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Abstract
We introduce Grade School Math with Distract-
ing Context (GSM-DC), a synthetic benchmark
to evaluate Large Language Models’ (LLMs)
reasoning robustness against systematically con-
trolled irrelevant context (IC). GSM-DC con-
structs symbolic reasoning graphs with precise
distractor injections, enabling rigorous, repro-
ducible evaluation. Our experiments demonstrate
that LLMs are significantly sensitive to IC, af-
fecting both reasoning path selection and arith-
metic accuracy. Additionally, training models
with strong distractors improves performance in
both in-distribution and out-of-distribution sce-
narios. We further propose a stepwise tree search
guided by a process reward model, which notably
enhances robustness in out-of-distribution condi-
tions. The code of our dataset and experiment
can be viewed at https://anonymous.4open.
science/r/GSM-DC-88CC/.

1. Introduction
Recent advances in Large Language Models (LLMs) have
enabled impressive reasoning capabilities across diverse
tasks, particularly in solving mathematical problems (Cobbe
et al., 2021b; Lewkowycz et al., 2022; Zhou et al., 2022;
Yao et al., 2023c). However, these models remain vulnera-
ble to subtle forms of distraction that impair their reason-
ing (Berglund et al., 2024; Huang et al., 2024; Xu et al.,
2024). A well-known phenomenon in cognitive psychol-
ogy—the Flanker Task (Eriksen & Eriksen, 1974)—demon-
strates that human performance deteriorates when irrelevant
stimuli are introduced. Drawing a parallel, Shi et al. (2023a)
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showed that LLMs exhibit similar susceptibility: adding
even a single distractor sentence to math problems from
GSM8K (Cobbe et al., 2021a) leads to a significant drop in
accuracy. This suggests that, like humans, LLMs struggle
to isolate relevant information in the presence of competing
context.

Despite the above efforts, the mechanism behind LLMs
being distracted by irrelevant context has not been sys-
tematically investigated. Shi et al. (2023a) injects one sin-
gle distractor, restricts examples to short reasoning chains,
and omits any form of supervised fine-tuning or out-of-
distribution (OOD) evaluation. However, several key ques-
tions remain unexamined: How do varying quantities of IC
affect LLM robustness? Is robust reasoning an ability to
be learned by SFT, including LoRA finetuning and contin-
ued pretraining? Can we improve the model’s robustness
through training with IC? How much IC injected during
training performs best in-distribution and OOD testing?
How to automatically verify each intermediate reasoning
step to ensure the model is not drawing conclusions from
irrelevant context?

To address these gaps, we introduce GSM-DC, a synthetic
benchmark designed to enable precise control over both
reasoning complexity and distractor structure. Problems in
GSM-DC are represented as symbolic dependency graphs,
where nodes correspond to intermediate quantities and edges
represent symbolic operations. This structure facilitates: 1)
the explicit injection of irrelevant context via off-path nodes
and edges without affecting correct solutions; 2) adjust-
ment of reasoning complexity by varying graph depth and
structure; and 3) automatic evaluation of model outputs by
aligning predictions with the correct reasoning path.

Our dataset construction pipeline (Figure 1) involves gen-
erating symbolic dependency graphs, injecting distractors
after determining the solution path, and transforming these
into human-readable math word problems and solutions. We
partition our dataset based on different problem complex-
ities and distractor intensities, conduct various controlled
experiments, and use automatic stepwise metrics measur-
ing arithmetic correctness and distraction robustness. Our
controlled experiments yield three main findings. First,
model accuracy steadily decreases as distractor intensity
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Figure 1: Overview of the GSM-DC framework: both generation and evaluation pipeline. The dataset construction process
(orange) involves three key steps: (1) Dependency Graph Construction builds a symbolic DAG with a defined solution path
via topological sort, (2) Irrelevant Context Injection adds controllable distractor nodes to increase reasoning complexity,
and (3) Natural Language Realization converts the symbolic graph into a human-readable word problem and finds the
solution following the solution path. The resulting instance is evaluated using a Stepwise Solution Evaluator that computes
Step Accuracy, Path Accuracy, and Extraction Answer Accuracy.

rises. Second, continued pretraining substantially enhances
reasoning robustness. Third, incorporating strong IC during
training significantly boosts model resilience, showing su-
perior performance across various distractor intensities in
out-of-domain testing.

To improve the model’s robustness against IC, we propose a
stepwise beam search algorithm guided by a Process Reward
Model (PRM), which scores partial reasoning paths based
on their alignment with valid solution trajectories. This
approach further improves robustness by up to 6.29% in out-
of-domain conditions, highlighting reinforcement learning’s
potential to strengthen robustness against irrelevant context
in model reasoning.

2. Related Work
Reasoning with Irrelevant Context LLMs often struggle
to reason accurately in the presence of irrelevant context
(IC). Prior work has explored this vulnerability by introduc-
ing distractors into math problems. For example, GSM-IC
(Shi et al., 2023a) appends irrelevant sentences to arithmetic
questions but lacks control over distractor structure or com-
plexity. GSMIR (Jiang et al., 2024) and MPN (Song &
Tavanapong, 2024) use handcrafted prompting strategies to
mitigate the effects of textual noise. Anantheswaran et al.
(2024) generate adversarial math problems by adding ir-

relevant variables, showing significant performance drops
and partial robustness gains through fine-tuning. However,
their hand-crafted distractors risk introducing bias and lack
structural control. Other studies, such as Wu et al. (2024),
show that semantically similar but irrelevant documents
can impair LLM performance in retrieval settings. While
these works expose LLMs’ sensitivity to IC, they provide
limited control over distractor properties. In contrast, GSM-
DC injects distractors into symbolic reasoning graphs, en-
abling stepwise evaluation. We further show that a reward-
guided beam search improves robustness beyond standard
fine-tuning.

Understanding LLM Reasoning LLM reasoning has
received growing attention, leading to diverse efforts to
improve performance on complex tasks. Recently, syn-
thetic benchmarks such as GSM-∞ (Zhou et al., 2025) and
iGSM (Ye et al., 2024) explored LLM reasoning under long-
context and complex distractors. Unlike GSM-∞ and iGSM,
which respectively emphasize reasoning depth and internal
mechanisms, our GSM-DC explicitly controls irrelevant dis-
tractors within symbolic DAGs to systematically quantify
the effects of irrelevant context. Hao et al. (2024) introduced
AutoRace and the LLM Reasoners library to standardize rea-
soning evaluation. CoT prompting and in-context learning
have been shown to enhance logical reasoning (Bertolazzi
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et al., 2024), while other work highlights limitations in
handling strict deductions (Li et al., 2024). Recent meth-
ods such as ReAct (Yao et al., 2023b), Tree-of-Thoughts
(Yao et al., 2023a), and self-consistency decoding (Wang
et al., 2023) guide intermediate steps to improve solution
quality. Beyond final-answer supervision, Process Reward
Models (PRMs) (Uesato et al., 2022; Lightman et al., 2024;
Zheng et al., 2024; Kumar et al., 2024; Hosseini et al., 2024)
evaluate partial reasoning paths to promote more robust,
interpretable, and aligned multi-step reasoning. Finally,
Shi et al. (2023b) showed that few-shot abduction boosts
generalization with minimal supervision.

