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Abstract

Schrödinger bridge (SB) has evolved into a universal class of probabilistic generative mod-
els. In practice, however, estimated learning signals are often uncertain, and the reliability
promised by existing methods is often based on speculative optimal-case scenarios. Re-
cent studies regarding the Sinkhorn algorithm through mirror descent (MD) have gained
attention, revealing geometric insights into solution acquisition of the SB problems. In
this paper, we propose a variational online MD (OMD) framework for the SB problems,
which provides further stability to SB solvers. We formally prove convergence and a re-
gret bound for the novel OMD formulation of SB acquisition. As a result, we propose a
simulation-free SB algorithm called Variational Mirrored Schrödinger Bridge (VMSB) by
utilizing the Wasserstein-Fisher-Rao geometry of the Gaussian mixture parameterization
for Schrödinger potentials. Based on the Wasserstein gradient flow theory, the algorithm
offers tractable learning dynamics that precisely approximate each OMD step. In experi-
ments, we validate the performance of the proposed VMSB algorithm across an extensive
suite of benchmarks. VMSB consistently outperforms contemporary SB solvers on a range
of SB problems, demonstrating the robustness predicted by our theory.

1 Introduction

Schrödinger bridge (SB; Schrödinger, 1932) has emerged as a universal class of probabilistic generative
models. Nevertheless, learning methods of SB remain somewhat atypical, each requiring a sophisticated ap-
proach to derive a solution. Among various possible research directions, addressing the Schrödinger bridge
problem (SBP) from a practical standpoint highlights the necessity of emphasizing robustness, a critical
property ensuring solution reliability and stability in the presence of perturbations and distributional shifts
(Xu et al., 2008; Duchi & Namkoong, 2021). Moreover, since SBP is fundamentally an infinite-dimensional
distributional problem—where optimal probabilistic models inherently exhibit uncertainty when estimated
from finite samples—establishing robust theoretical guarantees is both essential and challenging. The col-
lective perspective of considering the SBP as an ordinary instance of optimization has broadly opened new
avenues for algorithmic advancements of probabilistic generative models in a learning theoretical direction,
particularly within the context of the learning theory and stability improvements of SB models.

Recently, learning an SB model with Sinkhorn (Peyré et al., 2019) has been generalized into mirror descent
(MD; Nemirovsky & Yudin, 1983; Léger, 2021; Aubin-Frankowski et al., 2022). For parameters {wt}Tt=1 and
a convex function Ω, an update of MD for a cost function F is derived as

∇Ω(wt+1) = ∇Ω(wt)− ηt∇F (wt), (1)

where a gradient operation denoted as ∇Ω( ·) creates a transformation that links a parametric space to a
dual space. Aubin-Frankowski et al. (2022) formally expanded the notion of MD using directional derivatives
and first variations. However, prior analyses have predominantly focused on optimal-case scenarios with a
fixed cost function F , whereas theoretical improvements are possible under worst-case scenarios through the
use of online convex programming methods (Zinkevich, 2003), which address unknown sequences of convex
cost functions {Ft}∞

t=1. Although online mirror descent (OMD; Srebro et al., 2011; Lei & Zhou, 2020) has
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Table 1: A technical overview. Combining chracter-
istics of existing methods, VMSB offers a simulation-
free SB solver that produces iterative OMD solutions.
Our VMSB additionally provides a strong theoretical
guarantee of convergence based on a regert analysis.

Iterative Simulation-free Regret analysis
DSB
(De Bortoli et al.) ✓ ✗ ✗

DSBM
(Shi et al.) ✓ ✗ ✗

LightSB
(Korotin et al.) ✗ ✓ ✗

LightSB-M
(Gushchi et al.) ✗ ✓ ✗

VMSB (ours) ✓ ✓ ✓

demonstrated effectiveness in classical settings, adapting OMD to the SBP context requires developing a
novel theory and computational tools to guarantee robust algorithmic performance.

In general, one can consider constrained distributional optimization problems with generalized gradient dy-
namics on the space of distributions endowed with the Wasserstein metric. Leveraging the Wasserstein
gradient flow (WGF) discovered by Jordan, Kinderlehrer, and Otto (JKO; Jordan et al., 1998), the desired
dynamics of minimizing a cost functional F : P2(X ) → R can be modeled, where P2(X ) denotes the set
of probability distributions with finite second-order moments. Despite the extensive theoretical findings of
WGF regarding OT problems (Ambrosio et al., 2005a; Santambrogio, 2015; Villani, 2021), the computa-
tional challenges remain. The established methods are commonly based on numerical methods of solving
partial differential equations (PDEs) (Carlier et al., 2017; Carrillo et al., 2023), whose exhaustive numerical
computations make them unsuitable for systems with high dimensional probability densities.

A favored strategy to mitigate the issue is to narrow down the solution space into a subset of tractable
distributions, often referred to as taking a variational form (Paisley et al., 2012; Blei et al., 2017). For
example, mean-field formulations of SB (Liu et al., 2022; Claisse et al., 2023) are variational approximations.
Unfortunately, it does not faithfully yield an analytical submanifold and is obligated to physically simulate
among particles. Recently, a Gaussian mixture parameterization of the Schrödinger potentials has been
proposed by Korotin et al. (2024). The simulation-free LightSB solver is simple yet general, with the
guarantee of universal approximation for SB. The expressiveness of the solver coincides with geometric
properties of Gaussian variational inference and mixture models (Chen et al., 2018; Daudel et al., 2021;
Lambert et al., 2022; Diao et al., 2023). However, its shortcoming—as well as other simulation-free solvers
(Tong et al., 2024b; Gushchin et al., 2024a)—is the uncertainty of data-driven learning signals of non-convex
objectives. This reveals room for improvement with the rich geometric properties of SB in a variational form.

In this paper, we explore a novel formulation of SB acquisition through the lens of online mirror descent
(OMD; Srebro et al., 2011), for ensuring further stability. As illustrated in Fig. 1, our OMD method utilizes
primal and dual spaces (C,D) whose geometry naturally arises in the SBP, and transformations between
coupling πt and dual potential φt ⊕ ψt are uniquely defined, and first variation operators (δC, δD) transform
such elements (Aubin-Frankowski et al., 2022). For online learning, we postulate optimization errors of an SB
solver, and propose a Variational OMD (VOMD) framework to formally reduce the errors in terms of regrets.
To this end, we propose a robust simulation-free SB algorithm called Variational Mirrored Schrödinger Bridge
(VMSB). The proposed VMSB offers a tractable approximation of OMD that solves iterative subproblems
by Wasserstein gradient flows. To solve SB in a robust manner, the variational method is based on gradient
flows with respect to the Wasserstein-Fisher-Rao (WFR) geometry. Our variational framework allows us to
perform OMD which is tolerant of unreliable empirical estimates of arbitrary data-driven SB solvers. The
experiments indicate that VMSB outperforms existing solvers in various benchmarks.

Our contributions. We aim to build a novel learning theoretical algorithm derived from a geometric
perspective for SBP. To the best of our knowledge, VMSB is the first VOMD-based SB algorithm and
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inherits the theoretical essence of OMD. Table 1 shows that VMSB is a simulation-free solver equipped with
a rigorous regret bound for general situations. Our main contributions are summarized below:

• We develop a robust SB learning algorithm built upon an OMD formulation, whose rules follow
Wasserstein-2 dynamics derived from local MD objectives. Under mild assumptions, we formally prove
convergence of the proposed VOMD formulation in general online learning scenarios (§ 4).

• We introduce a simulation-free SB method leveraging the Wasserstein-Fisher-Rao geometry, ensuring
asymptotic stability within Wasserstein gradient flows. The resulting VMSB algorithm admits closed-
form dynamics, enabling accurate and computationally efficient implementation using LightSB (§ 5).

• We validate our algorithm across diverse SB problem settings, highlighting the effectiveness of our VOMD-
based framework in contexts including online learning, EOT benchmarks, and image-to-image translation
tasks. Empirical results consistently demonstrate that our proposed methods outperform existing SB
solvers, strongly supporting our theoretical claims (§ 6).

2 Related Work

Simulation-free SB. The SBP is originated from a physical formulation for evolution of a dynamical sys-
tem between measures Léonard (2012); Pavon & Wakolbinger (1991). The study of SB has gained popularity
due to its connection to entropy-regularized optimal transport (EOT; Peyré et al., 2019; Nutz, 2021). Its
association with EOT suggests various applications across various fields related to machine learning, such
as image processing, natural language processing, and control systems (Caron et al., 2020; Liu et al., 2023;
Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022). Historically, the most representative algorithm for SBP
is Sinkhorn (Kullback, 1968), there has been progress in training SB with nonlinear networks (Vargas et al.,
2021; De Bortoli et al., 2021) by “simulating” a half-bridge of forward and backward diffusion at each time.
An SB solver is called as simulation-free (Tong et al., 2024a;b) if the solver is trained without samples from
the simulation of SB diffusion processes. LightSB (Korotin et al., 2024) is a special type of simulation-free
solver using the maximum likelihood method of Gaussian mixture models (GMMs). Building upon these
advancements, our approach focuses on enhancing simulation-free SB solvers by leveraging geometric insights
derived from the generalized dual geometry inherent to the SBP.

MD and Sinkhorn. The Bregman divergence (Bregman, 1967) is a family of statistical divergence that
is particularly useful when analyzing constrained convex problems (Beck & Teboulle, 2003; Boyd & Van-
denberghe, 2004; Hiriart-Urruty & Lemaréchal, 2004). Notably, Léger (2021) and Aubin-Frankowski et al.
(2022) adopted the Bregman divergence into EOT and SB problems with probability measures, and the
studies revealed that Sinkhorn can be considered to be an MD with a constant step size η ≡ 1. In statistical
geometries, the Bregman divergence is a first-order approximation of a Hessian structure (Shima & Yagi,
1997; Butnariu & Resmerita, 2006), which makes MD as natural discretization on a gradient flow. Deb et al.
(2023) introduced Wasserstein mirror flow, and the results include a geometric interpretation of Sinkhorn for
unconstrained OT, i.e., when ε → 0 from our noisy setup. Karimi et al. (2024) formulated a half-iteration
of the Sinkhorn algorithm for SB into a mirror flow, i.e., ηt → 0.

Wasserstein gradient flows have drawn significant attention whose geometry is formally described by the
Wasserstein-2 metric (Ambrosio et al., 2005a; Villani, 2009; Santambrogio, 2017). Otto (2001) introduced a
formal Riemannian structure to interpret various evolutionary equations as gradient flows with the Wasser-
stein space, which is closely related to our variational approach. The mirror Langevin dynamics is an early
work describing the evolution of the Langevin diffusion (Hsieh et al., 2018), and was later incorporated in
the geometry of the Bregman Wasserstein divergence (Rankin & Wong, 2023). We relate our methodology
with recent approaches of variational inference on the Bures–Wasserstein space (Lambert et al., 2022; Diao
et al., 2023). Utilizing Bures–Wasserstein geometry, the Wasserstein-Fisher-Rao geometry (Liero et al., 2016;
Chizat et al., 2018; Liero et al., 2018; Lambert et al., 2022) additionally provides “liftings,” which yield an
interaction among measures.

Learning theory. Suppose we have time-varying costs {Ft}∞
t=1. We generally referred to learning through

these signals as online learning (Fiat & Woeginger, 1998). Our interest lies in temporal costs defined in a
probability space, where following the ordinary gradient may not be the best choice due to the geometric
constraints (Amari, 2016; Amari & Nagaoka, 2000). In this sense, we primarily relate our work to the online
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form of MD (Srebro et al., 2011; Raskutti & Mukherjee, 2015; Lei & Zhou, 2020). The OMD algorithm
provides a generalization of robust learning by seeking solutions that are optimal in a worst-case sense,
ensuring performance guarantees under adversarial or uncertain conditions (Xu et al., 2008; Zinkevich, 2003;
Madry et al., 2017). Another relevant design of the online algorithm is the follow-the-regularized-leader
(FTRL; McMahan, 2011). OMD focuses on scheduling proximity of updates through {ηt}Tt=1, whereas
FTRL minimizes historical losses with a fixed proximity term.

3 Generalization of Schrödinger Bridge Problems
Ω

x1

x2

xn

y1y2
π⃗(·|x1)

π⃗(·|xn)

µ ν

Noise (W ε)

Figure 2: The SB problem.

Notation. Let P(S) (P2(S)) denote the set of (absolutely continuous)
Borel probability measures on S ⊆ Rd (with a finite second moment). For
marginals µ, ν ∈ P2(S), Π(µ, ν) denotes the set of couplings (Peyré et al.,
2019). For an transportation plan π, we often use a shorthand notation
π⃗x ( ⃗πy) to denotes a conditional distribution for a sample data π⃗(·|x) (or
⃗π(·|y); see Fig. 2). We use KL(·∥·) to denote the KL functional and assume

+∞ if an argument is not absolutely continuous. We employ P([0, 1],S)
for a set of path measures from the from the time interval [0, 1].

For a positive regularization coefficient ε ∈ R+, the EOT problem, or the static SB problem with a quadratic
cost function c(x, y) = 1

2∥x− y∥
2, is defined as finding the unique minimizer π∗ for the following problem:

OTε(µ, ν) := inf
π∈Π(µ,ν)

∫∫
S×S

c(x, y) dπ(x, y) + εKL(π∥µ⊗ ν), (2)

where µ⊗ν denotes the product of measures. For the dual problem, we consider the log-Schrödinger potentials
(Nutz, 2021) (φ∗, ψ∗) ∈ L1(µ)×L1(ν), which represent the primal solution with dπ∗ = eφ

∗⊕ψ∗−cεd(µ ⊗ ν),
(µ ⊗ ν)-almost surely, with the quadratic cost cε(x, y) := 1

2ε∥x − y∥
2. The Sinkhorn algorithm is given as

following alternating updates (Cuturi, 2013):

ψ2t+1(y) = − log
∫

S
eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log

∫
S
eψ2t+1(y)−cε(x,y)ν(dy), (3)

where each update is called iterative proportional fitting (IPF; Kullback, 1968). Meanwhile, let us consider
W ε ∈ P(S, [0, 1]) be the Wiener process with volatility ε. The dynamic SBP aims to find an optimal process
T ∗ such that

T ∗ := arg min
T ∈Q(µ,ν)

KL(T ∥W ε), (4)

where Q(µ, ν) ⊂ P(S, [0, 1]) is the set of processes with marginals µ and ν. The SB process T ∗ is uniquely
described by a stochastic differential equation (SDE): dXt = g∗(t,Xt) + dW ε

t in t ∈ [0, 1), governed by a
drift function g∗ along with some noise. The fundamental equivalence between static and dynamic SBPs
(Pavon & Wakolbinger, 1991; Léonard, 2012) allows us to consider the optimal coupling π∗ when finding the
SB process T ∗, vice versa.

Since the SB objective does not ensure the Gâteaux differentiability (Aubin-Frankowski et al., 2022; see
Definition 4 in the appendix), one needs an alternative notion of gradients, in order to generalize SBPs from
the view of classical MD. Consequently, we provide the definitions of directional derivatives (Aliprantis &
Border, 2006) and first variations (Aubin-Frankowski et al., 2022).
Definition 1 (Directional derivative). Given a locally convex topological vector space M, the directional
derivative of F in the direction ξ is defined as d+F (x; ξ) = limh→0+

F (x+hξ)−F (x)
h .

Definition 2. Given a topological vector space M and a convex constraint C ⊆ M, for a function F and
x ∈ C ∪ dom(F ), define the first variation of F over C to be an element δCF (x) ∈ M∗, where M∗ is the
topological dual ofM, such that it holds for all y ∈ C∪dom(F ) and v = y−x ∈M: ⟨δCF (x), v⟩ = d+F (x; v).
⟨·, ·⟩ denotes the duality product of M and M∗.

Following Karimi et al. (2024), this work considers the generalized Bregman divergence defined with a weak
notion of the directional derivative. Following Karimi et al. (2024), this work explicitly set the Bregman
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potential Ω(·) = KL(·∥e−cεµ ⊗ ν) in the SB problems, which enforces the Gibbs parameterization for the
couplings, such that SB models follow the specific form of dπ = eφ⊕ψ−cεd(µ⊗ ν).
Definition 3 (Bregman divergence). Let a convex functional Ω :M→ R∪ {+∞} be a Bregman potential.
Define the Bregman divergence associated with Ω as

DΩ(x∥y) := Ω(x)− Ω(y)− d+Ω(y;x− y) (5)

for every point x, y ∈M.

