

∥f∥B(Ω) := inf

{∫
Rd+2

|a|(∥w∥+ |b|)π(da⊗ dw ⊗ db) : π ∈ Af (Ω)

}
. (6)

We say that f ∈ B(Ω) if ∥f∥B(Ω) is finite. The main property of the Barron space is that if f ∈ B(Ω),
then it can be approximated by the two-layer network with the rate of O(m−1/2), independent of
the dimension d. We provide the statement of the theorems from (Ma et al., 2022, Section 2.2)
Proposition 1. For any f ∈ B(Ω) and m > 0, there exists a two-layer neural network

fm(x; Θ) =
1

m

m∑
k=1

akσ(w
⊤
k x+ bk),

(Here, Θ denotes the parameters {(ak,bk, ck), k ∈ 1, · · · ,m} in the neural network), such that

∥f(·)− fm(·; Θ)∥2L2(Ω) ≤
3∥f∥2B(Ω)

m
.

Furthermore, we have

∥fm(·; Θ)∥path :=
1

m

m∑
j=1

|aj |(∥wj∥1 + |bj |) ≤ 2∥f∥B(Ω). (7)

Here, ∥ · ∥path is called a path norm.

6
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Proposition 2. Let us denote

NQ =

{
1

m

m∑
k=1

akσ(w
⊤
k x+ bk) :

1

m

m∑
k=1

|ak|(∥wk∥1 + |bk|) ≤ Q,m ∈ N+

}
.

Let f∗ : Ω → R be a continuous function. Assume that there exists a constantQ > 0 and a sequence
of functions (fm) ⊂ NQ such that

fm(x) → f∗(x), ∀x ∈ Ω.

Then there exists a probability distribution ρ∗ ∈ P(R× Rd × R), such that

f∗(x) =

∫
aσ(w⊤x+ b) ρ∗(da, dw, db), ∀x ∈ Ω.

Furthermore, we have f∗ ∈ B(Ω) with ∥f∗∥B(Ω) ≤ Q.

2.2 GREEN’S FUNCTIONS

Green’s functions provide a powerful method for solving linear differential equations. For the lin-
ear parabolic operator P defined in equation 1, the Green’s function is defined as G(X,Y ) =
G(t, x, s, y) : D × D → R satisfying:{

PG(·, ·, s, y) = 0 in (s,∞)× Rd,

G(t, x, s, y) = δ(x− y) on {t = s} × Rd,

where δ is the Dirac delta function. The solution of equation 2 can be represented as

u(t, x) =

∫
Rd

G(t, x, 0, y)g(y) dy +

∫ t

0

∫
Rd

G(t, x, s, y)f(s, y) dy ds. (8)

For the linear elliptic operator L, defined in equation 4, the Green’s functionG(x, y) : Rd×Rd → R
satisfies

LG(x, y) = δ(x− y).

The solution of equation 5 can then be expressed as:

u(x) =

∫
Rd

G(x, y)f(y) dy.

3 PROOF OF THE MAIN THEOREM

This section briefly sketches the proofs of the theorems in Section 1.3 and Section 1.2. Detailed
proofs are provided in the Appendix.

3.1 APPROXIIMATING THE PARABOLIC EQUATIONS AND RELATED GREEN’S FUNCTIONS

Let us denote
Pconst := ∂tu− aijD2

iju+ (ci − b
i
)Diu+ du,

where A
ij

= aij is the constant positive definite symmetric matrix and b = (b
i
, · · · , bd), c =

(ci, · · · , cd) are the constant vectors and d is the constant coefficients. The following lemma provides
an explicit formula for the Green’s function for Pconst.
Lemma 1. The Green’s function G(t, x, s, y) of the following equation{

Pconstu = 0 in (s,∞)× Rd

u(t, x) = δ(x− y) on {t = s} × Rd.

is

Gconst(t, x, s, y) = Φconst(t− s, x− y),

where

Φconst(t, x) =
1

(4πt)d/2|det(A)|1/2
exp

{
−⟨A−1

(x+ (c − b)t), x+ (c − b)t⟩
4t

− dt

}
.

7
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A direct calculation can derive the proof. We then define a parabolic operator Pδ that approximates
P . To this end, for each δ > 0, there exists Rδ satisfying

1

|DRδ
|

∫
DRδ

|A(t, x)− (A)DRδ
|2 dx dt ≤ δ,

1

|DRδ
|

∫
DRδ

|b(t, x)− (b)DRδ
|2 dx dt ≤ δ,

1

|DRδ
|

∫
DRδ

|c(t, x)− (c)DRδ
|2 dx dt ≤ δ,

1

|DRδ
|

∫
DRδ

|d(t, x)− (d)DRδ
|2 dx dt ≤ δ,

for any DRδ
⊂ Rd+1. Then, we divide D by the cubes DRδ

without overlapping and excluding
measure zero sets. We denote

D =
⋃
k

DRδ,k ∪N ,

where N is a measure zero set. Then, we define averaged coefficients as

aijδ (t, x) :=
∑
k

(aij(t, x))Dk
Rδ

χDk
Rδ

, biδ(t, x) :=
∑
k

(bi(t, x))Dk
Rδ

χDk
Rδ

,

ciδ(t, x) :=
∑
k

(ci(t, x))Dk
Rδ

χDk
Rδ

, dijδ (t, x) :=
∑
k

(d(t, x))Dk
Rδ

χDk
Rδ

.

If (t, x) ∈ N , we define aijδ (t, x), b
i
δ(t, x), c

i
δ(t, x) and dδ(t, x) arbitrary. We then define the “ap-

proximated” parabolic equation as follows:

Pδu :=∂tu−
d∑

i,j=1

Di

(
aijδ (t, x)Dju+ biδ(t, x)u

)
+

d∑
i=1

ciδ(t, x)Diu+ dδ(t, x)u,

=∂tu− div (Aδ(t, x)Du) + bδ(t, x)uδ) + cδ(t, x) ·Du+ dδ(t, x)u.

(9)

We denote Gδ(t, x, s, y) for the function replacing A, b, c and d by Aδ , bδ , cδ and dδ in
Gconst(t, x, s, y). We then claim that Gδ is a fundamental solution function for the operator equa-
tion 9. The precise statement is given below.

Lemma 2. Suppose that f ∈ C2,1(D) ∩ L 2d+4
d+4

(D) and g ∈ C2(Rd) ∩ L2(Rd), then

uδ(t, x) :=

∫
Rd

Gδ(t, x, 0, y) ∗ g(y) dy +
∫ t

0

∫
Rd

Gδ(t, x, s, y) ∗ f(s, y) dy ds

=:uδ,hom(t, x) + uδ,inhom(t, x)

(10)

is the weak solution of {
Pδu = f in D ,

u(0, x) = g(x) on Rd.
(11)

The proof of Lemma 2 is provided in Appendix J.

3.2 BARRON NORM ESTIMATE OF APPROXIMATED EQUATIONS

In this section, we provide proof of the Barron norm estimates for the function defined in equa-
tion 10.

Theorem 3. Suppose that uδ(t, x) is the function defined in equation 10 for some f ∈ B((0,∞)×
Rd) and g ∈ B(Rd). Then, we have

∥uδ(t, ·)∥B(Rd)

≤ 4(1 + ∥c− b∥L∞(Rd) + Λ
1
2

√
t)∥g∥B(Rd)

+ 2∥f∥B((0,t)×Rd)

(
t+

t2

2
+ Λ

1
2

(
2t

3
2

3
+

2t
5
2

5

)
+ ∥c− b∥L∞(D)

(
t2

2
+
t3

6

))
.