3. The GSM-DC Dataset
To systematically investigate how LLMs reason under irrele-
vant context (IC), we require a framework that satisfies three
desiderata: 1) fine-grained manipulation of IC, 2) precise
control over reasoning difficulty, and 3) automatic evalu-
ation of reasoning robustness. Existing datasets (§2) like
GSM-IC are manually built and rely on free-form outputs,
lacking structural constraints and making stepwise evalua-
tion impractical without manual checks.

We propose the Grade School Math with Distracting Con-
text (GSM-DC) benchmark—a controlled framework for
systematically evaluating LLMs’ reasoning under irrelevant
context that meets the above criteria. Each math word prob-
lem in GSM-DC is represented as a directed acyclic graph
(DAG), which allows us to 1) explicitly control irrelevant
context by injecting distracting nodes and edges, 2) explic-
itly control reasoning difficulty by adjusting the graph size,
and 3) automatically compute stepwise reasoning correct-
ness by comparing model predictions to the ground-truth
reasoning path. As illustrated in Figure 1, we construct the
GSM-DC dataset in three steps:

These capabilities are enabled by our central design: a
ground-truth solution path embedded within a distractor-
rich but structurally constrained symbolic graph.

1) Dependency Graph Construction (§3.1): To represent
a math word problem, we build a symbolic dependency
graph G to capture the direct, implicit, and instance-level
dependencies in the problem. We then identify a single
correct reasoning path P from the graph G via topological
sort.

2) Irrelevant Context Injection (§3.2): We turn all nodes
outside the reasoning path P into distractors, producing an
augmented graph G′. This allows us to explicitly control the
problem complexity (e.g., number of reasoning steps) and
the intensity of irrelevant context (e.g., via the number and
connectivity of distractor nodes).

3) Natural Language Realization (§3.3): We then con-
vert the augmented graph G′ into a human-understandable
math word problem M by mapping each node to a real-
world entity and rendering each edge into a statement. The
ground-truth solution S is then derived from the original
reasoning path P .

As a result, each problem in the GSM-DC is represented
as (G′, M, P , S). This structured representation enables
automatic stepwise evaluation (§3.4) of LLMs’ reasoning
chain via the ground-truth path P . Specifically, we introduce
a stepwise solution evaluator that leverages the ground-truth
path P to assess model outputs using three metrics: step
accuracy (SAcc), path accuracy (PAcc), and final-answer
correctness (EAcc). In the following, we will introduce the
dataset construction pipeline in detail.

3.1. Dependency Graph Construction

Many grade-school math or logical reasoning problems in-
volve quantities that are interrelated in various ways. These
dependencies typically fall into three categories: 1) Direct
dependencies, where one quantity is computed directly from
another (e.g., if R denotes the radius of a circle and T its
diameter, then T = 2×R); 2) Instance dependencies, one
entity is automatically reliant on another without explicitly
stating that reliance. (e.g., “Each shelf holds M books, and
there are N shelves”) and 3) Implicit dependencies, requir-
ing aggregation or inference over multiple quantities (e.g.,
grouping cats and dogs as animals).

To model these interrelations, we use the directed acyclic
graph (DAG), denoted as G, where each node denotes a
quantity (e.g., Bob’s pens) and each edge represents the
dependency between quantities (e.g., Alice has one more
pen than Bob). We name G as the dependency graph. We
use DAG because the acyclicity ensures that no quantity
depends on itself, allowing a valid solution path P to be
recovered via topological sort.

This structured graph-based representation forms the foun-
dation for controlling reasoning complexity and enables
injection of irrelevant context without affecting the original
solution path P . Given inputs—reasoning steps rs, maxi-
mum edges E and distractor count m—we generate a DAG
by sampling nodes and edges, then extract the solution path
P of length rs via topological sort, and finally inject m
controllable distractors (§3.2).

3.2. Irrelevant Context Injection

To create a problem with irrelevant information, we aug-
ment the dependency graph by injecting distractor nodes
while preserving the original solution path. As illustrated
in Figure 2 and described in Algorithm 1, we start with a
clean dependency graph G and its solution path P . Unused
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Algorithm 1 INJECTDISTRACTORS (see Figure 2)
1: Input: directed acyclic graph G, solution path P , distractor

batch size m, parent–set mixing prob. q, edge-density ρ
2: Output: augmented graph G′ that preserves P
3: G′ ← G ▷ work on a copy
4: R← UNUSEDPARAMETERS(G′,P )
5: whileR ̸= ∅ do
6: Sample batch B ⊆ R with |B| = m
7: for all χ ∈ B do
8: R← R \ {χ}; n← NEWNODE(χ)
9: ADDNODE(G′, n) ▷ n is a distractor

10: if ISUNIQUETARGET(χ) then
11: LABELINDEPENDENT(n) ▷ no parents
12: continue
13: end if
14: Choose parent set P ∈ {I,C} with probability q
15: ADDEDGESFORWARD(G′, n,P, ρ)
16: LABELCOMPUTED(n)
17: end for
18: end while
19: return (G′, P )

nodes, which are not part of P , are selected and connected
to existing nodes through forward-only edges, resulting in a
new graph G′ that remains acyclic.

Problem difficulty is primarily controlled by the number of
reasoning steps rs. To limit the problem complexity across
instances, we constrain the input DAG G to have at most
E edges. Given such a fixed-scale graph and its solution
path P , we inject m distractor nodes (none of which lie
on P) to produce the augmented graph G′ (Algorithm 1).
Importantly, because the total graph scale is bounded by E,
longer reasoning steps occupy more of the graph structure,
leaving fewer nodes and edges available for distractor injec-
tion. We vary m ∈ [mmin,mmax] to define three distractor
intensity levels (e.g., for rs = 2, light uses m ∈ [0,2],
medium m ∈ [3,4], hard m ≥ 5). To ensure equal-sized
noise levels, we compute the empirical CDF of distractor
levels zi as F̂z(t) =

1
M

∑M
i=1 I(zi ≤ t) and select m = τk

with F̂z(τk) = k
N for k ∼ Uniform{1, . . . ,N}. You can

see the full details are in Appendix B.