Lastly, our theoretical analysis works with a certain form of measure concentration property, and we formally
address asymptotically strong log-concave (alc) distributions to address the desired properties of OMD. Let
us consider the following informal definition of asymptotically strong log-concave distributions

Palc(Rd) :=
{
ζ(dx) = exp

(
−U(x)

)
dx : U ∈ C2

(
Rd

)
, U is asymptotically strongly convex

}
, (6)

where Appendix A contains a formal version on asymptotical convexity. Note that asymptotically log-
concave functions satisfy a certain form of log Sobolev inequality (LSI; Gross, 1975). The condition can be
an extension of Sobolev space (Adams & Fournier, 2003) for informational geometric problems. The simplest
case of LSI for the Gaussian measure is represented as follows.
Remark 1 (LSI for the standard Gaussian). Suppose that f is a nonnegative function, integrable with
respect to a measure γ, and that the entropy is defined as Entγ(f) =

∫
Rd f log fdγ−

(∫
Rd fdγ

)
log

(∫
Rd fdγ

)
.

the log Sobolev inequality when γ is the standard Gaussian measure reads Entγ(f) ≤ 1
2

∫
Rd

|f |2

f dγ.

Historically, LSI arises from the implication of satisfying the Talagrand’s inequality for bounding the
Wasserstein-2 distance, and is closely related to measure concentration (Otto & Villani, 2000). The important
extension of asymptotically strong log-concave distributions for Schrödinger bridge dπ = eφ⊕ψ−cεd(µ ⊗ ν),
(µ ⊗ ν)-a.s. is that induced SB model also satisfies asymptotically strongly log-concaveness and the LSI
condition (Conforti, 2024). For a representative model related to our work, the Gaussian mixture parame-
terization (Korotin et al., 2024) is a representative model that our theoretical analysis holds, because GMM
weights does not alter the characteristic of Fisher information as an upper bound of KL in the asymptotical
sense.
Remark 2 (Conforti, 2024). Let µ, ν ∈ Palc(Rd) with finite entropy on Lebesgue measures and π ∈ C
be a coupling in the static Schrödinger bridge problem. Then, for a quadratic cost function, the coupling
distribution is also asymptotically log-concave and satisfies a form of logarithmic Sobolev inequality.

Let us suppose that a parameterized SB model πt = eφt⊕ψt−cε(µ ⊗ ν) obeys the following constraints for
marginals and potentials:

C :=
{
π : (µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)×L1(ν), and φ,ψ ∈ C2(Rd) ∩ Lip(K)

}
, (7)

where Lip(K) denotes a set of functions with K-Lipschitz continuity. Using the disintegration theorem for
probability measures (Léonard, 2014), we assume the boundedness of Bregman divergence between two
transport plans using derivatives of first variations with some positive constraint ω > 0 by the following
assumption.
Assumption 1 (LSI for couplings). Let us suppose Ω = KL(π∥R) for a reference measure R. Suppose that
arbitrary π, π̄ ∈ C satisfy a type of logarithmic Sobolev inequality for relative entropy (KL divergence) is
upper bounded by (relative) Fisher information (Gross, 1975), namely LSI(ω) for some ω̄ ∈ R+ as follows.

DΩ(π∥R) = KL(π∥R) ≤ 1
2ω̄

∫∫
Rd×Rd

∣∣∣∣∇ log π(x, y)
R(x, y)

∣∣∣∣2
π(dx,dy)

where Ω = KL(·∥R). By the first variation of KL, equivalence in the first variation of Bregman divergences
(explained later in Lemma 5) and an application of the Hölder’s inequality, assume that we can find a
constant ω > 0 such that

DΩ(π∥π̄) ≤ 1
2ω

∥∥∇(δCΩ(π)− δCΩ(π̄))
∥∥2
L2(π) (8)

for the Bregman potential Ω = KL(·∥e−cεµ⊗ ν) and the first variation δC.
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Figure 3: Learning for an SB model {πt}∞
t=1 in C (see Fig. 1 for the detailed illustration). Left: Sinkhorn

(Lemma 1). Middle: Wasserstein gradient descent in the distributional space C for fixed F (Lemma 2).
Right: Variational online mirror descent with sequence of convex costs using uncertain estimates {π◦

t }∞
t=1.

In general, the LSI condition also has often been used to analyze the convergence of partial differential
equations (Malrieu, 2001). In the same vein, to make an analysis on improvement (Lemma 13) and a solid
regret bound of OMD (Lemma 15), this work finds that Assumption 1 is necessary to ensure a certain
asymptotical type of measure concentration in the following section.

4 Learning Schrödinger Bridge via Online Mirror Descent

The goal in this section is to derive an OMD update rule for SB, and analyze its convergence. To accomplish
this, we postulate on the existence of temporal estimates and an online learning problem. Our analysis
suggests that applying an MD approach can reduce the uncertainty of these estimates.

4.1 Sinkhorn and Wasserstein descent as mirror descent algorithms

We start with a novel characterization of Sinkhorn and a static MD variant illustrated in the left side of
Fig. 3, which will lead to a better understanding of the OMD framework. OMD updates are determined
by the first order approximation of costs Ft and proximity of previous iterate with respect to a Bregman
divergence (Beck & Teboulle, 2003). Using the first variation δC in Definition 2 instead of standard gradient
∇, the proximal form of OMD is derived as (Karimi et al., 2024)

πt+1 = arg min
π∈C

{〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

}
, (9)

where Ft denotes a temporal cost function for SB models in C. In Eq. (9), the updates are determined
by the first order approximation of Ft and proximity of previous iterate πt with respect to the Bregman
divergence (Beck & Teboulle, 2003). In contrast to the ‘half-bridge’ interpretation provided by Karimi et al.
(2024), the online MD iteration (9) involves a temporal cost Ft, which offers more general reinterpretation
of the Sinkhorn algorithm. Using the feasible model space C in (7), IPF projections (3) are reformulated as
following subproblems of alternating Bregman projections:

arg min
π∈Π⊥

µ

{
KL(π∥π2t) : π ∈ C, γ2π = ν

}
, arg min

π∈Π⊥
ν

{
KL(π∥π2t+1) : π ∈ C, γ1π = µ

}
, (10)

where γ1π(x) := ∫ π(x, y)dy and γ2π(y) := ∫ π(x, y)dx denotes the marginalization operations, and the
symbols (Π⊥

µ ,Π⊥
ν ) denote the Sinkhorn projection spaces that preserve the property of marginals. As a

generalized optimization problem in C, one can consider a temporal cost F̃t(π) := atKL(γ1π∥µ) + (1 −
at)KL(γ2π∥ν) with sequence {at}∞

t=1 = {0, 1, 0, 1, . . . }. By construction, an online form of MD for F̃t with a
constant step size ηt≡1 matches the Sinkhorn.
Lemma 1 (Sinkhorn). For Ω(·) = KL(π∥e−cεµ ⊗ ν), iterates from πt+1 = arg minπ∈C

{
⟨δCF̃t(πt), π − πt⟩+

DΩ(π∥πt)
}

is equivalent to estimates from (φt, ψt) of (3), for every update step t ∈ N0.

The proof is in Appendix A. Consequently, we established that the Sinkhorn algorithm corresponds to an
instance OMD; however, its inherent structure limits flexibility on step sizes and other underlying assump-
tions, making it challenging to analyze directly using standard OMD theoretical arguments. Instead, one
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Figure 4: Loss landscapes and gradient dynamics in a 2D problem. Left: In an early stage, parameters of
three modalities {mk}3

k=1 (mean estimations) for both LightSB (top) and VMSB (bottom) methods approach
the optimality with different costs. Right: When magnified the landscapes in the late stages (10 times),
while LightSB is vibrant, whereas our method emits strictly convex landscape and stable dynamics.

can alternatively consider OMD by recovering a “static” objective, namely F (·) := KL(·∥π∗), where the KL
functional is originated from the formal definition of SBP (Vargas et al., 2021; Chen et al., 2022). The
following lemma shows that the MD updates for the static cost correspond to discretization of a Wasserstein
gradient flow for SB models, a Riemannian steepest descent in the SB model space C.
Lemma 2 (MD in the Wasserstein space). Suppose that F (π) := KL(π∥π∗) for π ∈ C. The MD formulation
of F corresponds to a discretization of a geodesic flow such that limηt→0+

πt+1−πt

ηt
= −∇WF (πt), where ∇W

denotes the Wasserstein-2 gradient operator.

According to Lemma 2, gradients of F are tangential to the geodesic curve from π0 to π∗ (green line in
the middle of Fig. 3) in terms of Wasserstein-2 metric W2. Hence, the geometric interpretation allows us
to consider the static cost F as the ground-truth cost for optimization in our variational OMD framework.
However, the ideal case falls short in practice since π∗ is inherently unknown. Therefore, we postulate on an
online learning problem that nonstationary estimates {π◦

t }∞
t=1 are offered instead of π∗ as learning signals,

making an optimization process with Ft(·) := KL(·∥π◦
t ). As shown in in the right side of Fig. 3, we focus on

the online learning setting where {π◦
t }∞
t=1 are fundamentally uncertain with perturbation, since the optimal

plan π∗ is not accessible during the training time.

4.2 Online mirror descent for Schrödinger bridges: theoretical analysis

We postulate on an online learning problem that nonstationary ergodic estimates {π◦
t }∞
t=1 are offered instead

of π∗ (gray region in Fig. 1). Let Ω∗ be the Fenchel conjugate of Ω + iC with the convex indicator1 iC . For
the space D := δCΩ(C), a directional derivative δD of Ω∗ exists by the Danskin’s theorem (Danskin, 1967;
Bernhard & Rapaport, 1995), such that

δDΩ∗(φ⊕ ψ) = arg max
π∈C

{
⟨φ⊕ ψ, π⟩ − Ω(π)

}
. (11)

Note that (δCΩ, δDΩ∗) form bidirectional maps; a direct sum of potentials φ ⊕ ψ ∈ D represent an element
of the generalized dual space. The key assumption is that the learning target π◦

t is asymptotically mean
stationary (Gray & Kieffer, 1980) for the dual space, which have been used to analyze stochastic dynamics.
Since iterates are updated through dual parameters in MD, we refer to the process as being dually stationary.
Assumption 2 (Dually stationary process). Suppose that π◦

D ∈ C exists, which is a primal representation
of an asymptotic mean π◦

D := δD(limt→∞ Et[δCΩ(π◦
t )]). Here Et denotes the time-average.

Plugging Ft(·) = KL(·∥π◦
t ) to (9) from § 4.1, we achieve a distinct OMD setup. Fig. 4 demonstrates toy

experiment regarding our online learning hypothesis. OMD decomposes the global problem into local convex
1Defined as iC(x) = 0 if x ∈ C and +∞ otherwise.
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problems, and prevented iterates from being vibrant by stopping at a single point π◦
D. This verifies that

OMD stabilizes learning of πt, even when the reference π◦
t tends to inherently have some perturbation.

ηt
1−ηt

t

η1

Figure 5: A sequence ex-
ample of ηt and 1− ηt.

For stability, we state two conditions for OMD step sizes {ηt}∞
t=0, which will be

justified in Theorem 1 and Proposition 1. Fig. 5 shows a plot of a well-known
example: harmonic progression 1

a+td for a ∈ R and d ∈ R+ with respect to t.
The sequence satisfies both conditions of the following assumption.
Assumption 3 (Step sizes). Assume two conditions for step sizes {ηt}∞

t=0. (a)
Convergent sequence & divergent series: limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞. (b)

Convergent series for squares:
∑∞
t=1 η

2
t <∞.

Using the conditions above, we firstly argue that OMD for the temporal cost KL(·∥π◦
t ) with respect to

the Bregman potential Ω = KL(·∥e−cεµ⊗ ν) requires step size scheduling for the sake of convergence. The
following theorem states that convergence in the case of π∗ = π◦

D is assured when ηt follows Assumption (3a).
In contrast to the well-known linear convergence guarantees for the Sinkhorn algorithm under bounded
costs with fixed marginals (Carlier, 2022), our OMD-based analysis establishes sublinear convergence rates,
accommodating scenarios involving unbounded and non-stationary costs.
Theorem 1 (Step size considerations). Suppose the idealized case of π∗ = π◦

D. Then, for {πt}Tt1 ⊂ C we get
limT→∞ E1:T [DΩ(π◦

D∥πT )] = 0 if and only if Assumption (3a) is satisfied. Furthermore, if the step size is in
the form of ηt = 2

t+1 , then E1:T [DΩ(π∗∥πt)] = O(1/T ).

Therefore, we can guarantee the ideal convergence in the SB learning when the scheduling of ηt follows the
step size assumptions. Next, we argue that general convergence toward π◦

D is guaranteed under Assump-
tion (3b). Given the convex nature of SB cost functionals, we argue that this convergence toward π◦

D is
beneficial as long as π◦

t is trained to approximate π∗ and remain bounded. Therefore, we argue that the
convergence of SB is beneficial and address the following statement.
Proposition 1 (Convergence). Suppose that π∗ ̸= π◦

D, hence infπ∈C E[Ft(π)] > 0. If the step sizes {ηt}∞
t=0

satisfies Assumption 3, then limt→∞ E1:t[DΩ(π◦
D∥πt)] converges to 0 almost surely.

Lastly, assume that a type of log Sobolev inequality holds (see Assumption 1) with continuity of potentials.
We establish an online learning regret bound of O(

√
T ) for certain instance of step sizes, demonstrating that

imposing specific measure-theoretic properties in SBPs generalizes classical OMD results (Nesterov, 2009;
Srebro et al., 2011; Orabona & Pál, 2018; Lei & Zhou, 2020). We show that analysis on OMD is compatible
using the dual norm ∥ĝt∥ induced by the first variation δC.
Proposition 2 (Regret bound). Assume φ,ψ ∈ C2(Rd) ∩ Lip(K), Assumption 1 holds, and the given costs
{Ft}Tt=1 are bounded. For arbitrary u ∈ C and a total step T , define D2 = max1≤t≤T DΩ(u∥πt). (a) When the
number of time step is known a priori, the regret is bounded to 2D

√
2ω−1KT for a constant step size η ≡ D

√
ω√

2KT
.

(b) For an adaptive scheduling ηt = D
√

ω/

√
2

∑t

i=1∥ĝi∥2 the regret is bounded to 2D

√
2ω−1

∑T

t=1∥ĝt∥2 where
ĝt = δCΩ(πt)− δCΩ(π◦

t ).

Note that although our analysis establishes a rigorous connection between SB and OMD, it inherits certain
limitations from classical OMD regret studies. For instance, sublinear regrets in Proposition 2 relies on an
additional boundedness assumption on costs, and there exist some cases of Assumption 3 that may yield
asymptotically linear regret (Orabona & Pál, 2018). Addressing these limitations may involve advanced
hybrid OMD methodologies which are actively being studied, such as dual averaging (Fang et al., 2022) or
FTRL (Chen & Orabona, 2023). As exploring (as well as computing) such extensions for SBPs falls beyond
our scope, from now on we focus on practical implementations of OMD that demonstrate theoretical conver-
gence (Proposition 1) over a relatively long horizon of several hundred steps. Hence, we adopt Assumption 3
and provide corresponding experimental evidence to substantiate its validity in practical scenarios.

4.3 Online mirror descent updates using Wasserstein gradient flows

The remaining issue is challenge is practicality of OMD, where the computation of critical points for (9). To
resolve this issue, we present a new approximation method using Wasserstein gradient flows (Jordan et al.,

8
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Figure 6: Variational MD with synthetic datasets. (a) A distribution is accessible by finite batch data. (b)
3D surfaces of (π⃗◦

T , π⃗T ) trained by Monte Carlo method for KL (top) and variational MD (bottom) show
that the MD results in more stable outcomes. (c) The plots show the estimated KL(π⃗t∥π⃗∗) with different
step size scheduling (5 runs), with red dashed baselines KL(π⃗◦

t ∥π⃗∗).