(12)

The proof can be found in Section K.
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3.3 COMPARISON ESTIMATES

Next, we show that the weak solution of equation 11 and the weak solution of equation 2 are close
in a local sense.
Theorem 4. Let u be the weak solution of equation 2 and uδ be the weak solution equation 11.
Then, for all δ > 0, there exists some α = α(d, λ,Λ) and constant C̃ > 0 satisfying

∥u− uδ∥V2(BR) ≤
C̃1

R
+ C̃2δ

α.

Here, the constnat C̃1 depends on t, d, λ,Λ, ∥f∥L 2d+4
d+4

(D), ∥g∥L2(Rd) and constant C̃2 depends on

R, t, d, λ,Λ, ∥f∥L 2d+4
d+4

(D), ∥g∥L2(Rd), ∥b∥L∞(D), ∥c∥L∞(D) and ∥d∥L∞(D).

The proof can be found in Section L

3.4 PROOF OF THEOREM 1

Proof. We first prove the theorem under the assumption that f ∈ C2,1(D)∩L 2d+4
d+4

(D)∩B(D) and

g ∈ C2(Rd) ∩ L2(Rd) ∩ B(Rd). By Lemma 2, uδ(x, t) defined in equation 2 is the weak solution
of equation 11.

Let us denote Qt as the upper bound of the Barron norm of uδ(t, ·), given by the right-hand side
of equation 12. For each k ∈ N we construct an increasing sequece {Rk}k such that 1/Rk ≤
1/(4kC̃1). By Theorem 4, we choose δk satisfying

∥u− uδk∥V2(BRk
) ≤

1

2k
.

By Proposition 1, there exists a sequence of two-layer networks {uδk,m(t1, ·)} such that

∥uδk,m(t1, ·)− uδk(t1, ·)∥2L2(BRk
) ≤

3Qt

m
,

for some t1 ∈ (0, t). Then, choose mk ∈ N such that

∥uδk,mk
(t1, ·)− uδk(t1, ·)∥2L2(BRk

) ≤
1

2k
.

Note that the two-layer networks {uδk,mk
(t1, ·)}k converge to u(t1, ·) in L2(BR) for all R > 0.

Since the path norms of {uδk,mk
(t1, )}k are bounded by 2Qt, the Lipschitz semi-norm of {uδk,mk

}
are bounded by 2Qt. Therefore, uδk,mk

(t1, ·) converges to u(t1, ·) for all x ∈ Rd. By Proposition 2,
u(t1, ·) ∈ B(BR) with the estimate in equation 12.

Next, suppose that f ̸∈ C2,1(D) and g ̸∈ C2(Rd). Since f and g still belong to Lebesgue space and
Barron space, we use a standard mollifier, defined in (Evans, 2022, Appendix C.5), ηε to approximate
f and g via smooth functions.

We follow the same procedure for fε = f ∗ ηε and gε = g ∗ ηε. Let uε be the weak solution of
equation 2. Then, equation 12 holds with u, f, g replaced by uε, fε and gε, respectively. By the
properties of the mollifier, fε → f in L 2d+2

d+4
(D) and gε → g in L2(Rd). By the energy estimates

equation 20, uε → u in V2(D) as well. Finally, by the properties of the mollifier, we have∫
Rd

ηε(x) dx = 1 and
∫
Rd

|x|ηε(x) dx ≤ C(d)ε.

Using these properties, we have fε → f in B(D) and gε → g in B(Rd). Taking ε → 0 the estimate
equation 12 holds without the assumption that f ∈ C2,1(D) and g ∈ C2(Rd).

3.5 SKETCH OF THE PROOF OF THEOREM 2

Since proving Theorem 2 proceeds similarly, we shall only highlight the difference for simplicity.
We define a linear elliptic equation as:

Lδuδ := div (Aδ(x)Duδ) + dδuδ = f in Rd. (13)

9
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Then we denote Gδ,zc(t, x, s, y) for the Green’s function of the parabolic operator equation 9 with
b = c = 0. Then, with some scaling scalar Cscale > 0, we have

Kδ(x, y) = Cscale

∫ ∞

0

Gδ,zc(t, x, 0, y) dt

= Cscale

∫ ∞

0

1

(4πt)d/2|Aδ|1/2
exp

{
−⟨A−1

δ (x− y, x− y⟩
4t

− dδt

}
dt

(14)

which is a fundamental solution of equation 13. Under appropriate regularity assumptions on f ,
uδ = Kδ∗f is the weak solution of equation 13. The proof proceeds similarly to the proof of Lemma
2, which we omit here. Then, the weak solutions of equation 5 and equation 13 are sufficiently close,
satisfying

∥u− uδ∥W 1
2 (BR) ≤

C̃1

R
+ C̃2δ

α

for some α > 0, where C̃1 does not depend on R and C̃2 depends on R and d, λ,Λ, dmin, dmax

and ∥f∥L2d/(d+2)(Rd). Additionally, higher integrability results for elliptic equations can be found,
for instance, in (Giusti, 2003, Remark 6.12). This proof is similar to that of Theorem 4; therefore,
we omit it in this paper.

The Barron norm estimate of uδ is provided in Appendix M. We then complete the proof using
the approximation argument outlined in the proof of Theorem 1 substituting Lemma 7, instead of
Lemma 6 for the energy estimates in the elliptic equations.

4 CONCLUSION AND FUTURE WORKS

In this paper, we have demonstrated that solutions of second-order linear PDEs can be effectively
represented in the Barron space using Green’s functions. This result theoretically supports existing
two-layer PINN methods (Gao et al., 2023; Li et al., 2023; Xu et al., 2024), particularly for high-
dimensional problems. Below, we discuss interesting directions for future research.

• Barron norm estimates for the nonlinear equations is an interesting and challenging prob-
lem. Marwah et al. (2023), examine nonlinear elliptic equations with linear growth condi-
tions. Extending these results to parabolic equations would be an intriguing direction for
future research.

• Many important equations in applied fields, such as finance or kinetic theory, are given in
non-divergence form and often exhibit degeneracy. Investigating the curse of dimension-
ality in such equations could provide valuable insights. The regularity theory and Green’s
function estimates for these equations are discussed in (Di Francesco & Polidoro, 2006).

• In this work, we present a theoretical result using Green’s function. Recent studies, such as
(Boullé et al., 2022; Teng et al., 2022), demonstrate a growing interest in learning Green’s
functions by machine learning. Moreover, our results suggest that neural operators can be
trained without encountering the curse of dimensionality since training Green’s function
can be applied to the faimily of PDEs instead of one instance of the equation. Exploring
these areas further would be highly interesting.

• For connections between the Barron space defined here and the spectral Barron space,
see Appendix G. Remarks on function spaces beyond Barron space and their relation to
PDEs are in Appendix H. Numerical experiments validating our theorems are provided in
Appendix O. We refer Appendix P for the estimate of Γ(d+1

2 )/Γ(d2 ).

ACKNOWLEDGMENTS

The authors thank the reviewers for their time and attention in reviewing this manuscript.

