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Abstract
Large-scale machine learning problems make the
cost of hyperparameter tuning ever more pro-
hibitive. This creates a need for algorithms that
can tune themselves on-the-fly. We formalize the
notion of “tuning-free” algorithms that can match
the performance of optimally-tuned optimization
algorithms up to polylogarithmic factors given
only loose hints on the relevant problem parame-
ters. We consider in particular algorithms that can
match optimally-tuned Stochastic Gradient De-
scent (SGD). When the domain of optimization is
bounded, we show tuning-free matching of SGD
is possible and achieved by several existing algo-
rithms. We prove that for the task of minimizing
a convex and smooth or Lipschitz function over
an unbounded domain, tuning-free optimization
is impossible. We discuss conditions under which
tuning-free optimization is possible even over un-
bounded domains. In particular, we show that the
recently proposed DoG and DoWG algorithms
are tuning-free when the noise distribution is suf-
ficiently well-behaved. For the task of finding a
stationary point of a smooth and potentially non-
convex function, we give a variant of SGD that
matches the best-known high-probability conver-
gence rate for tuned SGD at only an additional
polylogarithmic cost. However, we also give an
impossibility result that shows no algorithm can
hope to match the optimal expected convergence
rate for tuned SGD with high probability.

1. Introduction
The hyperparameters we supply to an optimization algo-
rithm can have a significant effect on the runtime of the
algorithm and the quality of the final model (Yang et al.,
2021; Sivaprasad et al., 2020). Yet hyperparameter tuning is
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costly, and for large models might prove intractable (Black
et al., 2022). As a result, researchers often resort to using a
well-known optimizer like Adam (Kingma & Ba, 2015) or
AdamW (Loshchilov & Hutter, 2019) with widely used or
default hyperparameters. For example, GPT-3 (Brown et al.,
2020), BLOOM (Workshop et al., 2022), LLaMA (Tou-
vron et al., 2023a), and LLaMA2 (Touvron et al., 2023b)
all use either Adam or AdamW with identical momentum
parameters and similar training recipes.

This situation presents an immense opportunity for algo-
rithms that can tune hyperparameters on-the-fly. Yet such
algorithms and their limits are still poorly understood in the
setting of stochastic optimization. Let us make our setting
more specific. We consider the minimization problem

min
x∈X

f(x), (OPT)

where f : X → R is differentiable and lower bounded by
f∗. We assume that we have access to (stochastic) gradients
g(x) that satisfy certain regularity conditions that we shall
make precise later.

Our main objects of study are tuning-free algorithms. To
make this notion more precise, let A be an optimiza-
tion algorithm that takes in n problem parameters a =
(a1, a2, . . . , an) and after T (stochastic) gradient accesses
returns a point x such that with high probability

f(x)− f∗ ≤ ErrorA(f, a, T ). (1)

The function ErrorA characterizes how well the algorithm
A minimizes the function f in T steps given the supplied
parameters. Let a∗ = a∗(f, T ) denote the set of parameters
that minimizes the right hand side of equation (1) for a
specific function f and number of steps T . In order for an
algorithm to find a∗(f, T ), it must start somewhere. We
assume that we can easily find lower and upper bounds
on the optimal parameters: two sets a and a such that for
i = 1, 2, . . . , n we have

ai ≤ a∗i ≤ ai.

Such hints on problem parameters can often be easily esti-
mated in practice, and are a much easier ask than the optimal
parameters. To be a tuning-free version of A, an algorithm
B has to approximately match the performance of A with
optimally tuned parameters given those hints, a definition
we make rigorous next.
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Definition 1.1. (Tuning-free algorithms). We call an al-
gorithm B a tuning-free version of A if given hints a, a on
the optimal parameters a∗ for a function f it achieves the
same error as A with the optimal parameters up to only
polylogarithmic degradation that depends on the hints and
the number of (stochastic) gradient accesses T . That is, ifA
achieves error f(x) − f∗ ≤ ErrorA(f, a

∗(f, T ), T ), then
B achieves the guarantee:

f(x)− f∗ ≤ ι · ErrorA(f, a∗, T ), (B-error)

where ι = poly log
(

a1

a1
, . . . , an

an
, T
)

is a polylogarithmic
function of the hints.

Clearly, asking a tuning-free algorithm B to achieve exactly
the same error as A is too much: we ought to pay some
price for not knowing a∗ upfront. On the other hand, if we
allow polynomial dependencies on the hints, then our hints
have to be very precise to avoid large errors. This beats the
point of being tuning-free in the first place.

The algorithm A that we are primarily concerned with is
Stochastic Gradient Descent (SGD). SGD and its variants
dominate in practice, owing to their scalability and low mem-
ory requirements (Bottou et al., 2018). We consider three
classes of functions: (a) L-smooth and convex functions, (b)
G-Lipschitz and convex functions, and (c) L-smooth and
potentially nonconvex functions. We ask for tuning-free al-
gorithms for each of these function classes. We give precise
definitions of these classes and our oracle model later in
Section 1.1.

In the setting of deterministic optimization, we have a very
good understanding of tuning-free optimization: there are
many methods that, given only hints on the problem pa-
rameters required by Gradient Descent (GD), achieve the
same rate as GD up to only polylogarithmic degradation.
We review this case briefly in Section 4. Despite immense
algorithmic developments in stochastic optimization (Duchi
et al., 2010; Levy, 2017; Levy et al., 2018; Li & Orabona,
2019; Kavis et al., 2019; Carmon & Hinder, 2022; Ivgi et al.,
2023; Cutkosky et al., 2023) and the related setting of on-
line learning (Orabona & Pál, 2016; Cutkosky & Boahen,
2016; Cutkosky, 2019; Mhammedi et al., 2019; Mhammedi
& Koolen, 2020; Orabona & Cutkosky, 2020) we are not
aware of any algorithms that fit our definition as tuning-
free counterparts of SGD for any of the function classes we
consider. The main question of our work is thus:

Can we find tuning-free counterparts for SGD
in the setting of stochastic optimization and the
classes of functions we consider (convex and
smooth functions, convex and Lipschitz functions,
and nonconvex and smooth functions)?

Our contributions. We answer the above question in the

negative for the first two function classes and make some
progress towards answering it for the third. In particular,
our main contributions are:

• For convex optimization: if the domain of optimiza-
tion is bounded, we highlight results from the litera-
ture showing tuning-free optimization matching SGD
is possible. If the domain of optimization X is un-
bounded, we give an impossibility result that shows
no algorithm can be a tuning-free counterpart of SGD
for smooth and convex functions (Theorem 2), as well
as for Lipschitz and convex functions (Theorem 3).
Additionally if the stochastic gradient noise has a cer-
tain large signal-to-noise ratio (defined in Section 4.2),
then tuning-free optimization is possible even when
the domain of optimization X is unbounded and can
be achieved by the recently-proposed DoG (Ivgi et al.,
2023) and DoWG (Khaled et al., 2023) algorithms for
both smooth and/or Lipschitz functions (Theorem 4).

• For nonconvex optimization: We consider two differ-
ent notions of tuning-free optimization that correspond
to the best-known convergence error bounds for SGD
in expectation (Ghadimi & Lan, 2013) and with high
probability (Liu et al., 2023). We show tuning-free
optimization is impossible in the former setting (The-
orem 5). On the other hand, for the latter, slightly
weaker notion, we give a positive result and give a
tuning-free variant of SGD (Theorem 6).

1.1. Preliminaries

In this section we review some preliminary notions and
definitions that we shall make use of throughout the paper.
We say that a function f : X → R is convex if for any
x, y ∈ X we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all t ∈ [0, 1].

We call a function G-Lipschitz if |f(x)− f(y)| ≤
G ∥x− y∥ for all x, y ∈ X . All norms considered in this
paper are Euclidean. We let log+ x

def
= 1+log x. A differen-

tiable function f is L-smooth if for any x, y ∈ X we have
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥.

Oracle model. All algorithms we consider shall access
gradients through one of the two oracles defined below.
Definition 1.2. We say that O(f) is a deterministic first-
order oracle for the function f if given a point x ∈ X the
oracle returns the pair {f(x),∇f(x)}.

If we only allow the algorithm access to stochastic gradients,
then we call this a stochastic oracle. Our main lower bounds
are developed under the following noise model.
Assumption 1.1. The stochastic gradient estimates are
bounded almost surely. That is, there exists some R ≥ 0
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such that for all x ∈ X

∥ĝ(x)−∇f(x)∥ ≤ R.

The stochastic oracle model we consider allows for access
to both function values and stochastic gradients satisfying
Assumption 1.1.

Definition 1.3. We say that O(f,Rf ) is a stochastic first-
order oracle for the function f with bound σf if, given
a point x ∈ X , it returns a pair of random variables[
f̂(x), ĝ(x)

]
such that (a) the estimates are unbiased

E[f̂(x)] = f(x), E[ĝ(x)] = ∇f(x), and (b) the stochastic
gradients satisfy Assumption 1.1 with R = σf .

The above oracle restricts the noise to be bounded almost
surely. We shall develop our lower bounds under that oracle.
However, for some of the upper bounds we develop, we
shall relax the requirement on the noise from boundedness
to being sub-gaussian (see Section 4.2), and we shall make
this clear then.

2. Related Work
This section reviews existing approaches in the literature
aimed at reducing or eliminating hyperparameter tuning.

Parameter-free optimization. An algorithm A is
called parameter-free if it achieves the convergence rate
Õ
(

G∥x0−x∗∥√
T

)
given T stochastic gradient accesses for any

convex function f with stochastic subgradients bounded
in norm by G, with possible knowledge of G (Orabona,
2023, Remark 1). There exists a vast literature on such
methods, particularly in the setting of online learning, see
e.g. (Orabona & Cutkosky, 2020). Parameter-free optimiza-
tion differs from tuning-free optimization in two ways: (a)
the Õ(·) can suppress higher-order terms that are not per-
mitted according to the tuning-free definition, and (b) gives
the algorithm possible knowledge of a parameter like G
whereas tuning-free algorithms can only get to see upper
and lower bounds on G. Nevertheless, many parameter-
free methods do not need any knowledge of G (Cutkosky,
2019; Mhammedi et al., 2019; Mhammedi & Koolen, 2020).
However, Cutkosky & Boahen (2017b; 2016) give lower
bounds showing that any online learning algorithm insisting
on a linear dependence on ∥x0 − x∗∥ (as in optimally tuned
SGD) must suffer from potentially exponential regret. If
we do not insist on a linear dependence on ∥x0 − x∗∥, then
the best achievable convergence bound scales ∥x0 − x∗∥3,
and this is tight (Mhammedi & Koolen, 2020). None of the
aforementioned lower bounds apply to the setting of stochas-
tic optimization, since in general online learning assumes
an adversarial oracle, which is stronger than a stochastic
oracle.

Tuning-free algorithms in the deterministic setting. Gra-
dient descent augmented with line search (Nesterov, 2014;
Beck, 2017) is tuning-free for smooth convex and nonconvex
optimization. Bisection search (Carmon & Hinder, 2022) is
tuning-free for both convex and smooth as well as convex
and Lipschitz optimization, as is a restarted version of gradi-
ent descent with Polyak stepsizes (Hazan & Kakade, 2019).
In the smooth setting, the adaptive descent method of (Mal-
itsky & Mishchenko, 2020) is also tuning-free. There are
also accelerated methods (Lan et al., 2023), methods for
the Lipschitz setting (Defazio & Mishchenko, 2023), meth-
ods based on online learning (Orabona, 2023), and others.
Renegar & Grimmer (2021) show that for strongly convex
optimization, a simple restarting scheme suffices to obtain
tuning-free algorithms in the deterministic setting.

Algorithms for the stochastic setting. Observe that be-
cause online learning is a more general setting than the
stochastic one, we can apply algorithms from online con-
vex optimization here, like e.g. (Mhammedi & Koolen,
2020) coupled with an appropriate online-to-batch conver-
sion (Hazan, 2022). In more recent work (Carmon & Hinder,
2022; Ivgi et al., 2023), we see algorithmic developments
specific to the stochastic setting. We discuss the conver-
gence rates these algorithms achieve in more detail in Sec-
tion 4.1. There are algorithms based on line search in the
stochastic setting, but proving their convergence requires
either extra assumptions like interpolation (Vaswani et al.,
2019), or using large minibatch sizes (Paquette & Schein-
berg, 2020). This drawback of stochastic line search is
unavoidable, as (Vaswani et al., 2021, Theorem 4) shows ap-
plying stochastic line search on a quadratic objective results
in non-convergence.

Other hyperparameter tuning approaches. In practice,
hyperparameters are often found by grid search, random
search, or methods based on Bayesian optimization (Bischl
et al., 2023); None of these approaches come with effi-
cient theoretical guarantees. Another approach is “meta-
optimization” where we have a sequence of optimization
problems and seek to minimize the cumulative error over
this sequence. Often, another optimization algorithm is
then used to select the learning rates, e.g. hypergradi-
ent descent (Baydin et al., 2018). Meta-optimization ap-
proaches are quite difficult to establish theoretical guaran-
tees for, and only recently have some theoretical results been
shown (Chen & Hazan, 2023). Our setting in this paper is
different, since rather than seek to minimize regret over a se-
quence of optimization problems, we have a single function
and an oracle that gives us (stochastic) gradient estimates
for this function.

Concurrent work. In concurrent work, Carmon & Hinder
(2024) and Attia & Koren (2024) also study lower bounds
for first-order stochastic optimization. In both papers, like
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in our work, the algorithm is provided with a certain range
that the problem parameters fall in (what we term as hints)
and must make use of only that to minimize the function
with stochastic gradient evaluations. Carmon & Hinder
(2024) study what is the minimum possible multiplicative
factor slowdown any algorithm must suffer compared to
optimally-tuned baselines when provided access only to
hints, which they term the price of adaptivity. They pro-
vide lower bounds for stochastic convex optimization for
Lipschitz functions in expectation and with high probabil-
ity, and also consider the case where some of the problem
parameters have no uncertainty (e.g. when we know the
Lipschitz constant but not the initial distance to the opti-
mum). Our lower bound in this setting (Theorem 3) rules
out any polylogarithmic price of adaptivity as impossible.
Additionally, we also give lower bounds for nonconvex and
smooth convex optimization (Theorems 2 and 5).