1998). Suppose we expand a subinterval [t, t+ 1) for each OMD step into continuous dynamics of ρ(τ) ∈ C
for a τ ∈ [0,∞). By Otto’s calculus on the Wasserstein space (Otto, 2001), it is well known that one can
describe the dynamics of minimizing a convex functional Et : C → R as the following PDE

∂τρτ = −∇WEt(ρ), (12)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇ ·
(
ρ∇ δ

δρ

)
. In this work, we adopt the

Wasserstein gradient flow theory (Jordan et al., 1998) to efficiently perform OMD where the equilibrium
indicates the subsequent iterate πt+1. Note that Wasserstein gradient flows are asymptotically stable by the
LaSalle’s invariance principle (Carrillo et al., 2023). We present a simple and exact closed-form expression
for the VOMD update. Note that the cost Ft(·) = KL(·∥π◦

t ) satisfies the 1-relative-smoothness and 1-strong-
convexity relative to Ω (see Definition 6; Aubin-Frankowski et al., 2022). Then, a first variation of the OMD
problem can be decomposed into multiple variations of another problem with similar characteristics (e.g.,
equilibrium, smoothness, and convexity). We present the following theorem for the computation of OMD.
Theorem 2 (Dynamics equivalence in first variation). Consider the Wasserstein gradient dynamics of (12)
which solves a local update of (9). The gradient dynamics of updates are equivalent to that of a linear
combination of KL functionals such that for any ρτ ∈ C

ηtδCEt(ρτ ) = δC

{
ηtKL(ρτ∥π◦

t ) + (1− ηt)KL(ρτ∥πt)
}
∀ρτ ∈ C, (13)

and the PDE converges to a unique critical point of subsequent OMD iterate (9) as τ →∞.

Sketch of Proof. We identify δEt as a dynamics that reaches an equilibrium solution for

minimize
π∈C

〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

⇐⇒ minimize
π∈C

ηt DΩ(π∥π◦
t )︸ ︷︷ ︸

empirical estimates

+ (1− ηt)DΩ(π∥πt)︸ ︷︷ ︸
proximity

, (14)

and then the equivalence of first variation for recursively defined Bregman divergences is applied (Lemma 5).
At a glance, Eq. (14) appears analogous to the interpolation search between two points, where the influence
of π◦

t is controlled by ηt. We leave the entire proof in Appendix A.5.

We argue that Theorem 2 holds practical importance for OMD computation, since following the argument
allows us to perform gradient-based updates without directly constructing a desired Bregman divergence.
That is, updates can be drawn based on a linear combination of gradient flows ηt∇WKL(ρτ∥π◦

t ) + (1 −
ηt)∇WKL(ρτ∥πt), where such expression has been extensively studied both theoretically and computationally
(Carrillo et al., 2023; Lambert et al., 2022). Therefore, we can utilize interpolation of Wasserstein gradient
flows for performing updates and utilize a certain variational class for reducing the computational cost.
Fig. 6 shows our actual experiments using Gaussian mixture models (GMMs). Let a reference estimation

9
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be fitted using a Monte Carlo method, and our model be trained through a variational OMD method which
is explained in the subsequent section. We initially observed that the VOMD method provides stability
improvement when η < 1. In contrast, the condition of η > 1 performed worse than the Monte Carlo
method and η = 1 showed almost equivalent performance. Furthermore, the performance of VOMD was
greatly improved by choosing a harmonic step size scheduling in the interval [1.0, 0.05]. All of these results
on variational approximation precisely matches our analysis.

5 Algorithm: Variational Mirrored Schrödinger Bridge

In this section, we propose variational mirrored Schrödinger bridge, a simulation-free method that offers
iterative MD updates for parameterized SB models with mixture models, using the Wasserstein-Fisher-Rao
geometry. We provide a variational interpretation for LightSB models and draw a practical VOMD updates
algorithm that closely resembles ordinary machine learning methods.

5.1 Gaussian mixture parameterization for the Schrödinger bridge problem

Recently, Korotin et al. (2024) proposed the GMM parameterization, which provides theoretically and compu-
tationally desirable models for our variational OMD approach. The parameterization considers the adjusted
Schrödinger potential u∗(x) := exp(φ∗(x) − ∥x∥2

/2ε) and v∗(y) := exp(ψ∗(y) − ∥y∥2
/2ε) such that we have a

proportional property π∗(y|x) ∝ exp(⟨x,t⟩/ε)v∗(y). With a finite set of parameters θ ≜ {αk,mk,Σk}Kk=1 for
weights αk > 0, means mk ∈ Rd and covariances Σk ∈ Sd++, Korotin et al. (2024) proposed to approximate
the adjusted Schrödinger potential vθ and conditional probability density π⃗θ

vθ(y) :=
K∑
k=1

αkN(y |mk, εΣk), π⃗xθ (y) := 1
zxθ

K∑
k=1

αxkN (y |mx
k, εΣk), (15)

where GMM component for π⃗xθ is conditioned by an input x: mx
k := mk + Σkx, αxk := αk exp

(xTΣkx+⟨mk,x⟩
2ε

)
,

zxθ :=
∑K
k=1 α

x
k (see Proposition 3.2 of Korotin et al.). For this parameterization, the closed-from expression

of SB process Tθ is given as the following SDE for t ∈ [0, 1):

Tθ : dXt = gθ(t,Xt) dt+
√
εdWt,

gθ(t, x) := ε∇ logN(x |0, ε(1− t)Id)
K∑
k=1

αkN(mk |0, εΣk)N
(
mk(t, x)

∣∣0, Ak(t)), (16)

where mk(t, x) ≜ x
ε(1−t) + 1

εΣ−1
k mk and Ak(t) ≜ t

ε(1−t)Id + 1
εΣ−1

k . Therefore, the LightSB parameterization
represent both static and dynamic SB models and arbitrary SB solvers can be applied without restrictions.
We utilize the GMM parameterization for our computational algorithm for three key reasons. Firstly, the
parameterization induce the universal approximation property for both π⃗θ and Tθ (Korotin et al., 2024).
Secondly, GMMs are asymptotically log-concave (see Lemma 3), which is a fundamental assumption for our
theory. Lastly, the parameterization makes the computation of WGFs with respect to the KL divergence
tractable, which is delineated in the subsequent section.

5.2 Computation of VOMD in the WFR geometry

The space of Gaussian parameters Rd×Sd++, endowed with the Wasserstein-2 metricW2, is formally recognized
as the Bures–Wasserstein (BW) geometry (Bures, 1969; Bhatia et al., 2019; Lambert et al., 2022) BW(Rd) ⊆
P2(Rd). Wasserstein-Fisher-Rao geometry, equivalently characterized by the spherical Hellinger–Kantorovich
distance, extends this setting by considering liftings of positive, complete, and separable measures while
preserving total mass (Liero et al., 2018; Chizat et al., 2018; Lu et al., 2019). Building upon the BW space,
the Wasserstein-Fisher-Rao geometry of GMMs, namely P2(BW(Rd)), naturally provides liftings of Gaussian
particles satisfying distributional consistency. In this work, we introduce the following proposition, which
refines and extends the results from Lambert et al. (2022, § 6) specifically enhancing their framework through
the introduction of freely trainable GMM weights αk.

10
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Algorithm 1 Variational Mirrored SB (VMSB).
Input: SB models (π⃗θ, π⃗ϕ) parameterized by Gaussian mixtures, step sizes (η1, ηT ), ny, B∈N.

1: for t← 1 to T do
2: Acquire ϕt with an external data-driven SB solver.
3: θt ← θ, ηt ← 1/

(
η91

1 + (η91
T − η91

1 )(t−1/T−1)
)

4: for n← 1 to N do
5: {xi}Bi=1 ← sample mini batch data from µ.
6: ∂L

∂θ ←
1
B

∑B
i=1ηtWFRgrad(θ;ϕt, xi, ny) + (1− ηt)WFRgrad(θ; θt, xi, ny)

7: Update θ with the gradient ∂L
∂θ .

8: end for
9: end for

Output: Trained SB model π⃗θ.

Proposition 3 (WFR gradient dynamics). Suppose a GMM ρθτ
with θτ = {αk,τ ,mk,τ ,Σk,τ}Kk=1. Let

yk,τ ∼ N (mk,τ ,Σk,τ ) denote a sample from the k-th Gaussian particle of ρθτ
. Then, the WFR dynamics

∇WFRKL(ρθτ
∥ρ∗) wrt θ̇τ = {α̇k,τ , ṁk,τ , Σ̇k,τ}Kk=1 are given as

α̇k,τ = −
(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
αk,τ ,

ṁk,τ = −E
[
∇ log ρθτ

ρ∗ (yk,τ )
]
, Σ̇k,τ = −E

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
Σk,τ − Σk,τE

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
,

(17)

for τ ∈ [0,∞), where zτ :=
∑K
k=1 αk; ∇ and ∇2 denote gradient and Hessian with respect to yk,τ .

Appendices A.6 and B contain the complete theory. Proposition 3 argues that the one parameter family θτ
predicts a gradient-based algorithm of ∇WFRKL(ρθτ

∥ρ∗), and thus Eq. (17) can be directly used for training
GMM models. Recall that GMMs have a closed form expression of likelihoods, which means each log
likelihood difference can be calculated without errors. Given that the target has the identical number of
Gaussian particles, both Eq. (17) and its approximation using finite samples strictly induce zero gradients
at the equilibrium. Hence, we argue that the simulation-free algorithm VMSB will result in more robust and
stable outcomes than standard data-driven SB learning.

5.3 Algorithmic considerations

Algorithm 1 outlines the overall procedure. VMSB requires SB parameters θ and ϕ, which represents π⃗t and
π⃗◦
t from the theoretical framework in § 4.2. The target model π⃗ϕ is independently fitted using an arbitrary

SB solver. By the results of analysis, one can schedule of the step size ηt with a harmonic progression
satisfying Assumption 3; thus, we propose to schedule by the series for 1 ≥ η1 ≥ ηT > 0 as in Line 3 of the
algorithm. In our settings, the hyperparameters are set η1 = 1 and ηT ∈ {0.05, 0.01} which varies depending
on each length of training. The algorithm can also put “warm up” steps leveraged by a existing solver, and
start from θ = ϕt enforcing ηt ≡ 1 for a certain period of the early stage.

The VMSB algorithm is essentially designed to perform the following approximation of the WFR gradient
operation (17) in Proposition 3, approximated with finite data samples {xi}Bi=1 ∼ µ

1
B

B∑
i=1

WFRgrad(θ;ϕ, xi, ny) ≈ ∇WFR KL(π⃗θ∥π⃗ϕ),

where each expectation is estimated using ny samples from each Gaussian particle. Following Theorem 2,
we propose to update the SB model π⃗θ with ηtWFRgrad(θ;ϕt, xi, ny)+(1−ηt)WFRgrad(θ; θt−1, xi, ny) at each
VOMD iteration t (see Line 6). When µ is a zero-centered distribution, we set B = 1 and x = 0 for the fast
training time. This trick is equivalent to training the adjusted Schrödinger potential (Korotin et al., 2024)
vθ :=

∑K
k=1 αkN(y |mk, εΣk) ∝ πθ(·|x = 0) directly, which makes the VMSB algorithm run efficiently for

certain tasks.

11
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6 Experimental Results

Experiment goals. We aimed to test our online learning hypothesis and verify that the VMSB effectively
induces OMD updates. Since our theoretical claims are intended to be highly versatile, consistent perfor-
mance improvements for each setting coincides with the generality of the proposed VOMD method. We
delineate our objectives as follows: 1⃝ We aimed to affirm our online learning hypothesis by demonstrating
consistent improvements. 2⃝ We sought to corroborate our theoretical results, aiming for stable performance
that consistently exceeds that of benchmarks. 3⃝ We aimed to verify that our algorithm effectively induces
OMD by the Wasserstein gradient flow.

Baselines and VMSB variants. Korotin et al. (2024) introduced a streamlined, simulation-free solver
referred to as LightSB that optimizes ϕ through Monte Carlo approximation of KL(π⃗∗∥π⃗ϕ). As an alter-
native, LightSB-M (Gushchin et al., 2024a) reformulated the reciprocal projection from DSBM (Shi et al.,
2023) to a projection method termed optimal projection, establishing approximated bridge matching for the
path measure Tϕ. Applying Algorithm 1, we derived two distinct methods called VMSB and VMSB-M
(π⃗θ), trained upon LightSB and LightSB-M solvers (π⃗ϕ), respectively. Since the theoretical arguments imply
that the algorithm is agnostic to targets, the performance benefits of VMSB variants from their references
support the generality of our claims. Additionally, we adopted VMSB on hybrid settings, leveraging networks
or embeddings for complex problems. We considered such technique for as a part of the problem and applied
VMSB on top of the settings.

6.1 Online SB learning for synthetic data streams

To validate our online learning hypothesis, we considered 2D SBPs for data streams depicted in Fig. 7 (a).
We applied an angle-based rotating filter, making the marginal as a data stream where only 12.5% (or
45-degree angle) of the total data is accessible for each step t. We trained conditional models π⃗θ for or-
dinary SB for the 2D coordinates. Fig. 7 (b) shows the plots of squared energy distance (ED), which is a
special instance of squared maximum mean discrepancy (MMD), approximating the L2 distance between
distributions: ED(P,Q) =

∫
(P (x) − Q(x))2dx (Rizzo & Székely, 2016). In our ED evaluation, the VMSB

algorithm achieved a strictly lower divergence than the LightSB and LightSB-M solvers for various numbers
of Gaussian particles K. Therefore, we concluded that these results aligned with our hypothesis and theory
of online mirror descent.

6.2 Quantitative Evaluation

EOT benchmark. Next, we considered the EOT benchmark proposed by Gushchin et al. (2024b), which
contains 12 entropic OT problems with different volatility and dimensionality settings. Table 2 shows that
LightSB and VMSB methods outperforms other method in terms of the cBW2

2-UVP metric as previously
reported by Korotin et al. (2024) and Gushchin et al. (2024a). We also observed that a hybrid approach
combining LightSB and the exponential moving average (EMA; Morales-Brotons et al., 2024) named as
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Figure 7: Online SBPs for synthetic dataset streams. (a) We designed an online learning problem with a
rotating filter where an algorithm is allowed to observe the data in y ∼ ν only 12.5% at a time. (b) The
plots show that our VMSB and VMSB-M show consistent improvements from their references regarding the
ED metric with 95% confidence intervals for 5 runs with different seeds.
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Table 2: EOT benchmark scores with cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan

πθ (five runs). Results of classical EOT solvers marked with † are taken from (Korotin et al., 2024), and ‡
from (Gushchin et al., 2024a). Additionally, LightSB-EMA indicates a hybrid approach using the exponential
moving average techniques (EMA; Morales-Brotons et al., 2024) for LightSB parameters (decay = 0.99). Our
VMSB and VMSB-M results are highlighted in bold when VMSB methods exceed their reference algorithm.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best; Korotin et al.)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

Bridge-M DSBM (Shi et al.)‡ 5.2 10.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
rev. KL LightSB (Korotin et al.) 0.007 0.040 0.100 0.140 0.014 0.026 0.060 0.140 0.019 0.027 0.052 0.092
Bridge-M LightSB-M (Gushchin et al.) 0.017 0.088 0.204 0.346 0.020 0.069 0.134 0.294 0.014 0.029 0.207 0.747

EMA LightSB-EMA 0.005 0.040 0.078 0.149 0.012 0.022 0.051 0.127 0.017 0.021 0.025 0.042
Var-MD VMSB (ours) 0.004 0.012 0.038 0.101 0.010 0.018 0.044 0.114 0.013 0.019 0.021 0.040
Var-MD VMSB-M (ours) 0.015 0.067 0.108 0.253 0.010 0.019 0.094 0.222 0.013 0.029 0.193 0.748

LightSB-EMA was affective for improving stability. Among 24 different settings, our MD approach exceeded
the reference model and the EMA method in 23 settings in terms of the cBW2

2-UVP metric (Gushchin et al.,
2024b). Our replication of LightSB/LightSB-M achieved better performance than originally reported results,
and our method accordingly reached the state-of-the-art performance in this benchmark with stability, which
represents strong evidence of Proposition 1. Among all cases, the only exception was LightSB-M, which had
the highest dimension and volatility. We suspected that the drift form Eq. (16), which is proportional to
ε, may have violated our assumptions Assumption 2 and the boundedness assumption during the training.
Thus, we conclude that our variational MD training is effective in various EOT setups.

Table 3: Energy distance on the MSCI dataset (95% confi-
dence interval, ten trials with different instances). Results
marked with ‡ are from (Gushchin et al., 2024a).