REFERENCES

Navid Ardeshir, Daniel J Hsu, and Clayton H Sanford. Intrinsic dimensionality and generalization
properties of the r-norm inductive bias. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 3264–3303. PMLR, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Don G Aronson and James Serrin. Local behavior of solutions of quasilinear parabolic equations.
Archive for Rational Mechanics and Analysis, 25(2):81–122, 1967.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.
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A NOTATIONS

Points in Euclidean spaces

R The set of real numbers

Rd The d-dimensional Euclidean space, denoted by Rd, is de-
fined as the set of all d-tuples where each element of the
tuple belongs to the real numbers

Rd
+ Half-space: {x ∈ Rd : xn > 0},

Rd
− {x ∈ Rd : xn < 0},

x, y, x0 Points in Rd

t, s, t0 Points in R
X,Y,X0 Points in Rd+1, where X = (t, x), Y = (s, y), X0 =

(t0, x0)

|x− y| Euclidean distance between x, y in Rd, defined as

|x− y| =
√∑d

i (xi − yi)2

|X − Y | |X − Y | = max(
√
|t− s|, |x− y|)

⟨x, y⟩, ⟨X,Y ⟩ inner product of two vectors x, y ∈ Rd and X,Y ∈ Rd+1.

Sets in Euclidean spaces, calculus, matrix and indexing

D A cylindrical domain (0, t)×Rd ⊂ Rd+1, with 0 < t <∞
Br(x0) {x ∈ Rd : |x− x0| < r}
∂pD A parabolic boundary defined as ∂pD = {t = a} × Rd

U Subset of U ⊂ Rd+1.

Ω open subset of Rd

∂Ω boundary of Ω

|Ω|, |U | volume of Ω and U , respectively

ν On the surface ∂Ω ⊂ Rd, ν = ν1, · · · , νd) denotes out-
ward unit normal vector to the tangent plane of ∂Ω

Cr(x0) {x ∈ Rd : maxi=1,··· ,d |xi − x0,i| < r}
Dr(X0) (t0 − r2, t0 + r2)× Cr

Q−
r (X0) (t0 − r2, t0)×Br(x0)

Q+
r (X0) (t0, t0 + r2)×Br(x0)

supp f Support of f , i.e., {f(x) ̸= 0}
Dif Partial derivative of f with respect to xi
∂tf Partial derivative of f with respect to the time variable

Df (D1f, · · · , Ddf)

Id d× d identity matrix

A,b, c, Matrix and the vector coefficients of the operator P and L
|A| For a d× d matrix, |A| denotes determinant

A⊤ Matrix transpose

δ(x) a Dirac delta function

Γ(x) Gamma function
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∫
Ω

f(x) dS Integral over the domains Ω ⊂ Rd∫
∂Ω

f(x) dx Surface integral over the boundary of the domains ∂Ω ⊂
Rd∫

U

f(t, x) dx dt Integral over the spatiotemporal domains U ⊂ Rd+1

(f)U , (f)Ω Integral average of f on the domain U and Ω respectively

p′ Hölder conjugate, 1
p′ +

1
p = 1

Function spaces and related norm

∥u∥Lp(Rd) (
∫
Rd |u(x)|p dx)1/p

Lp(Rd) {u : Rd → R : ∥u∥Lp(Rd) <∞}
W 1

p (Rd) {u : Rd → R : ∥u∥Lp(Rd), ∥Du∥Lp(Rd) <∞}
Ck

c (Rd) set of all k continuously differentiable functions with com-
pact supports in Rd

Ck
c (Ω) set of all k continuously differentiable functions with com-

pact supports in Ω

∥u∥Lp,q(D) (
∫ b

0
(
∫
Rd |u(t, x)|p dx)q/p dt)1/q

Lp,q(D) {u : D → R : ∥u∥Lp,q(D) <∞}
Lp(D) Lp,p(D)

W 1,0
2 (D) {u : D → R : u,Du ∈ L2(D)}

W 1,1
2 (D) {u : D → R : u,Du, ∂tu ∈ L2(D)}

V2(D) {u : D → R : u ∈ L2,∞(D), Du ∈ L2(D)}
∥u∥V2(D) ∥Du∥L2(D) + ∥u∥L2,∞(D)

∥u∥V 1,0
2 (D) ∥Du∥L2(D) +maxa≤t≤b ∥u(t, ·)∥L2(Rd)

Ck1,k2
c (U ) set of all functions with k1 continuously differentiable in x

variable and k2 continuously differentiable in t with com-
pact supports in U

W̊ 1,0
2 (D) u ∈W 1,0

2 (D) vanishes on ∂xD , equivalently, u is the limit
of functions from C1,1(D \ ∂xD) in W 1,0

2 (D)

V̊2(D) V2(D) ∩ W̊ 1,0
2 (D)

B(D) Barron space defined in Section 2.1.

B PRECISE DEPENDENCY OF THE CONSTANTS

We gather the constants that appeared in this paper.

• C is a universal constant depending only on λ and Λ but independent of the dimension
d ≥ 2, unless otherwise state. If it depends on other variables such as α, then we denote
C(α).

• β(d, p): Embedding constants between spaces involving time are presented in Lemma 4,
i.e.,

β(d, p) = max

(
p(d− 1)

d
, 2

)d( 1
2−

1
p )
.

• CJN (p, d). Constants in John-Nirenberg inequality presented in Lemma 3,
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• Cenergy Constants for the energy inequailty; see equation 21.

C ADDITIONL DETAILS ON REGULARITY THEORY

This section provides additional theoretical details on regularity theory, such as BMO space and
VMO space.
Definition 3 (BMO(Rd) space). A locally integrable function f on Rd is said to be in the space of
bounded mean oscillation or f ∈ BMO(Rd) if there exists a constant C > 0 such that

∥f∥BMO := sup
K⊂Rd

(
1

|K|

∫
K

|f(x)− (f)K |2 dx
)

≤ C,

where
(f)K =

1

|K|

∫
K

f(x) and |K| = volume of the cube K.

Definition 4 (VMO(Rd) space). A locally integrable function f on Rd is said to be in the space of
vanishing mean oscillation or f ∈ VMO(Rd) if we have

lim
|K|→0

sup
K⊂Rd

(
1

|K|

∫
K

|f(x)− (f)K |2 dx
)

= 0

Remark 5. It is worth mentioning that the definition of BMO and VMO can be changed to the
ball instead of the cube; see, for instance, (Stein, 1993). Also, as a result of the John-Nirenberg
inequality, the integral average ∫

K

|f(x)− (f)K |2 dx dt

can be replaced to ∫
K

|f(x)− (f)K |p dx dt

for 1 ≤ p <∞, in our assumptions on the coefficients. The precise statement of the John-Nirenberg
inequality is stated below.
Lemma 3 (John-Nirenberg lemma). For all f ∈ BMO(Rd) and for all 0 < p < ∞, there exists a
finite constant CJN (p, n) > 0 such that

sup
K⊂Rd

(
1

|K|

∫
K

|f(x)− (f)K |p dx
) 1

p

≤ CJN (p, n)∥f∥BMO(Rd).

CJN (p, d) = (pΓ(p))
1
p e

1
p+12d. (15)

For the proof, we refer (Grafakos, 2009, Corollary 7.1.8).

