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Abstract

Advances in in-silico clinical trails for the development of novel treatment and devices for
acute ischemic stroke have driven the creation of synthetic virtual patient populations to
address the lack of large real-world datasets. Recent work proposed a method for generating
semantic vascular centerline tree of the major cerebral arteries using pointcloud diffusion.
However, this approach relies on separate post-processing algorithms to reconstruct the
vessel tree topology, which does not generalize well to more topologically complex trees.
To overcome this limitation, we introduce semantic signed distance fields for modeling
cerebral vessel trees in a fully self-supervised manner. Our approach bypasses the need
for separate reconstruction of the tree topology, and can be trained directly on shape-
surfaces. Our method combines a variational autoencoder for encoding shapes to robust
latent shape representations with a latent-diffusion model for generating synthetic vessel
trees. By generating surface geometry directly, our approach eliminates the need for post-
processing steps, enabling the generation of high-quality and topologically complex cerebral
vessel trees.

Keywords: Shape generation, implicit neural representation, self-supervision, in-silico
clinical trials, latent diffusion, semantic vascular geometry.

1. Introduction

Advancements in computational modeling have enabled high-fidelity patient-specific treat-
ment simulations for acute ischemic stroke (AIS) (Luraghi et al., 2021; Liu et al., 2022).
These simulations support the promise of in-silico clinical trials (ISCTs) as alternatives to
traditional trials for developing medical treatments and devices (Konduri et al., 2020; Miller
et al., 2023). However, ISCTs require large virtual populations of high-quality 3D vascular
geometries, which are challenging to create due to resource-intensive processes. Synthetic
data generation, e.g., with deep generative models, addresses these limitations by gener-
ating diverse, high-quality synthetic geometries from limited real data. Because synthetic
populations bypass privacy restrictions, they enable data sharing and support downstream
tasks reliant on large datasets.

Several methods for generating 3D vascular geometry have been proposed in recent
literature. Danu et al. (2019) utilize an image-based generative approach and represent
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the geometry as 3D voxel occupancy grids. Alternatively, some methods parameterize the
vascular geometry via points on the respective centerlines, modeling point coordinates and
corresponding radii. Wolterink et al. (2018) generate single-branch centerline graphs sequen-
tially using a generative adversarial network (GAN) (Goodfellow et al., 2020). Expanding
on this concept, Feldman et al. (2023) generate vessel centerline tree graphs using a recursive
variational autoencoder that supports multiple branches. In contrast, Sinha and Hamarneh
(2024) represent 3D vascular geometry using implicit neural representations (INRs) with
occupancy fields. A major limitation of these methods is the lack of semantic information in
the generated trees, which is crucial, in computational stroke treatment models require for
automatic placements of thrombi in specific vessels. Additionally, it allows for more robust
evaluation of the synthetic vessel trees by assessing the quality of each separate vessel in the
tree. As a result, Kuipers et al. (2024) introduced a pointcloud-based diffusion approach
for generating semantic cerebral vessel trees. However, this method requires separate post-
processing algorithms to reconstruct the vessel tree topology that do not generalize well to
topologically complex trees.

Figure 1: Non-closed mesh
(Yang et al., 2020).

In this work, we employ INRs and propose represent-
ing cerebral vessel trees as semantic signed distance fields
(SDFs), avoiding the need for separate post-processing al-
gorithms. SDFs represent the distance from a point to the
surface of the shape, with the sign indicating whether the
point is inside or outside the shape. INRs provide several
advantages over voxel- or point cloud-based methods, in-
cluding memory efficiency, support for arbitrary resolution,
continuity, and automatic differentiation, e.g., for comput-
ing surface normals (Berzins et al., 2024). In the generative
setting, INRs are typically optimized in a supervised man-
ner using ground truth scalar fields, which require access
to watertight geometry, i.e., closed surfaces representing a
volume (Chibane et al., 2020). However, watertight geometry is often unavailable, partic-
ularly for tubular vascular structures, as seen in Figure 1, or when the surface geometry
is represented as a point cloud. Moreover, obtaining accurate watertight geometry often
involves labor-intensive manual processing. Building on the approach of Wolterink (2023),
we leverage the inductive bias of SDFs, i.e., SDFs satisfy the Eikonal equation, extending
the fully self-supervised learning of implicit neural shapes to the generative setting. As a
result, our model does not require access to ground truth signed distances or occupancy
grids, making it compatible with any type of surface representation.