Type Solver d = 50 d = 100 d = 1000
Sinkhorn Vargas et al. (2021)† 2.34 2.24 1.864
Bridge-M DSBM (Shi et al.)‡ 2.46± 0.1 2.35± 0.1 1.36± 0.04
Bridge-M SF2M-Sink (Tong et al.)‡ 2.66± 0.18 2.52± 0.17 1.38± 0.05
rev. KL LightSB 2.31± 0.08 2.15± 0.09 1.264± 0.06
Bridge-M LightSB-M 2.30± 0.08 2.15± 0.08 1.267± 0.06
Var-MD VMSB (ours) 2.28± 0.09 2.13± 0.09 1.260± 0.06
Var-MD VMSB-M (ours) 2.26± 0.10 2.12± 0.09 1.265± 0.05

SB on single cell dynamics. We evaluated
VMSB on unpaired single-cell data problems
in the high-dimensional single cell dynamics
experiment (Tong et al., 2024a). The dataset
provided single cell data from four donors on
days 2, 3, 4, and 7, describing the gene ex-
pression levels of distinct cells. Given samples
collected on two different dates, the task in-
volves performing inference on temporal evo-
lution, such as interpolation and extrapola-
tion of PCA projections with {50, 100, 1000}
dimensions. Table 3 shows that our VMSB
method achieved the best results, verifying
that its effectiveness for the real-world biological problems.

6.3 Unpaired image-to-image transfer

MNIST-EMNIST. We applied VMSB to unpaired image translation tasks for MNIST and EMNIST
datasets. In these tasks, LightSB methods struggled to generate raw pixels due to the limited scalability of
the loss function. To solve this issue, we opted to find a viable alternative to LightSB the raw pixel space,
and we discovered that the capabilities of GMM parameterization can be extended by incorporating the
adversarial learning technique (Goodfellow et al., 2014; see Appendix C.5) was effective in providing rich
learning signals for πϕ. Therefore, we named the adversarial method and the VMSB adaptation LightSB-
adv and VMSB-adv. Also, we pretrained encoder networks using the Adversarial Latent AutoEncoder
(ALAE; Pidhorskyi et al., 2020) technique, and applied the LightSB and VMSB algorithms on the 128-
dimensional latent space that represent the both of data. Fig. 8 shows that VMSB/VMSB-adv outperformed
Light/LightSB-adv (with identical architecture) in the fidelity of samples and semantics of letters for latent
and pixel spaces. In Table 4, the VMSB method on the ALAE embedding space was able to surpass deep
SB models with a fewer number of parameters of K = 256. Even for raw pixels, our algorithm also achieved
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Figure 8: Generated MNIST/EMNIST samples. Top:
Raw pixel SB results. Bottom: Latent SB results.

Table 4: FID and MSD scores in EMNIST-to-MNIST
translation tasks. Hyperparameters between LightSB
and VMSB are shared. We examined the scores with
five runs for the ALAE case.

Method FID MSD

U-net
SF2M-Sink 23.215 0.456
DSBM-IPF 15.211 0.352
DSBM-IMF 11.429 0.373

Pixel LightSB-adv 20.017 0.362
VMSB-adv (ours) 15.471 0.356

ALAE LightSB 9.183±0.569 0.371±0.018
VMSB (ours) 8.774±0.065 0.365±0.002

Adult → Child VMSB VMSB-M Male → Female VMSB VMSB-M

Child → Adult VMSB VMSB-M Female → Male VMSB VMSB-M

Embedding energy distance

Figure 9: Image-to-Image translation on a latent space. Left: Generation results for the FFHQ dataset
(1024× 1024) using our two SB variants. Right: Quantitative results using MMD metrics.

competitive FID and input/output MSD similarity scores for K = 4096. The consistent performance gains
from the LightSB and LightSB-adv algorithms strongly supports our theoretical claims on online learning.

FFHQ. Following the latent SB setting of Korotin et al. (2024), we assessed our method by utilizing a
pretrained ALAE model for generating 1024× 1024 images of the FFHQ dataset (Karras et al., 2019). With
the predefined 512-dimensional embedding space, we trained our SB models on the latent space to solve four
distinct tasks: Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. Fig. 9 illustrates that our
method delivered high-quality translation results. We also conducted a quantitative analysis using the ED
on the ALAE embedding as a metric for evaluation. The result also verifies that our VMSB and VMSB-M
algorithms consistently achieved lower ED scores than other baselines, demonstrating its applicability for
the high dimensional embedding space. Consequently, the image-to-image transfer results showed that the
generality of our online learning hypothesis and that the proposed algorithm is highly capable of interacting
with neural networks of complex learning dynamics. Considering the significantly higher dimensionality of
image domains relative to the batch sizes used in VOMD, the consistent and stable performance improvements
demonstrated in our experiments strongly validate our theoretical claims regarding the robustness of our
approach in online learning scenarios.

7 Conclusion

In this paper, we introduced VMSB, a practical simulation-free algorithm designed for effectively addressing
SB problems encountered in real-world scenarios. We proposed a robust theoretical learning framework ap-
plicable to general SB solvers, leveraging a dual geometric interpretation of convex optimization to construct
a robust OMD algorithm with rigorous guarantees on convergence and regret bounds. Furthermore, we
proposed the computational algorithm for our OMD framework by employing the Wasserstein-Fisher-Rao
geometry. Through extensive empirical evaluation, we validated the effectiveness of VMSB across diverse
settings, including high-dimensional spaces, limited-sample regimes, and online learning environments. The
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experimental results consistently demonstrated stable and superior benchmark performance, highlighting the
enhanced robustness of our approach. Consequently, we argue that the proposed VMSB algorithm provides a
promising and robust methodology for probabilistic generative modeling within learning-theoretic contexts.

Limitations. In this work, we significantly reduced the computational complexity inherent in the MD
framework by adopting the Wasserstein-Fisher-Rao geometry. GMM-based models, due to the lack of deep
structural processing, tend to focus on instance-level associations of images in EOT couplings rather than
the subinstance- or feature-level associations that are intrinsic to deep generative models. As a result, while
VMSB produces statistically valid representations of optimal transportation within the given architectural
constraints, these outcomes may be perceived as somewhat synthetic compared to large neural networks.
Nevertheless, GMM-based models still hold an irreplaceable role in numerous problems such as latent dif-
fusion and variational methods, due to their simplicity and distinctive properties Korotin et al. (2024). As
we successfully demonstrated in two distinct ways of interacting with neural networks for solving unpaired
image transfer, we hope our theoretical and empirical findings help novel neural architecture studies.

Future research. One line of future studies in SB is a general understanding of learning in diffusion
models with various regularizations. This includes diffusion models in various problem-specific constraints,
and geometric constraints from manifolds. Another direction is the extension of the theoretical results into
network architecture design. From § 4.2, a pair of Schrödinger potentials represent a dual representation of
SB in a statistical manifold. In Gigli & Tamanini (2020), such potentials satisfy the Hamilton-Jacobi-Bellman
(HJB) equations and, this can be trained with forward-backward SDE (SB-FBSDE) as presented by Liu et al.
(2022). However, this requires many simulation samples from SDEs, and the requirements for applying VMSB
contain a tractable way of estimating gradient flows, and a guarantee of measure concentration. Therefore,
we expect there will be a new studies of energy-based neural architecture for efficiently representing SB, which
will advance various subfields of machine learning. Lastly, a theoretical generalization of our work can be done
by considering the Orlicz space for EOT studied by Lorenz & Mahler (2022). Since we essentially devised our
theoretical framework to be compatible with arbitrary Bregman potentials, we believe controlling regularity
of Young functionals can find more generalized learning algorithms for a wider range of OT problems.
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Appendices for
Variational Online Mirror Descent for Robust Learning in Schrödinger Bridge

Abbreviation and Notation

Abbreviation Expansion
SB Schrödinger Bridge
SBP Schrödinger Bridge Problem
EOT Entropy-regularized Optimal Transport
MD Mirror Descent
OMD Online Mirror Descent
KL Kullback-Leibler
IPF Iterative Proportional Fitting
BW Bures–Wasserstein
WFR Wasserstein-Fisher-Rao
SDE Stochastic Differential Equation
PDE Partial Differential Equation
FP Fokker–Planck
GMM Gaussian mixture model

Notation Usage
µ, ν marginal distributions
ε volatility of reference measure
cε cost cε(x, y) := 1

2ε∥x− y∥
2

π a coupling of µ and ν
π⃗, ⃗π conditional distributions
γn n-th marginal
φ,ψ log-Schrödinger potential
Ω, DΩ Bregman potential/divergence
d+ directional derivative
δC, δD First variations
∇W Wasserstein-2 gradient operator
T dynamic stochastic process in SB
g drift function
iC indicator function

A Theoretical Details and Proofs

Background on first variation operators. In this paper, we utilize the notation of first variation
operators δC and δD to identify the generalized primal and dual spaces in Schrödinger bridge. Since the
problems are classified as an infinite-dimensional optimization (Aliprantis & Border, 2006), we introduce
the essential background supporting the necessity of these operators. We introduce Gâteaux and Fréchet
differentiablility (Aubin-Frankowski et al., 2022; Karimi et al., 2024).

Definition 4 (Gâteaux & Fréchet differentiablility). Let M be a topological vector space of measures on a
space X . Define the Gâteaux differentiablity of a functional F :M→ R, if there exists a gradient operator
∇Gât such that for an arbitrary direction v ∈M, defined as the limit

∇GâtF (x)[v] = lim
h→0

F (x+ hv)− F (x)
h

, x ∈M

If the limit exists in the unit ball in M, the function F is called Fréchet differentiable with ∇FréF (x).

The problem of the Gâteaux and Fréchet differentiability in the context of SB is that the limit must be given
in all directions, implying that every neighboring point must be within the domain of the topological space
M. For the case of functionals such as the KL divergence functional F (·) = KL(·|π∗), the domain of F and
has an empty interior (Aubin-Frankowski et al., 2022). To resolve this issue, we use directional derivatives
and first variations, defined in Definitions 1 and 2.

First variations of KL. Suppose that we have two distributions ρ, ρ′ ∈ P2(X ),X ⊆ Rd. Let us consider
the log likelihood of ρ′: ℓ′(x) := logρ′(x), and an element of a (topological) tangent space v ∈ TρP2(X )
(Milnor, 1964). Then, we can achieve the followings:

KL(ρ∥ρ′) =
∫

X
log ρ(x) dρ(x)−

∫
X
ℓ′(x) dρ(x) (18)∫

ℓ′(x)
[
ρ(x) + hv(x)

]
dx =

∫
ℓ′(x)ρ(x) dx+ h

∫
ℓ′(x)v(x) dx (19)
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Given that log(z + ε)(z + ε) = log(z)z + [log(z) + 1]ε+ o(ε), and
∫

X v(x) dx = 0, we achieve∫
X

log
(
ρ(x) + hv(x)

)(
ρ(x) + hv(x)

)
dx =

∫
X

log ρ(x)ρ(x) +. [log ρ(x) + 1]hv(x) + o(h) dx

=
∫

X
log ρ(x)ρ(x) dx+ h

∫
S

log ρ(x)v(x)dx+ h

∫
v(x)dx+ o(h)

(20)
Combining Eqs. (18 -20), we achieve

F (ρ+ hv) = F (ρ) + h

〈
log

(
ρ

ρ′

)
, v

〉
+ o(h). (21)

By Eq. (21) and Definition 2, the first variation δF2 ∈ T ∗P(X ) exists for infinitesimal h > 0. Therefore, the
first variation of KL is derived as δKL(ρ∥ρ′) = log ρ

ρ′ . In machine learning, log likelihoods of probabilistic
models are often given in a closed-form expression, incentivizing development of computational continuous
EOT/SB methods. Generally, identical arguments generally apply to all KL functionals with respect to
distributions (π, π⃗, and marginals) in our setup.

Asymptotically log-concave distributions. For convergence analysis, we assume each marginal distri-
bution is in log-concave distribution, particularly satisfying the log Sobolev inequality of measures, motivated
by relevant literature (Otto & Villani, 2000; Conforti, 2024). This assumption works a wider range of costs
and marginals beyond popular choices with boundedness and compactness (Nutz & Wiesel, 2023; Conforti
et al., 2023). Suppose that marginals admit densities of the form

µ(dx) = exp
(
−Uµ(x)

)
dx and ν(dy) = exp

(
−Uν(y)

)
dy. (22)

We exploit the following definition from (Conforti et al., 2023) in order to describe asymptotically log-
concaveness.
Definition 5 (Asymptotically strongly log-concavity; Conforti et al., 2023). We assume that marginals
µ and ν admit a positive density against the Lebesgue measure, which can be written in the
form (22). Uµ, Uν are of class C2(Rd). Define a set G := {g ∈ C2((0,+∞),R+)|r 7→
r1/2g(r1/2)is non-increasing and concave, limr→0 rg(r) = 0}. Accordingly, define a set

G̃ := {g ∈ G bounded and s.t. lim
r→0+

g(r) = 0, g′ ≥ 0 and 2g′′ + gg′ ≤ 0} ⊂ G.

and convexity profile κU : R+ → R of a differentiable function U as the following

κU (r) := inf
{
⟨∇U(x)−∇U(y), x− y⟩

|x− y|2
: |x− y| = r

}
.

We say a potential is asymptotically strongly convex if there exists αU ∈ R+ and g̃U ∈ G̃ such that

κU (r) ≥ αU − r−1g̃U (r) (23)

holds for all r > 0. We consider the set of asymptotically strongly log-concave probability measures

Palc(Rd) := {ζ(dx) = exp(−U(x))dx : U ∈ C2(Rd), U is asymptotically strongly convex}.

It is essential to note that a mixture of asymptotically log concave is also asymptotically log concave.
Lemma 3. For positive weights β = {βk}Kk=1 with

∑K
k=1 βk = 1 and asymptotically log concave distributions

{ρk}Kk=1, π =
∑K
k=1 βkρk.

Proof. Let us reformulate the mixture as log π(x) = log
∑
k βk exp(−Uk(x)) for asymptotically strongly

convex functions U = {Uk}Kk=1. The gradient is

∇ log π = JTp, J = −

∇U1
...

∇UK

 , p = softmax(log β −U)
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If each Uk of mixture satisfy Eq. (23) with αUk
and g̃Uk

, there exist αU = max1≤k≤K αUk
and g̃U =∑K

k=1 g̃Uk
pk that satisfies the condition (23) for U = − log π.

General assumptions and justifications. We additionally need the following general assumptions for
our OMD framework. 1⃝ (Existence) The sequence of MD from Eq. (9) exists {πt}t∈N ⊂ C, and are unique,
2⃝ (Relative smoothness/convexity) For some l, L ≥ 0, the functional Ft is L-smooth and l-strongly-convex
relative to Ω. 3⃝ (Existence of first variations) For each t ≥ 0, the first variation δCΩ(πt) exists. 4⃝
(Boundedness of estimations) The asymptotic dual mean π◦

D is almost surely bounded Pr(DΩ(πt∥π◦
D) ≤ R) =

1 for some R > 0. 5⃝ (Ergodicity) The estimation process of {π◦
t }∞
t=1 is governed by a measure-preserving

transformation on a measure space (Y,Σ, ς) with ς(Y) = 1; for every event E ∈ Σ, ς(T−1(E)△E) = 0
(that is, E is invariant), either ς(E) = 0 or ς(E) = 1 (Cornfeld et al., 2012).2 For 1⃝, the temporal cost
Ft(·) = KL(·|π◦

t ) is well defined since KL is a strong Bregman divergence with lower semicontinuity, where
the existence of a primal solution in guaranteed as discussed in Aubin-Frankowski et al. (2022). For 2⃝- 3⃝,
we can identify l = L = 1 and close-form expression of the first variation that is shown in Definition 6
and Proposition 3. For the assumptions 4⃝- 5⃝, we postulate the existence of estimates produced from a
Monte-Carlo method, using a fixed amount of updates on topological vector space. Hence, it is natural to
consider that these estimates will be bounded in a probabilistic sense and yield Markovian transitions, which
are aperiodic and irreducible.