D REMARKS ON VMO(Rd) SPACE

In this section, we provide examples of functions that belong to and do not belong to the VMO space.
For more nformation regarding VMO space, we refer to (Brezis & Nirenberg, 1995; Grafakos, 2009;
Duoandikoetxea, 2024).

• Examples of functions f ∈ VMO spaces:
– f(x) is an uniformly continuous funciton.
– f(x) is a continuous function with a compact support.
– If f(x) ∈ VMO and L(x) is an Lipschitz funciton, then L(f) ∈ VMO.
– f(x) ∈W 1

d then f ∈ VMO.
– f(x) ∈W s

p with sp = d, then f ∈ VMO.
– f(x) = log | log(|x|)|.

16
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– f(x) = | log(|x|)|α for 0 < α < 1.
– f(x) = sin(log(| log(|x|))).
– f(x) = |x| sin(1/|x|).

• Examples of functions f ̸∈ VMO spaces:
– f(x) = log(|x|).
– f(x) = | log(|x|)|p with 1 < p <∞.
– f(x) = χ[0,1]d(x), characteristic function on [0, 1]d.
– f(x) = sin(1/|x|).
– f(x) = sin(log(|x|))
– f(x) = sin(1/|x|2)

For detailed definition on fractioanl Sobolev space, W s
p , we refer to (Di Nezza et al., 2012).

E REMARKS ON THE CONTINUITY OF THE WEAK SOLUTIONS

Continuity of the solutions to equation 2 and equation 5 has been widely studied since the De Giorgi-
Nash-Moser theorem. We briefly provide some conditions under which the solutions belong to the
space of continuous functions.

For the elliptic case, by (Gilbarg et al., 1977, Theorem 8.24), if f ∈ Lq,loc(Rd) with q > d
2 , then the

weak solution of equation 5 belongs to the space of Hölder continuous functions. For the parabolic
case, by (Aronson & Serrin, 1967, Theorem 4), the weak solution of equation 20 is Hölder con-
tinuous for t > 0 if f ∈ Lq,loc(Rd) with q > d+2

2 . Furthermore, by (Kim & Xu, 2021, Theorem
3.1), the operator equation 1 has a Green’s function G, and the weak solution of equation 2 can be
represented as in equation 8. Thus, u(t, x) → g(x) as t → 0. Therefore, if the initial function g(x)
is continuous, then u(t, x), the weak solution of equation 2, is continuous.

F REMARKS ON ACTIVATION AND BARRON SPACE

In this work, we choose the activation function as ReLU(x). For a non-ReLU activation function,
the Barron norm is defined as

∥f∥B(Ω) := inf

{∫
Rd+2

|a|(∥w∥+ |b|+ 1)π(da⊗ dw ⊗ db) : π ∈ Af (Ω)

}
.

Compared with equation 6, for a Barron function with a non-ReLU activation function, there is an
additional +1 term. A direct approximation theorem, such as Property 1, holds if∫

Rd

|σ′′(x)|(|x|+ 1) dx <∞.

However, to the best of the authors’ knowledge, an inverse approximation result, such as Proposition
2, is not currently known. Addressing these technical difficulties remains a topic for future research.

G CONNECTION WITH SPECTRAL BARRON SPACES

The Barron spaces defined in Section 2.1 and the spectral Barron spaces are closely connected. For
a compact set Ω ⊂ Rd and a function f : Ω → R, the spectral Barron norm is defined as:

∥f∥Fs(Ω) = inf
fe|Ω=f

∫
Rd

(1 + ∥ξ∥Ω)s|f̂e(ξ)| dξ, (16)

where fe is an extension of f to Rd, and ∥ξ∥Ω = supx∈Ω |ξTx|. By (Wu, 2023, Theorem 1.4), we
have:

ε

C
∥f∥F1−ε(Ω) ≤ ∥f∥B(Ω) ≤ C∥f∥F2(Ω) ∀ε ∈ (0, 1).
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Thus, our results can be directly applied to the Barron space with the Barron norm given in equa-
tion 16.

On the other hand, if we define a Barron space for functions over the entire domain, as considered
in (Chen et al., 2023), the spectral Barron space is characterized by the Barron norm:

∥f∥Fs(Rd) :=

∫
Rd

(1 + ∥ξ∥2) s
2 |f̂(ξ)| dξ. (17)

In this setting, a significant technical challenge arises due to the absence of an inverse approximation
result, as presented in Proposition 2. Addressing this issue and studying regularity results within the
spectral Barron space is an intriguing direction for future research.

H REMARKS ON FUNCTION SPACES BEYOND BARRON SPACES AND
MULTI-LAYERS NEURAL NETWORKS

In practical applications, two-layer networks are rarely employed, making the theoretical analysis of
function approximation using multi-layer networks an increasingly compelling topic. In (Bresler &
Nagaraj, 2020), the authors demonstrate that if u ∈ F1/K(Rd), there exists a K-neuron ReLU(x)
network uθ capable of approximating u. However, as explained in Section G, our results cannot
be directly extended to u ∈ F1/K(Rd) due to the absence of inverse approximation results for the
spectral Barron spaces.

The study of function spaces for multi-layer networks remains highly underexplored. Beyond the
limited existing works, such as (Wojtowytsch et al., 2020; Chen, 2023; 2024), there has been little
research into defining meaningful functional properties of deep neural networks. Expanding these
investigations is crucial for advancing our understanding of multi-layer networks, particularly to
leverage such function spaces for approximating solutions to partial differential equations (PDEs).

While shallow networks have been analyzed extensively, deep networks are still at a nascent stage
in terms of both their theoretical function spaces and practical applications to PDE approximation.
Further exploration of these areas is a topic for future research.

I PRELIMINARIES LEMMAS

EMBEDDING INEQUALITIES

Embedding inequalities play a crucial role in having energy estimates for the solution of elliptic and
parabolic equations. The proof of the following well-known embedding inequality can be found in
(Ladyženskaja, 1968, pp. 74-75) and the precise dependency of β can be found in (Ladyženskaja,
1968, Chapter II, Theorem 2.2).

Lemma 4. Let d ≥ 1 be an integer, and consider exponents p̃ and q̃ that satisfy the relation

d

p̃
+

2

q̃
=
d

2
.

The range of these exponents satisfyp̃ ∈
[
2,

2d

d− 2

]
, q̃ ∈ [2,∞] if d ≥ 3,

p̃ ∈ [2,∞), q̃ ∈ (2,∞] if d = 2.