3.3. Natural Language Realization

Once the dependency graph G is constructed and augmented
as G′, we instantiate it into natural language. Each node is
mapped to an entity (e.g., “Arts Campus’s T&T Supermar-
ket”) from the hierarchical entity vocabulary of the GSM8K
dataset, and each edge is rendered using a templated re-
lational statement (e.g., “the number of Zion Markets is
1 more than the number of T&T Supermarkets”)1. These
templates capture the underlying dependencies while main-
taining simple, readable language.

1We adopt the hierarchical entity vocabulary and templated
relational statements introduced in (Ye et al., 2024).
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Campus's Meat Market equals 4 times as much as 
each Science Park's Zion Market. 
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 =
3 . Define Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎
+1 = 3 + 1 = 4. Define Arts Campus's Meat Market 
as 𝑒; so r = 𝑒 × 4 = 4 × 4 = 1.

Arts Campus's 
T&T Supermarket
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Figure 2: Distractor construction in GSM-DC. After gener-
ating a DAG, we retain only the original topological path
used in the solution (A → B → C). Distractor nodes are
constructed by adding forward edges from solution nodes to
unused parameters, preserving acyclicity. Since we control
which unused parameters are included and their dependen-
cies, D is the sum of A, B and C; E becomes an independent
variable; F is excluded entirely.

To form the math problem M, we concatenate natural-
language realizations of edges along the solution path, end-
ing with a question about the final node. Distractors are
rendered as unrelated sentences and shuffled with relevant
content.

Alongside the natural language (NL) problem M, we gen-
erate its corresponding NL solution S based on the ground-
truth reasoning path P . The solution S sequentially defines
variables for each node along the path P and applies the
dependencies. An example of the NL problem is given in
Figure 3.

The number of each Arts Campus' T&T Supermarket equals 3. 
The number of each Engineering Campus' T&T Supermarket equals 4. 
The number of each Science Park's Zion Market equals 1 more than 
each Arts Campus' T&T Supermarket. The number of each Arts 
Campus' Seafood Supermarket equals the sum of each Science Park's 
Zion Market, Arts Campus' T&T Supermarket and each Arts Campus' 
Meat Market. The number of each Arts Campus' Meat Market 
equals 4 times as much as each Science Park's Zion Market. 
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 = 3 . Define 
Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎 + 1 = 3 + 1 = 4. Define 
Arts Campus's Meat Market as 𝑒; so r = 𝑒	×	4 = 4	×	4 = 1.

Figure 3: The final reasoning problem constructed from the
example in Figure 2. Irrelevant contexts are in red2.

The generated natural language solution provides a tem-
plated Chain-of-Thought (CoT) reasoning trace, which can
be parsed to automatically evaluate the stepwise reasoning
correctness.

2We consider arithmetics mod 5 to avoid errors from compu-
tation involving large numbers. LLMs can handle arithmetic via
external tools (Schick et al., 2023; Paranjape et al., 2023).
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3.4. Stepwise Solution Evaluator

After constructing GSM-DC, we build a stepwise solution
evaluator to automatically evaluate LLM-generated solu-
tions. For each problem and predicted solution, we report
three binary scores; for each, a value of 1 is awarded only
when the stated criterion is fully satisfied.

• Step Accuracy (SAcc): Our symbolic parser reads the
model’s chain-of-thought and executes every intermediate
equation in topological order. SAcc = 1 iff all equations are
arithmetically correct and each step references only symbols
that have already been defined. This strict all-or-nothing for-
mulation avoids inflating performance with partially correct
derivations.

• Path Accuracy (PAcc): To quantify distraction robust-
ness we check whether the model confines its reasoning to
the augmented dependency graph G′ after injecting irrele-
vant context. PAcc = 1 iff (i) no extraneous nodes appear
and (ii) every required dependency is present—regardless
of which arithmetic operator it applies. PAcc is a relaxation
of SAcc as it only requires stepwise reasoning to be correct,
but not the associated values themselves.

• Extraction Answer Accuracy (EAcc): To capture final-
answer correctness, EAcc = 1 iff the model’s extracted an-
swer exactly matches the ground truth. We report EAcc only
for prompting, but our focus remains on SAcc and PAcc.

We evaluate these metrics over a large set of problems and
report each as the percentage (%) of instances achieving a
score of 1.

4. Experiments
4.1. Impact of Irrelevant Context

To systematically analyze how irrelevant context (IC) af-
fects LLM reasoning, we conduct controlled experiments by
injecting varying numbers of irrelevant context (m = 1–15)
into math word problems M drawn from GSM-DC (§3).
We evaluate performance across four levels of reasoning
steps, denoted rs ∈ {2, 3, 4, 5}, and sample 100 instances
per condition to ensure statistical stability.

We benchmark six models: Grok-3-Beta, GPT-4.1, GPT-
4o-mini, LLaMA-3.3-70B, LLaMA-3.1-8B and LLaMA-
3.2-1B. We employ a five-shot prompting strategy enhanced
with a structured Background section (Appendix A.2) that
explicitly encodes relevant dependencies to guide reasoning.
Model performance is assessed using three metrics using
Stepwise Solution Evaluator, SAcc, PAcc and EAcc, which
together capture reasoning correctness, robustness to dis-
tractors, and output correctness (§3.4). This decomposition

allows us to isolate the specific ways in which irrelevant
context degrades model performance.

Result I: LLMs’ reasoning performance degrades with
increasing irrelevant context.

As shown in Figure 4, all six models exhibit a clear degra-
dation in reasoning accuracy as the number of irrelevant
context increases. For instance, at a fixed reasoning depth
of rs=5, Grok-3-Beta’s step accuracy drops from 43% with
one irrelevant context to just 19% under fifteen irrelevant
context. GPT-4.1 exhibits an even steeper decline at the
same depth, falling from 26% to 2%.

All three evaluation metrics—step accuracy (SAcc), path
accuracy (PAcc), and extraction accuracy (EAcc)—exhibit
similar downward trends as irrelevant context increases. Ex-
traction accuracy (EAcc) remains relatively high, because
our solution parser enforces a strict Chain-of-Thought for-
mat (§3.4) that models learn to follow through five-shot
prompting. As a result, EAcc is less sensitive by distraction
compared to SAcc and PAcc, which more directly assess
reasoning fidelity and resistance to irrelevant information.

Result II: Irrelevant context degrades accuracy more
steeply at greater reasoning depths.

To analyze how irrelevant context (IC) interacts with reason-
ing complexity, we study the error rate E(m; rs) as a func-
tion of distractor count m and reasoning depth rs. We find
it roughly follows a power-law trend: E(m; rs) ∝ mδ(rs),
where δ(rs) reflects a model’s IC sensitivity. As shown
in Figure 4, error increases with m, and the degradation
steepens with deeper reasoning.