Attia & Koren (2024) study stochastic optimization in a
similar setting to ours, and give a new upper bound for
restarted non-convex SGD that achieves a similar conver-
gence guarantee to Theorem 6. We give our upper bound
under a slightly more general noise distribution (that the
noise has subgaussian norm) at the cost of a polylogarithmic
dependence on the problem dimension. We also additionally
give a lower bound that rules out the stronger in-expectation
convergence guarantee for nonconvex SGD. In the convex
setting, Attia & Koren (2024) give lower bounds for smooth
and nonsmooth stochastic optimization that show a poly-
nomial dependence on the hints is the best we can hope to
achieve, and give a matching upper bound based on restarted
SGD with AdaGrad-like stepsizes. In contrast, for our upper
bounds in this case we study more specifically which noise
distributions are amenable to optimization and prove results
for the DoG and DoWG algorithms (with no restarting pro-
cedures). Additionally, we also investigate whether tuning-
free optimization is possible under a bounded domain and
provide guarantees for DoG/DoWG there (Theorem 1).

3. Tuning-Free Optimization Under a
Bounded Domain

We begin our investigation by studying the bounded setting,
where we make the following assumption on the minimiza-
tion problem (OPT):

Assumption 3.1. The optimization domain X is bounded.
There exists some constant D > 0 such that ∥x− y∥ ≤ D
for all x, y ∈ X .

We seek a tuning-free version of SGD. Recall that SGD
achieves with probability at least 1− δ the following con-
vergence guarantee (Jain et al., 2019; Liu et al., 2023)

f(xout)− f∗ ≤ υ ·

{
LD2

T + σD√
T

if f is L-smooth,
√
G2+σ2D√

T
if f is G-Lipschitz,

(2)

where ν = poly log 1
δ and σ is an upper bound on the

stochastic gradient noise (per Assumption 1.1). To achieve
the convergence guarantee given by equation (2), we need
to know the parameters D,σ, and L in the smooth case or
G in the nonsmooth case. Per Definition 1.1, a tuning-free
version of SGD will thus be given the hints D ∈ [D,D],
σ ∈ [σ, σ], and either L ∈ [L,L] in the smooth setting or
G ∈ [G,G] in the nonsmooth setting. Given those hints,
we then ask the algorithm to achieve the same rate as equa-
tion (2) up to a multiplicative polylogarithmic function of
the hints.

It turns out that tuning-free optimization under a bounded
domain is solvable in many ways. Many methods from
the online learning literature, e.g. (Cutkosky & Boahen,
2017a; Mhammedi et al., 2019; Cutkosky, 2019) can solve
this problem when combined with standard online-to-batch
conversion bounds. We give the details for this construction
for one such algorithm in the next proposition:
Proposition 1. Coin betting through Online Newton Steps
with Hints (Cutkosky, 2019, Algorithm 1) is tuning-free in
the bounded setting.

The proof of this result is provided in the appendix, and
essentially just combines (Cutkosky, 2019, Theorem 2) with
online-to-batch conversion.

In this paper, we shall focus particularly on methods that
fit the stochastic gradient descent paradigm, i.e. that use
updates of the form xk+1 = xk − ηkgk, where gk is the
stochastic gradient at step k. Two methods that fit this
paradigm are DoG (Ivgi et al., 2023) and DoWG (Khaled
et al., 2023). DoG uses stepsizes of the form

ηt =
rt√
ut

, rt = max
k≤t

(∥xk − x0∥ , rϵ),

ut =

t∑
k=0

∥gk∥2,
(3)

where rϵ is a parameter that we will always set to D. Simi-
larly, DoWG uses stepsizes of the form

ηt =
r2t√
vt
, rt = max

k≤t
(∥xk − x0∥ , rϵ),

vt =

t∑
k=0

r2k∥gk∥
2
.

(4)

The next theorem shows that in the bounded setting, both
DoG and DoWG are tuning-free.
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Theorem 1. DoG and DoWG are tuning-free in the
bounded setting. That is, there exists some ι =

poly log(DD , σ
σ , T, δ

−1) such that

f(xout)− f∗ ≤ ι ·

{
LD2

T + σD√
T

if f is L-smooth,
√
G2+σ2D√

T
if f is G-Lipschitz.

This rate is achieved simultaneously for both classes of
functions without prior knowledge of whether f is smooth
or Lipschitz (and thus no usage of the hints L,L,G,G).

This theorem essentially comes for free by modifying the
results in (Ivgi et al., 2023; Khaled et al., 2023), and while
the proof modifications are quite lengthy we claim no sig-
nificant novelty here. We note further that unlike (Cutkosky,
2019, Algorithm 1), both DoG and DoWG are single-loop
algorithms– they do not restart the optimization process or
throw away progress. This is a valuable property and one
of the reasons we focus on these algorithms in the paper.
Moreover, DoG and DoWG are universal. An algorithm is
universal if it achieves the same rate as SGD for Lipschitz
functions and also takes advantage of smoothness when it
exists (Levy, 2017), without any prior knowledge of whether
f is smooth. DoG and DoWG enjoy this property in the
bounded domain setting.

4. Tuning-free Optimization Under an
Unbounded Domain

We now continue our investigation to the general, un-
bounded setting where X = Rd. Now, the diameter D
in Assumption 3.1 is infinite. The convergence of SGD is
then characterized by the initial distance to the optimum
D∗ = ∥x0 − x∗∥ (Liu et al., 2023). We can show that SGD
with optimally-tuned stepsizes achieves with probability at
least 1− δ the convergence rates

f(xout)− f∗ ≤ υ ·

{
LD2

∗
T + σD∗√

T
if f is L-smooth,

√
G2+σ2D∗√

T
if f is G-Lipschitz,

(5)

where υ = poly log 1
δ , σ is the maximum stochastic gradi-

ent noise norm, and D∗ = ∥x0 − x∗∥ is the initial distance
from the minimizer. An algorithm is a tuning-free version of
SGD in the unbounded setting if it can match the best SGD
rates given by Equation (5) up to polylogarithmic factors
given access to the hints D,D, σ, σ, and G,G or L,L. This
is a tall order: unlike in the bounded setting, a tuning-free
algorithm now has to compete with SGD’s convergence on
any possible initialization.

Deterministic setting. When there is no stochastic gra-
dient noise, i.e. σ = 0 and the algorithm accesses gradi-
ents according to the deterministic first-order oracle (Def-

inition 1.2), Tuning-free versions of gradient descent ex-
ist. For example, the Adaptive Polyak algorithm (Hazan &
Kakade, 2019), a restarted version of gradient descent with
the Polyak stepsizes (Polyak, 1987) is tuning-free:
Proposition 2 (Hazan & Kakade (2019)). The Adaptive
Polyak algorithm from (Hazan & Kakade, 2019) is tuning-
free in the deterministic setting.

This is far from the only solution, and we mention a few
others next. Parameter-free methods augmented with nor-
malization are also tuning-free and universal, e.g. plugging
in d0 = D in (Orabona, 2023) gives tuning-free algorithms
matching SGD. The bisection algorithm from (Carmon &
Hinder, 2022) is also tuning-free, as is the simple doubling
trick. Finally, T-DoG and T-DoWG, variants of DoG and
DoWG which use polylogarithmically smaller stepsizes than
DoG and DoWG, are also tuning-free, as the following di-
rect corollary of (Ivgi et al., 2023; Khaled et al., 2023)
shows.
Proposition 3. T-DoG and T-DoWG are tuning-free in the
deterministic setting.

T-DoG and T-DoWG use the same stepsize structure as DoG
and DoWG (given in equations (3) and (4)), but divide these
stepsizes by running logarithmic factors as follows

T-DoG: ηt =
rt√

ut log+
ut

u0

,

T-DoWG: ηt =
r2t√

vt log+
vt
v0

.

Both methods achieve the same convergence guarantee as
in equation (5) up to polylogarithmic factors in the hints.

4.1. Impossibility Results in the Stochastic Setting

The positive results in the deterministic setting give us some
hope to obtain a tuning-free algorithm. Unfortunately, the
stochastic setting turns out to be a tougher nut to crack. Our
first major result, given below, slashes any hope of finding
a tuning-free algorithm for smooth and stochastic convex
optimization.
Theorem 2. For any polylogarithmic function ι : R4 → R
and any algorithm A, there exists a time horizon T , an
L-smooth and convex function f , and a stochastic oracle
O(f, σf ), and valid hints L,L,D,D, σ, σ such that the al-
gorithmA initialized at some x0 returns with some constant
probability a point xout satisfying

ErrorA = f(xout)− f∗

> ι

(
L

L
,
D

D
,
σ

σ
, T

)
·
[
LD2

∗
T

+
σfD∗√

T

]
,

where D∗ = ∥x0 − x∗∥ is the initial distance to the opti-
mum and σf is the maximum norm of the stochastic gradient
noise.
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Proof idea. This lower bound is achieved by 1-dimensional
functions. In particular, we construct two one-dimensional
quadratic functions f and h with associated oracles
O(f, σf ) and O(h, σh), and we supply the algorithm with
hints that are valid for both functions and oracles. We
show that with some constant probability, the algorithm
observes the same stochastic gradients from both O(f, σf )
and O(h, σh) for the entire run. Since the algorithm cannot
tell apart either oracle, it must guarantee that equation (5)
holds with high probability for both f and h if it is to be
tuning-free. Now, if we choose f and h further apart, ensur-
ing that their respective oracles return the same gradients
with some constant probability becomes harder. On the
other hand, if we choose f and h too close, the algorithm
can conceivably guarantee that equation (5) holds (up to
the same polylogarithmic factor of the hints) for both of
them. By carefully choosing f and h to balance out this
tradeoff, we show that no algorithm can be tuning-free in the
unbounded and stochastic setting. The full proof is provided
in Section 8.3 in the appendix.

Comparison with prior lower bounds. The above theorem
shows a fundamental separation between the deterministic
and stochastic settings when not given knowledge of the
problem parameters. The classical lower bounds for deter-
ministic and stochastic optimization algorithms (Nesterov,
2018; Woodworth & Srebro, 2016; Carmon et al., 2019)
rely on a chain construction that is agnostic to whether the
optimization algorithm has access to problem parameters.
On the other hand, lower bounds from the online learn-
ing literature show that tuning-free optimization matching
SGD is impossible when the oracle can be adversarial (and
not stochastic), see e.g. (Cutkosky & Boahen, 2017b; 2016).
However, adversarial oracles are much stronger than stochas-
tic oracles, as they can change the function being optimized
in response to the algorithm’s choices. Our lower bound
is closest in spirit to the lower bounds from the stochastic
multi-armed bandits literature that also rely on confusing
the algorithm with two close problems (Mannor & Tsitsiklis,
2004).

Our next result shows that tuning-free optimization is also
impossible in the nonsmooth case.

Theorem 3. For any polylogarithmic function ι : R4 → R
and any algorithm A, there exists a time horizon T , valid
hints L,L,D,D, σ, σ, an G-Lipschitz and convex function
f and an oracleO(f, σf ) such that the algorithmA returns
with some constant probability a point xout satisfying

ErrorA = f(xout)− f∗

> ι

(
G

G
,
D

D
,
σ

σ
, T

)
·

[√
G2 + σ2D∗√

T

]
.

The proof technique used for this result relies on a similar

construction as Theorem 2 but uses the absolute loss instead
of quadratics.

Existing algorithms and upper bounds in the stochastic
setting. Carmon & Hinder (2022) give a restarted variant of
SGD with bisection search. If f is G-Lipschitz and all the
stochastic gradients are also bounded by G, their method
uses the hint G ≥ G and achieves the following convergence
rate with probability at least 1− δ

f(x̂)− f∗ ≤ cι

(
ηϵ

(
G+

ιG

T

)
+

D∗G√
T

+
D∗G

T

)
, (6)

where c is an absolute constant, ι a poly-logarithmic and
double-logarithmic factor, and ηϵ an input parameter. If we
set ηϵ = D/T ≤ D∗

T , then the guarantee of this method
becomes

f(x̂)− f∗ ≤ cι

(
D∗G√

T
+

D∗G

T

)
. (7)

Unfortunately, this dependence does not meet our bar as
the polynomial dependence on G is in a higher-order term.
A similar result is achieved by DoG (Ivgi et al., 2023). A
different sort of guarantee is achieved by Mhammedi &
Koolen (2020), who give a method with regret

1

T

T−1∑
t=0

⟨gt, xt − x∗⟩ ≤ cι

(
GD∗√

T
+

GD3
∗

T

)
, (8)

for some absolute constant c and polylogarithmic factor ι.
This result is in the adversarial setting of online learning, and
clearly does not meet the bar for tuning-free optimization
matching SGD due to the cubic term D3

∗.

4.2. Guarantees Under Benign Noise

In the last subsection, we saw that tuning-free optimization
is in general impossible. However, it is clear that some-
times it is possible to get within the performance of tuned
SGD with self-tuning methods (Ivgi et al., 2023; Defazio
& Mishchenko, 2023). However, the oracles used in The-
orems 2 and 3 provide stochastic gradients g(x) such that
the noise is almost surely bounded (i.e. satisfies Assump-
tion 1.1):

∥g(x)−∇f(x)∥ ≤ R.

So boundedness is clearly not enough to enable tuning-free
optimization. However, we know from prior results (e.g.
(Carmon & Hinder, 2022)) that if we can reliably estimate
the upper bound R on the noise, we can adapt to unknown
distance to the optimum D∗ or the smoothness constant
L. The main issue that the oracles in the lower bound of
Theorem 2 make it impossible to do that: while the noise
n(x) = g(x)−∇f(x) is bounded almost surely by R, the

6
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algorithm only gets to observe the same noise n(x) for the
entire optimization run. This foils any attempt at estimating
R from the observed trajectory.

A note on notation in this section and the next. In the past
section we used σ to denote a uniform upper bound on the
gradient noise, while in this section and the next we use σ
to denote the variance of the stochastic gradient noise n(x)
rather than a uniform upper bound on it. Instead, we use R
to denote the uniform upper bound on the noise.