Our generative framework is inspired by Shape2VecSet, a state-of-the-art two-stage
approach for 3D shape representation and generation (Zhang et al., 2023). In the first
stage, a variational autoencoder (VAE) (Kingma and Welling, 2013) encodes semantic point
clouds sampled from the shape surface, learning a distribution of robust latent semantic
shape representations that are then decoded into semantic SDFs. In the second stage, a
latent diffusion model (Rombach et al., 2022) samples latent shape representations from the
VAE’s prior distribution. Latents sampled from this distribution are then decoded into a
semantic SDF that represents a synthetic vascular tree.
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Figure 2: Schematic overview of the vessel generation framework: A semantic pointcloud is
encoded to a shape representation using self-attention and feed-forward (FF) blocks. The
shape representation is decoded and the SDF values are predicted for the query points. The
diffusion model generates shape representations that are decoded to synthetic shapes.

2. Method

Our generative framework comprises two models. Section 2.1 details the implementation
of the variational autoencoder (VAE) for shape-to-semantic signed distance field (SDF)
mapping. The VAE includes an encoder that learns robust latent shape representations for
synthetic shape sampling and a decoder that outputs a conditional SDF corresponding to a
given latent. Section 2.2 describes the shape latent diffusion model used to sample latents
for synthetic shape generation. An overview of the framework is provided in Figure 2.

2.1. Semantic Shape Autoencoder

We parameterize a shape as a point cloud of N points pi that lie on the shape surface with
corresponding one-hot encodings hi of semantic labels. We use a VAE with a transformer
architecture (Vaswani et al., 2017) to encode the pointcloud to a set of M latent vectors
zi, where M < N . Next, the latent-set is decoded to an SDF that represents the zero
iso-surface of the encoded shape.

Signed Distance Fields SDFs implicitly represent the surface of shapes as a functions
f(p) = d that outputs the signed distance d from a spatial coordinate p to the shape surface,
where d is negative for points inside the shape volume. 1 The shape surface is defined by the
zero level-set, i.e., all coordinates pi where f(pi) = 0. SDFs satisfy the Eikonal equation,
||∇pf || = 1, and for coordinates on the surface, the gradient ∇pf corresponds to the surface
normal vector np. The Eikonal constraint acts as an inductive bias for implicitly regularizing
SDF learning (Gropp et al., 2020). By leveraging this constraint, it becomes unnecessary
to know d for points off the surface, eliminating the need for ground-truth signed distances.

1. We follow the convention where d is negative inside the shape volume to ensure that the surface normal
vectors point outward.
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As a result, SDFs can be learned in a self-supervised manner by enforcing d = 0 on surface
points and ensuring that the gradients of both on-surface and off-surface points satisfy the
Eikonal equation.

Shape Encoding The input to the encoder is a set of N vectors x that are the con-
catenation of points p and one-hot encoded semantic vessel labels h. Following (Zhang
et al., 2023), we use furthest-point sampling (FPS) to obtain a lower-resolution set of M
vectors y that are then used to gather downsampled feature vectors from the input using
cross-attention:

CrossAttn(yi, {x1, · · · ,xN}) =
∑
j

aijv(xj) and aij = softmax

(
q(yi)

Tk(xj)√
D

)
, (1)

where q,k,v ∈ RD are the query, key, and value functions used in the attention mechanism.
2 Note that Equation 1 becomes self-attention when x = y. The feature vectors are then
mapped using a series of self-attention blocks followed by a linear map to a set of C ′-
dimensional µ and logσ2 from which the M shape latents z are sampled.