For instance, Grok-3-Beta’s exponent grows from δ ≈ 0.11
at rs=2 to δ ≈ 0.49 at rs=5, indicating greater vulner-
ability at deeper depths. GPT-4.1 shows a similar slope
but higher baseline error, suggesting that reasoning depth
governs δ(rs), while model capacity sets the vertical in-
tercept—i.e., robustness under minimal distraction. These
findings highlight the need to jointly consider reasoning
complexity and IC sensitivity when designing robust LLMs.

4.2. Training with Different Strategies

The results so far focus on inference-time behavior: models
are prompted to reason through irrelevant context (IC) with-
out being explicitly trained on it. However, since we do not
have access to the original training data of these models, it is
unclear whether their observed robustness (or lack thereof)
stems from genuine generalization or incidental exposure
to similar patterns during pretraining. To disentangle this,
we perform controlled experiments that explicitly expose
models to varying degrees of IC and reasoning complexity.
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Figure 4: Step-wise accuracy under increasing irrelevant context (IC) for four models, evaluated across reasoning steps
rs ∈ {2,3,4,5}. Each curve corresponds to a specific reasoning step: blue for rs = 2, green for rs = 3, orange for rs = 4,
and red for rs = 5 .

rs Clean Clean+IC IC

SAcc PAcc SAcc PAcc SAcc PAcc

≤ 15 35.9 41.3 70.0 71.2 73.2 74.7
16 22.0 22.7 32.0 32.0 33.3 33.3
17 21.0 21.0 23.0 23.0 20.7 21.3
18 13.0 13.0 15.7 15.7 16.7 16.7
19 13.7 13.7 13.3 13.3 15.0 15.0
20 9.0 9.0 8.3 8.3 10.0 10.0
21 7.7 7.7 8.7 8.7 5.7 5.7
22 6.0 6.0 5.3 5.3 6.3 6.3

Table 1: Comparison of SAcc and PAcc under different
training regimes: Clean, Clean+IC, and IC.

First, we conduct controlled experiments on GSM-DC with
varying reasoning steps. We first mimic the distribution in
GSM-IC by training on examples with 2–7 reasoning steps,
then evaluate on harder problems with up to 22 steps. As
shown in Appendix C, performance drops sharply once the
test depth exceeds the training horizon, suggesting that mod-
els fail to generalize if they trained with shallow reasoning
samples.

To address this, we expand the training set to include exam-
ples up to rs=15, ensuring exposure to both long reasoning
chains and varying levels of irrelevant context. All finetuned
models in this section are trained on this broader distribu-
tion and evaluated on both in-distribution (rs ≤ 15) and
out-of-distribution (rs > 15) samples.

Result III: Continued pretraining enhances robustness
even without access to IC samples.

Building on this controlled training setup, we investigate
how different finetuning strategies affect reasoning robust-
ness under irrelevant context.

Specifically, we compare continued pretraining (full finetun-
ing) and LoRA finetuning for reasoning robustness using a
30K-sample training set, which we select based on empir-
ical scaling trends analyzed in Appendix E. As shown in
Figure 5, continued pretraining confers strong robustness
even without IC supervision, substantially outperforming
LoRA on clean data. With IC training, the gap narrows,
but continued pretraining remains consistently more robust
across reasoning depths. Based on this, we fixed continued
pretraining 30K-samples for all subsequent experiments.

4.3. Control of Training Data

Result IV: Training with Irrelevant Context Improves
Robustness Most Effectively.

As shown in Table 1, the model trained on IC consistently
achieves the highest SAcc and PAcc across all rs. The model
trained on Clean+IC data performs slightly worse, while the
Non-IC model lags behind both. These results suggest that
training solely on IC leads to stronger robustness.

The clean model performs worse on questions with IC, even
under in-distribution (ID) settings. To better understand
this limitation, we examine the gap ∆(SACC, PACC), rep-
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Figure 5: Step accuracy of models trained with Non-IC or
IC data using LoRA or continued pretraining.

resented as the ratio between SAcc and PAcc (Figure 6). A
lower ratio indicates a larger gap—arithmetic errors occur-
ring even when the reasoning path is correct. The model
trained on Clean data consistently shows a higher ∆, sug-
gesting that IC affects not only reasoning path selection,
but also arithmetic execution. These findings reveal that
IC broadly disrupts reasoning, and that training with IC-
injected examples leads to more robust models.

Result V: Training with challenging irrelevant con-
text leads to the strongest robustness and generalization
across all pretraining settings.
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Figure 6: Step accuracy (%) for models trained with Clean
or IC using LoRA or continued pretraining.

Having established that exposure to irrelevant context during
training improves robustness, we now investigate whether
the intensity of such context further influences generaliza-
tion. In particular, we test whether training on harder,
more distracting IC leads to greater robustness on out-
of-distribution (OOD) reasoning problems. Based on the
method described in §3, we construct two main versions of
the GSM-DC benchmark for evaluation:

GSM-DC-Clean: For each reasoning step rs ∈ [2, 22]∩Z,
we sample 300 clean dependency graphs without injecting
any IC. Each graph contains a unique solution path P and
no distractor nodes. This clean subset comprises 6,300 math
problems.

GSM-DC-with-IC: To study robustness under IC, we gen-
erate IC variants of the clean graphs by injecting distractors
following the procedure (§3.2). For each reasoning step, we
sample 100 graphs under each of three IC intensity levels:
LIGHT-IC, MEDIUM-IC, and HARD-IC, while keeping the
reasoning path P fixed. Each subset thus contains 2,100
problems (100 per step), resulting in a total of 6,300 prob-
lems across all IC levels.

To evaluate how IC difficulty affects training, we compare
five regimes: CLEAN, LIGHT / MEDIUM / HARD-IC, and
MIX-IC. As shown in Table 2 and Table 3, HARD-IC yields
the best SAcc across all in-distribution and OOD settings,
regardless of IC presence or difficulty.

Training
IC Level

Testing w/ IC (SAcc) Testing w/o IC (SAcc)

ID OOD All ID OOD All

CLEAN 35.91 13.19 32.36 81.95 17.05 60.32
LIGHT-IC 64.79 6.90 46.57 67.33 7.09 46.56
MEDIUM-IC 65.79 7.23 47.44 69.39 9.95 50.38
HARD-IC 77.95 18.57 59.48 82.30 19.86 61.21
MIX-IC 73.23 15.33 57.86 78.09 15.62 57.38

Table 2: Step Accuracy (%) under different training IC
difficulties, evaluated across test IC conditions.

These findings indicate that exposure to adding challeng-
ing distractors (HARD-IC) is the most effective training
strategy for enhancing model robustness and generalization
performance. Intriguingly, MIX-IC, despite incorporating
distractor diversity, consistently underperformed HARD-IC,
suggesting that distractor difficulty, rather than variety, is the
primary driver of improvement. The advantage of HARD-
IC over NON-IC, particularly under test-time IC conditions,
further reinforces the utility of IC augmentation, specifically
with high-difficulty examples, for fostering robust reason-
ing.

