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Abstract

While large language models (LLMs) have shown promising capabilities as zero-shot planners
for embodied agents, their inability to learn from experience limits their robustness in complex
open-world environments like Minecraft. We introduce MINDSTORES, an experience-
augmented planning framework that enables embodied agents to build and leverage mental
models through natural interaction with their environment. Drawing inspiration from how
humans construct and refine cognitive mental models, our approach extends existing zero-shot
LLM planning by maintaining a database of past experiences that informs future planning
iterations. The key innovation is representing accumulated experiences as natural language
embeddings of (state, task, plan, outcome) tuples, which can then be efficiently retrieved
and reasoned over by an LLM planner to generate insights and guide plan refinement for
novel states and tasks. Through extensive experiments in the MineDojo environment, we
find that MINDSTORES learns and applies its knowledge significantly better than existing
memory-based LLM planners while maintaining the flexibility and generalization benefits
of zero-shot approaches, representing an important step toward more capable embodied AI
systems that can learn continuously through natural experience.

1 Introduction

Recent advances in large language models (LLMs) have demonstrated enhanced capabilities in reasoning
(Plaat et al., 2024; Huang & Chang, 2023), planning (Sel et al., 2025), and decision-making (Huang et al.,
2024) through methods that strengthen analytical depth. Among the numerous domains of active innovation,
the success of AI agents serves as a critical benchmark for assessing our progress toward generally capable
artificial intelligence (Brown et al., 2020).

Building embodied agents that learn continuously from real-world interactions through persistent memory
and adaptive reasoning remains a fundamental challenge in the future of artificial intelligence. Classical
approaches, such as reinforcement learning (Dulac-Arnold et al., 2021) and symbolic planning (Zheng et al.,
2025), struggle with scalability, irreversible errors, and rigid assumptions in complex environments.

A promising paradigm for such agents leverages LLMs as high-level planners (Jeurissen et al., 2024): the LLM
decomposes abstract goals into step-by-step plans (e.g., “mine wood → craft tools → smelt iron”), while a
low-level controller translates these plans into environment-specific actions (e.g., movement, object interaction).
This “brain and body” architecture capitalizes on the LLM’s capacity for structured reasoning while grounding
its outputs in the dynamics of the physical world—a critical capability for real-world applications like robotic
manipulation (Shentu et al., 2024; Bhat et al., 2024; Wang et al., 2024b), autonomous navigation (Zawalski
et al., 2024), and adaptive disaster response.

While recent LLM-based agents show promise in generating action plans for embodied tasks, many lack
experiential learning, i.e., the ability to apply insights from past experiences to planning for future tasks.
Unlike humans, who build internal models of their environment across interactions to generalize insights,
avoid errors, and reason counterfactually (e.g., “Crafting a stone pickaxe first would enable iron mining”),
existing agents cannot synthesize persistent representations of past interactions. This gap hinders their

1



Under review as submission to TMLR

Input

Review Experience

Plan Generation

Predict Outcome

Execute

Record

Failure
M

anagem
ent

N
ex

t
It

er
at

io
n

Task: Mine Iron

Review: Previous experiences for mining needs a pickaxe!

Plan: Mine , craft , mine , craft , mine

Predict: Probable failure, might die from hunger while finding iron ore.

Review: Find food before searching for iron ore.

Plan: Mine , craft , mine , craft , craft , hunt , mine

Predict: Probable success!

Execution:

Store relevant information back into database to refer to later.

Figure 1: Overview of the MINDSTORES planning architecture. The left shows the iterative experiential
learning pipeline leveraging the experience database. Database-related methods are in orange, planning steps
are in green, and Minecraft steps are in red. The right shows an example applying this pipeline to an example
task in Minecraft.

ability to tackle long-horizon tasks in open worlds like Minecraft, where success requires inferring objectives,
recovering from failures, and transferring insights across scenarios.

Minecraft exemplifies these challenges: agents must explore procedural terrains, infer task dependencies (e.g.,
stone tools before iron mining), and adapt to unforeseen challenges. Current LLM planners, namely zero-shot
architectures like DEPS (Wang et al., 2024c), exhibit critical flaws: (1) they lack persistent memory, causing
repetitive errors (e.g., using wooden pickaxes for iron mining); and (2) they underutilize LLMs’ reasoning to
synthesize experiential insights, producing brittle plans.

To address these limitations, we propose MINDSTORES, a framework that leverages LLMs to construct
dynamic mental models—internal representations guiding reasoning and decision-making, inspired by human
cognition. Just as humans build simplified models of reality to anticipate events and solve problems, our
approach equips agents to actively interpret experiences through structured reasoning. By analyzing failures
(e.g., “Wooden pickaxes break mining iron”), inferring causal rules (e.g., “Stone tools are prerequisites”), and
predicting outcomes, the LLM transforms raw interaction data into adaptive principles.