(18)

Then, the following inequality holds

∥u∥Lp̃,q̃(D) ≤ β(d, p̃)∥u∥V2(D) ∀u ∈ V̊2(D) (19)

with

β(d, p̃) = max

(
p̃(d− 1)

d
, 2

)d( 1
2−

1
p̃ )
.
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We present similar embedding results for the function space without the time variable, whose proof
can be found in (Talenti, 1976), where the bound is presented using the Gamma function in the
original text. In this work, we use Stirling’s approximation to reduce dimensionality as much as
possible.
Lemma 5. For all u ∈W 1

2 (Rd), we have(∫
Rd

|u|2
∗
dx

)1/(2∗)

≤ γ(d)

(∫
Rd

|Du|2 dx
)1/2

,

where 2∗ = 2d/(d− 2) and γ(d) is defined as

γ(d) =
4√
πd

(
1

d− 2

)1− 1
2

EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Lemma 6. Suppose that f ∈ L(2n+4)/(n+4)(D) and that g ∈ L2(Rd). Then equation 2 has a
unique weak solution u ∈ V̊2(D) with the following energy estimates

∥u∥V2(D) ≤ CEnergy

(
∥g∥L2(Rd) + ∥f∥L 2d+4

d+4
(D)

)
, (20)

where

Cenergy =

(
2 + λ−1 + β

(
d,

2d+ 4

d

))
. (21)

Proof. We take u(t, x) as a test function in equation 3 to find for all t1 ∈ [1, b]∫
Rd

u2(t1, x) dx− 1

2

∫ t1

0

d

dt

(∫
Rd

u2 dx

)
dt+

∫ t1

0

∫
Rd

(aijDju+ biu)Diu dx dt

+

∫ t1

0

∫
Rd

ciuDiu+ d(x, t)u2 dx dt−
∫ t1

0

∫
Rd

fu dx dt

=
1

2

∫
Rd

u2(t1, x) dx+
1

2

∫
Rd

g2 dx+

∫ t1

0

∫
Rd

(aijDju+ biu)Diu dx dt

+

∫ t1

0

∫
Rd

ciuDiu+ d(x, t)u2 dx dt−
∫ t1

0

∫
Rd

fu dx dt

=

∫
Rd

g2(x) dx

Note that since u does not have a regularity in time direction, we take a Steklov averge uh as a test
funciton in equation 3 and then take h → 0 as described in (Ladyženskaja, 1968, Chapter III.2) or
(DiBenedetto, 2012, Chapter I.3). Rewriting equality above, we have

1

2

∫
Rd

u2(t1, x) dx+

∫ t1

0

∫
Rd

(aijDju+ biu)Diu dx dt+

∫ t1

0

∫
Rd

ciuDiu+ d(x, t)u2 dx dt

=
1

2

∫
Rd

g2(x) dx+

∫ t1

0

∫
Rd

fu dx dt.

(22)
By the Assumption 1 - (3) and the fact that u2 ≥ 0, we have∫ t1

0

∫
Rd

d(x, t)u2 + 2biuDiu ≥ 0 and −
∫ t1

0

∫
Rd

(bi − ci)uDiu ≥ 0.

This inequalities, equation 23 and Assumption 1 - (1), we have

1

2

∫
Rd

u2(t1, x) dx+ λ

∫ t1

0

∫
Rd

|Du|2 dx dt

≤ 1

2

∫
Rd

g2(x) dx+

∫ t1

0

∫
Rd

fu dx dt.

(23)
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By Hölder’s inequality and equation 19, we have∫ t1

0

∫
Rd

fu dx dt ≤ ∥f∥L(2d+4)/(d+4)(D)∥u∥L(2d+4)/d(D)

≤ β(d, (2d+ 4)/d)∥f∥L(2d+4)/(d+4)(D)∥u∥V2(D).

(24)

By equation 23 and equation 24, we have equation 20 by direct computation. The existence and
uniqueness can be derived from the energy estimate equation 20 via Galekin’s method as in
(Ladyženskaja, 1968, Chapter III.4).

For the elliptic case, we have a similar result.
Lemma 7. Suppose that f ∈ L(d+2)/(2d)(Rd). Then equation 5 has the unique weak solution
u ∈W 1

2 (Rd) with the following energy estimates

∥u∥W 1
2 (Rd) ≤ C(γ(d), λ, dmin)∥f∥L d+2

2d
(Rd).

for some constant C(γ(d), λ, dmin) > 0.

The process of the proof is similar to that of Lemma 6. By testing u in equation 4 and using Lemma
7 along with Young’s inequality, the result follows.

J PROOF OF LEMMA 2

Proof. We are intend to show that equation 3 holds for all test function ϕ ∈ C1,1
c (D). Since f and

g are continuously differentiable, u is continuously differentiable. Moreover for all (t, x) ∈ D \ N ,
we have

Pδu = f

and u(0, x) = g(x) holds assuming that (0, x) ̸∈ N . We arbitrary choose ϕ ∈ C1,1
c (D) and let

ψk(x) ∈ C1,1
c (Dk

Rδ
) satisfying |ψk| ≤ 1 and let us denote

ϕk1 = ϕψk, ϕk2 = ϕ(1− ψk
2 )χDk

Rδ

and ψ =
∑

k:Dk
Rδ

∩supp ϕ ̸=∅

ψk.

Since supp ϕ is compact, there exist finite numbers of such k satisfying Dk
Rδ

∩ supp ϕ ̸= ∅ and
the summation converges. We may further assume that for some ε > 0, suppψk ⊂ Dk

Rδ−ε, where
the center is the same as Dk

Rδ
for each k. Therefore, the choice of ψk depends on ε > 0. Then, we

decompose ϕ as
ϕ = ψϕ+ (1− ψ)ϕ =: ϕ1 + ϕ2.

Since each ϕk has a support in Dk
Rδ

, for almost all t1 ∈ (0, t), we have

Iδ(t1, uδ, ϕ1) =

∫
Rd

g(x)ϕ1(0, x) dx,

where Iδ(t, u, ϕ) represent linear operator defined as in equation 3 replacing
aij(t, x), bi(t, x), ci(t, x), d(t, x) by aijδ (t, x), b

i
δ(t, x), c

i
δ(t, x), dδ(t, x). It remains to show

that taking ε→ 0, we have

I(t1, uδ, ϕ2)−
∫
Rd

g(x)ϕ2(0, x) dx→ 0,

since the value

I(t1, uδ, ϕ)−
∫
Rd

g(x)ϕdx = I(t1, uδ, ϕ1)−
∫
Rd

g(x)ϕ1 dx+ I(t1, uδ, ϕ2)−
∫
Rd

g(x)ϕ2 dx

= I(t1, uδ, ϕ2)−
∫
Rd

g(x)ϕ2 dx

does not depends on ε > 0, this implies that

I(t1, uδ, ϕ)−
∫
Rd

g(x)ϕdx = 0.
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Let us estimate each term. We have that

I(t1, uδ, ϕ2)−
∫
Rd

g(x)ϕ2 dx

=

∫
Rd

uδ(t1, x)ϕ2(t1, x) dx−
∫ t1

0

∫
Rd

uδ∂tϕ2 dx dt

+

∫ t1

0

∫
Rd

(aijδ Djuδ + biδuδ)Diϕ2 dx dt+

∫ t1

0

∫
Rd

(ciδDiuδ + dδuδ)ϕ2 dx dt

−
∫ t1

0

∫
Rd

fϕ2 dx dt−
∫
Rd

g(x)ϕ2 dx

=: I1 + I2 + I3 + I4 + I5 + I6.

Note that as supp ϕ2 → 0 as ε→ 0, we have I1, I4, I5, I6 → 0. Therefore, we only need to consider
I2 and I3.

We shall use the fact that since f ∈ C1
2 (D) and g ∈ C1(Rd), uδ has a differentiability in x. For the t

variable, we use the decomposition technique. That is, decompose the domain and then by the parts
as in below

I2 =

∫ t1

0

∫
Rd

∂tuδϕ2dx dt

=
∑
k

∫ tk+(Rk
δ )

2

tk−(Rk
δ )

2

∫
Ck

Rδ

∂tuδϕ2dx dt

=
∑
k

∫
Ck

Rδ

uδ(tk + (Rk
δ )

2, x)ϕ2(tk + (Rk
δ )

2, x) dx

−
∫
Ck

Rδ

uδ(tk − (Rk
δ )

2, x)ϕ2(tk − (Rk
δ )

2, x) dx

−
∑
k

∫ t1

0

∫
∫
Ck
Rδ

∂tuδϕ2dx dt.