5. Improving Model Robustness Against
Irrelevant Context

The previous section (§4) demonstrate that LLMs are highly
sensitive to irrelevant context (IC), and that continued pre-
training with challenging IC-injected examples alone can
substantially improve robustness. However, even with the
strongest continued pretraining configurations (e.g., HARD-
IC), model performance still degrades significantly on out-
of-distribution (OOD) reasoning steps. This raises the ques-
tion of how robustness can be further improved at test time.
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Training
IC Level

ID Test SAcc OOD Test SAcc

Light Medium Hard Light Medium Hard

LIGHT-IC 67.21 66.57 60.57 8.14 7.29 5.28
MEDIUM-IC 68.14 66.07 63.14 8.71 8.43 4.57
HARD-IC 78.36 79.21 76.28 22.7 18.43 14.57
MIX-IC 74.71 75.07 69.93 17.7 16.57 11.28

Table 3: Step Accuracy (%) per test IC difficulty. All models
are trained with a specific IC difficulty.

5.1. Tree of Thoughts

Our Tree of Thoughts (ToT) algorithm addresses complex
reasoning problems by combining tree search with the step-
by-step inference capabilities of large language models
(LLMs). As illustrated in Figure 7, ToT not only uses an
LLM to propose candidate reasoning steps, but also inte-
grates a Process Reward Model (PRM) to evaluate and guide
the search process. Given a partial reasoning path h1:t, the
PRM assigns a reward R(h1:t) indicating the quality of
reasoning up to step t. Leveraging a synthetic dataset, we
systematically inject irrelevant context (IC) and arithmetic
errors into selected reasoning paths. These negative exam-
ples are used to train the PRM to distinguish valid reasoning
trajectories from those corrupted by irrelevant context (IC)
and wrong arithmetic calculations enabling the model to
prioritize more accurate and robust solutions during search.

The number of Bob’s oranges are 4. The number of Alice’s bananas equals 
the number of Bob’s oranges. How many bananas does Alice have?  

②: Select top N / M

Define Alice’s 
oranges as B;

Define Bob’s 
oranges as D;

Define Bob’s 
bananas as X;

so D = 4. so B = 3.

Define Alice’s 
bananas as L;

so M = 4. so L = 4.
③: Repeat ②

so G = B = 4. so B = G = 3. so B = L = 4. so L = B = 3.

Define Alice’s 
apples as B;

Define Alice’s 
bananas as G;

Define Bob’s 
apples as B;

Define Bob’s 
oranges as B;

①: N initial paths
0.89 0.87

0.93

0.790.95

0.98

0.83

0.71

Figure 7: An overview of the ToT algorithm with N = 4 and
M = 2. Green nodes indicate those that were scored highly
by the PRM and thus expanded in subsequent iterations,
while red nodes were not selected as candidate nodes for
the next step. After the algorithm terminates, the leftmost
node is scored the highest and thus that reasoning path is
chosen as the final answer.

5.2. Experiments

In our experiments, the problem set that each model was
tested on consisted of 300 total questions per OP level with
100 questions of each intensity level (light, medium, and
hard). This was done to ensure that all types of problems of
varying degrees of difficulty were fairly represented within

Training
IC Level

ID SAcc OOD SAcc

w/o w/ ∆ w/o w/ ∆
PRM PRM PRM PRM

LIGHT-IC 64.79 66.10 +1.31 6.90 9.59 +2.69
MEDIUM-IC 65.79 70.05 +4.26 7.23 13.52 +6.29
HARD-IC 77.95 79.48 +1.53 18.57 24.17 +5.60
MIX-IC 73.23 75.81 +2.58 15.33 19.06 +3.73
CLEAN 35.91 36.38 +0.47 13.19 15.76 +2.57

Table 4: The Step and Path Accuracies of the different
model types without and with PRM.

each experimental setting. In settings without a PRM, we al-
lowed the LLM to generate a response until it generated the
<EOS> token. We would then take this generated response
and pass it into our parser to determine whether or not it was
correct. In settings with a PRM, we generated responses in a
step by step manner by using ";" and "." as our intermediary
stop tokens. Each intermediary step would be scored by the
PRM and only the top N/M responses would be selected
as candidates in the next step to be explored further. This
process was repeated until the LLM generated the <EOS>
token, signaling that the response was complete. Similar to
the non-PRM case, this final response would then be passed
into the parser to determine its correctness.

The results suggest that using a PRM preserves model per-
formance in ID tasks, while also allowing the model to
generalize its responses to OOD tasks. Table 4 presents our
experimental results for each setting and their corresponding
accuracies. As can be seen from the table, out of all models
trained with varying degrees of IC, the model trained with
hard IC performs the greatest, and supplementing it with a
PRM significantly improves its accuracy.

6. Conclusion
We present GSM-DC, a controlled benchmark designed to
rigorously evaluate and improve the robustness of LLM rea-
soning in the presence of systematically injected irrelevant
context (IC). By framing math problems as symbolic di-
rected acyclic graphs, GSM-DC enables precise control over
reasoning complexity and distractor structure, along with
automatic stepwise evaluator. Our experiments reveal that:
1) LLM accuracy degrades as distractor count increases,
with the error roughly following a power-law trend whose
exponent grows with reasoning depth; 2) IC affects not only
reasoning path selection, but also arithmetic execution; 3)
Training with challenging IC, combined with continued pre-
training, yields the strongest robustness across both ID and
OOD settings, outperforming LoRA finetuning under clean
and noisy conditions. Finally, we show that reasoning ro-
bustness can be further improved at test time using beam
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search with PRM, which boosts OOD step accuracy by up to
6.29%. Together, these findings position GSM-DC as both a
diagnostic tool for analyzing IC sensitivity and a foundation
for developing robust training and inference strategies for
language models reasoning.

Limitations
GSM-DC provides a controlled environment for probing
LLM reasoning, combining symbolic DAGs with natural-
language templates inspired by datasets like iGSM (Ye et al.,
2024). To enhance linguistic diversity and realism, we
designed a hierarchical vocabulary system derived from
GSM8K (Cobbe et al., 2021a) and constructed templated
prompts with varied surface forms. While this approach
balances control and naturalness, the use of templates still
limits full linguistic expressiveness. To address this, we
plan to expand the benchmark with more diverse natural-
language realizations sampled from real corpora and support
more flexible arithmetic reasoning. The current reasoning
depth is capped at 22 operations; we are generating new
tiers with 30+ steps to explore long-horizon compositional-
ity. While we benchmark six models—Grok-3-Beta, GPT-
4.1, GPT-4o-mini, LLaMA-3.3-70B, LLaMA-3.1-8B, and
LLaMA-3.2-1B—all training experiments are conducted
solely on LLaMA-3.2-1B using a 30K-sample dataset (see
Appendix E) due to computational constraints. Future work
will scale to larger models to test robustness across capac-
ities. To generalize our Process Reward Model and Tree-
of-Thoughts framework, we will retrain the PRM on exter-
nal reasoning datasets (e.g., ProofWriter, StrategyQA) and
benchmark adaptive beam heuristics. Finally, we aim to
include faithfulness and bias diagnostics—such as expla-
nation consistency and demographic sensitivity—to ensure
that robustness gains translate into safe and trustworthy
reasoning.