MINDSTORES augments planners with an experience database storing natural language tuples (state, task,
plan, outcome) and operates cyclically: observe, retrieve relevant experiences, synthesize context-aware plans,
act, and log outcomes. This closed-loop process enables semantic analysis of memories, iterative strategy
refinement, and outcome prediction, bridging the gap between static planning and experiential learning while
grounding agent reasoning in human-like cognitive foundations.

Hence, our key contributions are as follows:

• A cognitive-inspired formulation of artificial mental models to enable natural-language memory
accumulation and transfer learning.

• MINDSTORES, a novel open-world LLM planner leveraging the above formulation to develop
lifelong learning embodied agents.

• Extensive evaluation of MINDSTORES in Minecraft, demonstrating a significant improvement in
open-world planning tasks over existing methods.

In the remainder of this paper, we detail the theoretical foundations of mental models in Section 2, present
the MINDSTORES architecture in Section 3, and validate its performance through experiments in Sections 4
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and 5. Our findings underscore the critical role of memory-informed reasoning in developing lifelong learning
agents for open-world environments.

2 Background

2.1 Open-World Planning for Embodied Agents

Planning for embodied agents in open-world environments presents unique challenges due to the unbounded
action space, long-horizon dependencies, and complex environmental dynamics. In environments like Minecraft,
agents must reason about sequences of actions that may span dozens of steps, where early mistakes can
render entire trajectories infeasible (Fan et al., 2022). Traditional planning approaches that rely on explicit
state representations and value functions struggle in such domains due to the combinatorial explosion of
possible states and actions.

The key challenges in open-world planning stem from two main factors. First, the need for accurate multi-
step reasoning due to long-term dependencies between actions presents a significant hurdle. Second, the
requirement to consider the agent’s current state and capabilities when ordering parallel sub-goals within
a plan poses additional complexity. Consider the example of crafting a diamond pickaxe in Minecraft: the
process requires first obtaining wood, then crafting planks and sticks, mining stone with a wooden pickaxe,
crafting a stone pickaxe, mining iron ore, smelting iron ingots, and finally crafting the iron pickaxe—a
sequence that can easily fail if any intermediate step is incorrectly executed or ordered.

2.2 Zero-Shot LLM Planning

Recent work has shown that large language models can serve as effective zero-shot planners for embodied
agents through their ability to decompose high-level tasks into sequences of executable actions (Huang et al.,
2022a). The DEPS (Describe, Explain, Plan and Select) framework leverages this capability through an
iterative planning process that combines several key components (Wang et al., 2024c). The framework utilizes
a descriptor that summarizes the current state and execution outcomes, an explainer that analyzes plan
failures and suggests corrections, a planner that generates and refines action sequences, and a selector that
ranks parallel candidate sub-goals based on estimated completion steps.

The key innovation of DEPS is its ability to improve plans through verbal feedback and explanation. When
a plan fails, the descriptor summarizes the failure state, the explainer analyzes what went wrong, and the
planner incorporates this feedback to generate an improved plan. This creates a form of zero-shot learning
through natural language interaction.

However, DEPS and similar approaches maintain no persistent memory across episodes. Each new planning
attempt starts fresh, unable to leverage insights gained from previous successes and failures in similar
situations. This limitation motivates our work on experience-augmented planning.

2.3 Mental Models

Mental models theory, originally developed by Craik (1952), proposes that humans construct internal
representations of external reality to understand, predict, and control their environments. These cognitive
structures serve as simplified frameworks that abstract away unnecessary details while preserving causal
relationships essential for reasoning. In cognitive science, mental models are understood to be dynamic,
continuously updated through experience, and crucially, transferable across contexts.

Three key characteristics of human mental models particularly relevant to our work are: (1) their representation
as declarative knowledge that can be explicitly communicated and reasoned over, (2) their ability to facilitate
counterfactual reasoning about hypothetical scenarios, and (3) their role in enabling transfer learning across
superficially different but structurally similar problems.

Several insights may be drawn from this literature to inform the construction of a more intelligent LLM-based
embodied agent planner. First, by representing experiences as natural language descriptions rather than latent
vectors or symbolic structures, we may leverage the LLM’s ability to perform flexible semantic reasoning in a
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Figure 2: Interactive planning process for crafting iron boots in Minecraft. The system initially plans to
mine iron with a wooden pickaxe but learns from past experience that this will fail. It then updates the plan
to include creating a stone pickaxe first, leading to successful iron ore mining.

form that mirrors human declarative knowledge. Second, by enabling the agent to predict outcomes before
execution, we may implement a form of counterfactual reasoning similar to how humans mentally simulate
potential actions before commitment. Third, by retrieving experiences based on semantic similarity rather
than exact matching, we may facilitate the transfer of knowledge across scenarios that share underlying
dynamics but differ in surface details.