A.1 Proofs of Lemmas 1 and 2

The EOT in Eq. (2) can be reformulated as a divergence minimization problem with respective to a reference
measure. If a Gibbs parameterization is enforced with the quadratic cost functional cε(x, y) = 1

2ε∥x−y∥
2 for

ε > 0, it is well known that the problem has the equivalence with the entropy regularized optimal transport
problem (Nutz, 2021)

OTε(µ, ν) = inf
π∈Π(µ,ν)

KL
(
π∥e−cεµ⊗ ν

)
. (24)

Note that the above equation corresponds to the constrained minimization of KL(T ∥W ε) in Eq. (4) by
the disintegration theorem of Schrödinger bridge (Appendix A of Vargas et al., 2021). While the Bregman
projection formulation of Sinkhorn Eq. (10) are described by the spaces (Π⊥

µ ,Π⊥
ν ), it is (equally) natural to

think that considering the problem as convex problem with the distributional constraint C (see the primal
space in illustrated in Fig. 1). As a problem in the constraint C, one can consider a temporal cost functional
F̃t(π) := atKL(γ1π∥µ)+(1−at)KL(γ2π∥ν) with sequences {at}∞

t=1 = {0, 1, 0, 1, . . . } for γ1π(x) := ∫ π(x, y)dy
and γ2π(y) := ∫ π(x, y)dx. By construction, we have the following MD update:

minimize
π∈C

〈
δCF̃t(πt), π − πt

〉
+DΩ(π∥πt). (25)

The optimization problem (25) is equivalent to having the property for subsequent πt+1:

d+F̃t(πt;π − πt) +DΩ(π∥πt) ≥ d+F̃t(πt;πt+1− πt) +DΩ(πt+1|πt)
⇐⇒

〈
δCF̃t(πt)− δCΩ(πt), π − πt+1

〉
+

(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(26)

Setting the free parameter π = πt+1 + h(π − πt+1) and taking the limit h → 0+ yields described the time
evolution of the log-Schrödinger potentials for πt = eφt⊕ψt−cεd(µ⊗ ν):

φ̇t = − log d(γ1πt)
dν∗

= −α
(
φt − φ∗ + log

∫
Rd

eψt−ψ∗
ν(dy)

)
, (27a)

ψ̇t = − log d(γ2πt)
dµ∗

= −β
(
ψt − ψ∗ + log

∫
Rd

eφt−φ∗
µ(dx)

)
, (27b)

for α = at and β = 1 − at.3 Setting a discrete approximation of dynamics Eq. (27): φt+1 = φt + φ̇t and
ψt+1 = ψt + ψ̇t yields the following alternating updates:

ψ2t+1(y) = − log
∫
Rd

eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log
∫
Rd

eψ2t+1(x)−cε(x,y)ν(dy).

2Here, △ denotes the symmetric difference, equivalent to the exclusive-or with respect to set membership.
3More precisely, one needs to apply Lemma 5 for KL, and the disintegration theorem to get Eq. (27).

23



Under review as submission to TMLR

Therefore, the proof of Lemma 1 is complete.

From the dual iteration of KL stated in Eq. (40) (Aubin-Frankowski et al., 2022), the static, idealized MD
cost F (·) = KL(·∥π∗) yield the following closed-form expression for the first variation:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δCΩ(πt)− δCΩ(π∗)

)
,

where the equation implies that setting ηt ≡ 1 for MD yields one-step optimality π∗ in this idealized
condition. Utilizing the equivalence of first variation stated in Lemma 5 and the disintegration theorem for
the Radon-Nikodym derivatives, we get the first variation of F with respect to π for all x as

δF (πt) = log dπ
∗

dπ
. (28)

And by the disintegration theorem (Léonard, 2014), we also achieve the first variation of f with respect to
π⃗ for all x as

δf(π⃗xt ) = log d(π⃗∗
t )x

dπ⃗x
, (29)

where f(π⃗x) = KL(π⃗x∥(π⃗∗)x). Since this disintegration theorem always hold for every directional derivative,
we can use expression for π⃗x and π interchangeably. It is well-known that MD is a discretization of natural
gradient descent (Gunasekar et al., 2020), and our setting for Ω generates the geometry governed by the
(generalized) Fisher information. In this particular case, one can use Otto’s formalization of Riemannian
calculus (Otto, 2001; § 3.2), and the probability space equipped with the Wasserstein-2 metric (P2(Rd),W2),
is generally represented as a Wasserstein gradient flow

∂tπt = −∇WF (πt), ∀πt ∈ C, (30)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇·
(
ρ∇ δ

δρ

)
. In particular, plugging Eq. (28)

yields
∂tπt = −∇ · (π∇ log π∗) + ∆π, (31)

where ∆ denotes the Laplace operator. The foundational results concerning Wasserstein gradients were
initially established by JKO (Jordan et al., 1998), who demonstrated that the formulation in Eq. (30)
corresponds precisely to the Fokker–Planck equation (31). Consequently, it follows that Wasserstein gradients
characterize the tangential direction of flows on a manifold constrained by distributional properties and
endowed with the W2 metric.

A.2 Proof of Theorem 1

We start with introducing basic properties of the Bregman divergence in Definition 3. First, the idempotence
property states that a Bregman divergence associated with another Bregman divergence DΩ(·|y) remains as
the identical divergence with the original. Note that the (global or universal) idempotence initially stated by
Aubin-Frankowski et al. (2022), but we apply some changes to the statement and only work with localized
version of idempotence for the purpose of this paper.
Lemma 4 (Idempotence). Suppose a convex potential Ω : M(X ) → R ∪ {+∞}, where M(X ) denotes a
topological vector space for X . Assume that for all z ∈ dom(Ω), δCΩ(z) exists. Then, ∀x, y ∈ C ∩ dom(Ω):
DDΩ(·|y)(x|y) = DΩ(x|y).

Proof of Lemma 4. Both Bregman divergences and Bregman potentials are convex functionals. By definition,
we have DDΩ(·|z)(x|y) = DΩ(x∥z) −DΩ(y∥z) − ⟨δCΩ(y) − δCΩ(z), x − y⟩ for arbitrary z, and setting z = y
completes the proof. Another (informal) point of view is considering the Bregman divergence as a first-order
approximation of a Hessian structure, and DDΩ(·|z) converges to DΩ(·|z) by taking a limit, knowing that
DΩ(y|y) = 0.

We then proceed to the equivalence property of the family of recursive Bregman divergences. The property
is important for proving the theorem and representing the dual representation of MD. Moreover, it is also
used in Theorem 2 as a key ingredient which constructs our VOMD framework.

24



Under review as submission to TMLR

Lemma 5 (Equivalence of first variations). Suppose Ω : M(X ) → R ∪ {+∞} Assume that for all z ∈
dom(Ω), the first variation δCΩ(z) exists, then, for all x, y, y1, y2 ∈ dom(Ω), the first variation taken for
the first argument x of the following Bregman divergences are equivalent: δCDΩ(x|y) = δCDDΩ(·|y1)(x|y) =
δCDDΩ(·|y2)(x|y).

Proof of Lemma 5. First, it can be analytically driven δCDΩ(x|y) = δCΩ(x) − δCΩ(y). Next, by def-
inition, taking the first variation of DDΩ(·|z)(x|y) with respect to x for arbitrary z ∈ dom(Ω) yields
δCDΩ(x∥z) − δC⟨Ω(y) − Ω(z), x − y⟩. Knowing that the second term δC⟨Ω(y) − Ω(z), x − y⟩ is linear, we
achieve δDDΩ(·|z)(x|y) = δCΩ(x) − δCΩ(z) − (δCΩ(y) − δCΩ(z)) = δCΩ(x) − δCΩ(y), which completes the
proof.

By an inductive reasoning, we arrive at the basic property of family of Bregman divergences, that all
divergence recursively defined by the Bregman potential Ω, has the (local) idempotence and the (global)
equivalence of first variation. To address characteristics for particular Bregman potential Ω, we apply the
notions of relative smoothness and convexity with respect to Ω, which was first introduced by Birnbaum
et al. (2011).
Definition 6 (Relative smoothness and convexity). Let G : M(X ) → R ∪ {+∞} be a proper convex
functional. Given scalar l, L ≥ 0, we define that G is L-smooth and l-strongly-convex relative to Ω over C if
for every x, y ∈ dom(G) ∩ dom(Ω) ∩ C, we have

DG(x∥y) ≤ LDΩ(x∥y), DG(x∥y) ≥ lDΩ(x∥y),

respectively, where DG and DG are Bregman divergences associated with G defined in Definition 3.

Applying the idempotence lemma Lemma 4, we immediately recognize that the Bregman divergence DΩ
is relatively 1-smooth and 1-strongly-convex for Ω. To start our analysis, we reintroduce the well-known
three-point identity for a Bregman divergence.
Lemma 6 (Three-point identity). For all πa, πb, πc ∈ C ∩ dom(Ω), we have the following identity〈

δCΩ(πa)− δCΩ(πb), πc − πb
〉

= DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa)

when DΩ is the Bregman divergence defined in Definition 3.

Proof of Lemma 6. By the definition of Bregman divergence, we have

DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa) = Ω(πc)− Ω(πb)−
〈
δCΩ(πb), πc − πb

〉
− Ω(πc) + Ω(πa) +

〈
δCΩ(πa), πc − πa

〉
+ Ω(πb)− Ω(πa)−

〈
δCΩ(πa), πb − πa

〉
=

〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Therefore, the proof is complete.

Utilizing the three-point identity, we present the following useful lemmas for dealing inequalities regarding
improvements by Han et al. (2022), which we call left and right Bregman differences.
Lemma 7 (Left Bregman difference). For all πa, πb, πc ∈ C ∩ dom(Ω), the following identity holds.

DΩ(πb∥πa
)
−DΩ(πc∥πa) = −

〈
δCΩ(πc)− δCΩ(πa), πc − πb

〉
+DΩ(πb∥πc). (32)

Proof of Lemma 7. Using Lemma 6, we have

DΩ(πb∥πa)−DΩ(πc∥πa) = −DΩ(πc∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Utilizing an identity of two Bregman divergences for arbitrary (ρ, ρ̄):

DΩ(ρ∥ρ̄) +DΩ(ρ̄∥ρ) =
〈
δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄

〉
. (33)
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We separate δCΩ(πa) − δCΩ(πb) into δCΩ(πa) − δCΩ(πc) and δCΩ(πc) − δCΩ(πb) and write the rest of the
derivation as follows.

DΩ(πb∥πa)−DΩ(πc∥πa)
= −DΩ(πc∥πb) +

〈
δCΩ(πc)− δCΩ(πb), πc − πb

〉︸ ︷︷ ︸
Eq. (33)

+
〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
= DΩ(πb∥πc) +

〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
Therefore, we achieve the desired identity.

Lemma 8 (Right Bregman difference). For all πa, πb, πc, the following identity holds.

DΩ(πc∥πb)−DΩ(πc∥πa) = DΩ(πa∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
(34)

Proof of Lemma 8. By Lemma 6, we have

DΩ(πc∥πb)−DΩ(πc∥πa) = −DΩ(πb∥πa) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

We separate πc− πb into πc− πa and πa− πb and write the rest of the derivation as follows.

DΩ(πc∥πb)−DΩ(πc∥πa)
= −DΩ(πb∥πa) +

〈
δCΩ(πa)− δCΩ(πb), πa− πb

〉︸ ︷︷ ︸
Eq. (33)

+
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
= DΩ(πa∥πb) +

〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
Therefore, we achieve the desired identity.

Additionally, we introduce the three-point inequality (Chen & Teboulle, 1993), which has been a key state-
ment for proving MD convergence for a static cost functional (Aubin-Frankowski et al., 2022), and OMD
improvement for temporal costs. The proof mostly follows Aubin-Frankowski et al. (2022) with a slight
change of notation.
Lemma 9 (Three-point inequality). Given π ∈ M(X ) and some proper convex functional Ψ : M(X ) →
R∪{+∞}, if δCΩ exists, as well as ρ̄ = arg minρ∈C{Ψ(ρ)+DΩ(ρ∥π)}, then for all ρ ∈ C∩dom(Ω)∩dom(Ψ):
Ψ(ρ) +DΩ(ρ∥π) ≥ Ψ(ρ̄) +DΩ(ρ̄∥π) +DΩ(ρ∥ρ̄).

Proof of Lemma 9. The existence of δCΩ implies C ∩ dom(DΩ(·|y)) = C ∩ dom(Ω) ∩ dom(Ψ). Set G(·) =
Ψ(·) +DΩ(·∥y). By linearity and idempotence, we have for any ρ ∈ C ∩ dom(Ω) ∩ dom(Ψ)

DG(ρ∥ρ̄) = DΨ(ρ∥ρ̄) +DΩ(ρ∥ρ̄) ≥ DΩ(ρ∥ρ̄). (35)

By ρ̄ being the optimality for G, for all x ∈ C,

d+G(ρ̄; ρ− ρ̄) = lim
h→0+

G((1− h)ρ̄+ hρ)−G(ρ̄)
h

≥ 0,

which suggests G(ρ) ≥ G(ρ̄) +DG(ρ∥ρ̄). Applying (35) to this inequality complete the proof.

The following argument is from the convergence rate of mirror descent for relatively smooth and convex
pairs of functionals, and extend to infinite dimensional convergence results of Lu et al. (2018) and Aubin-
Frankowski et al. (2022). We aim to reformulate the statements in online learning, addressing one-step
improvement of OMD.
Lemma 10 (OMD improvement). Suppose a temporal cost Ft : M(X ) → R which is L-smooth and l-
strongly-convex relative to Ω and ηt ≤ 1

L . Then, OMD improves for current cost Ft(πt+1) ≤ Ft(πt).
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Proof of Lemma 10. Since F is L relatively smooth, we initially have the inequality

Ft(πt+1) ≤ Ft(πt) + d+F (πt;πt+1 − πt) + LDΩ(πt+1|πt) (36)

Applying the three-point inequality (Lemma 9) to Eq. (36), and setting a linear functional Ψ(ρ) =
ηtd

+Ft(πt;π − πt), ρ = πt and ρ̄ = πt+1 yields

d+Ft(πt;πt+1 − πt) + 1
ηt
DΩ(πt+1|πt) ≤ d+Ft(πt; ρ− πt) + 1

ηt
DΩ(ρ|πt)− 1

ηt
DΩ(ρ∥πt+1).

Since Ft is assumed to be l-strongly convex relative to Ω, we also have

d+F (πt; ρ− πt) ≤ Ft(ρ)− Ft(πt)− lDΩ(ρ|πt), (37)

Then, by using (37), Eq. (36) becomes

Ft(πt+1) ≤ Ft(ρ) + ( 1
ηt
− l)DΩ(ρ|πt)− 1

ηt
DΩ(ρ|πt+1) + (L− 1

ηt
)DΩ(πt+1∥πt). (38)

By substituting ρ = πt, since DΩ(ρ|πt+1) ≥ 0 and L − 1
ηt
≤ 0, this shows Ft(πt+1) ≤ Ft(πt), i.e., Ft is

decreasing at each iteration. This completes the proof.

A fundamental property with the dual space D induced by the first variation δC holds in our OMD setting.
The existence of such learning sequence–particularly in Sinkhorn–is well discussed by Nutz (2021) and Aubin-
Frankowski et al. (2022). Focusing on the dual geometry, we explicitly call this relationship with arbitrary
step size ηt as “dual iteration.”
Lemma 11 (Dual iteration). Suppose that first variations δCFt(πt) and δCΩ(πt) exists for t ≥ 0. Then, online
mirror descent updates Eq. (9) is equivalent to δCΩ(πt+1)− δCΩ(πt) = −ηtδCFt(πt), for all πt ∈ C, t ∈ N.

Proof of Lemma 11. The optimization (9) is equivalent to having the property for subsequent πt+1:

d+Ft(πt;π − πt) + 1
ηt
DΩ(π∥πt) ≥ d+Ft(πt;πt+1− πt) + 1

ηt
DΩ(πt+1|πt)

⇐⇒
〈
δCFt(πt)− 1

ηt
δCΩ(πt), π − πt+1

〉
+ 1

ηt

(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(39)

Setting the free parameter π = πt+1 + h(π − πt+1) and taking the limit h→ 0+ yields the result.

Remark 3. With applications of Lemma 11 and Lemma 5, we can achieve a concise form of iteration in the
dual using our temporal cost as:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δC(−H)(πt)− δC(−H)(π◦

t )
)

= ηt
(
δCΩ(πt)− δCΩ(π◦

t )
)
,

(40)

where H denotes the entropy, i.e., the minus KL divergence with the Lebesgue measure.