Impact Statement
This research uses only synthetic data and does not involve
human subjects or sensitive information. All models and
experiments comply with the licenses of publicly available
tools. We support responsible AI research and have pri-
oritized transparency and reproducibility throughout this
work.
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A. Dataset Samples
A.1. Training Dataset with Different IC for Finetuned Model

For models that have been finetuned on mathematical reasoning tasks, we provide the question directly, omitting any system
or instruction prompt.

Light-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T Supermarket equals 3. The number of each Science Park’s Zion
Market equals 1 more than each Arts Campus’s T&T Supermarket. The number of each Engineering Campus’s
Zion Market equals each Engineering Campus’s T&T Supermarket. How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e = 3. Define Science Park’s Zion Market as w; so w = e + 1 = 3 + 1 = 4.

Medium-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T Supermarket equals 3. The number of each Arts Campus’s La
Michoacana Meat Market equals 4. The number of each Preparatory School District’s La Michoacana Meat
Market equals 3 more than the difference of each Science Park’s T&T Supermarket and each Science Park’s
La Michoacana Meat Market. The number of each Science Park’s Zion Market equals 1 more than each Arts
Campus’s T&T Supermarket. The number of each Engineering Campus’s Zion Market equals each Engineering
Campus’s T&T Supermarket. How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e = 3. Define Science Park’s Zion Market as w; so w = e + 1 = 3 + 1 = 4.

Hard-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s La Michoacana Meat Market equals 4. The number of each Arts Campus’s
T&T Supermarket equals 3. The number of each Arts Campus’s Seafood City Supermarket equals 2 more than
each Science Park’s Zion Market. The number of each Preparatory School District’s Zion Market equals
each Engineering Campus’s Seafood City Supermarket. The number of each Science Park’s Seafood City
Supermarket equals the sum of each Science Park’s La Michoacana Meat Market and each Science Park’s
T&T Supermarket. The number of each Preparatory School District’s Seafood City Supermarket equals
4 more than the sum of each Science Park’s Zion Market, each Arts Campus’s T&T Supermarket and each
Arts Campus’s Seafood City Supermarket. The number of each Arts Campus’s Zion Market equals the sum of
each Science Park’s T&T Supermarket, each Arts Campus’s T&T Supermarket and each Engineering Campus’s
La Michoacana Meat Market. The number of each Preparatory School District’s T&T Supermarket equals 4
more than each Engineering Campus’s Seafood City Supermarket. The number of each Science Park’s T&T
Supermarket equals 4. The number of each Engineering Campus’s La Michoacana Meat Market equals 0. The
number of each Engineering Campus’s T&T Supermarket equals 1 times as much as the difference of each
Engineering Campus’s La Michoacana Meat Market and each Preparatory School District’s Seafood City
Supermarket. The number of each Engineering Campus’s Seafood City Supermarket equals 2 times as much as
the sum of each Science Park’s Seafood City Supermarket, each Science Park’s La Michoacana Meat Market
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and each Science Park’s T&T Supermarket. The number of each Science Park’s La Michoacana Meat Market
equals 3 times as much as each Science Park’s T&T Supermarket. The number of each Preparatory School
District’s La Michoacana Meat Market equals 3 more than the difference of each Science Park’s T&T
Supermarket and each Science Park’s La Michoacana Meat Market. The number of each Science Park’s Zion
Market equals 1 more than each Arts Campus’s T&T Supermarket. The number of each Engineering Campus’s
Zion Market equals each Engineering Campus’s T&T Supermarket. How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e = 3. Define Science Park’s Zion Market as w; so w = e + 1 = 3 + 1 = 4.

Non-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T Supermarket equals 3. The number of each Science Park’s Zion
Market equals 1 more than each Arts Campus’s T&T Supermarket. How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e = 3. Define Science Park’s Zion Market as w; so w = e + 1 = 3 + 1 = 4.

A.2. Testing on Closed-Sourced Model

To evaluate closed-source models, we use GPT-4o-mini to test across all operations. Additionally, we included a Background
from the underlying graph structure to explicitly tell the model entity relationships, helping the model construct the correct
reasoning context. Since the model struggles to learn modular operations, we also embed five-shot prompting.

5-shots Testing Sample(Operations = 2)

⋆ System:
You’re an expert at solving elementary math problems involving addition, subtraction, and multiplication.
You solve all the problems in a uniform format. All calculations are done modulo 5. For example, 3 + 2
equals 0, 1 + 1 equals 2, 4 + 2 + 4 equals 0, 3 * 2 equals 1, and 3 * 1 equals 3. When providing your
solution, please end with ’The final answer is «x».’ where x is your final answer, an integer between
0 and 4. You must solve all the problems using the same solution format. Our scenarios involve up to
four categories of objects:schools, classrooms, backpacks and stationeries. Each school may contain
classrooms, each classroom may contain backpacks, and each backpack may contain stationeries. We can
specify quantities, such as "the number of dance studios at each Lakeshore High."

Assume that every entity with the same name has an identical configuration; for example, each
Lakeshore High contains the same number of dance studios. Another guiding principle is that what is
not mentioned does not exist: when we refer to classrooms at Lakeshore High, we are only discussing the
classrooms explicitly mentioned in our scenario. Furthermore, if Lakeshore High is not even mentioned,
any classroom within it is automatically considered to be non-existent (i.e. 0).

▶ User: ...

▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...
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▶ User:
Background:
There are 4 types of Zoo: Jurong Bird Park, Flamingo Gardens, Tracy Aviary, and Avery Island. There
are 4 types of Enclosure: Ladybug Loft, Dragonfly Delta, Snail Shellter, and Beetle Bungalow. There
are 2 types of Animal: Fire Salamander, and Newt. There are 3 types of Bone: Tertials, Secondary
Feathers, and Metacarpals. Each Ladybug Loft’s Fire Salamander can have Ladybug Loft’s Animal. Each
Tracy Aviary’s Snail Shellter can have Snail Shellter’s Newt and Ladybug Loft’s Fire Salamander. Each
Snail Shellter’s Newt can have Ladybug Loft’s Fire Salamander. Each Jurong Bird Park’s Zoo can have
Tracy Aviary’s Snail Shellter, Snail Shellter’s Newt, and Ladybug Loft’s Fire Salamander.