We will see that for some notion of benign noise, tuning-free
optimization matching SGD is possible. We will develop our
results under a more general assumption on the distribution
of the stochastic gradient noise g(x)−∇f(x)
Assumption 4.1. (Noise with Sub-Gaussian norm). For all
x ∈ Rd, the noise vector n(x) = g(x)−∇f(x) satisfies

• n(x) is unbiased: E [g(x)] = ∇f(x).

• n(x) has sub-gaussian norm with modulus R:

Prob (∥n(x)∥ ≥ t) ≤ 2 exp

(
−t2

2R2

)
.

• n(x) has bounded variance: E
[
∥n(x)∥2

]
= σ2 <

+∞.

This assumption is very general, it subsumes bounded noise
(where R = σf ) and sub-gaussian noise. The next definition
gives a notion of signal-to-noise that turns out to be key in
characterizing benign noise distributions.

Definition 4.1. Suppose the stochastic gradient noise sat-
isfies Assumption 4.1. We define the signal-to-noise ratio
associated with the noise as

Ksnr =
σ

R
≤ 1.

To better understand the meaning of Ksnr, we consider the
following example. Let Y be a random vector with mean
E [Y ] = µ and variance E

[
∥Y − µ∥2

]
= σ2. Suppose

further that the errors ∥Y − µ∥ are bounded almost surely
by some R. Then Y − µ satisfies the assumptions in As-
sumption 4.1. Let Y1, . . . , Yb be independent copies of Y .
Through standard concentration results (see Lemma 8) we
can show that with high probability and for large enough b

σ̂
def
=

1

b

b∑
i=1

∥Y − µ∥2 ≊ σ2.

Now observe that if the ratio Ksnr is small, then we cannot
use the sample variance σ̂ as an estimator for the almost-
sure bound R. But if the ratio Ksnr is closer to 1, then we

have σ2 ≊ R2 and we can use σ̂ as an estimator for R. This
fixes the problem we highlighted earlier: now we are able to
get an accurate estimate of R from the observed stochastic
gradients. The next proposition gives examples of noise
distributions where Ksnr is close to 1.

Proposition 4. Suppose that the noise vectors g(x)−∇f(x)
follow one of the following two distributions:

• A Gaussian distribution with mean 0 and covariance
σ2

d · Id×d, with σ > 0.

• A Bernoulli distribution, where [g(x) − ∇f(x)] =
±σϕ(x) with equal probability for some ϕ such that
∥ϕ(x)∥2 = 1 almost surely.

Then Ksnr = O(1).

We now give an algorithm whose convergence rate char-
acterized by the signal-to-noise ratio Ksnr. We combine
a variane estimation procedure with the T-DoG/T-DoWG
algorithms in Algorithms 2 and 3. The next theorem gives
the convergence of this algorithm. This theorem is generic,
and does not guarantee any tuning-free matching of SGD,
but can lead to tuning-free matching of SGD if the signal to
noise ratio is high enough.

Theorem 4. Suppose we are given access to stochas-
tic gradient estimates g(x) such that the noise vectors
[g(x) − ∇f(x)] ∈ Rd satisfy Assumption 4.1 with mod-
ulus R and signal-to-noise ratio Ksnr. If we run T-DoG
or T-DoWG with variance estimation (Algorithms 2 and 3)
with a minibatch size b ≥ 2 large enough to satisfy

c ·

√ log 2bT
δ

b
+

log 2(b∨d)T
δ

b

 ≤ K2
snr − θ,

where c is some absolute constant and θ ∈ [0,Ksnr] is some
known constant. Then Algorithms 2 and 3 with either option
returns a point xout such that with probability at least 1− δ,

• If f is L-smooth:

f(xout)− f∗ ≤ cι

(
LD2

∗b

Ttotal
+

θ−1RD∗
√
b√

Ttotal

)
,

where D∗ = ∥x0 − x∗∥, c is an absolute constant, ι is
a polylogarithmic factor of the hints, and Ttotal denotes
the total number of stochastic gradient accesses.

• If f is G-Lipschitz:

f(xout)− f∗ ≤ cι

√
G2 + θ−2R2D∗

√
b√

Ttotal

.
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Note on dimension dependence in Theorem 4. We note
that the logarithmic dimension dependence on the dimension
d can be removed if, rather than assuming the norm of the
noise is subgaussian, we assumed it was bounded.

On the surface, it looks like Theorem 4 simply trades off
knowledge of the absolute bound on the noise R with
knowledge of some constant θ that lies in the interval
[0,Ksnr]. In order to see how Theorem 4 can be useful,
consider the special cases given in Proposition 4. For these
noise distributions, we see that choosing a minibatch size
b ≈ O(log 2dT

δ + 1) suffices to ensure Algorithms 2 and 3
converges with the simple choice θ = 1

2 . Even though
we had no apriori knowledge of the variance σ2 and did
not assume the noise distribution was stationary, we could
still optimize the function. In general, the minibatch size
b ≈ O(log 2dT

δ + 1) suffices as long as Ksnr is bounded
away from zero by some constant. The final cost of run-
ning the algorithm is Ttotal = b · T = ιT , where ι is some
polylogarithmic factor. Therefore, we only pay a logarith-
mic price for not knowing the distribution. Of course, if
Ksnr is small enough, there can be no optimization– there is
not enough signal to do any estimation of the sub-gaussian
modulus R. The distribution used in Theorem 2 does force
Ksnr ≤ 1

T .

5. Nonconvex Tuning-Free Optimization
In this section, we consider the case where the optimization
problem (OPT) is possibly nonconvex. Throughout the
section, we assume that f is L-smooth and lower bounded
by some f∗ ∈ R. In this setting, SGD with a tuned stepsize
achieves the following rate in expectation

1

T

T−1∑
t=0

∥∇f(xt)∥2

≤ c

[√
L(f(x0)− f∗)σ2

T
+

L(f(x0)− f∗)

T

]
,

(9)

for some absolute constant c > 0. This rate is known to be
tight for convergence in expectation (Arjevani et al., 2019).
However, it is not known if it is tight for returning a high
probability guarantee. The best-known high-probability
convergence rate for SGD is given by (Liu et al., 2023,
Theorem 4.1) and guarantees with probability at least 1− δ
that

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 5

√
L(f(x0)− f∗)R2

T
+

2(f(x0)− f∗)L

T
+

12R2 log 1
δ

T
.

(10)

We now consider tuning-free algorithms that can match the
performance of SGD characterized by either equation (9)

Algorithm 1 Restarted SGD
Require: Initialization y0, probability δ, hints

R,R,∆,∆, L, L, total budget Ttotal

1: Set ηϵ = 1
L

and

N = 1 +

log
min(L,

√
5TR

2

2∆ )

max(L,
√

5TR2

∆
)

 (11)

2: if Ttotal < N then
3: Return y0.
4: end if
5: Set the per-epoch iteration budget as T = ⌈Ttotal/N⌉.
6: for n = 1 to N do
7: η = ηϵ2

n

8: Run SGD for T iterations with stepsize η starting
from y0 to get outputs xn

1 , . . . , x
n
T .

9: Set yn, ĝn = FindLeader(S, δ, T ) (see Algo-
rithm 4).

10: end for
11: Return y = argminn∈[N ] ∥ĝn∥.

or equation (1). Per Definition 1.1, an algorithm B is given
(1) an initialization x0, (2) a budget of Ttotal stochastic
gradient accesses, and (3) hints L,L,R,R,∆,∆ on the
problem parameters such that (a) if L is the smoothness
constant of f then L ∈ [L,L], (b) R ∈ [R,R], and (c)
∆

def
= f(x0)− f∗ ∈ [∆,∆]. We call B strongly tuning-free

if it matches the performance of SGD characterized by equa-
tion (9) up to polylogarithmic factors. Alternatively, if it
instead matches the weaker guarantee given by equation (10)
then we call it weakly tuning-free.

Our first result in this setting shows that we cannot hope to
achieve the rate given by equation (9) in high probability,
even given access to hints on all the problem parameters.

Theorem 5. For any polylogarithmic function ι : R4 → R
and any algorithm A, there exists a time horizon T , valid
hints L,L,∆,∆, σ, σ, an L-smooth and lower-bounded
function f and an oracle O(f, σf ) such that the algorithm
A returns with some constant probability a point xout satis-
fying

ErrorA = ∥∇f(xout)∥2

> ι

(
L

L
,
∆

∆
,
σ

σ
, T

)
·

[√
L∆σ2

T
+

L∆

T

]
,

where ∆ = f(x0)− f∗

Surprisingly, our next theorem shows that the rate given
by equation (10) is achievable up to polylogarithmic factors
given only access to hints. To achieve this, we use a restarted
variant of SGD (Algorithm 6) combined with a “Leader

8
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Finding” procedure that selects a well-performing iterate by
subsampling.

Theorem 6. (Convergence of Restarted SGD) Let f be
an L-smooth function lower bounded by f∗ and suppose
the stochastic gradient noise vectors satisfy Assumption 4.1.
Suppose that we are given the following hints on the problem
parameters: (a) L ∈ [L,L], (b) Rf ∈ [R,R], and (c)

∆f
def
= f(x0)−f∗ ∈ [∆,∆]. Then there exists some absolute

constant c such that the output of Algorithm 1 satisfies after
Ttotal · log+ 1

δ stochastic gradient evaluations

∥∇f(y)∥2 ≤ c ·
R2 log

2dmax(log 1
δ ,N)

δ

Ttotal
+

c ·N ·

√L(f(y0)− f∗)R2

Ttotal
+

(f(y0)− f∗)L

Ttotal

 ,

where c is an absolute constant, N is a polylogarithmic
function of the hints defined in equation (11), and d is the
problem dimensionality.

Discussion of Theorem 6. This theorem shows that in the
nonconvex setting, we pay only an additional polylogarith-
mic factor to achieve the same high-probability rate as when
we know all parameters. We emphasize that we do not know
if the rate given by equation (10) is tight, but it is the best
in the literature. Finally, the logarithmic dimension depen-
dence on the dimension d can be removed if, rather than
assuming the norm of the noise is subgaussian, we assumed
that it was bounded almost surely.

Proof Idea. The proof is an application of the so-called
“doubling trick” with a careful comparison procedure. If we
start with a small enough stepsize, we only need to double a
logarithmic number of times until we find a stepsize η′ such
that η∗

2 ≤ η′ ≤ η∗, where η∗ is the optimal stepsize for SGD
on this problem. We therefore run SGD for N epochs with a
carefully chosen N , each time doubling the stepsize. At the
end of every SGD run, we run the FindLeader procedure
(Algorithm 4) to get with high probability a point yn such
that

∥∇f(yn)∥2 ≤
1

T

T−1∑
t=0

∥∇f(xn
t )∥

2
,

where xn
1 , . . . , x

n
T are the SGD iterates from the n-th epoch.

Finally, we know that at least one of these N points
y1, . . . , yN has small gradient norm, so we return the point
with the minimal estimated gradient norm and bound the
estimation error as a function of T . The total number of
gradient accesses performed is at most N(T + MT ) ≈
Ttotal · log+ 1

δ . Therefore, both the restarting and compari-
son procedures add at most a logarithmic number of gradient
accesses.

Related work. Many papers give high probability bounds
for SGD or AdaGrad and their variants in the nonconvex
setting (Ghadimi & Lan, 2013; Madden et al., 2020; Lei &
Tang, 2021; Li & Orabona, 2019; 2020; Faw et al., 2022;
Kavis et al., 2022), but to the best of our knowledge none
give a tuning-free algorithm matching SGD per Defini-
tion 1.1. The FindLeader procedure is essentially extracted
from (Madden et al., 2020, Theorem 13), and is similar to
the post-processing step in (Ghadimi & Lan, 2013).

Comparison with the convex setting. The rate achieved
by Theorem 6 stands in contrast to the best-known rates
in the convex setting, where we suffer from a polynomial
dependence on the hints, as in equation (7). One potential
reason for this divergence is the difficulty of telling apart
good and bad points. In the convex setting, we ask for a
point y with a small function value f(y). And while the
oracle gives us access to stochastic realizations of f(y),
the error in those realization is not controlled. Instead, to
compare between two points y1 and y2 we have to rely
on stochastic gradient information to approximate f(y1)−
f(y2), and this seems to be too difficult without apriori
control on the distance between y1 and y2. On the other
hand, in the nonconvex setting, such comparison is feasible
through sampling methods like e.g. Algorithm 4.

6. Conclusion and Open Problems
We have reached the end of our investigation. To summa-
rize: we defined tuning-free algorithms and studied several
settings where tuning-free optimization was possible, and
several where we proved impossibility results. Yet, many
open questions remain. For example, tuning-free optimiza-
tion might be possible in the finite-sum setting where we can
periodically evaluate the function value exactly. The upper
bounds we develop in both the convex and nonconvex set-
tings require quite stringent assumptions on the noise (such
as boundedness or sub-gaussian norm), and it is not known
if they can be relaxed to expected smoothness (Gower et al.,
2019; Khaled & Richtárik, 2020) or some variant of it. In
the nonconvex case we only consider smooth objectives
whereas in deep learning the objectives are usually highly
nonsmooth, and exploring this area may yield more practi-
cally useful insights. Finally, we did not study tuning-free
algorithms for strongly convex objectives. We leave these
questions to future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9



Tuning-Free Stochastic Optimization

Acknowledgements
We thank Aaron Defazio, Yair Carmon, and Oliver Hinder
for discussions during the preparation of this work. This
work is partially supported by National Science Foundation
Grant NSF-OAC-2411299.

References
Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,

Srebro, N., and Woodworth, B. Lower bounds for
non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, abs/1912.02365, 2019.

Attia, A. and Koren, T. SGD with AdaGrad stepsizes: Full
adaptivity with high probability to unknown parameters,
unbounded gradients and affine variance. arXiv preprint
arXiv:2302.08783, abs/2302.08783, 2023.

Attia, A. and Koren, T. How free is parameter-free stochas-
tic optimization? arXiv preprint arXiv:2402.03126,
abs/2402.03126, 2024.