Shape Decoding The decoder g maps latent representations to C-dimensional feature
vectors, which are then interpolated by query coordinate points using cross-attention. Each
interpolated coordinate is subsequently mapped to a signed distance and semantic label via
a two-layer linear mapping with GELU activation. We evaluate the predicted surface point
distances d̃ and one-hot semantic predictions h̃ using following loss terms:

LSurface = |d̃|, LEikonal = (||∇{o,p}g|| − 1)2, and LNormal = ⟨∇pg,np⟩, (2)

and the predicted labels h̃ as

LMSE = MSE(h, h̃). (3)

Here, | · | denotes the L1-norm, || · || denotes the L2-norm, ⟨·⟩ indicates cosine-similarity, and
MSE is the mean squared error. Off-surface points o are generated by adding noise sampled
from a Gaussian distribution with a standard deviation of 0.3 to the surface points. As the
SDF defines the shape surface boundary, semantic labels are evaluated only for surface
points, excluding a background label for off-surface points.

Training Objective The complete objective of the VAE minimizing the following loss

LVAE = LSurface + λ1LEikonal + λ2LNormal + λ3LKL + λ4LMSE, (4)

where LKL is the KL-regularization of the latents zi and the λi weigh the contributions of
the individual loss terms. The LMSE term can be omitted if semantic labels are not available
or not required.

2. In practice, we first embed the set of concatenated coordinate and feature vectors x with a linear
embedding before downsampling.
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2.2. Shape Latent Diffusion

Generating synthetic shapes by sampling latents z directly from the Gaussian prior often
results in poor shape reconstructions because VAEs are prone to the prior-hole problem in
large and complex latent spaces (Vahdat et al., 2021). This means that certain regions of
the latent space do not hold any meaningful information. The prior-hole problem can be
addressed by using an auxiliary sampling model ϕ that learns to sample latents exclusively
from regions that yield high-quality reconstructions. To achieve this, we use latent-diffusion
(Rombach et al., 2022) combined with a transformer architecture and optimize the mean-
squared error between noisy and denoised latent sets:

LDenoise = MSE(ϕ(z + ϵ, t), z), (5)

where ϵ ∼ N (0, t) is noise sampled at a given noise-level t. Details of the pre-conditioning
diffusion methodology used in our approach can be found in (Karras et al., 2022).

3. Results and Evaluation

This section presents and evaluates the results of our semantic generative model. We detail
our experimental setup in Section 3.1 and present and evaluate our results in Section 3.2.

3.1. Experimental Setup

Datasets We evaluate our model on two distinct vascular geometry datasets. TopCoW
(Yang et al., 2024) contains 125 semantic segmentations of variations of the circle of Willis
(CoW). An anatomical, semantic map of the CoW vasculature is provided in Appendix A.
Next. VascuSynth (Hamarneh and Jassi, 2010) consists of 120 synthetic vascular trees and
offers trees with a large variety in number of bifurcations per tree. For both datasets, we
sample 200,000 points from each shape surface and normalize them globally to a [−1, 1]
bounding box.

Model and Training Setup We sample 2048 points from the shape surface as input to
the VAE, which are subsequently downsampled to 256 points using cross-attention. 2048
and 1024 surface and off-surface points are sampled for calculating the loss. Both VAE
and latent-diffusion models utilize six self-attention blocks. Detailed model architectures
are provided in Appendix B. All models are trained with a batch size of 16. The VAE is
trained for 9,000 epochs with a linear learning rate schedule, starting at 1×10−6, increasing
to 1.5× 10−4 over the first 200 epochs, and then decreasing to zero. The losses in Equation
4 are weighted for equal magnitude, with λ1 = λ2 = 0.1, λ3 = 1 × 10−3, and λ4 = 1. The
latent-diffusion is trained for 6,000 epochs on TopCoW and 12,000 epochs on VascuSynth.
The same learning rate schedule is applied, with a maximum of 1 × 10−4. Synthetic trees
are sampled in 100 steps with ρ = 8 and S churn = 25. Meshes are extracted from the zero
level-set of the SDF using the marching cubes algorithm (Lorensen and Cline, 1998). The
final mesh is the largest connected component, or the two largest for TopCoW.