Since ∂tuδ(x, t) is well-defined inside each region Dk
Rδ

and belongs to L1(D) and , supp ϕ2 → 0
implies that I2 → 0. Next, we have

I3 =
∑

k:Dk
Rδ

∩supp ϕ ̸=∅

∫ t1

0

∫
Dk

Rδ

((aij)Dk
Rδ

Djuδ + ((bi)Dk
Rδ

uδ)Diϕ
k
2 dx dt

∑
k:Dk

Rδ
∩supp ϕ ̸=∅

((aij)Dk
Rδ

∫ t1

0

∫
Dk

Rδ

DjuδDiϕ
k
2 dx dt++(bi)Dk

Rδ

∫ t1

0

∫
Dk

Rδ

uδDiϕ
k
2 dx dt.

As mentioned earlier, as Dk
Rδ

∩ supp ϕ ̸= ∅ only has finite k, we only need to show that∫ t1

0

∫
Dk

Rδ

DjuδDiϕ
k
2 dx dt→ 0 and

∫ t1

0

∫
Dk

Rδ

uδDiϕ
k
2 dx dt→ 0.

Through the integration of parts, we have∫ t1

0

∫
Dk

Rδ

DjuδDiϕ
k
2 dx dt

=

∫ t1

0

∫
Dk

Rδ

Dijuδϕ
k
2 dx dt−

∫ t1

0

∫
∂(Dk

Rδ
−Dk

Rδ−ε)

Dijuδϕ
k
2ν

i dS(x) dt.

Here, for A ⊂ Rd, ∂A implies the boundary of A,νi denotes the outward unit average vector to the
integral domain, and dS implies integral on the boundary. First term converges to 0 as ε → 0 as
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u ∈ W 1
2 (D) and |supp ϕk2 | → 0. For the second term, we use the Trace inequality, (Evans, 2022,

Chapter 5.5, Theorem 1), to find∫ t1

0

∫
∂(Dk

Rδ
−Dk

Rδ
)

|Diuδϕ
k
2ν

i| dS(x) dt ≤ C(d)∥ϕk2∥L∞(D)

∫ t1

0

∫
Dk

Rδ
−Dk

Rδ

|D2uδ| dx.

This also goes to 0 as |Dk
Rδ

−Dk
Rδ−ε| → 0 as well. Finally, repeating the same procedure (integration

by parts, using the fact that uδ has sufficient regularity, trace inequality), we have∫ t1

0

∫
Dk

Rδ

uδDiϕ
k
2 dx dt→ 0,

as ε→ 0, which completes the proof.

K PROOF OF THEOREM 3

The argument in this proof is motivated by the one presented in (Weinan & Wojtowytsch, 2022,
Lemma 3). We extend these results to a more general equation.

Proof. For the simplicity of the notation, we shall remove the points (t, x) and (s, y) for the coef-
ficients. We remark that the coefficients are piecewise constants functions. From the definition, we
have

uhom(t, x)

=

∫
Rd

g(y)

(4πt)d/2|det(Aδ)|1/2
exp

{
−⟨A−1

δ (y − x− (cδ − bδ)t, y − x− (cδ − bδ)t⟩
4t

− dδt

}
dy.

Since Aδ is a symmetric metric, there exists Aδ = Q⊤
δ D

1
2

δ D
1
2

δ Qδ , where D
1
2

δ is a symmetric metric
where diagonal elements are square root of the eigenvalues andQδ is an orthogonal matrix satisfying

Q⊤
δ Qδ = QδQ

⊤
δ = I.

Then, we have

⟨A−1
δ (y − x− (cδ − bδ)t, y − x− (cδ − bδ)t⟩

4t

=
⟨D− 1

2Qδ(y − x− (cδ − bδ)t), D
− 1

2Qδ(y − x− (cδ − bδ)t)⟩
4t

.

Substituting y with

z = D− 1
2Qδ

y − x− (cδ − bδ)t√
t

we find that

uhom(t, x)

=

∫
Rd

g(x+ (cδ − bδ)t+
√
tQ⊤

δ D
1
2

δ z)

(4πt)d/2
exp

{
−|z|2

4t
− dδt

}
dz

= e−dδt

∫
Rd

∫
Rd+2

aσ(w⊤(x+ (cδ − bδ)t+
√
tQ⊤

δ D
1
2

δ z) + b)

(4πt)d/2
dπ(a,w, b)e

(
− |z|2

4t

)
dz

= e−dδt

∫
Rd+2

∫
Rd

aσ(w⊤(x+ (cδ − bδ)t+
√
tQ⊤

δ D
1
2

δ z) + b)

(4πt)d/2
e

(
− |z|2

4t

)
dzdπ(a,w, b).

Using the fact that dδ ≥ 0 and the definition of the Barron space, we find

∥uδ,hom(t, ·)∥B(Rd) ≤
∫
Rd+2

|a||w|+ |a||w||cδ − bδ|t+ |a||w⊤Q⊤
δ D

1
2

δ |
√
t)dπ(a,w, b)

≤ (1 + Λ
1
2

√
t+ ∥c− b∥L∞(D)t)∥g∥B(Rd).
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Next, we estimate the Barron norm of uδ,inhom. Using the previous result, the fact that

∥f(t, ·)∥B(Rd) ≤ max(t, 1)∥f(t, ·)∥B((0,t)×Rd),

and the representation formula equation 10, we find

∥uδ,inhom(t, ·)∥B(Rd)

≤
∫ t

0

∥f(s, ·)∥B(Rd)(1 + Λ
1
2

√
t− s+ ∥c− b∥L∞(D)(t− s)) ds

≤ ∥f∥B((0,t)×Rd)

∫ t

0

max(1, s)(1 + Λ
1
2

√
t− s+ ∥c− b∥L∞(D)(t− s)) ds

≤ ∥f∥B((0,t)×Rd)

(
t+

t2

2
+ Λ

1
2

(
2t

3
2

3
+

2t
5
2

5

)
+ ∥c− b∥L∞(D)

(
t2

2
+
t3

6

))
.

L PROOF OF THEOREM 4

Proof. Note that we have

{
Pδ(u− uδ) = (P − Pδ)uδ in D ,

u(0, ·)− uδ(0, ·) = 0 on Rd.
(25)

Let ξ(x) be a smooth cut-off function satisfying ξ = 1 on BR and ξ ∈ C1
c (B2R) with

|Dξ| ≤ 2

R
.

For simplicity of the notation, we denote C̃1 for the constant depends on
t, d, λ,Λ, ∥f∥L 2d+4

d+4
(D), ∥g∥L2(Rd). The constant C̃2 depends on also on R as well. That is,

C̃1 is independent of R > 0. Also, it is observed that for p ≥ 2

∫ t1

0

∫
BR

|aij − aijδ |
p + |bi − biδ|p + |ci − ciδ|p + |d(x, t)− dδ|p dx dt ≤ C̃2(p)δ.