Leveraging the aforementioned lemmas, we have systematically introduced and rigorously formalized the
essential concepts necessary to progress with our analysis within the OMD framework. Finally, we are ready
to describe a suitable step size scheduling by the following arguments.
Lemma 12 (Step size I). Suppose that Ft = KL(π∥π◦

t ) and Ω = KL(π∥e−cεµ ⊗ ν). If 1⃝ limt→∞ ηt = 0+

and 2⃝
∑∞
t=1 ηt = +∞ 3⃝ η ≤ 1

L , the OMD algorithm converges to a certain π◦
D

Proof of Lemma 12. From Lemma 10, we have

ηt(Ft(πt+1)− Ft(πt)) ≤ −DΩ(πt∥πt+1) + (ηtL− 1)DΩ(πt+1∥πt). (41)

Taking limt→∞ ηt = 0 ensures improvements; this means for any ε > 0 there exists some 0 < δ ≤ 1 such
that DΩ(πt∥πt+1) +DΩ(πt+1∥πt) < ε whenever ηt < δ. Since convexity and the lower semicontinuity of the
Bregman divergence DΩ induced by KL, we conclude that OMD to a certain point upon the assumed step
size scheduling.
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Lemma 13 (Step size II). Assume that minπ∈C Et[DΩ(πt, π◦
t )] > 0 for all t ∈ [1,∞). Suppose that ηt → 0

and limT→∞ E[ 1
T

∑T
t=1 DΩ(πt∥π◦

t )] = 0 if and only if
∑∞
t=1 ηt = +∞.

Proof of Lemma 13. We note that due to dual iteration equation Eq. (40), improvements on KL in Lemma 10
are also improvements in the Bregman divergence, i.e. DΩ(πt+1∥π◦

t ) ≤ DΩ(πt∥π◦
t ), and if ηt → 0, then

the process {πt}∞
t=1 is convergent. By the dominated convergence theorem, assuming ergodicity of non-

stationary {π◦
t }∞
t=1 (Cornfeld et al., 2012), there is a constant ε that satisfies E1:t+1[DΩ(πt+1∥π◦

t+1)] ≥
E1:t+1[DΩ(πt+1∥π◦

t )] + ε for t > n for some n as ηt → 0, where an expectation subscripted by “1 : t”
indicates the notation of time-averaging from 1 to t. Consequently, we achieve the following inequality

E1:t+1[DΩ(πt+1∥π◦
t+1)]

≥ E1:t+1[DΩ(πt+1∥π◦
t )] + ε

≥ E1:t
[
DΩ(πt∥π◦

t )−⟨δCΩ(πt+1)− δCΩ(πt), π◦
t − πt⟩

]
+ E1:t+1

[
DΩ(πt+1∥πt)

]
+ ε Lemma 7

= E1:t
[
DΩ(πt∥π◦

t )− ηtDΩ(πt∥π◦
t ) + ηtDΩ(π◦

t ∥πt)
]
+ E1:t+1

[
DΩ(πt+1∥πt)

]
+ ε Eq. (40)

= (1− ηt)E1:t
[
DΩ(πt∥π◦

t )
]

+ E1:t+1
[
DΩ(πt+1∥πt) + ηtDΩ(π◦

t ∥πt)
]

+ ε

≥ (1− ηt)E1:t
[
DΩ(πt∥π◦

t )
]

+ ε′ (42)

for some t and 0 < ε < ε′, where Lemma 7 and Eq. (40) are used.

Necessity. For big enough t ≥ n where n ∈ N, we can achieve the inequality in Eq. (42) as

E1:t+1
[
DΩ(πt+1∥π◦

t+1)
]
≥ (1− ηt)E1:t

[
DΩ(πt∥π◦

t )
]
, (43)

Since we have assumed that ηt converges to 0, consider a step size sequence 0 < ηt ≤ 2
2+k for k > 0. Denote

a constant a = 2+k
2 log 2+k

k and apply the elementary inequality (Lei & Zhou, 2020)

1− x ≥ exp(−ax), such that 0 < x ≤ 2
2 + k

.

From Eq. (43), we achieve

E1:t+1
[
DΩ(πt+1∥π◦

t+1)
]
≥ exp(−aηt)E1:t

[
DΩ(πt∥π◦

t )
]
.

for all t ≥ n. Iteratively applying this inequality iterative for t = n, n+ 1, · · · , T − 1 gives

E1:T [DΩ(πT∥π◦
T )] ≥ E1:n[DΩ(πn∥π◦

n)]
T−1∏
t=n

exp(−aηt)

= exp
{
−a

T−1∑
t=n

ηt

}
E1:n[DΩ(πn∥π◦

n)].

(44)

From the assumption π∗ ̸= πn, DΩ(πn∥π◦
n) > 0 by the property of divergence. Therefore, by Eq. (44), the

convergence limt→∞ E1:t[DΩ(πt∥π◦
t )] = 0 implies the series

∑∞
t=1 ηt diverges to +∞ so that exp(−a

∑T−1
t=n ηt)

converges to 0.

Sufficiency. Consider a static Schrödinger bridge problem with couplings π ∈ Π(µ, ν), which is in a constraint
set

C =
{
π|(µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)× L1(ν), andφ,ψ ∈ C2(Rd) ∩ Lip(K)

}
.

For ρ, ρ̄ ∈ C, we can see

DΩ(ρ̄∥ρ) = Ω(ρ̄)− Ω(ρ)− ⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ 0 ⇐⇒ −⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ Ω(ρ)− Ω(ρ̄).

By adding ⟨δCΩ(ρ̄), ρ̄− ρ⟩, we achieve a property:

⟨δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄⟩ ≥ DΩ(ρ∥ρ̄). (45)
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Then, suppose that we have the asymptotic dual mean π◦
D. Using the right Bregman difference Lemma 8,

the one-step progress from the perspective of dual mean writes as

DΩ(π◦
D∥πt+1)−DΩ(π◦

D∥πt) =
〈
δCΩ(πt)− δCΩ(πt+1), π◦

D − πt
〉

+DΩ(πt∥πt+1).
= ηt

〈
δCΩ(πt)− δCΩ(π◦

t ), π◦
D − πt

〉
+DΩ(πt∥πt+1)

= ηt
〈
δCΩ(πt)− δCΩ(π◦

D), π◦
D − πt

〉
+ ηt

〈
δCΩ(π◦

D)− δCΩ(π◦
t ), π◦

t − πt
〉

+DΩ(πt∥πt+1)
≤ −ηtD(π◦

D∥πt) + ηt
〈
δCΩ(π◦

D)− δCΩ(π◦
t ), π◦

t − πt
〉

+DΩ(πt∥πt+1)

where the inequality is from Eq. (45). By applying the definition of π◦
D and ergodicity of {π◦

t }∞
t=1, we can

bound the expectation by finding some t > n such that

E1:t+1
[
DΩ(π◦

D∥πt+1)
]
≤ E1:t

[
(1− ηt)DΩ(π◦

D∥πt)
]

+ E1:t+1
[
DΩ(πt∥πt+1)

]
≤ E1:t[(1− ηt)DΩ(π◦

D∥πt)] + 1
2ωE1:t+1

[∥∥∇(δCΩ(πt)− δCΩ(πt+1))
∥∥2
L2(πt)

]
≤ E1:t[(1− ηt)DΩ(π◦

D∥πt)] + η2
t

2ωE1:t
[
∥∇(δCΩ(πt)− δCΩ(π◦

t ))∥L2(πt)
]

≤ E1:t[(1− ηt)DΩ(π◦
D∥πt)] + 2η2

tω
−1K, (46)

where K is the Lipschitz constant for each log Schrödinger potential in C. For the first inequality, we use
Assumption 2, and we use the log Sobolev inequality LSI(ω) from Assumption 1 in the second inequality.
Let {At}∞

t=1, denote a sequence of At = E1:t[DΩ(π◦
D∥πt)]. As a result, we have

At+1 ≤ (1− ηt)At + zη2
t , ∀t > n, (47)

where z := 2ω−1K. For a constant h > 0, we argue that At1 < h for some t1 > n′. Suppose that this
statement is not true; we find some t ≥ t1 such that At > h, ∀t ≥ t2. Since limt→∞ ηt = 0, there are some
t > t3 > t2 that ηt ≤ h

4 . However, Eq. (47) tells us that for t ≥ t3, for t ≥ t3,

At+1 ≤ (1− ηt)At + zη2
t ≤ At3 −

h

4

T∑
k=t3

ηk → −∞ (as t→∞).

This results to a contradiction, which verifies At < h for t > n′. Since limt→∞ ηt = 0, we can find some ηt
which makes At monotonically decreasing. Therefore, we conclude the nonnegative sequence {At}∞

t=1 finds
convergence by iteratively applying the upper bound in Eq. (47).

We now prove the theorem under consideration of the particular case of ηt = 2
t+1 . Then, Eq. (47) becomes

At+1 ≤
(

1− 2
t+ 1

)
At + 4z

(t+ 1)2 , ∀t ≥ n.

It follows that recursive relation writes as

t(t+ 1)At+1 ≤ (t− 1)tAt + 4z, ∀t ≥ n.

Iterative applying the relation, we achieve the following inequality:

(T − 1)TAT ≤ (n− 1)nAn + 4z(T − n), ∀T ≥ n.

Therefore, we finally achieve inequality as follows:

E1:T [DΩ(π◦
D∥πT )] ≤ (n− 1)nE1:n[DΩ(π◦

D∥πn)]
(T − 1)T + 4z

T
, ∀T ≥ n. (48)

Since we assumed π∗ = π◦
D, E1:T [DΩ(π∗∥πT )] = O(1/T ), the proof of Theorem 1 is complete.
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A.3 Proof of Proposition 1

The proof is based on the Doob’s forward convergence theorem.
Theorem 3 (Doob’s forward convergence theorem). Let {Xt}t∈N be a sequence of nonnegative random
variables and let {Ft}t be a random variable and let {Ft}t∈N be a filtration with Ft ⊂ Ft+1 for every t ∈ N.
Assume that E[Xt+1|Ft] ≤ Xt almost surely for every t ∈ N. Then, the sequence {Xt} converges to a
nonnegative random variable X∞ almost surely.

We follow the derivation of Eq. (46): there exists n ∈ N which satisfies

Et[DΩ(π◦
D∥πt+1)] ≤ DΩ(π◦

D∥πt) + 2η2
tω

−1K, ∀t ≥ n

and since the step size is scheduled as limt→∞ ηt = 0, the condition
∑∞
t=1 η

2
t < ∞ enables us to define a

stochastic process {Xt}t∈N:

Xt = DΩ(π◦
D∥πt) + 2ω−1K

∞∑
i=t

η2
i . (49)

It is straightforward that the defined random variable satisfies Et[Xt+1] ≤ Xt for t ≥ n. Since Xt ≥ 0,
the process is a sub martingale. By Theorem 3, the sequence {Xt}t∈N converges to a nonnegative random
variable X∞ almost surely. Therefore DΩ(π◦

D∥πt) converges to 0 almost surely.

A.4 Proof of Proposition 2

To achieve a meaningful regret bound for our problem setup, we first demonstrate the following.
Lemma 14. For all w = arg miny{⟨ĝ, y⟩+ 1

ηDΩ(y∥z)} with η > 0, the following equation.

∀u.⟨ηĝ, w − u⟩ ≤ DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z) (50)

Proof of Lemma 14. By the first order optimality of {⟨g, y⟩+DΩ(y∥z)} as a function of w, we have

⟨ĝ + 1
η δCDΩ(w∥z), u− w⟩ ≥ 0
=⇒ ⟨ĝ, w − u⟩ ≤ 1

η ⟨−δCDΩ(w∥z), w − u⟩ = 1
η (DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z)).

where used Lemma 7 in the derivation. This completes the proof.

Next, we derive the one-step relationship for OMD. The result entails that the regret at each step is related to
a quadratic expression of ηt, which is a key aspect of sublinear total regret. From a technical standpoint, we
can see that the assumption for log Sobolev inequality generally works as a premise for Lipschitz continuity
of gradient, i.e., ∇Ω in classical MD analyses.
Lemma 15 (Single step regret). Suppose a static Schrödinger bridge problem with the aforementioned con-
straint C. Let DΩ be the Bregman divergence wrt Ω : P(X )→ R + {+∞}. Then,

ηt(Ft(πt)− Ft(u)) ≤ DΩ(u∥πt)−DΩ(u∥πt+1) + η2
t

2ω ∥ĝt∥
2
L2(πt), ∀u ∈ C (51)

holds, where ĝt := δCFt(πt) = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)) in an MD iteration for the dual space for a step size
ηt, and ω > 0 is drawn from a type of log Sobolev inequality in Assumption 1.

Proof of Lemma 15. Consider single step regrets by the adversary plays of a linearization for ĝt:

Ft(πt)− Ft(u) ≤ ⟨ĝt, πt − u⟩.

Therefore, we derive a inequality for ⟨ĝt, πt − u⟩ as follows.

⟨ηtĝt, πt − u⟩ = ⟨ηtĝt, πt+1 − u⟩+ ⟨ηtĝt, πt − πt+1⟩
≤ DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨ηtĝt, πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨δCΩ(πt+1)− δCΩ(π), πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1) +DΩ(πt∥πt+1).
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Since we assumed that ĝt = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)) by the dual iteration and that Assumption 1 holds, we
can achieve the upperbound DΩ(πt∥πt+1) ≤ η2

t

2ω∥ĝt∥
2
L2(πt) by direct calculation.

We now show our upper bound of total regret by utilizing Lemma 15.
Lemma 16. Assume ηt+1 ≤ ηt. Then, u ∈ C, the following regret bounds for fixed u ∈ C hold

T∑
t=1

Ft(πt)− Ft(u) ≤ max
1≤t≤T

DΩ(u∥πt)
ηT

+ 1
2ω

T∑
t=1

ηt∥g̃t∥2
L2(πt) (52)

where ĝt = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)).

Proof of Lemma 16. Define D2 = max1≤t≤T DΩ(u∥πt). We get

Regret(u) =
T∑
t=1

(Ft(πt)− Ft(u))

≤
T∑
t=1

(
1
ηt
DΩ(u∥πt)−

1
ηt
DΩ(u∥πt+1)

)
+

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt)

= 1
η1
DΩ(u∥π1)− 1

ηT

DΩ(u∥πT +1) +
T−1∑
t=1

(
1

ηt+1
− 1
ηt

)
DΩ(u∥πt+1) +

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt)

≤ 1
η1
D2 +D2

T−1∑
t=1

(
1

ηt+1
− 1
ηt

)
+

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt) = D2

ηT

+
T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt).

Therefore, the proof is complete.

Following Lemma 16 and Assumption 1, we can have the inequality

T∑
t=1

Ft(πt)− Ft(u) ≤ D2

ηT

+
T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt) ≤

D2

ηT
+ 2η1ω

−1KT.

where D2 = max1≤t≤T DΩ(u∥πt). Setting a constant step size ηt ≡ D
√
ω√

2KT yields an upper bound of
2D
√

2ω−1KT which proves the regret bound of O(
√
T ). Also, recall that the following lemma.

Lemma 17 (Lemma 3.5 of Auer et al., 2002). Let a sequence a1, a2, . . . , aT be non-negative real numbers.
If a1 > 0, then

T∑
t=1

at√∑t
i=1ai

≤ 2

√√√√ T∑
t=1

at. (53)

Setting a adaptive scheduling ηt = D
√
ω√

2
∑t

i=1
∥ĝi∥2

yields 2D
√

2ω−1 ∑T
t=1∥ĝt∥2 which has a possibility to be

lower than O(
√
T ) depending on {π◦

t }Tt=1. Therefore, we have formally expanded the convergence results of
OMD (Lei & Zhou, 2020; Orabona & Pál, 2018; Srebro et al., 2011) to SBPs.

A.5 Proof of Theorem 2

Since DΩ(·∥·) := DKL(·∥R)(·∥·) for a reference measure R ∈ C, we can apply Lemma 5 and achieve Eq. (13).
We write the following equivalent convex problems, using the equivalence of first variation for recursively
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defined Bregman divergences.〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt) =

〈
δCDΩ(πt∥π◦

t ), π − πt
〉

+ 1
ηt
DΩ(π∥πt)

=
〈
δCΩ(πt)− δCΩ(π◦

t ), π − πt
〉

+ 1
ηt
DΩ(π∥πt)

= DΩ(π∥π◦
t )−DΩ(π∥πt) + 1

ηt
DΩ(π∥πt)

=
(

1
ηt

)
DΩ(π∥π◦

t ) +
(

1− ηt
ηt

)
DΩ(π∥πt)

We refer to Appendix B for the stability of Wasserstein gradient flows according to the LaSalle’s invariance
principle. We can now interpret δCEt as a dynamics that reaches an equilibrium solution

minimize
π∈C

〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt) ⇔ minimize

π∈C
ηt DΩ(π∥π◦

t )︸ ︷︷ ︸
empirical estimates

+(1− ηt)DΩ(π∥πt)︸ ︷︷ ︸
proximity

,

At a glance, the above equation appears analogous to the interpolation search between two points, where
the influence of π◦

t is controlled by ηt.