3.2. Generative Performance Analysis

Semantic Vessel Tree Generation We generate a set of semantic TopCoW vessel trees
and compare our approach to Kuipers et al. (2024). Our qualitative analysis of the vessel
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Figure 3: Synthetic semantic vessel trees from TopCoW. The top row shows trees from our
method. The bottom row shows trees from Kuipers et al. (2024) with failed reconstructions
of the correct tree topology.

Figure 4: Comparison of the distributions of the length, average radius, and tortuosity of
each individual vessel between the real and synthetic TopCoW trees.

tree quality in Figure 3 shows that our method successfully generates the circle of Willis
anatomy. The different variations of the circle of Willis are well represented in the synthetic
samples. In contrast, the method by Kuipers et al. (2024) fails to properly construct the
tree topology, resulting in unrealistic circle of Willis trees. We observed these failures in
approximately 90% of the generated samples, whereas we did not observe such failures with
our method.

6



Semantic Vessel Tree Generation

Table 1: Quantitative comparison on
VascuSynth. For 1-NNA, 50% is optimal.
For COV, higher is better.

metric 1-NNA (%) COV ↑

TrIND 87.4±8.4 0.5±0.1

ours 57.0±2.8 0.7±0.1 Figure 5: Synthetic VascuSynth trees gener-
ated with our model.

To further assess the quality of our synthetic semantic trees, we extract the length,
average radius, and tortuosity of each individual vessel by skeletonizing the generated SDFs.
We compare the distributions of these vessel characteristics between the real and synthetic
TopCoW trees. The results in Figure 4 reveal distinct geometric differences between the
vessels in the real population. These differences are accurately reflected in the synthetic
population, including outliers. This suggests that our model generates synthetic vessel trees
that are diverse and representative of the real population. The L-Pcom, R-Pcom, and Acom
seem to be the most challenging to generate, likely because these vessels only occur in a small
subset of the trees in the real population. Additionally, the Acom in particular is short,
and due to the lower voxel resolution used for synthetic shape sampling compared to the
TopCoW segmentation resolution, the skeletonization often produces skeletons consisting
of only one or two voxels, resulting in zero tortuosity.

Baseline Tree Generation Performance We compare our method to the results ob-
tained by TrIND (Sinha and Hamarneh, 2024), an implicit neural shape (INS) method
that generates non-semantic VascuSynth trees using occupancy grids as its implicit shape
representation. We report 1-nearest-neighbor accuracy (1-NNA) and coverage (COV) to
measure representativeness and diversity. The results in Table 1 show our model out-
performing TrIND on both metrics. We attribute this to our use of a single encoder to
encode all shapes, which enables weightsharing, resulting in a robust tree distribution that
is more suitable for sampling compared TrIND’s distribution of individually trained INS
weights. Figure 5 demonstrates that our model can generate varied and high-quality tree
structures. In Appendix 11, interpolation of the latent space reveals that our model learns
a robust vessel tree representation.

Synthetic Vessel Tree Uniqueness We assess uniqueness by calculating similarity with
the Chamfer distance for shapes within the train set (intra-distances) and between the
synthetic and train sets (inter-distances). Figure 6 we observe a wide distribution of inter-
distances when compared to the intra-distances for VascuSynth, indicating a high degree of
uniqueness. For TopCoW, the inter-distances are generally lower than the intra-distances.
This indicates that the synthetic trees are less unique, likely due to the greater similarity
among real TopCoW trees. As a result, the synthetic trees tend to be more ”in-between”
the real trees, leading to lower inter-distances. Nonetheless, Figure 5 demonstrates that our
model is capable of generating unique trees for both TopCoW and VascuSynth.

7



Kuipers Konduri Bekkers Marquering

Figure 6: Intra and inter Chamfer distances
(CDs) between most similar trees within the
train set and between train and test sets.

Figure 7: Synthetic TopCoW and Vas-
cuSynth trees with most similar tree from
the train set overlayed in gray.

4. Discussion and Conclusion

In this paper, we introduced a framework for representing and generating semantic vascular
trees using signed distance fields in a fully self-supervised manner. Our results demonstrate
that the proposed model can produce realistic synthetic vessel tree populations closely
resembling real ones. However, quantitatively defining what constitutes a truly realistic
vessel tree remains a significant challenge. While global shape metrics, such as 1-nearest-
neighbor accuracy and coverage, provide some insights into a generative model’s overall
performance, they lack the precision needed to detect potential inaccuracies in individual
vessels, given the intricate nature of vessel tree structures.