Here, C̃2(p) implies additional depenedecy on p ≥ 2. We test both sides by ξ2(u − uδ) on both
sides. Then, on the left-hand side, we use the Assumption 1 - (3) and the Assumption 1 - (1), as in
the procedure provided in Lemam 6, to have

1

2

∫
Rd

ξ2(u(t1, x)− uδ(t1, x))
2 dx+

λ

2

∫ t1

0

∫
Rd

ξ2|Du−Duδ|2 dx dt

≤ LHS +
Λ2

2λ

∫ t1

0

∫
Rd

|Dξ|2|u− uδ|2 dx dt

≤ LHS +
C̃1

R2
,
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where LHS denotes left hand side of the equation after testing ξ2(u − uδ) to equation 25. The
right-hand side can be estimated as below:

RHS ≤
∫ t1

0

∫
Rd

(|aij − aijδ ||Djuδ|+ |bi − biδ||uδ|)|Di(ξ
2(u− uδ))| dx dt

+

∫ t1

0

∫
Rd

ξ2(|ci − ciδ||Diuδ|+ |d(x, t)− dδ||uδ|)|u− uδ| dx dt

≤
∫ t1

0

∫
B2R

ξ2|aij − aijδ ||Djuδ||Diu−Diuδ| dx dt

+ 2

∫ t1

0

∫
B2R

ξ|aij − aijδ ||Djuδ||u− uδ||Diξ| dx dt

+

∫ t1

0

∫
B2R

ξ2|bi − biδ||uδ||Diu−Diuδ| dx dt

+ 2

∫ t1

0

∫
B2R

ξ|bi − biδ||uδ||u− uδ||Diξ| dx dt

+

∫ t1

0

∫
B2R

ξ2|ci − ciδ||Diuδ||u− uδ| dx dt

+

∫ t1

0

∫
B2R

ξ2|d(x, t)− dδ||uδ||u− uδ| dx dt

=: I1 + I2 + I3 + I4 + I5 + I6.

Let us estimate each term. Using the Young’s inequality with Hölder’s inequality for some p > 1,
we find that

I1 ≤ λ

4

∫ t1

0

∫
B2R

ξ2|Diu−Diuδ|2 dx dt

+

(∫ t1

0

∫
B2R

|aij − aijδ |
2p

p−1 dx dt

) p−1
p
(∫ t1

0

∫
B2R

|Duδ|2p dx dt
) 1

p

.

By (Giaquinta & Struwe, 1982, Theorem 2.1) and there exists p = p(d, λ,Λ) > 1 satisfying(
1

t1|B2R|

∫ t1

0

∫
B2R

|Duδ|2p dx dt
) 1

p

≤ C(d, λ,Λ)
1

t1|B2R|

∫ t1

0

∫
B2R

|Duδ|2 dx dt.

From this inequality and Assumption 1 - (2), we have

I1 ≤ λ

4

∫ t1

0

∫
B2R

ξ2|Diu−Diuδ|2 dx dt+ C̃2δ
p−1
p

∫ t1

0

∫
D

|Duδ|2 dx dt.

By the Hölder’s inequality, Lemma 4 and Lemm 6, we find

I2 ≤ 2

R

(∫ t1

0

∫
B2R

|A − Aδ|
d+4
2 dx dt

) 2
2d+4

(∫ t1

0

∫
B2R

|Duδ|2 dx dt
) 1

2

×
(∫ t1

0

∫
B2R

|u− uijδ |
2d+4

d dx dt

) d
2d+4

≤ C̃2δ
1

d+2 .

Similarly, by the Hölder’s inequality, Lemma 4 and Lemm 6 and Young’s inequality, we find

I3 ≤
(∫ t1

0

∫
B2R

|b − bi
δ|

d+4
2 dx dt

) 2
2d+4

(∫ t1

0

∫
B2R

|uδ|
2d+4

d dx dt

) d
2d+4

×
(∫ t1

0

∫
B2R

|Du−Duδ|2 dx dt
) 1

2

≤ λ

16

∫
B2R

|Du−Duδ|2 dx dt+ C̃2δ
2

d+2 .
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By the Hölder’s inequality, we find

I4 ≤
(∫ t1

0

∫
B2R

|b − bi
δ|

2d+4
2 dx dt

) 2
2d+4

(∫ t1

0

∫
B2R

|uδ|2 dx dt
) 1

2

×
(∫ t1

0

∫
B2R

|u− uδ|
2d+4

d dx dt

) d
2d+4

≤ C̃2δ
2

d+2 .

Following a similar procedure of estimating I3, we find

I5 ≤ λ

32

∫
B2R

|Du−Duδ|2 dx dt

+ C̃2δ
2

d+2 .

Finally, we estimate

I6 ≤ C̃2δ
1

d+2 .

Using the fact LHS = RHS and combining all the estimates, we find

∥u− uδ∥V2(BR) ≤
C̃1

R
+ C̃2δ

α,

for some α = α(d, λ,Λ) > 0.

M BARRON NORM ESTIMATE OF uδ = Kδ ∗ f FOR ELLITPIC EQUATIONS

Lemma 8. For some α > 0, we denote

Ψα(x) =
1

(4π)
d
2

∫ ∞

0

e−αtt−
d
2 exp(−|x|2

t
) dt.

Then, we have ∫
Rd

Ψα(x) dx =
1

2dα
,∫

Rd

|x|Ψα(x) dx =

√
πΓ(d+1

2 )

2d+1α
3
2Γ(d2 )

.

Proof. By substituting t = |x|2/s, we have

Ψα(x) =
1

(4π)
d
2 |x|d−2

∫ ∞

0

s
d
2−2 exp(−α |x|

2

s
− s) ds.

We then use the integral change and the definition of the Gamma function to find∫
Rd

Ψα(x) dx =

∫ ∞

0

∫
∂Br

Ψα(x) dSdr

=
2π

d
2

Γ(d2 )

∫ ∞

0

rd−1

(4π)
d
2 rd−2

∫ ∞

0

s
d
2−2 exp(−αr

2

s
− s) ds dr

=
1

2d−1Γ(d2 )

∫ ∞

0

s
d
2−2e−s

∫ ∞

0

r exp(−αr
2

s
) dr ds

=
1

2d−1Γ(d2 )

∫ ∞

0

s
d
2−2e−s

∫ ∞

0

r exp(−αr
2

s
) dr ds

=
1

2dΓ(d2 )α

∫ ∞

0

s
d
2−1e−s ds

=
1

2dα
.
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Similarly, we have∫
Rd

|x|Ψα(x) dx =

∫ ∞

0

∫
∂Br

rΨα(x) dSdr

=
2π

d
2

Γ(d2 )

∫ ∞

0

rd

(4π)
d
2 rd−2

∫ ∞

0

s
d
2−2 exp(−αr

2

s
− s) ds dr

=
1

2d−1Γ(d2 )

∫ ∞

0

s
d
2−2e−s

∫ ∞

0

r2 exp(−αr
2

s
) dr ds.

Using the fact that ∫ ∞

0

t2exp(−βt2) dt =
√
π

4β
3
2

,

we find

1

2d−1Γ(d2 )

∫ ∞

0

s
d
2−2e−s

∫ ∞

0

r2 exp(−αr
2

s
) dr ds.

=

√
π

2d+1α
3
2Γ(d2 )

∫ ∞

0

s
d−1
2 e−s ds

=

√
πΓ(d+1

2 )

2d+1α
3
2Γ(d2 )

.