The problem description is:
The number of each Snail Shellter’s Newt equals 4 more than each Tracy Aviary’s Snail Shellter. The
number of each Ladybug Loft’s Fire Salamander equals 1 times as much as the difference of each Snail
Shellter’s Newt and each Tracy Aviary’s Snail Shellter. The number of each Tracy Aviary’s Snail
Shellter equals 4. How many Animal does Ladybug Loft have?

▶ GPT-4o-mini Predicted Solution: (Incorrect)
Define Tracy Aviary’s Snail Shellter as T; so T = 4.
Define Snail Shellter’s Newt as N; so N = T + 4 = 4 + 4 = 3.
Define Ladybug Loft’s Fire Salamander as F; so F = N - T = 3 - 4 = 0. [CALCULATION ERROR]
Define Ladybug Loft’s Animal as A; so A = F = 0.

▶ Groud-Truth Solution: (Correct)
Define Tracy Aviary’s Snail Shellter as o; so o = 4.
Define Snail Shellter’s Newt as S; so S = 4 + o = 4 + 4 = 3.
Define Ladybug Loft’s Fire Salamander as s; m = S - o = 3 - 4 = 4; so s = 1 * m = 1 * 4 = 4.
Define Ladybug Loft’s Animal as H; so H = s = 4.

• Step Accuracy: False
• Path Accuracy: True
• Final Answer Accuracy: False

◀ Failure Reason:
The model correctly selects every relevant entity and follows the intended dependency chain—first computing the Newt count N
from the Snail Shellter count T , then deriving the Fire Salamander count F from N and T , and finally mapping F to the total
Animals—showing no influence from irrelevant context (Path Accuracy = True). Nonetheless, it commits a modular–arithmetic
error: it evaluates F = N − T = 3− 4 as 0 instead of the correct value 4 under modulo 5.(Step Accuracy = False, Final Answer
Accuracy = False).
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B. Quantifying Irrelevant Information
To empirically study the impact of irrelevant information, we control the number of extraneous nodes and edges injected
into each example (see Table 5). These irrelevant parameters are randomly sampled from unused entities in the underlying
graph, ensuring they do not alter the correct reasoning path. We incrementally adjust the number of injected nodes based
on both model performance and problem difficulty. Notably, when the number of irrelevant nodes becomes large, model
performance drops significantly. To avoid saturating the model’s capacity and distorting evaluation, we refrain from injecting
more irrelevant information beyond this point.

Operation Irrelevant Parameters

Light Medium Hard

op = 2 0–2 3–4 5-
op = 3 0–1 2–4 5–
op = 4 0–1 2–3 4–
op = 5 0–1 2–3 4–
op = 6 0–1 2–3 4–
op = 7 0–1 2–3 4–
op = 8 0–1 2–3 4–
op = 9 0–1 2–2 3–
op = 10 0–1 2–2 3–
op = 11 0–0 1–2 3–
op = 12 0–0 1–2 3–
op = 13 0–0 1–2 3–
op = 14 0–0 1–2 3–
op = 15 0–0 1–2 3–
op = 16 0–0 1–1 2–
op = 17 0–0 1–1 2–
op = 18 0–0 1–1 2–
op = 19 0–0 1–1 2–
op = 20 0–0 1–1 2–
op = 21 0–0 1–1 2–

Table 5: Quantile distribution of extraneous nodes across different operations.

15



GSM-DC: Benchmarking LLM Robustness to Distraction

C. Operation-Range Bias in GSM-IC
We found that models trained on problems containing only a small number of arithmetic operations tend to overfit short
reasoning templates and fail to extrapolate to longer chains of computation. To make this limitation explicit, we adopt
exactly the same operation-count distribution as GSM-IC for all in-distribution (ID) training examples (OP = 2–15).
Generalisation is then probed with a held-out out-of-distribution (OOD) slice comprising problems that require sixteen to
twenty-two operations. Figure 8 plots test accuracy against operation count: performance remains high within the ID range
but deteriorates rapidly once the task exceeds the training horizon, underscoring the necessity of our two-tier protocol for a
fair assessment of compositional reasoning.

Figure 8: Test accuracy of a model trained on the MIX ≤ 15 set (operation distribution identical to GSM-IC) when evaluated
on OP = 2–22. Accuracy drops sharply once the required operation count exceeds the training ceiling.
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D. Process Reward Model
The Process Reward Model (PRM) we used in our experiments was trained using responses from an already fine-tuned
model on problems of varying operation levels. Additionally, we utilized a parser that would identify exactly at which step
of the LLM’s reasoning chain the first mistake was made. We segmented the model’s responses by using "." and ";" as our
stop tokens, and labeled each segment depending on whether it is correct or not as illustrated below. Wherever the parser
identified an error, that step and all subsequent steps would receive a negative label [−], while all steps prior received a
positive label [+].

PRM Example with Correct Steps

▶ Problem:
The number of each Coniferous Forest’s Hippopotamus equals 2 more than the difference of each Hippopotamus’s Aortic
Valve and each Hippopotamus’s Organs. The number of each Tropical Dry Forest’s Rhinoceros equals 2 more than the sum of
each Coniferous Forest’s Organs, each Rhinoceros’s Organs and each Hippopotamus’s Cardiac Muscle. The number of each
Hippopotamus’s Aortic Valve equals 1. The number of each Hippopotamus’s Cardiac Muscle equals 3 times as much as each
Hippopotamus’s Aortic Valve. How many Organs does Tropical Dry Forest have?

▶ Responses + Labels:
"Define Hippopotamus’s Aortic Valve as g;" [+]
"so g = 1." [+]
"Define Hippopotamus’s Cardiac Muscle as l;" [+]
"so l = 3 * g = 3 * 1 = 3." [+]
"Define Hippopotamus’s Organs as G;" [+]
"so G = g + l = 1 + 3 = 4." [+]
"Define Coniferous Forest’s Hippopotamus as y;" [+]
"w = g - G = 1 - 4 = 2;’, ’so y = 2 + w = 2 + 2 = 4." [+]
"Define Coniferous Forest’s Organs as L;" [+]
"so L = y * G = 4 * 4 = 1." [+]
"Define Rhinoceros’s Organs as u;" [+]
"so u = 0." [+]
"Define Tropical Dry Forest’s Rhinoceros as R;" [+]
"s = L + u = 1 + 0 = 1;" [+]
"C = s + l = 1 + 3 = 4;" [+]
"so R = 2 + C = 2 + 4 = 1." [+]
"Define Tropical Dry Forest’s Organs as V;" [+]
"so V = R * u = 1 * 0 = 0." [+]

The use of a synthetic dataset offers two key advantages: it simplifies the curation of training data for our Process Reward
Model (PRM) and enables precise control over injected mistakes, allowing us to label incorrect reasoning steps explicitly.
This was made possible by a solution parser capable of not only verifying the final answer but also pinpointing the exact step
where an error occurred. As a result, we were able to construct high-quality, fine-grained supervision signals to effectively
train the PRM.