Baydin, A. G., Cornish, R., Martı́nez-Rubio, D., Schmidt,
M., and Wood, F. Online learning rate adaptation with
hypergradient descent. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net, 2018.

Beck, A. First-order methods in optimization. MOS-SIAM
series on optimization. Society for Industrial and Applied
Mathematics ; Mathematical Optimization Society, 2017.
ISBN 9781611974997.

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter,
J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,
Boulesteix, A., Deng, D., and Lindauer, M. Hyperparame-
ter optimization: Foundations, algorithms, best practices,
and open challenges. WIREs Data Mining and Knowl-
edge Discovery, 13(2), January 2023. ISSN 1942-4795.
doi: 10.1002/widm.1484.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds, L.,
Tow, J., Wang, B., and Weinbach, S. GPT-NeoX-20B:
an open-source autoregressive language model. arXiv
preprint arXiv:2204.06745, abs/2204.06745, 2022.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018. doi: 10.1137/16M1080173.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,

Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Carmon, Y. and Hinder, O. Making SGD parameter-free. In
Loh, P. and Raginsky, M. (eds.), Conference on Learning
Theory, 2-5 July 2022, London, UK, volume 178 of Pro-
ceedings of Machine Learning Research, pp. 2360–2389.
PMLR, 2022.

Carmon, Y. and Hinder, O. The price of adaptivity
in stochastic convex optimization. arXiv preprint
arXiv:2402.10898, abs/2402.10898, 2024.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A.
Lower bounds for finding stationary points II: first-
order methods. Mathematical Programming, 185(1–2):
315–355, September 2019. ISSN 1436-4646. doi:
10.1007/s10107-019-01431-x.

Chen, X. and Hazan, E. A nonstochastic control ap-
proach to optimization. arXiv preprint arXiv:2301.07902,
abs/2301.07902, 2023.

Cutkosky, A. Artificial constraints and hints for unbounded
online learning. In Beygelzimer, A. and Hsu, D. (eds.),
Proceedings of the Thirty-Second Conference on Learn-
ing Theory, volume 99 of Proceedings of Machine Learn-
ing Research, pp. 874–894. PMLR, 25–28 Jun 2019.

Cutkosky, A. and Boahen, K. A. Online convex optimization
with unconstrained domains and losses. In Lee, D. D.,
Sugiyama, M., von Luxburg, U., Guyon, I., and Garnett,
R. (eds.), Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 748–756, 2016.

Cutkosky, A. and Boahen, K. A. Stochastic and adversarial
online learning without hyperparameters. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5059–5067, 2017a.

Cutkosky, A. and Boahen, K. A. Online learning without
prior information. In Kale, S. and Shamir, O. (eds.),
Proceedings of the 30th Conference on Learning The-
ory, COLT 2017, Amsterdam, The Netherlands, 7-10 July

10



Tuning-Free Stochastic Optimization

2017, volume 65 of Proceedings of Machine Learning
Research, pp. 643–677. PMLR, 2017b.

Cutkosky, A., Defazio, A., and Mehta, H. Mechanic: a
learning rate tuner. arXiv preprint arXiv:2306.00144,
abs/2306.00144, 2023.

Defazio, A. and Mishchenko, K. Learning-Rate-Free learn-
ing by D-adaptation. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Duchi, J. C., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
In Kalai, A. T. and Mohri, M. (eds.), COLT 2010 - The
23rd Conference on Learning Theory, Haifa, Israel, June
27-29, 2010, pp. 257–269. Omnipress, 2010.

Faw, M., Tziotis, I., Caramanis, C., Mokhtari, A., Shakkot-
tai, S., and Ward, R. The power of adaptivity in SGD:
self-tuning step sizes with unbounded gradients and affine
variance. In Loh, P. and Raginsky, M. (eds.), Conference
on Learning Theory, 2-5 July 2022, London, UK, volume
178 of Proceedings of Machine Learning Research, pp.
313–355. PMLR, 2022.

Ghadimi, S. and Lan, G. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013. doi:
10.1137/120880811.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A.,
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Appendix
7. Proofs for Section 7
Proposition 1. Coin betting through Online Newton Steps with Hints (Cutkosky, 2019, Algorithm 1) is tuning-free in the
bounded setting.

Proof. In the bounded setting, Cutkosky (2019) give an algorithm that takes as parameters ϵ, α and achieves the following
regret

T−1∑
t=0

⟨gt, xt − x∗⟩ ≤ ϵ+GD + ∥x∗ − x0∥G log

∥x∗ − x0∥G exp(α/4G2)

ϵ

(
1 +

∑T−1
t=0 ∥gt∥

2

α

)4.5


+ ∥x∗ − x0∥

√√√√√√T−1∑
t=0

∥gt∥2 log


(∑T−1

t=0 ∥gt∥
2
)10

exp(α/2G2)∥x∗∥2

ϵ2
+ 1

.
If we set ϵ = D ·G, α = G2, and use the upper bound ∥x0 − x∗∥ ≤ D and simplify we get the regret

T−1∑
t=0

⟨gt, xt − x∗⟩ ≤ GD +GD +DG log

[
DG

DG

(
1 +

G2T

G2

)4.5
]
+D

√√√√T−1∑
t=0

∥gt∥2
√
log

T 10G20D2

D2G2

Observe that because G ≤ G and D ≤ D the above can be simplified to

T−1∑
t=0

⟨gt, xt − x∗⟩ ≤ GD log+

[
DG

DG

(
1 +

G2T

G2

)4.5
]
+D

√√√√T−1∑
t=0

∥gt∥2
√

log
T 10G20D2

D2G2

Call the maximum of the two log terms ι, then the above rate is

T−1∑
t=0

⟨gt, xt − x∗⟩ ≤ GDι+D

√√√√T−1∑
t=0

∥gt∥2
√
ι. (12)

Applying online-to-batch conversion starting from equation (12) proves the algorithm is tuning-free. For the smooth setting,
it suffices to observe that under a bounded domain we have for any t

∥gt∥ ≤ ∥gt −∇f(xt)∥+ ∥∇f(xt)∥
= ∥gt −∇f(xt)∥+ ∥∇f(xt)−∇f(x∗)∥
≤ σ + L ∥xt − x∗∥
≤ σ + LD.

Combining this and following online-to-batch conversion as in (Levy, 2017) shows the algorithm considered is tuning-free
in the smooth setting as well.

We will make use of the following two lemmas throughout the upper bound proofs for DoG and DoWG.
Lemma 1. (Ivgi et al., 2023, Lemma 7). Let S be the set of nonnegative and nondecreasing sequences. Let Ct ∈ Ft−1

and let Xt be a martingale difference sequence adapted to Ft such that |Xt| ≤ Ct with probability 1 for all t. Then for all

δ ∈ (0, 1) and X̂t ∈ Ft−1 such that
∣∣∣X̂t

∣∣∣ ≤ Ct with probability 1, we have that with probability 1− δ that for all c > 0∣∣∣∣∣
t∑

i=1

yiXi

∣∣∣∣∣ ≤ 8yt

√√√√θt,δ

t∑
i=1

(Xi − X̂i)2 + [c] θ2t,δ + Prob (∃t ≤ T | Ct > c)
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Lemma 2. (Ivgi et al., 2023, Lemma 3). Let s0, s1, . . . , sT be a positive increasing sequence. Then,

max
t≤T

t−1∑
i=0

si
st
≥ 1

e

(
T

log+
sT
s0

− 1

)
.

Lemma 3. (Ivgi et al., 2023, Lemma 1). Suppose that f is convex and has a minimizer x∗. Then the iterates generated by
DoG satisfy for each t:

b−1∑
k=a

rk ⟨gk, xk − x∗⟩ ≤ rb(2db + rb)
√
ub−1.

Lemma 4. Suppose that f is convex and has a minimizer x∗. Then iterates generated by DoWG satisfy for every t:

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1 +

t−1∑
k=0

r2k ⟨∇f(xk)− gk, xk − x∗⟩

Proof. This is a modification of (Khaled et al., 2023, Lemma 3) to account for the case where gk ̸= ∇f(xk) (i.e. when the
gradients used are not deterministic), following (Ivgi et al., 2023, Lemma 1). We start

d2k+1 ≤ ∥xk − ηkgk − x∗∥2

= ∥xk − x∗∥2 + η2k∥gk∥
2 − 2ηk ⟨gk, xk − x∗⟩ .

Rearranging we get

2ηk ⟨gk, xk − x∗⟩ ≤ d2k − d2k+1 + η2k∥gk∥
2

Multiplying both sides by r2k
2ηk

we get

r2k ⟨gk, xk − x∗⟩ ≤
1

2

r2k
ηk

(
d2k − d2k+1

)
+

r2kηk
2
∥gk∥2.

We then follow the same proof as in (Khaled et al., 2023, Lemma 3) to get

t−1∑
k=0

r2k ⟨gk, xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1. (13)

We then decompose

t−1∑
k=0

r2k ⟨gk, xk − x∗⟩ =
t−1∑
k=0

r2k ⟨gk −∇f(xk), xk − x∗⟩+
t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ .

Plugging back into equation (13) we get

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1 +

t−1∑
k=0

r2k ⟨∇f(xk)− gk, xk − x∗⟩ (14)

7.1. Proof of Theorem 1

Theorem 1. DoG and DoWG are tuning-free in the bounded setting. That is, there exists some ι = poly log(DD , σ
σ , T, δ

−1)
such that

f(xout)− f∗ ≤ ι ·

{
LD2

T + σD√
T

if f is L-smooth,
√
G2+σ2D√

T
if f is G-Lipschitz.

This rate is achieved simultaneously for both classes of functions without prior knowledge of whether f is smooth or
Lipschitz (and thus no usage of the hints L,L,G,G).
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Proof of Theorem 1. We first handle the case that T < 4 log+
D
D . In this case we just return x0. If f is G-Lipschitz, then by

convexity we have

f(x0)− f∗ ≤ ⟨∇f(x0), x0 − x∗⟩ ≤ ∥∇f(x0)∥ ∥x0 − x∗∥ ≤ GD ≤ 2GD√
T

√
log+

D

D
.

If f is L-smooth, then by smoothness we have

f(x0)− f∗ ≤
L

2
∥x0 − x∗∥2 ≤

LD2

2
≤ 2LD2

T
log+

D

D
.

Therefore in both cases the point we return achieves a small enough loss almost surely. Throughout the rest of the proof, we
shall assume that T ≥ 4 log+

D
D .

Part 1: DoG. In the nonsmooth setting, this is a straightforward consequence of (Ivgi et al., 2023, Proposition 3). In
particular, when using DoG with rϵ = D, then Corollary 1 in their work gives that with probability 1− δ there exists some
τ ∈ [T ] and some absolute constant c > 0 such that

f(xτ )− f∗ ≤ c · DG√
T

log
60 log 6t

δ
log

2D

D
,

where x̂t
def
= 1∑t−1

i=0 ri

∑t−1
i=0 rixi.

For the smooth setting, we start with Lemma 3 to get

t−1∑
k=0

rk ⟨∇f(xk), xk − x∗⟩ ≤ rt
(
2dt + rt

)√
ut−1 +

t−1∑
k=0

rk ⟨∇f(xk)− gk, xk − x∗⟩ . (15)

We follow (Ivgi et al., 2023, Proposition 3) and modify the proof in a straightforward manner to accommodate the assumption
of bounded noise (rather than bounded gradients). Define

τk = min {min {i | ri ≥ 2rτi−1} , T} , τ0
def
= 0.

We denote by K the first index such that τK = T . Define

Xk =

〈
gk −∇f(xk),

xk − x∗

dk

〉
, X̂k = 0, yk = rkdk.

Observe that xk is determined by Fk−1, and since rk = maxt≤k (∥xk − x0∥ , rϵ), it is also determined by Fk−1. Therefore

E [Xk | Fk−1] = r2k

〈
E [gk −∇f(xk)] ,

xk − x∗

dk

〉
= 0.

Moreover, observe that

|Xk| ≤ ∥gk −∇f(xk)∥
∥xk − x∗∥

dk
≤ σ.

Therefore the Xk form a martingale. Then we can apply Lemma 1 to get that with probability 1− δ that for every t ∈ [K]∣∣∣∣∣
t−1∑
k=0

rk ⟨gk −∇f(xk), xk − x∗⟩

∣∣∣∣∣ ≤ 8dtrtθt,δ

√√√√t−1∑
k=0

(Xk)2 + σ2

≤ 8dtrtθt,δ

√√√√t−1∑
k=0

∥gk −∇f(xk)∥2 + σ2

≤ 8dtrtθt,δ
√

σ2t+ σ2

≤ 16dtrtθt,δσ
√
T . (16)
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Now observe that we can use equation (16) to get∣∣∣∣∣∣
τi−1∑

k=τi−1

rk ⟨gk −∇f(xk), xk − x∗⟩

∣∣∣∣∣∣ ≤
∣∣∣∣∣
τi−1∑
k=0

rk ⟨gk −∇f(xk), xk − x∗⟩

∣∣∣∣∣+
∣∣∣∣∣
τi−1−1∑
k=0

rk ⟨gk −∇f(xk), xk − x∗⟩

∣∣∣∣∣
≤ 16dτirτiθt,δσ

√
T + 16dτi−1rτi−1θt,δσ

√
T

≤ 32dτirτiθt,δσ
√
T . (17)

Now observe that by convexity we have for k ∈ {τi−1, τi−1 + 1, . . . , τi − 1}

0 ≤ f(xk)− f∗ ≤ ⟨∇f(xk), xk − x∗⟩ ≤
rk

rτi−1

⟨∇f(xk), xk − x∗⟩ .