A.6 Proof of Proposition 3

The proof is closely related to the work of Lambert et al. (2022) where the difference lies in we correct the
Wasserstein gradient term α̇k,τ for suitable for generally unbalanced weight. Suppose take parameterization
θ ∈ (P2(BW(Rd)), WFR), the space of Gaussian mixtures equipped with the Wasserstein-Fisher-Rao metric,
over the measure space of Gaussian particles. Following the arguments from Appendix B.2 and the studies
for this particular GMM problem (Lu et al., 2019; Lambert et al., 2022) of the Wasserstein-Fisher-Rao of
the KL functional is derived as

∇WFRKL(ρθ∥ρ∗) =
(
∇BWδKL(ρ∥ρ∗), 1

2

(
δKL(ρθ∥ρ∗)−

∫
δKL(ρ∥ρ∗)dρ

))
, (54)

where we can consider the WFR gradient is taken with respect to θ of its first argument. By Eq. (54),
we separately consider Wasserstein gradient in the Bures–Wasserstein space and the space of lighting that
controls the amount of each Gaussian particle.

Given a functional F : P2(X )→ R∪{+∞}, the Wasserstein gradient ∇WF ∩TρP2(X ) such that all {ρt}t∈R+

satisfy the continuity eqatuion starting from ρ0 (Jordan et al., 1998; Villani, 2021). If the functional is the
KL divergence KL(ρ∥π) we can compute the Bures–Wasserstein gradient for the Gaussian distribution with
respect to (m,Σ) using Eq. (71)

∇BWF (m,Σ) = (∇mF (m,Σ), 2∇ΣF (m,Σ))

=
(∫
∇mρm,Σ log ρm,Σ

π
, 2

∫
∇Σρm,Σ log ρm,Σ

π

)
,

with some abuse of notation for ρ. Using the following closed-form identities for the Gaussian distributions

∀x. ∇mρm,Σ(x) = −∇xρm,Σ(x) and ∇Σρm,Σ(x) = 1
2∇

2
xρm,Σ(x).

and the equivalence between the Hessian and Fisher information, we achieve the following form:

∇BWF (m,Σ) =
(
Eρ

[
∇ ρ
π

]
,Eρ

[
∇2 log ρ

π

])
.

Define rk,τ = √αk,τ . Since rt follows the Fisher–Rao metric in Definition 7, by the Proposition A.1 from Lu
et al. (2019) and specialization of Lambert et al. (2022), we can think of dynamics of K Gaussian particles
{αk,τ ,mk,τ ,Σk,τ}Kk=1 such that

ṙk,τ = −1
2

(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
rk,τ ,

ṁk,τ = −E
[
∇ log ρθτ

ρ∗ (yk,τ )
]
, Σ̇k,τ = −E

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
Σk,τ − Σk,τE

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
,
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Since αk,τ = √rk,τ by previous definition, it is straightforward that

α̇k,τ = −
(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
αk,τ .

For αk > 0. This completes the proof.

B A Riemannian Perspective on Wasserstein Geometries

B.1 An introduction to Otto calculus and the LaSalle invariance principle

In this appendix, we introduce a basic notion of Wasserstein gradient flows in the space of continuous
probability measures. We focus on describing the particular example, the KL cost, initially studied by JKO
(Jordan et al., 1998) and formally generalized by Otto (2001) in the context of Riemannian geometry. For
more details and mathematical rigor, we refer the reader to (Ambrosio et al., 2005b; Carrillo et al., 2023). For
X ⊂ Rd, and functions U : R≥0 → R; V,W : X → R. We first consider an energy function E : P2(X )→ R:

E(ρ) =
∫

X
U

(
ρ(x)

)
dx︸ ︷︷ ︸

internal potential U

+
∫

X
V (x) dρ(x)︸ ︷︷ ︸

external potential EV

+ 1
2

∫
X

(W ∗ ρ)(x) dρ(x)︸ ︷︷ ︸
interaction energy W

, ρ ∈ P2(X ). (55)

For this function, we refer to the solution of the following PDE:

∂tρt = ∇ ·
[
ρ∇(U ′ + V +W ∗ ρ)

]
, t ≥ 0 (56)

as the Wasserstein gradient flow of E . Following Otto’s formalization of Riemannian calculus on the contin-
uous probability space equipped with the Wasserstein metric (P2(X ),W2), the PDE (56) can be interpreted
close to an ODE of Riemannian gradient flow:

∂tρt = −∇WE(ρ), (57)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇·
(
ρ∇ δ

δρ

)
. Considering the Otto’s Wasserstein-

2 Riemannian metric g (Otto, 2001; Lott, 2008), under the absolute continuity, we see that

∂

∂t
E(ρt) = −gρ

(
∂ρ

∂t
,
∂ρ

∂t

)
= −

∫
X

∣∣∇(U ′ + V +W ∗ ρ)
∣∣2dρ(x) ≤ 0, (58)

which is closely related to the strict Lyapunov condition. As a result, dynamical systems following the
PDE are guaranteed to reach an equilibrium solution, under the LaSalle invariance principle for probability
measures (Carrillo et al., 2023).

For a representative example, we identify Eq. (55) for the relative entropy (the KL functional) for a target
density ρ∗ ∈ P2(X ) writes

E(ρ) = KL(ρ∥ρ∗) =
∫

X
U

(
ρ(x)

)
dx︸ ︷︷ ︸

U

+
∫

X
V (x) dρ(x)︸ ︷︷ ︸

EV

−C,

where U(s) = s log s, V (x) = − logρ∗(x), and C = U(ρ∗) + EV (ρ∗). Recall that δE(ρ) = log ρ(x)
ρ∗ , then we

have
∇WE(ρ) = G−1

ρ δE(ρ) = −∇ · [ρ∇δE(ρ)] = ∇ ·
[
ρ∇ log ρ

ρ∗

]
(59)

where G denotes the metric tensor in matrix form. We can derive the the Fokker–Planck equation

∂tρt = −∇ · (ρ∇ log ρ∗) + ∆ρt,

describing the time evolution of the probability density. Combining the convexity of KL and the LaSalle
invariance principle Wasserstein gradient flows, the PDE reaches a unique stationary solution of e−V (x)∫

X
e−V (y)dy

.
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B.2 Background on Wasserstein-Fisher-Rao and other related geometries

The Wasserstein-Fisher-Rao geometry is also known as Hellinger–Kantorovich in some of papers (Liero et al.,
2016; 2018). In this section, we provide an overview of the geometry tailored to meet our technical needs.
Along the way, we also briefly describe various metrics and geometries related to the Wasserstein space.

The Wasserstein space. Let µ, ν ∈ P2(Rd) be a probability densities with respect to the Lebesgue
measure. We define the squared Wasserstein distance by a problem of couplings (Villani, 2009)

W 2
2 (µ, ν) := min

π∈Π(µ,ν)

∫
R2×R2

1
2∥x− y∥

2dπ(x, y). (60)

Then, the Brenier theorem (Villani, 2021) states that there exists an optimal mapping function that pushes
forward µ to ν, i.e. ν = ∇ζ#µ, where ζ : Rd → Rd ∪ {+∞} is a convex and lower semicontinuous function.
In optimal transport, the equation is generally referred to as the Monge–Ampere equation. In the fluid
dynamics, the Brenier map yields a constant-speed of geodesic {µt}t∈[0,1] formally described by the following
differential equation

ρt = (∇ζt)#µ, ∇ζt := (1− t)id + t∇ζ. (61)
Assuming the existence of such geodesic, we can understand finding optimality of Eq. (61) the Benamou–
Brenier formulation (Benamou & Brenier, 2000), which finds a velocity vt by minimizing the L2 cost

W 2
2 (µ, ν) = min

ρ,v

{∫ 1

0

∫
Rd

1
2∥vt(x)∥2dρt(x)dt

∣∣∣ ρ0 = µ, ρ1 = ν, ∂tρt = −∇ · (vtρt)
}
. (62)

The equation dictates how the fluid should be transported (which shall be controlled by speed vt) while
satisfying the continuity equation of path measure on the right hand side. In the Otto calculus (Otto,
2001), we can understand the Benamou–Brenier formula (62) as a Riemannian formulation for W2. In this
interpretation, the tangent space at ρ ∈ P2(X ) are measures of the form δρ = −∇ · (vρ) with a velocity field
v ∈ L2(ρ,Rd) and the metric is given by

∥ρ∥2
ρ = inf

v∈L2(ρ,Rd)

{∫
∥v∥2dρ

∣∣∣ δρ = −∇ · (vρ)
}
. (63)

The Benamou–Brenier formula exhibits dynamics in the Wasserstein space of probability densities metric
generally governed by the continuity equation, implying the mass of probability is preserved.

Fisher-Rao metric. The Fisher–Rao metric is a metric on the space of positive measures P+ with possibly
different total masses. We are interested in the simple case where such measure are represented with a fininte
number of parameters such as exponential families. We use the following definition throughout the paper.
Definition 7 (Fisher–Rao metric). The Fisher–Rao distance between measures ρ0, ρ1 ∈M+ is given by

d2
FR(ρ0, ρ1) := min

ρ,v∈A[ρ0,ρ1]

∫ 1

0

∫
Rd

1
2ω

2
t (x)dρt(x)dt = 2

∫
Rd

∣∣∣∣
√

dρ0

dλ −
√

dρ1

dλ

∣∣∣∣2
dλ

where A is an admissible set for a scalar field on positive measures; λ is any reference measure such that ρ
and ρ′ are both absolutely continuous with respect to λ, with Radon-Nikodym derivatives dρi

dλ .

The equivalence between the square Fisher–Rao distance and squared Hellinger distance (Liero et al., 2016;
2018) quantifies the similarity between two probability distributions ranging from 0 to 1. The total varia-
tion bounds the squared form and is well-studied in the information geometry (Amari, 2016). The partial
differential equations of the form ∂tρt = αtρt are called reaction equations of αt, which describes dynamics
regarding concentration.

Wasserstein-Fisher-Rao. The Wasserstein-Fisher-Rao geometry, or equivalently, spherical Hellinger–
Kantorovich distance, considers liftings of positive, complete, and separable measures while preserving the
total mass. This can be expresses as combining the Fisher–Rao and Wasserstein geometries characterized
by PDE such as (Liero et al., 2016):

∂tρt +∇ · (vtρt) = ωt
2 ρt. (64)
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One problem, is that the PDE (64) In order to stay the dynamics on the space of probability measures, which
is our interest, we adopt the definition from (Lu et al., 2019; Lambert et al., 2022) the equation becomes

∂tρt +∇ · (ρtvt) = 1
2

(
βt −

∫
βtdρt

)
ρt, (65)

which satisfies mass conservation. For the geometry, the norm on tangent space is given by

∥(βt, ρ)∥2
ρ :=

∫ {(
ω −

∫
βt dρ

)2
+ ∥v∥2

}
dρ. (66)

and we define the WFR distance as

d2
WFR(ρ0, ρ1) := inf

ρ,βt,v

{∫ 1

0
∥(βt, vt)∥2

ρt
dt

∣∣∣ {ρt, βt, vt}t∈[0,1] satisfies (65)
}
. (67)

(Lu et al., 2019) demonstrated that WFR gradient dynamics over the Bures–Wasserstein space can be
analytically derived. In this work, we were able to design a computational method for OMD iterates in
the WFR geometry. Using Proposition 3, this geometry allowed the VMSB algorithm to perform tractable
gradient computation within Wasserstein space.

B.3 The Bures–Wasserstein space and a mixture of Gaussians

The space of Gaussian distribution in the Wasserstein space is known as Bures–Wasserstein space, denoted
as BW(Rd). Given θ0, θ1 ∈ BW(Rd), we can identify the space with the manifold Rd × Sd++, where Sd++ denotes
the space of symmetric positive definite matrices. For θ0 = (m0,Σ0) and θ1 = (m1,Σ1) an affine map from
pθ0 to pθ1 is given as a closed-form expression:

∇ζ(x) = m1 + Σ−1/2
0

(
Σ1/2

0 Σ1Σ1/2
0

)1/2Σ−1/2(x−m0).

Note that the constant-speed geodesic also lies in BW(Rd), as pushforward of a Gaussian with an affine map
is also a Gaussian. Therefore, it can be said that BW(Rd) is a geodesically convex subset of P2(Rd). For the
Brenier map, a constant-speed geodesic in BW(Rd), for the tangent vector to the geodesic (r, S)

pθt = exppθ0

(
t · (r, S)

)
= N

(
m0 + tr, (tS + Id)Σ0(tS + Id)

)
, (68)

and the dynamics at its current position at time t = 0 is represented as

ṁ0 = r, (69)
Σ̇0 = SΣ0 + Σ0S. (70)

Generalizing this geodesic dynamics, the Bures–Wasserstein gradient ∇BW f of a function f : Rd × Sd++ → R
for a tangent vector (r, S) at time 0 Altschuler et al. (2021)

〈
∇BWf(m0,Σ0), (r, S)

〉
BW = ∂tf(mt,Σt)

∣∣∣∣
t=0

Identifying each component, we achieve the following result of Wasserstein gradient flow in Bures–Wasserstein
space as

∇BWf = (∇mf, 2∇Σf), (71)

where ∇m and ∇Σ denote Euclidean gradient. We refer to Appendix A of Altschuler et al. (2021) and
Appendix B Lambert et al. (2022) for further geometric properties and discussion for the BW space.
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Table 5: Hyperparameters.

2D EOT MSCI MNIST (Pixel) MNIST (Latent) FFHQ
Dimension d 2 {2, 16, 64, 128} {50, 100, 1000} 784 128 512
Modality K {8, 20, 50} [5, 100] 50 {256, 1024, 4096} {256, 1024} 10
Volatility ε 0.1 {0.1, 1, 10} 0.1 10−4 10−3 {0.1, 0.5, 1.0, 10.0}

Total steps (τ) 20,000 30,000 10,000 100,000 30,000 20,000
OMD steps (t) 400 600 200 1000 375 400

C Experimental Details

C.1 Rationales of the GMM parameterization for VMSB

Our parameterization choice follows LightSB (Korotin et al., 2024) because of the following two key reasons.
First, GMMs ensure that the model space satisfies certain measure concentration, which is suitable for
analyzing theoretical properties of SB models (Conforti et al., 2023). Firstly, we analyzed the regret under
the log Sobolev inequality in Proposition 2. Enforcing the LightSB parameterization will automatically
satisfy Assumption 1. Secondly, VMSB requires tractable gradient computation of Wasserstein gradient flow
in § 4.3. As shown in Proposition 3, we can perform VMSB using the variational inference in the WFR
geometry of the GMM parameterization.

C.2 Hyperparameters.

The hyperparameters are displayed in Table 5. For step size scheduling, we followed the theoretical result in
Theorem 1 and Proposition 1, and chose η1 = 1 and ηT ∈ {0.05, 0.1} with harmonic sequences, as illustrated
in Fig. 5. For high dimensional tasks in MSCI (1000d), MNIST-EMNIST (784d), and latent FFHQ Image-
to-Image transfer tasks (512d), the initial warm up steps for 10% of the total learning helped starting a
training sequence from a reasonable starting point as this set ηt = 1 as verified in Fig. 6 (c).

x ∼ µ, y ∼ ν ε = 0.05 ε = 1.0

Figure 10: SB in 2D synthetic datasets. SB processes Tθ with different volatility ε.

C.3 2D Synthetic datasets and the online learning setup

Fig. 10 demonstrates that our method achieved the SB model for the various volatility ε. For various
configurations, most of baseline SB algorithms are capable of learning in the 2D space (10). In order to align
our theoretical arguments for online learning, we selectively offered with a rotating filter that only 12.5%
of the samples to the SB solvers based on the angles measured from the origin. For instance, we provided
data for angle of [0, π/4] for first t ∈ [0, 25) steps, and so on. This partial observability is periodically
rotated through the data stream, thereby testing the algorithm’s ability to learn robustly under sparse and
shifting information. Since this requires 200 batches for the full rotation of the filter, the problem became
substantially more challenging, and LightSB and LightSB-M algorithms oftentimes failed on this online
learning setting.
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C.4 Entropic optimal transport benchmark

Our hyperparameter for the EOT benchmarks choices mostly follow the official repositories of the LightSB4

and LightSB-M5. Since it is known that initial distribution µ is the standard Gaussian distribution (Gushchin
et al., 2024b), we only trained vθ using the variational MD algorithm. Due to the huge number of configura-
tions, some hyperparameter settings were not clearly reported. Thus, we conducted our own examination on
these cases; we replicated better performance than the reported numbers by carefully dealing each benchmark
configuration.