For our evaluation, we compare the analyze the characteristics of each individual syn-
thetic vessel and comparing them to the real vessels to assess the quality of the synthetic
trees. However, the real trees used for comparison represent only a limited subset of all plau-
sible vessel trees. In the context of small datasets, improving representativeness can lead to
overfitting behavior, resulting in synthetic trees that are less unique and diverse. Thus, a
trade-off exists between uniqueness, diversity, and representativeness. For the downstream
task of stroke-treatment simulation, generating rare vascular structures with more chal-
lenging anatomy, such as higher tortuosity or smaller radii, could improve the robustness
of novel device and treatment evaluations. Ultimately, the quality of the synthetic vessels
should be determined based on how well they serve their intended downstream tasks.

Beyond quantitative analysis, qualitative evaluation by domain experts can offer valu-
able insights into the quality of the synthetic vessel trees. However, for in-silico clinical
trials that require large virtual populations, manually assessing whether synthetic sam-
ples are suitable becomes unpractical. A promising future direction is to enable generative
models to self-assess the quality of their outputs. Recent work by Islam et al. (2024)
demonstrated that probabilistic signed distance fields can allow models to identify regions
with potential artifacts through uncertainty awareness. In the context of shape generation,
uncertainty awareness could lead to the automatic detection of inaccurate regions in the
synthetic shapes.

In conclusion, our self-supervised method eliminates the need for post-processing algo-
rithms to generate topologically complex and high-quality semantic cerebral vessel trees
that are representative of real-world vessels, diverse, and unique.
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Appendix A. TopCow-2024 Circle of Willis Map

Figure 8: Anatomical map of the complete circle of Willis vasculature present in TopCow.

Figure 8 shows a schematic overview of the complete circle of Willis Vascular structure
from the TopCow dataset. Many variations of the circle of Willis are present in TopCow,
containing only a subset of the vessels shown here. Most variability in the TopCow tree
geometry is the result of missing combinations of the L/R-Pcom, Acom, and 3rd-A2.

Appendix B. Model Architectures

Variational Autoencoder Architecure In Figure 9, we show the architecture of our
variational autoencoder model. The input to the encoder is a pointcloud, a set of (x, y, z)
coordinates, and a corresponding set of one-hot encoded semantic labels. The resulting
semantic pointcloud is then encoded to a set of shape latents. The input to the decoder is
a set of shape latents, and a set of query coordinate points. For each query point, a signed
distance is predicted alongside a semantic label prediction. As a result, the decoder can
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Figure 9: Architecture of our variational autoencoder.
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Figure 10: Architecture of our diffusion model.
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be considered as a conditional signed distance function, where the shape latents act as a
conditioning variable.

Shape Latent Diffusion Architecture In Figure 10, we show the architecture of the
shape latent diffusion model. The input to the model is a set of shape latents. In the
forward diffusion process, a noise-level is sampled, which is then used to sample noise to
add to the shape latents. Next, the model denoises the noisy shape latents, conditioned on
the corresponding noise-level. Shape-latents can be sampled from the diffusion model by
denoising noise sampled from a unit Gaussian. When decoded using the decoder network,
a novel synthetic shape is generated.

Appendix C. Interpreting the Latent-Diffusion Shape Space

Figure 11: Interpolating the diffusion latent-space between a VascuSynth tree with a single
bifurcation and a tree with a large number of bifurcations.

To analyze the structure of the learned shape-representations, we interpolate between
two sampled VascuSynth shapes, where we start with a small tree consisting of a single
bifurcation and end with a complex tree of many bifurcations. We linearly interpolate
between the diffusion model input noise, denoising at each step. We show the resulting
shapes for eight interpolation steps in Figure 11. The branches of the start tree grow longer
and start bifurcating when moving through the latent space of the diffusion model. This
suggests that the model has learned a robust representation for the tree structures, as the
interpolation keeps the original tree mostly intact, and simply lets it grow to become more
complex.
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