Summing up from k = τi−1 to k = τi − 1 we get

τi−1∑
k=τi−1

⟨∇f(xk), xk − x∗⟩ ≤
1

rτi−1

τi−1∑
k=τi−1

rk ⟨∇f(xk), xk − x∗⟩

=
1

rτi−1

τi−1∑
k=τi−1

rk ⟨∇f(xk), xk − x∗⟩

=
1

rτi−1

τi−1∑
k=τi−1

rk ⟨∇f(xk)− gk, xk − x∗⟩+
1

rτi−1

τi−1∑
k=τi−1

rk ⟨gk, xk − x∗⟩ . (18)

We now use Lemma 3 to get that

τi−1∑
k=τi−1

rk ⟨gk, xk − x∗⟩ ≤ 2rτi
(
dτi + rτi

)√
uτi−1. (19)

Plugging in the upper bounds from equations (17) and (19) into equation (18) we get

τi−1∑
k=τi−1

⟨∇f(xk), xk − x∗⟩ ≤
rτi
rτi−1

[
2
(
dτi + rτi

)√
uτi−1 + 32dτiθt,δσ

√
T
]
. (20)

Now observe that

rk+1 ≤ rk + ∥xt+1 − xt∥ = rk

(
1 +
∥gk∥√
uk

)
≤ 2rk.

It follows that rτi
rτi−1

≤ 2. Moreover by the definition of the τi we have that rτi−1

rτi−1
≤ 2. Therefore

rτi
rτi−1

=
rτi

rτi−1

rτi−1

rτi−1

≤ 2 · 2 = 4. (21)

using equation (21) in equation (20) we get

τi−1∑
k=τi−1

⟨∇f(xk), xk − x∗⟩ ≤ 4
[
2
(
dτi + rτi

)√
uτi−1 + 32dτiθt,δσ

√
T
]
.

Summing up over the i, we get

T−1∑
t=0

⟨∇f(xt), xt − x∗⟩ ≤
K∑
i=0

τi−1∑
k=τi−1

⟨∇f(xk), xk − x∗⟩ ≤ 4K
[
2
(
dτi + rτi

)√
uτi−1 + 32Kdτiθt,δσ

√
T
]
.
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Observe that by definition we have

K ≤ 1 + log
rT
r0

= log
2rT
r0

.

Therefore using the last equation and convexity we have

T−1∑
t=0

(f(xt)− f∗) ≤ 4 log
2rT
r0

[
2
(
dT + rT

)√
uT−1 + 32dT θT,δσ

√
T
]
.

Note that because the domain is bounded we have max(rT , dT ) ≤ D, and we used r0 = D, therefore

T−1∑
t=0

(f(xt)− f∗) ≤ 4 log
2D

D

[
4D
√
uT−1 + 32DθT,δσ

√
T
]
. (22)

Observe that by our assumption on the noise and smoothness we have

uT−1 =

T−1∑
k=0

∥gk∥2

≤ 2

T−1∑
k=0

∥gk −∇f(xk)∥2 + 2

T−1∑
k=0

∥∇f(xk)∥2

≤ 2Tσ2 + 2

T−1∑
k=0

∥∇f(xk)∥2

≤ 2Tσ2 + 4L

T−1∑
k=0

(f(xk)− f∗) .

Using this in equation (22) gives

T−1∑
t=0

(f(xt)− f∗) ≤ 4 log
2D

D

8Dσ
√
T + 2

√
LD

√√√√T−1∑
t=0

(f(xt)− f∗) + 32DθT,δσ
√
T


≤ 8 log

2D

D
D
√
L

√√√√T−1∑
t=0

(f(xt)− f∗) + 160 log
2D

D
θT,δσD

√
T . (23)

Observe that if y2 ≤ ay + b, then by the quadratic equation and the triangle inequality we have

y ≤ a+
√
a2 + 4b

2
.

Squaring both sides gives

y2 ≤ 1

4
(a+

√
a2 + 4b)2 ≤ 1

2

(
2a2 + 4b

)
= a2 + 2b. (24)

Applying this to equation (23) with the following choices

y =

√√√√T−1∑
t=0

f(xt)− f∗, a = 8 log
2D

D
D
√
L, b = 160 log

2D

D
θT,δσD

√
T ,

then we obtain

T−1∑
t=0

(f(xt)− f∗) ≤ 64 log2
2D

D
LD2 + 320 log2

2D

D
θT,δσD

√
T .
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Dividing both sides by T and using Jensen’s inequality we finally get

f(x̂t)− f∗ ≤
1

T

T−1∑
t=0

(f(xt)− f∗)

≤ 64 log2
2D

D

LD2

T
+ 320 log2

2D

D
θT,δ

σD√
T
.

This shows DoG is tuning-free in this setting.

Plugging back into equation (15) we get with probability 1− δ that

t−1∑
k=0

rk ⟨∇f(xk), xk − x∗⟩ ≤ rt
(
2dt + rt

)√
ut−1 + 16dtrtθt,δσ

√
T .

Now we can divide both sides by rt to get

t−1∑
k=0

rk
rt
⟨∇f(xk), xk − x∗⟩ ≤

(
2dt + rt

)√
ut−1 + 16dtθt,δσ

√
T .

Part 2: DoWG. By Lemma 4 we have that our iterates satisfy

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1 +

t−1∑
k=0

r2k ⟨∇f(xk)− gk, xk − x∗⟩

Define

Xk =

〈
gk −∇f(xk),

xk − x∗

dk

〉
, X̂k = 0, yk = r2kdk.

Observe that xk is determined by Fk−1, and since rk = maxt≤k (∥xk − x0∥ , rϵ), it is also determined by Fk−1. Therefore

E [Xk | Fk−1] = r2k

〈
E [gk −∇f(xk)] ,

xk − x∗

dk

〉
= 0.

Moreover, observe that

|Xk| ≤ ∥gk −∇f(xk)∥
∥xk − x∗∥

dk
≤ σ.

Therefore the Xk form a martingale. Then we can apply Lemma 1 to get that with probability 1− δ that for every t ∈ [T ]∣∣∣∣∣
t−1∑
k=0

r2k ⟨gk −∇f(xk), xk − x∗⟩

∣∣∣∣∣ ≤ 8dtr
2
t θt,δ

√√√√t−1∑
k=0

(Xk)2 + σ2

≤ 8dtr
2
t θt,δ

√√√√t−1∑
k=0

∥gk −∇f(xk)∥2 + σ2

≤ 8dtr
2
t θt,δ

√
σ2t+ σ2

≤ 16dtr
2
t θt,δσ

√
T .

Plugging this back into equation (14) we get

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1 + 16dtr

2
t θt,δσ

√
T . (25)

We now divide the proof in two cases:
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• If f is G-Lipschitz: then σ = supx∈Rd ∥∇f(x)− g(x)∥ ≤ 2G and therefore equation (25) reduces to

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2rt
[
dt + rt

]√
vt−1 + 32dtr

2
t θt,δG

√
T .

And we have

vt−1 =

t−1∑
k=0

r2k∥gk∥
2 ≤ r2tG

2T.

Therefore

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 2r2t
[
dt + rt

]
G
√
T + 32dtr

2
t θt,δG

√
T

≤ 34r2t
[
dt + rt

]
θt,δG

√
T

≤ 68r2tDG
√
Tθt,δ.

Using convexity we have

t−1∑
k=0

r2k(f(xk)− f∗) ≤
t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 68r2tDG
√
Tθt,δ.

Dividing both sides by
∑t−1

k=0 r
2
k and using Jensen’s inequality we get

f(x̃t)− f∗ ≤
1∑t−1

k=0 r
2
k

t−1∑
k=0

r2k(f(xk)− f∗)

≤ r2t∑t−1
k=0 r

2
k

68DG
√
Tθt,δ. (26)

We now use Lemma 2 to conclude that there exists some t ≤ T such that

r2t∑t−1
k=0 r

2
k

≤ e(
T

2 log+
rk
rϵ

− 1

) (27)

Note that by the fact that rT ≤ D, r0 = D, and that we assume T ≥ 4 log+
D
D (see the beginning of this proof) we

have

T

2 log+
rT
r0

− 1 ≥ T

2 log+
D
D

− 1 ≥ T

4 log+
D
D

.

Plugging this into equation (27) we get

r2t∑t−1
k=0 r

2
k

≤ 4e

T
log+

D

D
≤ 11

T
log+

D

D
.

Using this in conjunction with equation (26) we thus have that for some t ≤ T

f(x̃t)− f∗ ≤
748DGθT,δ√

T
log+

D

D
.
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• If f is L-smooth: Observe that by straightforward algebra, our assumption on the noise, and smoothness

vt−1 =

t−1∑
k=0

r2k∥gk∥
2

≤ 2

t−1∑
k=0

r2k∥gk −∇f(xk)∥2 + 2

t−1∑
k=0

r2k∥∇f(xk)∥2

≤ 2r2tσ
2T + 2

t−1∑
k=0

r2k∥∇f(xk)∥2

≤ 2r2tσ
2T + 4L

t−1∑
k=0

r2k(f(xk)− f∗).

Using the last line estimate in equation (25) with the triangle inequality we get

t−1∑
k=0

r2k ⟨∇f(xk), xk − x∗⟩ ≤ 4rt
[
dt + rt

] rtσ√T +
√
L

√√√√t−1∑
k=0

r2k(f(xk)− f∗)

+ 16dtr
2
t θt,δσ

√
T .

By convexity we have

⟨∇f(xk), xk − x∗⟩ ≥ f(xk)− f∗.

Therefore

t−1∑
k=0

r2k(f(xk)− f∗) ≤ 4rt
[
dt + rt

]√
L

√√√√t−1∑
k=0

r2k(f(xk)− f∗) + 20r2t θt,δ
[
dt + rt

]
σ
√
T . (28)

Observe that if y2 ≤ ay + b, then we have shown in equation (24) that y2 ≤ a2 + 2b. Applying this to equation (28)
with a = 4rt

[
dt + rt

]√
L and b = 20r2t θt,δ

[
dt + rt

]
σ
√
T gives

t−1∑
k=0

r2k(f(xk)− f∗) ≤ 16r2t
[
dt + rt

]2
L+ 40r2t θt,δ

[
dt + rt

]
σ
√
T

= r2t

(
16
[
dt + rt

]2
L+ 40θt,δ

[
dt + rt

]
σ
√
T
)
.

Dividing both sides by
∑t−1

k=0 r
2
k and using Jensen’s inequality we get

f(x̂t)− f∗ ≤
1∑t−1

k=0 r
2
k

t−1∑
k=0

r2k(f(xk)− f∗) ≤
r2t∑t−1
k=0 r

2
k

(
16
[
dt + rt

]2
L+ 40θt,δ

[
dt + rt

]
σ
√
T
)
,

where x̂t =
1∑t−1

k=0 r2k

∑t−1
k=0 r

2
kxk. We now use Lemma 2 to conclude that there exists some τ ≤ T such that

f(x̂τ )− f∗ ≤
e(

T
2 log+

rk
rϵ

− 1

) (16 [dt + rt
]2

L+ 40θτ,δ
[
dt + rt

]
σ
√
T
)
.

By assumption on T we have T

2 log+
D
D

− 1 ≥ T

4 log+
D
D

, therefore

f(x̂τ )− f∗ ≤
4e log+

D
D

T

(
16
[
dt + rt

]2
L+ 40θτ,δ

[
dt + rt

]
σ
√
T
)

≤ 700θT,δ log+
D

D
·
(
LD2

T
+

σD√
T

)
,

where in the last line we used that max(dt, rt) ≤ D.
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8. Proofs for Section 4
8.1. Proof of Proposition 2

Proposition 2 (Hazan & Kakade (2019)). The Adaptive Polyak algorithm from (Hazan & Kakade, 2019) is tuning-free in
the deterministic setting.

Proof. By (Hazan & Kakade, 2019, Theorem 2) we have that the point returned by the algorithm x satisfies

f(x)− f∗ ≤


2GD∗√

T
log+

f(x∗)−f̂0
GD∗√

T

if f is G-Lipschitz,

2LD2
∗

T log+
f(x∗)−f̂0

LD2
∗

T

if f is L-smooth.

provided that f̂0 ≤ f∗, where f̂0 is a parameter supplied to the algorithm. To get a valid lower bound on f∗, observe that by
the convexity of f we have

f(x0)− f∗ ≤ ⟨∇f(x0), x0 − x∗⟩ ≤ ∥∇f(x0)∥ ∥x0 − x∗∥ ≤ ∥∇f(x0)∥D.

It follows that

f∗ ≥ f(x0)− ∥∇f(x0)∥D.

And thus we can use f̂0 = f(x0)− ∥∇f(x0)∥D.

8.2. Proof of Proposition 3

Proposition 3. T-DoG and T-DoWG are tuning-free in the deterministic setting.

Proof. This is shown in (Khaled et al., 2023, Supplementary material section 7) for DoWG. The proof for DoG is similar
and we omit it for simplicity.

8.3. Proof of Theorem 2

Proof. Let σ > 0. Let L = σT . Define the functions

f1(x)
def
=

L

2
x2 + σx

f2(x)
def
=

L

2
x2 − σ

T − 1
x

f(x)
def
=

1

T
f1(x) +

(
1− 1

T

)
f2(x)

=
L

2
x2.

We shall consider the stochastic oracle O(f, σf ) that returns function values and gradients as follows:

O(f, σf )(x)
def
= {fz(x),∇fz(x)} =

{
{f1(x),∇f1(x)} with probability 1

T ,

{f2(x),∇f2(x)} with probability 1− 1
T .

Clearly we have E [fz(x)] = f(x) and E [∇fz(x)] = ∇f(x). Moreover,

∥∇f1 −∇f(x)∥ = σ, ∥∇f2(x)−∇f(x)∥ =
σ

T − 1
≤ σ.

It follows that σf ≤ σ. Therefore O(f, σf ) is a valid stochastic first-order oracle. This oracle is similar to the one used
by Attia & Koren (2023) in their lower bound on the convergence of AdaGrad-Norm. The minimizer of the function f is
clearly xf

∗ = 0.
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Let u ≥ 0, we shall choose it later. Define

h1(x)
def
=

L

2
(x− u)2 + (σ − (T − 1)Lu)x+

(T − 1)L

2
u2,

h2(x)
def
=

L

2
(x− u)2 + Lux− σ

T − 1
x− L

2
u2,

h(x)
def
=

L

2
(x− u)

2
.

with the oracle O(h, σh) given by

O(h, σh)(x)
def
= {hz(x),∇hz(x)} =

{
{h1(x),∇h1(x)} with probability 1

T ,

{h2(x),∇h2(x)} with probability 1− 1
T .