C.5 SB learning with adversarial networks

Suppose a discriminator network, denoted as D, is equipped with useful architectural properties for discrim-
inating images. The discriminator outputs a binary classification regarding authenticity through sigmoidal
outputs, i.e., D(x) ∈ [0, 1] ∀x ∈ R28×28×1. For image samples x = {x1, . . . , xN} ∼ µ, we trained the
discriminator D with the logistic regression:

maximize
D

1
N

N∑
n=1

logD(yn) + 1
B

M∑
m=1

log(1−D(ŷmϕ )), (72)

where ŷmϕ in the right-hand side denotes a sample from an SB model parameterized by ϕ, generated using
an input xm. From our experiment setting, we use the SB distribution ρϕ which is generated by π⃗ϕ from
samples of the marginal µ. This makes the objective of adversarial learning of training the law of SB process
at time t = 1. For a completely separable metric space, it is well known that the discriminator converges at
D(x) = ν(x)

ν(x)+ρϕ(x) (Goodfellow et al., 2014).

Table 6: A simple discriminator D.

Layer Type Shape
Input Layer (-1, 28, 28, 1)

Conv Layer 1 (-1, 14, 14, 64)
Conv Layer 2 (-1, 7, 7, 128)
Batch Norm (-1, 7, 7, 128)

Flatten (-1, 6272)
Dense (-1, 1024)
Dense (-1, 1)

In the adversarial learning technique, retaining a fully differentiable
computation path from the input pixels to the discriminator outputs
is essential. Therefore, we implemented a differentiable inference
function using the categorical reparameterization trick with Gumbel-
softmax (Jang et al., 2016), as well as the Gaussian reparameteri-
zation trick. These reparameterization tricks enabled learning with
samples generated through LightSB-adv-K, directly by maximizing

J̃ (ϕ) = 1
M

M∑
m=1

logD(ymϕ )− log(1−D(ymϕ )),

where the term essentially represents the logit function logit(D(y)) = log D(y)
1−D(y) . When D approaches the

equilibrium, we can approximate the following KL learning

J̃ (ϕ) ≈
∫

log ν(y)
ρϕ(y)ρϕ(y)dy = KL(ρϕ∥ν),

where the KL functional directly corresponds to the divergence minimization of the SB problems (4) and (24),
under the disintegration theorem of Schrödinger bridge (Léonard, 2014).

In the MNIST-EMNIST image transfer tasks, we set one of the baseline as the aforementioned adversarial
learning as the baseline for training the SB model for the pixel space. Among our attempts, while the
LightSB-adv method successfully generated learning signals to train GMM-based models, the losses proposed
by LightSB (Korotin et al., 2024) and LightSB-M (Gushchin et al., 2024a) failed to generate relevant images
with high fidelity. For the discriminator, we used the DCGAN (Radford, 2015) architecture shown in Table 6,
and this can be replaced with more complex architecture for more realistic images with high fidelity. We
fixed the covariance after warm-ups in 10,000 steps, and we used the entropy coefficient ε = 10−4 based on
our hyperparameter search.

4https://github.com/ngushchin/LightSB
5https://github.com/SKholkin/LightSB-Matching
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C.6 Latent diffusion experiments

For the latent space, we pretrained ALAE (Pidhorskyi et al., 2020) model using the both MNIST and
EMNIST (first ten letters) datasets. The ALAE is a high-fidelity autoencoder internally use an adversarial
learning to generate high-fidelity images. For the encoder network, as well as decoder network, we mostly
adopt the DCGAN architecture. Therefore, the encoder is mostly identical to Table 6 except the point
the final layer is 128 dimension instead of 1, and the decoder is a convolutional neural network with four
convolutional layers.

Following the latent SB setting (Korotin et al., 2024), we assessed our method by utilizing the ALAE model
(Pidhorskyi et al., 2020) for generating 1024× 1024 images of the FFHQ dataset (Karras et al., 2019). The
base generative model has a latent embedding layer which represent 512-dimensional embedding space. The
goal is to transport a point latent space to another, performing unpaired image-to-image translation tasks
for four distinct cases: Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. We conducted a
quantitative analysis using the ED on the predefined ALAE embedding as a metric for evaluation.

D Discussion on Implementation of VMSB

Limitations. GMM-based SB models, due to the lack of deep structural processing, tend to focus on
instance-level associations of images in EOT couplings rather than the subinstance- or feature-level associ-
ations that are intrinsic to deep generative models. As a result, while VMSB produces statistically valid
representations of optimal transportation within the given architectural constraints, these outcomes may
be perceived as somewhat “synthetic.” Nevertheless, GMM-based models still hold an irreplaceable role in
numerous problems such as latent diffusion and variational methods, due to their simplicity and distinctive
properties (Korotin et al., 2024). As we successfully demonstrated in two distinct ways of interacting with
neural networks for solving unpaired image transfer, we hope our theoretical and empirical findings help
novel neural architecture studies.

Computation. For fast computation, we utilized the JAX automatic differentiation library (Bradbury
et al., 2018) for computing gradients and Hessians in Proposition 3. For each input, the computational
of VMSB requires quadratic time for computing the Wasserstein gradient flow (asymptotically O(K2ny))
and the memory footprint for estimating with internal Gaussian particles is linear (asymptotically O(Kny)).
There are inherent trade-offs between accuracy and computational efficiency when choosing between LightSB
and VMSB; nevertheless, VMSB remains significantly more manageable and computationally tractable com-
pared to deep learning methods for moderate settings. For instance, we have presented performance regarding
efficiency and scalability up to 1,000 dimensions in the experiments. Driven by parallel nature of Gaussian
particles, we observed that the computation of Proposition 3 favors vectorized instructions, and the ex-
pected speed enhancement from using GPUs is much more evident in neural network cases. In Table 7, we
report the wall-clock time for a 100-dimensional single-cell data problem Vargas et al. (2021); Korotin et al.
(2024), where the performance is reported in Table 3. Additionally, training time in the MNIST-EMNIST
translation is reported in Table 11 in the ablation study. This property also holds for generation, allowing
practitioners to deploy the model much faster on GPUs. In Table 8, we also report that generating 100
MNIST samples from 4096 Gaussian particles, equipped with competitive performance, can be done 1,854
times faster under the same hardware. Since VMSB a simulation-free, the GMM generation process does
not suffer from discretization errors of SDE.

Table 7: Training time for the 100-dimension single-cell data problem.

Sinkhorn (IPF) LightSB VMSB
8m (GPU) 66s (CPU) 32s (GPU) / 22m (CPU)

Reproducibility statement. Comprehensive justification and theoretical background are presented in
Appendices A and B. Since the primary contributions of this paper pertain to the learning methodology,
we ensured that all architectures and hyperparameters remained consistent across the LightSB variants.
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Table 8: Generation time for the 784-dimension MNIST pixel data.

K = 64 K = 256 K = 1024 K = 4096 NN (SDE)
GPU 721µs 726µs 739µs 740µs 1.372s
CPU 60.140ms 133.333ms 428.433ms 1.527s −

All datasets utilized in this study are available for download alongside the training scripts. Please refer to
Appendix C for more information on the experimental setups.

Table 9: EOT Benchmark scores of BW2
2-UVP ↓ (%).

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best)† 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23

Bridge-M DSBM (Shi et al.)‡ 0.03 0.18 0.7 2.26 0.04 0.09 1.9 7.3 0.26 102 3563 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812
rev. KL LightSB (Korotin et al.) 0.004± 0.004 0.009± 0.004 0.023± 0.003 0.036± 0.003 0.004± 0.005 0.009± 0.003 0.016± 0.002 0.035± 0.003 0.009± 0.004 0.013± 0.007 0.034± 0.004 0.066± 0.008
Bridge-M LightSB-M (Gushchin et al.) 0.005± 0.003 0.012± 0.004 0.034± 0.003 0.063± 0.002 0.005± 0.001 0.027± 0.007 0.057± 0.010 0.108± 0.004 0.004± 0.002 0.017± 0.007 0.133± 0.010 0.409± 0.042

EMA LightSB-EMA 0.004± 0.002 0.014± 0.003 0.021± 0.003 0.044± 0.001 0.004± 0.003 0.009± 0.004 0.013± 0.001 0.032± 0.004 0.004± 0.001 0.008± 0.003 0.023± 0.013 0.010± 0.002
Var-MD VMSB (ours) 0.003± 0.001 0.007± 0.003 0.018± 0.002 0.039± 0.001 0.002± 0.002 0.004± 0.001 0.009± 0.001 0.023± 0.003 0.005± 0.007 0.006± 0.004 0.011± 0.010 0.011± 0.004
Var-MD VMSB-M (ours) 0.002± 0.001 0.010± 0.067 0.031± 0.004 0.056± 0.005 0.003± 0.004 0.005± 0.002 0.032± 0.006 0.077± 0.018 0.003± 0.003 0.011± 0.004 0.117± 0.012 0.429± 0.748

Table 10: EOT scores of cBW2
2-UVP, the fully extended version of Table 2.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

Bridge-M DSBM (Shi et al.)‡ 5.2 10.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
rev. KL LightSB (Korotin et al.) 0.007± 0.005 0.040± 0.023 0.100± 0.013 0.140± 0.003 0.014± 0.003 0.026± 0.002 0.060± 0.004 0.140± 0.003 0.019± 0.005 0.027± 0.005 0.052± 0.002 0.092± 0.001
Bridge-M LightSB-M (Gushchin et al.) 0.017± 0.004 0.088± 0.014 0.204± 0.036 0.346± 0.036 0.020± 0.007 0.069± 0.016 0.134± 0.014 0.294± 0.017 0.014± 0.001 0.029± 0.004 0.207± 0.005 0.747± 0.028

EMA LightSB-EMA 0.005± 0.002 0.040± 0.014 0.078± 0.007 0.149± 0.006 0.012± 0.002 0.022± 0.003 0.051± 0.001 0.127± 0.002 0.017± 0.003 0.021± 0.003 0.025± 0.002 0.042± 0.002
Var-MD VMSB (ours) 0.004± 0.001 0.012± 0.002 0.038± 0.002 0.101± 0.002 0.010± 0.001 0.018± 0.001 0.044± 0.001 0.114± 0.001 0.013± 0.001 0.019± 0.001 0.021± 0.008 0.040± 0.001
Var-MD VMSB-M (ours) 0.015± 0.016 0.067± 0.036 0.108± 0.020 0.253± 0.107 0.010± 0.001 0.019± 0.001 0.094± 0.010 0.222± 0.033 0.013± 0.001 0.029± 0.003 0.193± 0.015 0.748± 0.036

E Additional Experimental Results

E.1 Additional results on the EOT benchmark

We present the full results of EOT benchmark experiments. Tables 9 and 10 show comprehensive statistics
on the EOT benchmark with more SB solvers. As mentioned in § 6.2, the VMSB and VMSB-M solvers
consistently brought better performance with low standard deviations of scores for cBW2

2-UVP and BW2
2-

UVP measures. We note that the experiment was conducted in a highly controlled setting with identical
model configurations; with all other aspects controlled and outcomes differing only by learning methods, the
consistent performance gains of our work were a well-anticipated result from our theoretical analysis.

E.2 Additional image generation results

64 256 1024 40960
DSBM

100

VMSB-adv

Number of Gaussian modalities K

FI
D

Figure 12: FID vs. modality.

In the unpaired EMNIST-to-MNIST translation task for the raw 784 pixel,
we measured FID scores for various K for the SB parameterization. We
considered K ∈ {64, 256, 1024, 4096} with ε = 10−4 for our VMSB algo-
rithm. Our observations, both qualitative and quantitative, indicate that
higher modalities yield higher-quality samples. In every case ofK, VMSB-adv
outperformed its counterpart. For instance, Fig. 12 demonstrates that VMSB
generates more diverse samples with high fidelity. Notably, we achieved the
competitive FID score of 15.471 using a standard neural network discrimina-
tor with relatively low MSD similarity scores. As the latent VMSB model
for 128-dimensional embeddings also achieved the considerably low FID score
of 9.558 (Table 4), we concluded that VMSB showed promising quality im-
provements for the both case, and this strongly supports the generality of our
theory.
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Figure 11: Generation results for unpaired image-to-image translation in the raw pixel space. We considered
image data from MNIST and EMNIST (containing the first ten letters), sized as 28×28 pixels. For comparison,
we trained GMM-based models with adversarial learning using a simple logistic discriminator (Table 6). This
was used as both a benchmark and a tractable target SB model (LightSB-adv-K). Our method in the raw
pixel domain, denoted as Ours-K, demonstrated qualitative improvements in terms of diversity and clarity
of image samples.

Adult → Child VMSB VMSB-M Male → Female VMSB VMSB-M

Child → Adult VMSB VMSB-M Female → Male VMSB VMSB-M

Figure 13: Image-to-Image translation on a latent space for the VMSB and VMSB-M algorithms.

Fig. 11 demonstrates that VMSB generated more diverse samples with high fidelity. Note that the pro-
posed method suffers less from mode collapse than LightSB method (especially on the transfer MNIST-
to-EMNIST), with the same Gaussian mixture setting. This result is especially a good point where the
difference only lies in the learning methodology, which aligns with our theory. Tables 11 and 12 effectively
show the statistics and FID scores on both the train and the test datasets. The quantitative results highlight
that the VMSB solver is more performant with less overfitting than its counterpart. Consequently, our claim
regarding the stability of SB solution acquisition is verified by additional experiments involving pixel spaces.

We present Embedding-ED scores (Jayasumana et al., 2024) and some qualitative generation results in Ta-
ble 13, which is visualized in Fig. 9. SF2M-Sink For quantitative results, we calculated statistics from ED
scores on embeddings of the ALAE model (Pidhorskyi et al., 2020), for the four different unpaired image-to-

Table 11: MNIST transfer statistics.

FID Time Parameters
LightSB-256 61.257 30m 0.4M
LightSB-1024 26.487 53m 1.6M
LightSB-4096 20.017 135m 6.4M
VMSB-256 52.634 76m 0.4M
VMSB-1024 24.022 203m 1.6M
VMSB-4096 15.471 44h 6.4M
DSBM-IMF 11.429 42h 6.6M

Table 12: FID scores and differences for generated MNIST.

FID (Train) FID (Test) Diff. (test − train).
LightSB-adv-256 60.746 61.604 0.858
LightSB-adv-1024 25.934 26.569 0.635
LightSB-adv-4096 19.960 20.196 0.237
VMSB-adv-256 51.684 52.283 0.599
VMSB-adv-1024 23.853 24.053 0.200
VMSB-adv-4096 15.508 15.496 −0.012
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image translation tasks. The results show that VMSB is capable of translating an arbitrary representation,
which is closer to target domain than baselines. In Fig. 13, as well as Fig. 9, we can see that VMSB and
VMSB-M algorithms generate FFHQ data with a given translation task. To qualitatively verify these gener-
ation results, we generated images using LightSB and VMSB in Figures 14 and 15. Since these improvements
are purely based on information geometry and learning theory, we anticipate that following works on the
variational principle application across various fields such as image processing, natural language processing,
and control systems (Caron et al., 2020; Liu et al., 2023; Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022).

Table 13: ALAE Embedding-ED scores. To evaluate the performance, we computed averages and standard
deviations of the ED scores across four different transfer tasks.

ε = 0.1 ε = 0.5 ε = 1.0 ε = 10.0
SF2M-Sink 0.02916± 0.00145 0.04112± 0.00191 0.05670± 0.00249 0.06641± 0.00441
DSBM-IMF 0.02275± 0.00101 0.03358± 0.00142 0.04866± 0.00168 0.06474± 0.00381

LightSB 0.01086± 0.00045 0.02382± 0.00093 0.03462± 0.00148 0.05376± 0.00273
LightSB-M 0.01066± 0.00055 0.02366± 0.00107 0.03519± 0.00153 0.05975± 0.00298

VMSB 0.01002± 0.00055 0.02288± 0.00101 0.03396± 0.00174 0.05315± 0.00307
VMSB-M 0.00997± 0.00054 0.02298± 0.00106 0.03391± 0.00140 0.05351± 0.00241
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Figure 14: Generation results of VMSB (Adult → Child) with different volatility settings
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Figure 15: Qualitative comparison between LightSB and VMSB for relatively high volatility, ε = 1.0. Top
(Male → Female): We find that VSBM has preserved more facial details, such as wearing glasses, than
LightSB. Bottom (Adult → Child): VSBM was stable at retaining facial position even with high ε.
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