BARRON NORM ESTIMATE OF THE FUNCTION uδ = Kδ ∗ f

Proof. Before we start, we can take Cscale = 2d from the result of Lemma 8. For a symmetric
possitive definite matix A, and coefficients of the lower order term d(x), let us denote

Ψd(x),A(x) =
1

(4π)
d
2 |det(A)| 12

∫ ∞

0

e−d(x)tt−
d
2 exp(−⟨A−1x, x⟩

t
) dt.

As proceed in Appendix K, we decompose A = QTD
1
2D

1
2Q. By Lemma 8 and substituting

z = D− 1
2QTx,

we find ∫
Rd

Ψα,A(x) dx =

∫
Rd

Ψα(z) dz =
1

2dα
,∫

Rd

|x|Ψα,A(x) dx =

∫
Rd

|QD 1
2x|Ψα(x) dx ≤

|Λ| 12
√
πΓ(d+1

2 )

2d+1α
3
2Γ(d2 )

.

Then Kδ(x, y) defined in equation 14 is

Kδ(x, y) = CscaleΨd(x−y),Aδ
(x− y) ≤ CscaleΨdmin,Aδ

(x− y).

If uδ is the solution of equation 13, then it can be written as

uδ(x) = CscaleΨd(·),Aδ
∗ f = Cscale

∫
Rd

Ψd(y),Aδ
(y)f(x− y) dy.

For simplicity, we set f(x) = aσ(wrx+ b). Then we have

uδ(x) = Cscalea

∫
Rd

σ(w⊤(x− y) + b)Ψd(y),Aδ
(y) dy.
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Taking a Barron norm of uδ , we find

∥uδ∥B(Rd) ≤ 2d|a|
∫
Rd

(|w|+ |b|)Ψd(y),Aδ
(y) + |w||y|Ψd(y),Aδ

(y) dy

≤ 2d|a|
∫
Rd

(|w|+ |b|)Ψdmin,Aδ
(y) + |w||y|Ψdmin,,Aδ

(y) dy

≤ 1

dmin
(|a|(|w|+ |b|)) +

|Λ| 12
√
πΓ(d+1

2 )

2d
3
2
minΓ(

d
2 )

|a||w|

≤

(
1

dmin
+

Λ
1
2
√
πΓ(d+1

2 )

2d
3
2
minΓ(

d
2 )

)
∥f∥B(Rd).

N COMPARISON WITH MODEL CASE

In this section, we compare our results with heat equation of the type. Consider the following{
ut(t, x)−∆u(t, x) = f in (0,∞)× Rd,

u(0, x) = g(x) in Rd.
(26)

Then (Weinan & Wojtowytsch, 2022, Lemma 3), we have

∥u(t, ·)∥B(Rd) ≤ (1 +
√
t)∥g∥B(Rd) +

(
t+

2

3
t
3
2 +

t2

2
+

5

2
t
5
2

)
∥f∥B((0,∞)×Rd). (27)

The result of Theorem 1 coincides with equation 27 after multiplying the left-hand side by 2 when
b = c = 0 and Λ = 1. This can be viewed as a natural extension of the existing result in (Weinan &
Wojtowytsch, 2022, Lemma 3).

Similarly, for the elliptic equation, Weinan & Wojtowytsch (2022) considers

−∆u(t, x) + λ2 = f in Rd. (28)

By (Weinan & Wojtowytsch, 2022, Lemma 2), we have

∥u∥B(Rd) ≤ (λ−2 + λ−3)∥f∥B(Rd). (29)

The result of Theorem 2 coincides with equation 27 after multiplying the left-hand side by 2 when
d(x) = λ2 and d = 3. This can be viewed as a natural extension of the existing result in (Weinan &
Wojtowytsch, 2022, Lemma 2).

O NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments as examples to support our theoretical findings
that a two-layer network can approximate the second-order solution without suffering from the curse
of dimensionality. To this end, we consider the following equations:{

−div (a(x)∇u) = f in [0, 1]d,

u = 0 on ∂([0, 1]d)
(30)

and 
ut(t, x)− div (a(x)∇u(t, x)) = f in (0, 1]× [0, 1]d,

u(0, x) = g(x) in [0, 1]d,

u = 0 on ∂p
(
(0, 1]× [0, 1]d

)
.

(31)
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Table 1: Values of ∥u∥B([0,1]d)/∥f∥B([0,1]d) across different dimensions and cases.

Case Dimension (d)
d=2 d=10 d=100 d=500 d=1000

Case 1 0.19 0.06 0.18 0.11 0.11
Case 2 0.26 0.22 0.29 0.23 0.59

Table 2: Values of ∥u(1, ·)∥B([0,1]d)/(∥f∥B((0,1)×[0,1]d) + ∥g∥B([0,1]d)) across different dimensions
and cases.

Case Dimension (d)
d=2 d=10 d=100 d=500 d=1000

Case 3 0.37 0.11 0.04 0.04 0.02
Case 4 0.16 0.03 0.10 0.06 0.08

Let us present four cases where the closed-form solution, coefficient, and forcing term are known.
To be precise, we consider the following four cases.

Case 1: Solution of equation 30 with

a(x) = 1, u(x) =
1

π2

d∑
i=1

sin(πxi), f(x) =

d∑
i=1

sin(πxi).

Case 2: Solution of equation 30 with

ai(x) = 1 + cos(πxi), u(x) =
1

π2

d∑
i=1

sin(πxi),

f(x) =

d∑
i=1

sin(πxi) + sin(2πxi).

Case 3: Solution of equation 31 with

a(x) = 1, u(t, x) =
e−t

π2

d∑
i=1

sin(πxi),

f(t, x) =
e−t(π2 − 1)

π2

d∑
i=1

sin(πxi), g(x) =
1

π2

d∑
i=1

sin(πxi).

Case 4: Solution of equation 31 with

ai(x) = 1 + cos(πxi), u(t, x) =
e−t

π2

d∑
i=1

sin(πxi),

f(t, x) =
e−t(π2 − 1)

π2

d∑
i=1

sin(πxi) + e−t
d∑

i=1

sin(2πxi), g(x) =
1

π2

d∑
i=1

sin(πxi).

Here, we denote ai as the i-th element of a(x) = (a1(x), · · · , an(x)) ∈ Rd. For Case 1 and Case 2,
we estimate ∥u∥B([0,1]d)/∥f∥B([0,1]d) for dimensions 2, 10, 100, 500, and 1000, as shown in Table 1.
Similarly, we estimate ∥u(·, 1)∥B([0,1]d)/(∥f∥B((0,1)×[0,1]d)+∥g∥B([0,1]d)) in Table 2 for dimensions
2, 10, 100, 500, and 1000. To numerically calculate the Barron norm, we approximate each function
with a two-layer network and compute the path-norm defined in equation 7.
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P ESTIMATES ON Γ(d+1
2
)/Γ(d

2
)

By the (Gubner, 2021, equation 3), we have

Cxx−
1
2 e−x ≤ Γ (x) ≤ Cxx−

1
2 e−xe

1
12x

for some constant C > 0. Then we have

Γ(d+1
2 )

Γ(d2 )
≤
C(d+1

2 )
d
2 e−

d+1
2 e

1
6(d+1)

C(d2 )
d−1
2 e−

d
2

= e−
1
2 e

1
6(d+1)

√(
1 +

1

2

)d
d

2
≈ d

2

for large d ∈ N.
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