Furthermore, we are able to purposely inject IC into a given problem due to the synthetic nature of our dataset. For our
experiments, after having constructed the directed graph of the correct problem, we add IC by generating extraneous details
and directly including them within the given problem statement at various steps. We then pass this new problem into
the LLM to get its response. Afterwards, we pass the LLM’s response into our parser and it can identify the presence
of and type of error that was made. Examples of errors include, but are not limited to, arithmetic errors, definitions of
irrelevant/non-existent symbols, or duplicate symbols.

PRM Example with Wrong Steps

▶ Problem:
The number of each Nasal Cavity’s Pericytes equals the difference of each Nasal Cavity’s Arrector Pili Muscle Cells and each
Vocal Cords’s Arrector Pili Muscle Cells. The number of each Nasal Cavity’s Gastrointestinal Smooth Muscle Cells equals 3
times as much as each Vocal Cords’s Arrector Pili Muscle Cells. The number of each Respiratory Mucosa’s Pericytes equals 4
times as much as the sum of each Nasal Cavity’s Gastrointestinal Smooth Muscle Cells and each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Vocal Cords’s Pericytes equals 3. The number of each Respiratory Mucosa’s Arrector Pili
Muscle Cells equals 2. The number of each Nasal Cavity’s Arrector Pili Muscle Cells equals 3 more than the difference of each
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Nasal Cavity’s Gastrointestinal Smooth Muscle Cells and each Respiratory Mucosa’s Pericytes. The number of each Vocal
Cords’s Arrector Pili Muscle Cells equals 3 times as much as each Vocal Cords’s Gastrointestinal Smooth Muscle Cells. The
number of each Respiratory Mucosa’s Gastrointestinal Smooth Muscle Cells equals each Nasal Cavity’s Arrector Pili Muscle
Cells. The number of each Vocal Cords’s Gastrointestinal Smooth Muscle Cells equals 4. How many Cells does Respiratory
Mucosa have?

▶ Responses + Labels:
"Define Vocal Cords’s Gastrointestinal Smooth Muscle Cells as W;" [+]
"so W = 4." [+]
"Define Vocal Cords’s Arrector Pili Muscle Cells as p;" [−]
"so p = 3 * W = 3 * 4 = 2." [−]
"Define Nasal Cavity’s Gastrointestinal Smooth Muscle Cells as g;" [−]
"so g = 3 * p = 3 * 2 = 1." [−]
"Define Nasal Cavity’s Arrector Pili Muscle Cells as e;" [−]
"c = g - p = 1 - 2 = 4;" [−]
"so e = 3 + c = 3 + 4 = 2." [−]
"Define Respiratory Mucosa’s Pericytes as z;" [−]
"w = g + p = 1 + 2 = 3;" [−]
"so z = 4 * w = 4 * 3 = 2." [−]
"Define Respiratory Mucosa’s Arrector Pili Muscle Cells as F;" [−]
"so F = 2." [−]
"Define Respiratory Mucosa’s Gastrointestinal Smooth Muscle Cells as P;"" [−]
so P = e = 2." [−]
"Define Respiratory Mucosa’s Cells as m;" [−]
"G = P + F = 2 + 2 = 4;" [−]
"so m = G + z = 4 + 2 = 1." [−]
▶ Parser:
existing_but_not_required_params: Vocal Cords’s Arrector Pili Muscle Cells

Thus, this allows us to control the amount of IC present and ultimately measure the effects of unnecessary information on
LLM’s responses. We prepared a dataset of 5000 problems of varying OP values ∈ [2, 15] as well as an additional 1000
problems of OP=15 so that the model had a sufficient number of high operation training problems. Ultimately, the PRM was
trained on each problem and each of its steps and used to facilitate our Tree of Thoughts (ToT) algorithm.

In settings with a PRM, we generated responses in a step by step manner by using ";" and "." as our intermediary stop tokens.
Each intermediary step would be scored by the PRM and only the top N/M responses would be selected as candidates in
the next step to be explored further. This process was repeated until the LLM generated the <EOS> token, signaling that the
response was complete. This final response would then be passed into the parser to determine its correctness.
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E. Finetuning Details
Model We finetune LLaMA 3.2-1B Instruct model released by Meta using both LoRA finetuning and continued
pretraining (full finetuning). This model adopts a decoder-only transformer architecture with rotary positional embeddings
and gated MLP layers. All experiments are performed on two NVIDIA H100 GPUs.

Finetuning Configuration Due to some computational constraints, our training is conducted on a fixed dataset of 30,000
samples. Each example contains a complete problem-solution pair, and inputs exceeding 2048 tokens are filtered out. We
use a context length of 2048, a learning rate of 5e−5, and the AdamW optimizer with cosine learning rate decay. Training
proceeds for 50 epochs with a batch size of 8 and gradient accumulation of 8 steps, yielding an effective batch size of 64.
We apply mixed-precision training with bfloat16, no warmup, and a maximum gradient norm of 1.0. Flash attention is
enabled.

Evaluation Protocol We evaluate each model on a fixed test set containing 100 examples per reasoning operation and per
level of irrelevant context (IC), including Light, Medium, and Hard. Evaluations are performed separately on in-distribution
(ID) and out-of-distribution (OOD) data. This setup enables precise measurement of reasoning robustness under varying
levels of distractibility, supporting our core analysis of how irrelevant information affects model behavior.

Architectural Generalization. Recent controlled studies suggest that decoder-only transformer models equipped with
full attention and rotary positional embeddings tend to exhibit similar learning dynamics and inductive biases, even when
implemented under different architectures. These models—such as GPT-style, LLaMA, Mixtral, and others—differ in details
like normalization placement or gated MLPs, but such variations do not appear to fundamentally alter their learnability
or reasoning behavior in practice (Allen-Zhu & Li, 2024a;b;c). In our case, although early experiments were conducted
using a LLaMA-style architecture, all final results presented in this paper are based on the more recent LLaMA 3.2–1B
Instruct model. We did not observe substantial performance differences across architectures during preliminary runs. Given
resource constraints, we focus on LLaMA 3.2–1B in this version; however, we acknowledge that running a comprehensive
comparison across reasoning models (e.g. DeepSeek-R1) would strengthen the generality of our findings and plan to pursue
this in future work.

Does More In-Distribution Data Help? To identify an effective training budget, we varied the number of in-distribution
samples from 1 K to 30 K and observed saturating OOD gains around 30 K (Figure 9). Based on this, we fixed 30 K samples
for all subsequent experiments.
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Figure 9: OOD step accuracy as a function of in-distribution training size.
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