Observe that

E [hz(x)] =
1

T

[
L

2
(x− u)2 + σx− (T − 1)Lux+

(T − 1)L

2
u2

]
+

T − 1

T

[
L

2
(x− u)2 + Lux− σx

T − 1
− L

2
u2

]
=

L

2
(x− u)2 +

σx

T
− T − 1

T
Lux+

T − 1

T

L

2
u2 +

T − 1

T
Lux− σx

T
− T − 1

T

L

2
u2

= h(x).

We can similarly prove that E [∇hz(x)] = h(x). Moreover,

∥∇h1(x)−∇h(x)∥ = ∥σ − (T − 1)Lu∥ ≤ σ + (T − 1)Lu,

∥∇h2(x)−∇h(x)∥ =
∥∥∥∥ −σT − 1

+ Lu

∥∥∥∥ ≤ σ

T − 1
+ Lu.

It follows that σh ≤ σ + (T − 1)Lu, therefore O(h, σh) is a valid stochastic oracle. Finally, observe that the minimizer of
h is xh

∗ = u.

We fix the initialization x0 = v > 0. Then the initial distance from the optimum for both f and h are:

D∗(f) = |v − 0| = v, D∗(h) = |v − u| . (29)

And recall that

σf ≤ σ, σh ≤ σ + (T − 1)Lu. (30)

Observe that both f and h share the same smoothness constant L. We supply the algorithm with the following estimates:

L = L, L = L,
D = min(v, |u− v|), D = max(v, |u− v|),

σ = σ, σ = σ + TLu.
(31)

We note that in light of equations (29) and (30) and the definitions of f and h, the hints given by equation (31) are valid for
both problems. Now observe the following:

h2(x) =
L

2
(x− u)2 + Lux− σ

T − 1
x− L

2
u2

=
L

2
(x2 − 2ux+ u2) + Lux− σ

T − 1
x− L

2
u2

=
L

2
x2 − σ

T − 1
x

= f2(x).
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And by the linearity of expectation we have that ∇h2(x) = ∇f2(x). Therefore both oracles O(f, σf ) and O(h, σh) return
the same stochastic gradient and stochastic function values with probability 1− 1

T .

We thus have that over a run of T steps, with probability (1 − 1
T )

T ≈ e−1 the algorithm will only get the evaluations
{h2(x),∇h2(x)} from either oracle, and will get the same hints defined in equation (31). In this setting, the algorithm
cannot distinguish whether it is minimizing h or minimizing f , and therefore must minimize both. This is the main idea
behind this proof: we use that the algorithm is tuning-free, which gives us that the output of the algorithm xout satisfies with
probability 1− δ

h(xout)− h∗ ≤ c · poly
(
log+

L

L
, log+

σ

σ
, log+

D

D
, log

1

δ
, log T

)(
LD∗(h)

2

T
+

σhD∗(h)√
T

)
. (32)

We shall let ι def
= poly

(
log+

L
L , log+

σ
σ , log+

D
D , log 1

δ , log T
)

and note that because all of the relevant parameters (the hints,
the horizon T , and the probability δ) supplied to the algorithm are unchanged for h and f , this ι will be the same for h and
f . Continuing from equation (32) and substituting the expressions for D∗(h) and σh from equations (29) and (30) we get

h(xout)− h∗ ≤ cι

(
L(u− v)2

T
+

(σ + (T − 1)Lu) |u− v|√
T

)
≤ cι

(
L(u− v)2

T
+

σ |u− v|√
T

+
√
TLu |u− v|

)
.

Using the definition of h and the fact that h∗ = 0 we have

L

2
∥xout − u∥2 ≤ cι

(
L(u− v)2

T
+

σ |u− v|√
T

+
√
TLu |u− v|

)
.

Multiplying both sides by 2
L and then using the definition L = σT we get

∥xout − u∥2 ≤ 2cι

(
(u− v)2

T
+

σ |u− v|√
TL

+
√
Tu |u− v|

)
= 2cι

(
(u− v)2

T
+
|u− v|
T

3
2

+
√
Tu |u− v|

)
This gives by taking square roots and using the triangle inequality

|xout − u| ≤
√
2cι
(
|u− v|T− 1

2 +
√
|u− v|T− 3

4 + T
1
4

√
u |u− v|

)
.

And finally this implies

xout ≥ u−
√
2cι
(
|u− v|T− 1

2 +
√
|u− v|T− 3

4 + T
1
4

√
u |u− v|

)
. (33)

Similarly, applying the tuning-free guarantees to f and using that D∗(f) = v we have

L

2
∥xout∥2 = f(xout)− f∗ ≤ cι

(
LD∗(f)

2

T
+

σD∗(f)√
T

)
= cι

(
Lv2

T
+

σv√
T

)
This gives

∥xout∥2 ≤ 2cι

(
v2

T
+

σv√
TL

)
= 2cι

(
v2

T
+

v

T
3
2

)
.

Which gives

xout ≤
√
2cι

(
v√
T

+

√
v

T
3
4

)
(34)
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Now let us consider the difference between the lower bound on xout given by equation (33) and the upper bound given by
equation (34),

u−
√
2cι
(
|u− v|T− 1

2 +
√
|u− v|T− 3

4 + T
1
4

√
u |u− v|

)
−
√
2cι

(
v√
T

+
v

T
3
4

)
(35)

Let us put u = v + 1 and v = T 2, then equation (35) becomes(
T 2 + 1

)
−
√
2cι
(
T

−1
2 + T

−3
4 + T

1
4

√
T 2 + 1

)
−
√
2cι
(
T 2− 1

2 + T 2− 3
4

)
. (36)

Now observe that

ι = poly

(
log+

L

L
, log+

D

D
, log+

σ + TLu

σ
, log+

1

δ
, log T

)
= poly

(
log+ 1, log+ T 2, log+(1 + T 2 + T 4), log+

1

δ
, log+ T

)
= poly

(
log+ T, log+

1

δ

)
.

We set δ = e−1

4 , therefore we finally get that ι = poly(log T ), plugging back into equation (36) we get that the difference
between the lower bound of equation (33) and the upper bound of equation (34) is(

T 2 + 1
)
−
√
2cpoly(log T )

(
T

−1
2 + T

−3
4 + T

1
4

√
T 2 + 1

)
−
√
2cpoly(log T )

(
T 2− 1

2 + T 2− 3
4

)
.

It is obvious that for large enough T , this expression is positive. Moreover, this situation happens with a positive probability
of at least e−1

2 since by the union bound

Prob(Algorithm incorrect for f, h ∪ Oracle doesn’t output all {h2,∇h2}) ≤ 2δ +

(
1− (1− 1

T
)T
)

⪅ 1− e−1

2
.

By contradiction, it follows that no algorithm can be tuning-free.

8.4. Proof of Theorem 3

Proof. We consider the following functions

f(x) = G |x| ,
f1(x) = G |x|+Gx,

f2(x) = G |x| − G

T − 1
x.

We consider the stochastic oracle O(f, σf ) that returns function values and gradients as follows:

O(f, σf )(x)
def
= {fz(x),∇fz(x)} =

{
{f1(x),∇f1(x)} with probability 1

T ,

{f2(x),∇f2(x)} with probability 1− 1
T .

Clearly we have E [fz(x)] = f(x) and E [∇fz(x)] = ∇f(x). It is also not difficult to prove that ∥∇f(x)−∇fz(x)∥ ≤ G.
We define a second function

h(x) = G |x− u| ,
h1(x) = (2− T )G |x− u| − (T − 1)G |x|+Gx,

h2(x) = G |x| − G

T − 1
x.

(37)
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And we shall use the oracle O(h, σh) given by

O(h, σh)(x)
def
= {hz(x),∇hz(x)} =

{
{h1(x),∇h1(x)} with probability 1

T ,

{h2(x),∇h2(x)} with probability 1− 1
T .

By direct computation we have that E [hz(x)] = h(x) and E [∇hz(x)] = ∇h(x). From the definition of the functions
in equation (37) it is immediate that all the gradients and stochastic gradients are bounded by GT . It follows that σh ≤ GT .
All in all, this shows O(h, σh) is a valid stochastic oracle.

We set x0 = 1, observe that, like in Theorem 2, with some small but constant probability both oracles return the same
gradients and function values, and therefore the algorithm cannot distinguish between them. It is therefore forced to
approximately minimize both, giving us the guarantee:

f(xout)− f∗ ≤ c · ι · G√
T

h(xout)− h∗ ≤ c · ι · (GT ) |1− u|√
T

= cι |1− u|G
√
T

This gives

|xout| ≤
cι√
T

(38)

|xout − u| ≤ cι |1− u|
√
T

Let us put u = 1− 1
T , then ∣∣∣∣x− (1− 1

T

)∣∣∣∣ ≤ cι√
T

This implies

xout ≥ 1− 1

T
− cι√

T
(39)

And equation (38) implies

xout ≤
cι√
T

(40)

Because ι = poly(log T ) (by direct computation), we have that the lower bound on xout given by equation (39) exceeds the
upper bound on the same iterate given by equation (40) as T becomes large enough, and we get our contradiction.

9. Proofs for Section 4.2
We have the two following algorithm-independent lemmas:

Lemma 5. Suppose that Y is a sub-exponential random variable (see Definition 9.1) with mean 0 and sub-exponential
modulus R2, i.e. for all t > 0

Prob (|Y | ≥ t) ≤ 2 exp

(
− t

R2

)
.

Let Y1, . . . , Yn be i.i.d. copies of Y . Then with probability 1− δ it holds that∣∣∣∣∣ 1n
n∑

i=1

Yi

∣∣∣∣∣ ≤ cR2

[√
1

n
log

2

δ
+

1

n
log

2

δ

]
,

where c > 0 is an absolute constant.
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Proof. By Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3) we have

Prob

(∣∣∣∣∣ 1n
n∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

(
t2

R4
,
t

R2

)
n

]
,

for some c > 0. Let us set t as follows

t =

{
R2
√

1
cn log 2

δ if 1
cn log 2

δ < 1,

R2
[

1
cn log 2

δ

]
if 1

cn log 2
δ ≥ 1.

Then

t

R2
=

{√
1
cn log 2

δ if 1
cn log 2

δ < 1,[
1
cn log 2

δ

]
if 1

cn log 2
δ ≥ 1.

,
t2

R4
=

{
1
cn log 2

δ if 1
cn log 2

δ < 1,[
1
cn log 2

δ

]2
if 1

cn log 2
δ ≥ 1.

By combining the two cases above we get

min

(
t

R2
,
t2

R4

)
=

1

cn
log

2

δ
.

Therefore

2 exp

[
−cmin

(
t2

R4
,
t

R2

)
n

]
= δ.

It follows that with probability at least 1− δ we have,∣∣∣∣∣ 1n
n∑

i=1

Yi

∣∣∣∣∣ ≤
{
R2
√

1
cn log 2

δ if 1
cn log 2

δ < 1,

R2
[

1
cn log 2

δ

]
if 1

cn log 2
δ ≥ 1.

≤ R2

[√
1

cn
log

2

δ
+

1

cn
log

2

δ

]
.

Recall the definition of sub-exponential random variables:

Definition 9.1. We call a random variable Y R-sub-exponential if

Prob (|Y | ≥ t) ≤ 2 exp

(
−t
R

)
for all t ≥ 0.

Definition 9.2. We call a random variable Y R-sub-gaussian if

Prob (|Y | ≥ t) ≤ 2 exp

(
−t2

R2

)
for all t ≥ 0.

Lemma 6. (Vershynin, 2018, Lemma 2.7.7) A random variable Y is R-sub-gaussian if and only if Y 2 is R2-sub-exponential.

Lemma 7. (Vershynin, 2018, Exercise 2.7.10) If A is E-sub-exponential then A− E [A] is c ·E-sub-exponential for some
absolute constant c.

Lemma 8. Suppose that X is a random variable that satisfies the assumptions in Definition 4.1 and X1, . . . , Xn are all
i.i.d. copies of X . Then with probability 1− δ we have that∣∣∣∣∣

n∑
i=1

(∥Xi∥2 − σ2)

∣∣∣∣∣ ≤ c · σ2 ·K−2
snr

[√
n log

1

δ
+ log

1

δ

]
.
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Proof. By assumption we have that ∥Xi∥ is R-sub-gaussian, therefore by Lemma 6 we have that ∥Xi∥2 is R2-sub-
exponential. By Lemma 7 we then have that ∥Xi∥2 − σ2 is c1 · R2-sub-exponential for some absolute constant c. By
Lemma 5 applied to Yi = ∥Xi∥2 − σ2 we have with probability 1− δ that∣∣∣∣∣ 1n

n∑
i=1

(∥Xi∥ − σ2)

∣∣∣∣∣ ≤ c2 · (c1R2)

[√
1

n
log

2

δ
+

1

n
log

2

δ

]
,

where c2 > 0 is some absolute constant. Using the definition of the signal-to-noise ratio K−1
snr =

R
σ we get that for some

absolute constant c ∣∣∣∣∣ 1n
n∑

i=1

(∥Xi∥ − σ2)

∣∣∣∣∣ ≤ c · σ2 ·K−2
snr

[√
1

n
log

2

δ
+

1

n
log

2

δ

]
.

9.1. Proof of Theorem 4

The main idea in the proof is the following lemma, which characterizes the convergence of the sample variance estimator of
b i.i.d. random variables by the number of samples b as well as the signal-to-noise ratio K−1

snr.

Lemma 9. Let Y be a random vector in Rd such that Z = Y − E [Y ] satisfies the assumptions in Definition 4.1. Let
Y1, Y2, . . . , Yb be i.i.d. copies of Y . Define the sample mean and variance as

Ŷ =
1

b

b∑
i=1

Yi, σ̂2 =
1

b

b∑
i=1

∥∥Yi − Y
∥∥2.

Then it holds with probability 1− δ that

∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≤ c ·K−2
snr ·

√ log 2b
δ

b
+

log 2(b∨d)
δ

b

 ,

where c is an absolute (non-problem-dependent) constant, b ∨ d =
def
= max(b, d), σ2 def

= E
[
∥Y − E [Y ]∥2

]
, and K−2

snr is the
ratio defined in Definition 4.1.

Proof. We shall use the shorthand µ = E [Y ]. We have

σ̂2 =
1

b

b∑
i=1

∥∥∥Yi − Ŷ
∥∥∥2

=
1

b

b∑
i=1

∥∥∥Yi − µ+ µ− Ŷ
∥∥∥2

=
1

b

b∑
i=1

[
∥Yi − µ∥2 +

∥∥∥µ− Ŷ
∥∥∥2 + 2

〈
Yi − µ, µ− Ŷ

〉]

=
1

b

b∑
i=1

∥Yi − µ∥2 +
∥∥∥µ− Ŷ

∥∥∥2 − 2

b

b∑
i=1

〈
Yi − µ, Ŷ − µ

〉
We have by the triangle inequality

∣∣σ̂2 − σ2
∣∣ ≤ ∣∣∣∣∣1b

b∑
i=1

∥Yi − µ∥2 − σ2

∣∣∣∣∣+ ∥∥∥µ− Ŷ
∥∥∥2 + ∣∣∣∣∣2b

b∑
i=1

〈
Yi − µ, Ŷ i − µ

〉∣∣∣∣∣ (41)
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By Lemma 8, we may bound the first term on the right hand side of equation (41) as∣∣∣∣∣1b
b∑

i=1

∥Yi − µ∥2 − σ2

∣∣∣∣∣ ≤ c · σ2 ·K−2
snr

√ log 1
δ

b
+

log 2
δ

b

 . (42)

For the second term on the right hand side of equation (41), we apply (Jin et al., 2019, Corollary 7) to Xi = µ− Yi and
obtain ∥∥∥∥∥

b∑
i=1

[µ− Yi]

∥∥∥∥∥ ≤ c ·
√
bR2 log

2d

δ
= cR

√
b log

2d

δ
.

Squaring both sides we get ∥∥∥∥∥
b∑

i=1

[µ− Yi]

∥∥∥∥∥
2

≤ c2R2b log
2d

δ

Therefore ∥∥∥∥∥1b
b∑

i=1

[µ− Yi]

∥∥∥∥∥
2

≤
c2R2 log 2d

δ

b
. (43)

For the third term on the right hand side of equation (41) we have

b∑
i=1

〈
Yi − µ, Ŷ − µ

〉
=

b∑
i=1

〈
Yi − µ,

1

b

b∑
j=1

[Yi − µ]

〉

=
1

b
∥Yi − µ∥2 + 1

b

∑
j ̸=i

⟨Yi − µ, Yj − µ⟩ .

Taking absolute values of both sides and using the triangle inequality we get∣∣∣∣∣1b
b∑

i=1

〈
Yi − µ, Ŷ − µ

〉∣∣∣∣∣ =
∣∣∣∣∣∣1b ∥Yi − µ∥2 + 1

b

∑
j ̸=i

⟨Yi − µ, Yj − µ⟩

∣∣∣∣∣∣
≤ 1

b
∥Yi − µ∥2 +

∣∣∣∣∣∣1b
∑
j ̸=i

⟨Yi − µ, Yj − µ⟩

∣∣∣∣∣∣ . (44)

By our sub-gaussian assumption on ∥Y − µ∥, the first term on the right hand side of equation (44) can be bounded with
high probability as

∥Yi − µ∥ ≤ c

√
R2 log

2

δ
= cR

√
log

2

δ
. (45)

Define Zi,j = ⟨Yi − µ, Yj − µ⟩. Observe that for each i, we have that the random vectors Zi,1, . . . , Zi,i−1, Zi,i+1, · · · , Zi,n

are all independent, and therefore E [Yi,j ] = 0 for i ̸= j. Observe that by the Cauchy-Schwartz inequality

|Zi,j | = |⟨Yi − µ, Yj − µ⟩| ≤ ∥Yi − µ∥ ∥Yj − µ∥ .

Observe that each of ∥Yi − µ∥ and ∥Yj − µ∥ is sub-gaussian with modulus R, therefore by (Vershynin, 2018, Lemma 2.7.7)
their product is sub-exponential with modulus R2. It follows that

Prob (|Zi,j | ≥ t) ≤ Prob (∥Yi − µ∥ ∥Yj − µ∥ ≥ t) ≤ 2 exp

(
− t

R2

)
.
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Therefore Zi,j is also sub-exponential with modulus R2. By Lemma 5 we then get that for any fixed i, with probability at
least 1− δ we have ∣∣∣∣∣∣∣∣

1

b− 1

∑
j=1,...,b

j ̸=i

Zi,j

∣∣∣∣∣∣∣∣ ≤ c ·R2

[√
1

b− 1
log

2

δ
+

1

b− 1
log

2

δ

]
, (46)

for some absolute constant c > 0. Multiplying both sides of equation (46) by b−1
b and then using straightforward algebra we

get ∣∣∣∣∣∣∣∣
1

b

∑
j=1,...,b

j ̸=i

Zi,j

∣∣∣∣∣∣∣∣ ≤ cR2

[√
1

b− 1
log

2

δ
+

1

b− 1
log

2

δ

]
· b− 1

b

= cR2

[√
1

b
log

2

δ
·
√

b

b− 1
+

1

b
log

2

δ
· b

b− 1

]
b− 1

b

= cR2

[√
1

b
log

2

δ

√
b− 1

b
+

1

b
log

2

δ

]

≤ cR2

[√
1

b
log

2

δ
+

1

b
log

2

δ

]
. (47)

We now use the union bound over all i with the triangle inequality to get∣∣∣∣∣∣∣∣
1

b

n∑
i=1

1

b

∑
j=1,...,b

j ̸=i

Zi,j

∣∣∣∣∣∣∣∣ ≤
1

b

n∑
i=1

∣∣∣∣∣∣∣∣
1

b

∑
j=1,...,b

j ̸=i

Zi,j

∣∣∣∣∣∣∣∣ ≤ cR2

[√
1

b
log

2b

δ
+

1

b
log

2b

δ

]
. (48)

Combining equations (45) and (48) we get that with probability 1− δ there exists some absolute constant c′ > 0∣∣∣∣∣1b
b∑

i=1

〈
Yi − µ, Ŷ − µ

〉∣∣∣∣∣ ≤ c′R2

√ log 2b
δ

b
+

log 2b
δ

b

 . (49)

Combining equations (42), (43) and (49) into equation (41) we get

∣∣σ̂2 − σ2
∣∣ ≤ ∣∣∣∣∣1b

b∑
i=1

∥Yi − µ∥2 − σ2

∣∣∣∣∣+ ∥∥∥µ− Ŷ
∥∥∥2 + ∣∣∣∣∣2b

b∑
i=1

〈
Yi − µ, Ŷ i − µ

〉∣∣∣∣∣
≤ c1 · σ2 ·K−2

snr

√ log 2
δ

b
+

log 2
δ

b

+ c2
R2 log 2d

δ

b
+ c3R

2

√ log 2b
δ

b
+

log 2b
δ

b

 .

For some absolute constants c1, c2, c3 > 0. Therefore, using the definition K−1
snr =

R
σ and simplifying in the last equation

we finally get that

∣∣σ̂2 − σ2
∣∣ ≤ c4 · σ2K−2

snr

√ log 2b
δ

b
+

log 2(b∨d)
δ

b

 ,

for some absolute constant c4 > 0. Dividing both sides by σ2 yields the statement of the lemma.
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Algorithm 2 T-DoG + Variance Estimation
Require: initial point x0 ∈ X , initial distance estimate rϵ > 0, minibatch size b, θ > 0.

1: Initialize rϵ = D, α = 84 · log(60 log(6T )/δ) · θ−1.
2: for t = 0, 1, 2, . . . , T − 1 do
3: Update distance estimator: rt ← max (∥xt − x0∥ , rt−1).
4: Sample b stochastic gradients µ1

t , µ
2
t , . . . , µ

b
t at xt and compute:

µ̂t =
1

b

b∑
i=1

µi
t, σ̂2

t =
1

b

b∑
i=1

∥∥µi
t − µ̂i

t

∥∥2, σ2
t = max

k≤t
σ̂2
k.

5: Compute a new stochastic gradient gt evaluated at xt.
6: Update the gradient sum ut = ut−1 + ∥gt∥2.
7: Set the stepsize:

ηt ←
rt

α
√
ut + βσ2

t

1

log2+

(
1 +

ut+σ2
t

v0+σ2
0

) . (50)

8: Gradient descent step: xt+1 ← xt − ηt∇f(xt).
9: end for

Algorithm 3 T-DoWG + Variance Estimation
Require: initial point x0 ∈ X , initial distance estimate rϵ > 0, minibatch size b, θ > 0.

1: Initialize rϵ = D, α = 84 · log(60 log(6T )/δ) · θ−1.
2: for t = 0, 1, 2, . . . , T − 1 do
3: Update distance estimator: rt ← max (∥xt − x0∥ , rt−1).
4: Sample b stochastic gradients µ1

t , µ
2
t , . . . , µ

b
t at xt and compute:

µ̂t =
1

b

b∑
i=1

µi
t, σ̂2

t =
1

b

b∑
i=1

∥∥µi
t − µ̂i

t

∥∥2, σ2
t = max

k≤t
σ̂2
k.

5: Compute a new stochastic gradient gt evaluated at xt.
6: Update weighted gradient sum: vt ← vt−1 + r2t ∥gt∥

2.
7: Set the stepsize:

γt ←
r2t

α
√
vt + βr2tσ

2
t

1

log2+

(
1 +

vt+r2tσ
2
t

v0+r20σ
2
0

) . (51)

8: Gradient descent step: xt+1 ← xt − γt∇f(xt).
9: end for
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Proof of Theorem 4. First, observe that at every timestep t, conditioned on Ft = σ (g1:t−1, x1:t) we have by Lemma 9 that
with probability 1− δ

T that the sample variance σ̂2
t satisfies for some c > 0

∣∣∣∣ σ̂2
t

σ2(xt)
− 1

∣∣∣∣ ≤ c ·K−2
snr ·

√ log 2bT
δ

b
+

log 2(b∨d)T
δ

b

 ,

where c is an absolute constant and σ2
t = σ2(xt) denotes the variance of the noise at xt (we do not assume that the noise

distribution is the same for all t). By our assumption on the minibatch size we have that for some u ∈ [0,K2
snr]

c ·K−2
snr ·

√ log 2bT
δ

b
+

log 2(b∨d)T
δ

b

 ≤ 1− θ

K2
snr

.

And therefore ∣∣∣∣ σ̂2
t

σ2(xt)
− 1

∣∣∣∣ ≤ 1− θ

K2
snr

.

Which gives

σ̂2
t

σ2
t

≥ 1−
(
1− θ

K2
snr

)
=

θ

K2
snr

.

Multiplying both sides by σ2
t we get

σ̂2
t ≥ σ2

t

θ

K2
snr

≥ R2θ.

Therefore σ̂2
t /θ is, with high probability, an upper bound on any noise norm, and we can use that as normalization in

T-DoG/T-DoWG. This is the key idea of the proof, and it’s entirely owed to Lemma 9. The rest of the proof follows (Ivgi
et al., 2023) with only a few changes to incorporate the variance estimation process.

Following (Ivgi et al., 2023), we define the stopping time

Tout = min {t | rt > 3d0} .

And define the proxy sequences

η̃k =

{
ηk if k < Tout,
0 otherwise.

γ̃k =

{
γk if k < Tout,
0 otherwise.

(52)

Lemma 10. (Modification of (Ivgi et al., 2023, Lemma 8)) Under the conditions of Theorem 4 both the DoG (50) and
DoWG (51) updates satisfy for all t ≤ T

ρt ∈ σ(g0, µ
1
0, . . . , µ

b
0 . . . , gt−1, µ

t−1
0 , . . . , µt−1

b ),

|ρt ⟨gt −∇f(xt), xt − x∗⟩| ≤
6d20

82θT,δ
,

t∑
k=0

ρ2k∥gk∥
2 ≤ 9d20

84θT,δ
,

t∑
k=0

(ρk ⟨gk, xk − x∗⟩)2 ≤
122d40
84θT,δ

,

where ρt stands for either the DoG stepsize proxy η̃k or the DoWG stepsize proxy γ̃k.

Proof. The modification of this lemma to account for bounded noise g(xk) − ∇f(xk) rather than bounded gradients is
straightforward, and we omit it for simplicity.
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Lemma 11. (Modification of (Ivgi et al., 2023, Lemma 9)) Under the conditions of Theorem 4 both the DoG (50) and
DoWG (51) updates satisfy for all t ≤ T with probability at least 1− δ

t−1∑
k=0

η̃k ⟨gk −∇f(xk), x∗ − xk⟩ ≤ d20.

Proof. The modification is straightforward and omitted.

Lemma 12. (Modification of (Ivgi et al., 2023, Lemma 10)) Under the conditions of Theorem 4, if∑t−1
k=0 ρt ⟨gk −∇f(xk), x∗ − xk⟩ ≤ d20 for all t ≤ T , then Tout > T .

Proof. The modification is straightforward and omitted.

By Lemmas lemmas 11 and 12 we get that rT ≤ 3d0 and it follows that dt = maxk≤t dk ≤ maxk≤t rt + r0 ≤ 4d0. Then,
a straightforward modification of Theorem 1 to handle the slightly smaller stepsizes used by T-DoG/T-DoWG shows that
both methods are tuning-free. The proof is very similar to Theorem 1 and is omitted.

10. Proofs for Section 5
10.1. Proof of Theorem 5

Proof. We use the exact same construction from Theorem 2 with the following hints:

L = L, L = L

∆ =
L

2
min(v, |u− v|), ∆ =

L

2
max(v, |u− v|).

σ = σ, σ = σ + TLu,

where u > 0 and v > 0 are parameters we shall choose later. Suppose that we have that the algorithm’s output point x
satisfies

∥∇f(x)∥2 ≤ cι

[√
L(f(x0)− f∗)σ2

T
+

L(f(x0)− f∗)

T

]
.

We now use the fact that f(x0)− f∗ = L
2 (x− x∗)

2 to get

L2∥xout − x∗∥2 = ∥∇f(x)∥2

≤ cι

√
L2(x0 − x∗)2σ2

f

T
+ cι

L2(x0 − x∗)
2

T

= cι
L |x0 − x∗|σf√

T
+ cι

L2(x0 − x∗)
2

T
.

Dividing both sides by L2 we get

∥xout − x∗∥2 ≤ cι
|x0 − x∗|σf

L
√
T

+ cι
∥x0 − x∗∥2

T
.

Taking square roots and using the triangle inequality gives

|xout − x∗| ≤
√
cι
√
|x0 − x∗|

√
σf

L

1

T
1
4

+
√
cι
|x0 − x∗|√

T
. (53)

Applying equation (53) to the function f with x0 = v > 0, x∗ = 0, σf = σ, and L = σ
√
T we get

|xout| ≤
√
cι

√
v

T
+
√
cι

v√
T
.
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Therefore

xout ≤
√
cι

√
v

T
+
√
cι

v√
T
. (54)

On the other hand, applying equation (53) to the function h = L
2 (x− u)2 (as in the proof of Theorem 2) we obtain

|xout − u| ≤
√
cι
√
|u− v|

√
(σ + LTu)

L

1

T
1
4

+
√
cι
|u− v|√

T

=
√
cι
√
|u− v|

√
1√
T

+ Tu
1

T
1
4

+
√
cι
|u− v|√

T

≤
√
cι
√
|u− v|

[
1

T
1
4

+
√
Tu

]
1

T
1
4

+
√
cι
|u− v|√

T

=
√
cι

√
|u− v|√
T

+
√
cιT

1
4

√
u |u− v|+

√
cι
|u− v|√

T
.

Therefore

xout ≥ u−

[
√
cι

√
|u− v|√
T

+
√
cιT

1
4

√
u |u− v|+

√
cι
|u− v|√

T

]
. (55)

Combining equations (54) and (55) gives

u−

[
√
cι

√
|u− v|√
T

+
√
cιT

1
4

√
u |u− v|+

√
cι
|u− v|√

T

]
≤
√
cι

√
v

T
+
√
cι

v√
T
.

Dividing both sides by
√
cι,

v +
√
v√

T
≥ u√

cι
−

[√
|u− v|√
T

+ T
1
4

√
u |u− v|+ |u− v|√

T

]

Put v = T 2 and u = T 2 + 1, then we get

√
T + 1 ≥ T 2 + 1√

cι
−
[

1√
T

+ T
1
4

√
T 2 + 1 +

1√
T

]
.

For large enough T , since ι = poly(log T ), this inequality does not hold. Therefore we get our contradiction.

10.2. Proof of Theorem 6

Theorem 7. ((Liu et al., 2023), High-probability convergence of SGD in the nonconvex setting). Let f be L-smooth and
possibly nonconvex. Suppose that the stochastic gradient noise is R2-sub-gaussian. Then for any fixed stepsize η such that
ηL ≤ 1 we have

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤
2(f(x0)− f∗)

ηT
+ 5ηR2 +

12R2 log 1
δ

T
.

Proof. This is a very straightforward generalization of (Liu et al., 2023, Theorem 4.1), and we include it for completeness.
By (Liu et al., 2023, Corollary 4.4) we have that if ηtL ≤ 1 and 0 ≤ wtη

2
tL ≤ 1

2R2

T∑
t=1

[
wtηt

(
1− ηtL

2

)
− vt

]
∥∇f(xt)∥2 + wT∆T+1 ≤ w1∆1 +

(
T∑

t=2

(wt − wt−1)∆t + 3R2
T∑

t=1

wtη
2
tL

2

)
+ log

1

δ
.

(56)
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Choose ηt = η and wtη
2L = 1

4R2 , wt =
1

6R2η .

vt = 3R2w2
t η

2
t (ηtL− 1)2 =

3R2η2(ηL− 1)2

36R4η2
=

(1− ηL)2

12R2
.

Then

wtηt

(
1− ηtL

2

)
− vt =

1

6R2

(
1− ηL

2

)
− (1− ηL)2

12R2

=
1

6R2

[
(1− ηL

2
)− (1− ηL)2

2

]
=

1

6R2

[
(1− ηL

2
)− 1 + η2L2 − 2ηL

2

]
=

1

12R2

[
1 + ηL− η2L2

]
The expression 1 + x− x2 is minimized for x ∈ [0, 1] at x = 1 and has value 1. Therefore

wtηt

(
1− ηtL

2

)
− vt ≥

1

12R2
.

Plugging into equation (56) we get

T∑
t=1

1

12R2
∥∇f(xt)∥2 ≤

∆1

6R2η
+

(
3η

8
T

)
+ log

1

δ
.

Therefore

1

T

T∑
t=1

∥∇f(xt)∥2 ≤
2∆1

ηT
+ 5ηR2 +

12R2 log 1
δ

T
.

10.3. Restarting SGD

We will use the following lemma from (Madden et al., 2020):

Lemma 13. (Madden et al., 2020, Lemma 33) Let Z = k ∈ {1, 2, . . . ,K} with probability pk and
∑K

k=1 pk = 1. Let
Z1, . . . , Zm be independent copies of Z. Let Y = (Y1, . . . , Ym). Let X = (X1, . . . , XK) be a random vector on the reals
independent of Z. Then for any γ > 0 we have

Prob

(
min
k∈Y

Xk > eη

)
≤ exp(−m) + Prob

(
K∑

k=1

ptXk > γ

)

Theorem 8. (Convergence of FindLeader) If we run Algorithm 4 on a set V of P points v1, v2, . . . , vP , with sampling
budget M and per-point estimation budget K, then the output of the algorithm satisfies for some absolute constant c > 0
and all γ > 0

Prob

(
∥∇f(slead)∥2 > eγ + c ·

R2 log 2dM
δ

K

)
≤ δ + exp(−M) + Prob

(
1

P

P∑
p=1

∥∇f(vp)∥2 > γ

)
.

And

∥gm∗ −∇f(slead)∥ ≤ c ·
R2 log 2d

δ

K
. (57)
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Algorithm 4 FindLeader(S, δ, K)
1: Require: set of points V , desired accuracy δ, and per-point estimation budget K.
2: Set M = log 1

δ and let P = |V |.
3: Construct the set S = (s1, . . . , sM ) by sampling M points from v1, . . . , vP with replacement such that

Prob(vi ∈ S) ∝ 1√
i+ 1

,

T∑
i=1

Prob(vi ∈ S) = 1.

4: for m = 1 to M do
5: Sample K stochastic gradients gm1 , . . . , gmK evaluated at sm and compute their average

ĝm =
1

K

K∑
k=1

gk.

6: Compute and store hm = ∥ĝm∥.
7: end for
8: Find the point slead ∈ S with the minimal average stochastic gradient norm:

m∗ = arg min
m∈1,2,...,M

hm, slead = Sm∗ .

9: Return slead and its estimated gradient norm gm∗ .

Proof. The proof of this theorem loosely follows the proofs of (Ghadimi & Lan, 2013, Theorem 2.4) and (Madden et al.,
2020, Theorem 13). First, define the following two sets of true gradients for the iterates in V and P respectively:

UV = {∇f(v1),∇f(v2), . . . ,∇f(vP )} US = {∇f(s1),∇f(s2), . . . ,∇f(sM )} .

Lemma 13 gives us

Prob

(
min

m∈1,2,...,M
∥∇f(sm)∥2 > eγ

)
≤ exp(−M) + Prob

(
1

P

P∑
p=1

∥∇f(vp)∥2 > γ

)

We now compute how using the minimum from the stochastic estimates ĝm affects the error. Fix m. Observe that because
the norm of the stochastic gradient noise ∥g(x)−∇f(x)∥ is sub-gaussian with modulus R2, then using (Jin et al., 2019,
Corollary 7) we get with probability at least 1− δ

M that for some absolute constant c1

∥ĝm −∇f(sm)∥ ≤ c1 ·

√
R2 log 2dM

δ

K

Squaring both sides gives

∥ĝm −∇f(sm)∥2 ≤ c1 ·
R2 log 2dM

δ

K
.

Taking a union bound gives us that for all m ∈ [M ] we have with probability δ that

max
m∈[M ]

∥ĝm −∇f(sm)∥2 ≤ c1 ·
R2 log 2dM

δ

K
. (58)
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We have by straightforward algebra

min
m∈S
∥ĝm∥2 ≤ min

m∈[M ]

[
∥ĝm −∇f(sm) +∇f(sm)∥2

]
≤ min

m∈[M ]

[
2∥ĝm −∇f(sm)∥2 + 2∥∇f(sm)∥2

]
≤ min

m∈[M ]

[
2 max
α∈[M ]

∥ĝα −∇f(sα)∥2 + 2∥∇f(sm)∥2
]

= 2 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 2 min
m∈[M ]

∥∇f(sm)∥2.

Let m∗ be the argmin. Then

∥∇f(sm∗)∥2 ≤ 2∥∇f(sm∗)− ĝsm∗ ∥2 + 2∥ĝsm∗∥2

≤ 2∥∇f(sm∗)− ĝsm∗∥2 + 4 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 4 min
m∈[M ]

∥∇f(sm)∥2

≤ 6 max
m∈[M ]

∥ĝm −∇f(sm)∥2 + 4 min
m∈[M ]

∥∇f(sm)∥2

≤ 6c1
R2 log 2dM

δ

K
+ 4 min

m∈[M ]
∥∇f(sm)∥2.

Therefore there exists some absolute constant c such that

Prob

(
∥∇f(sm∗)∥2 > eγ + c ·

R2 log 2dM
δ

K

)
≤ δ + exp(−M) + Prob

(
1

P

P∑
p=1

∥∇f(vp)∥2 > γ

)
.

It remains to put slead = sm∗ .

Proof of Theorem 6. First, observe that Theorem 7 gives that SGD run for T steps with a fixed stepsize η such that ηL ≤ 1

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤
2(f(x0)− f∗)

ηT
+ 5ηR2 +

12R2 log 1
δ

T
. (59)

Minimizing the above in η gives

η∗ = min

(
1

L
,

√
2(f(x0)− f∗)

5TR2

)
.

We set

η0 = min

(
1

L
,

√
2∆

5TR

)
.

Observe that η0 ≤ η∗. Now let

N∗ = ⌈log η∗
η0
⌉

=

log
max(L,

√
5TR

2

2∆ )

max(L,
√

5TR2

∆ )

.
First, if we exit Algorithm 1 at line 4, i.e. if Ttotal < N , then by the L-smoothness of f we have

∥∇f(y0)∥2 ≤ 2L(f(y0)− f∗)

≤ N · 2L(f(x0)− f∗)

Ttotal

≤ log

max(L,
√

5TR
2

2∆ )

max(L,
√

5TR2

∆ )

 · L(f(x0)− f∗)

Ttotal
.
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This fulfills the theorem’s statement. From here on our, we assume that N ≥ Ttotal. Observe that our choice of N guarantees
that N ≥ N∗. Let τ be the first n (in the loop on line 2 of Algorithm 1) such that

η∗
2
≤ ητ ≤ η∗.

Plugging η = ητ into Equation (59) we get with probability at least δ that

1

T

T−1∑
t=0

∥∇f(xτ
t )∥

2 ≤ 2(f(x0)− f∗)

ητT
+ 5ητR

2 +
12R2 log 1

δ

T

≤ 4(f(x0)− f∗)

η∗T
+ 5η∗R

2 +
12R2 log 1

δ

T

≤ 2

[
2(f(x0)− f∗)

η∗T
+ 5η∗R

2

]
+

12R2 log 1
δ

T

≤ 13

[√
L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]
+

12R2 log 1
δ

T
. (60)

We now apply Theorem 8 with the parameters:

V =
{
xτ
0 , x

τ
1 , . . . , x

τ
T−1

}
,

M = log
1

δ
,

K = T,

γ = 13

[√
L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]
+

12R2 log 1
δ

T
.

The theorem combined with equation (60) gives us that with probability at least 1− 4δ

∥∇f(yτ )∥2 ≤ 13 · e ·

[√
L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]
+

12R2 log 1
δ

T
+ c ·

R2 log 2dM
δ

T
. (61)

By straightforward algebra

∥ĝr∥2 = min
n∈[N ]

∥ĝn∥2 ≤ min
n∈[N ]

[
∥ĝn −∇f(yn) +∇f(yn)∥2

]
≤ min

n∈[N ]

[
2∥ĝn −∇f(yn)∥2 + 2∥∇f(yn)∥2

]
≤ min

n∈[N ]

[
2 max
α∈[N ]

∥ĝα −∇f(sα)∥2 + 2∥∇f(yn)∥2
]

= 2 max
n∈[N ]

∥ĝn −∇f(yn)∥2 + 2 min
n∈[N ]

∥∇f(yn)∥2.

Recall that we have r = argminn∈[N ] ∥ĝn∥
2, then as in the proof of Theorem 8 we have

∥∇f(yr)∥2 ≤ 2∥∇f(yr)− ĝyr
∥2 + 2∥ĝyr

∥2

≤ 2∥∇f(yr)− ĝyr
∥2 + 4 max

n∈[N ]
∥ĝn −∇f(yn)∥2 + 4 min

n∈[N ]
∥∇f(yn)∥2

≤ 6 max
n∈[N ]

∥ĝn −∇f(yn)∥2 + 4 min
n∈[N ]

∥∇f(yn)∥2. (62)

Observe that because that we passed the budget K = T to the FindLeader procedure, we can use Equation (57) and the
union bound to that with probability 1− δ,

max
n∈[N ]

∥ĝn −∇f(yn)∥2 ≤ c ·
R2 log 2dN

δ

T
. (63)
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And clearly

min
n∈[N ]

∥∇f(yn)∥2 ≤ ∥∇f(yτ )∥2. (64)

Using the estimates of equations (61), (63) and (64) to upper bound the right hand side of equation (62) gives us that with
probability at least 1− 5δ

∥∇f(yr)∥2 ≤ 6c ·
R2 log 2dN

δ

T
+ 4

[
13 · e ·

[√
L(f(x0)− f∗)R2

T
+

(f(x0)− f∗)L

T

]
+

12R2 log 1
δ

T
+ c ·

R2 log 2dM
δ

T

]
.

Combining the terms and substituting in the definition of Ttotal gives the theorem’s statement.
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