3 Methods

3.1 Overview

We propose an experience-augmented planning framework that maintains a similar foundation to DEPS but
advances by maintaining a persistent mental model of the environment through natural language experiences.
Our approach integrates several key components into a cohesive system. The framework maintains a database
D of experience tuples (s, t, p, o) containing state descriptions s, tasks t, plans p, and outcomes o. This is
complemented by a semantic retrieval system for finding relevant past experiences, an LLM planner that
generates insights and plans informed by retrieved experiences, and a prediction mechanism that estimates
plan outcomes before execution.

3.2 Experience Database

Each experience tuple (s, t, p, o) ∈ D consists of natural language paragraphs describing the environmental
context. The state s captures the environmental context and agent’s condition. The task t represents the
high-level goal to be achieved. The plan p contains the sequence of actions generated by the planner. Finally,
the outcome o describes the execution result and failure description if applicable.
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For each component, we compute a dense vector embedding e(x) ∈ Rd using a pretrained sentence transformer,
where x represents any of s, t, p, or o. This allows efficient similarity-based retrieval using cosine distance:

sim (x1, x2) = e (x1) · e (x2)
∥e (x1)∥ ∥e (x2)∥

While modern LLMs support expansive context windows, our choice of cosine-similarity retrieval over full-
context inclusion balances computational efficiency, relevance prioritization, and scalability. Selective retrieval
using cosine similarity was chosen for several key reasons: it effectively captures semantic relationships beyond
exact matches, normalizes vector magnitudes for comparing texts of different lengths, and efficiently handles
high-dimensional embeddings. Moreover, as will be detailed in our experiments, we found that including all
experiences in the context window introduced “experience noise” that actively distracted the model from
identifying relevant past experiences to reason about. Our embedding-based retrieval acts as a semantic filter,
distilling the most pertinent experiences while avoiding noise from irrelevant entries.

3.3 Experience-Guided Planning

Given a new state st and task tt, our algorithm proceeds through several stages. Initially, it retrieves the k
most similar past experiences based on state and task similarity:

Nk(D, st, tt) = top-k(s,t,p,o)∈D

 ∑
x∈{s,t}

λxsim(x, xt)

 (1)

The LLM is then prompted to analyze these experiences and generate insights about common failure modes
to avoid, successful strategies to adapt, and environmental dynamics to consider. Following this analysis, it
generates an initial plan pt conditioned on the state, task, experiences, and insights.

The system then predicts the likely outcome by retrieving similar past plans:

Nk(st, tt, pt) = top-k(s,t,p,o)∈D

 ∑
x∈{s,t,p}

λxsim(x, xt)

 (2)

If predicted outcomes suggest likely failure, the system returns to the plan generation stage to revise the plan.
Finally, it executes the plan and stores the new experience tuple in D. The complete process is formalized in
Algorithm 1.

Algorithm 1 Experience-Augmented Planning
Require: State st, Task tt, Database D, LLM M , k neighbors
Ensure: Plan pt

1: Nk ← retrieve_top_k(D, st, tt, k)
2: insights←M.analyze_experiences(Nk)
3: pt ←M.generate_plan(st, tt,Nk, insights)
4: while true do
5: similar_plans← get_similar_plans(D, st, tt, pt)
6: pred_outcome← analyze_outcomes(similar_plans)
7: if pred_outcome is success then
8: break
9: end if

10: pt ←M.revise_plan(pt, pred_outcome)
11: end while
12: outcome← execute_plan(pt)
13: D.add((st, tt, pt, outcome))
14: return pt
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4 Experiments

4.1 Experimental Setup

We evaluate our experience-augmented planning approach in MineDojo using 8 tiers of task complexity
(MT1–MT8) (Fan et al., 2022). The observation space includes RGB view, GPS coordinates, and inventory
state, with 42 discrete actions mapped from MineDojo’s action space (Fan et al., 2022). All experiments
utilize the behavior cloning controller trained on human demonstrations, following similar methodology to
DEPS and Voyager. Due to software version constraints, our implementation of the controller achieves lower
baseline performance than the original DEPS controller. Therefore, we use our implementation of DEPS
without the experience database as the primary baseline for fair comparison. Each task is evaluated over 30
trials with randomized initial states and a fixed random seed of 42.

While our current experiments exclusively use GPT-4 (OpenAI et al., 2024b) via the OpenAI API due to
resource constraints and the requirement of low-latency LLM querying for planning tasks, we anticipate
that this serves as a lower bound on the potential performance of MINDSTORES when paired with more
advanced models. Emerging language models such as OpenAI o1 (OpenAI et al., 2024a) and Deepseek
R1 (DeepSeek-AI et al., 2025) demonstrate enhanced reasoning capabilities that could further improve the
effectiveness of our experience-based planning approach. Our architecture is designed to be model-agnostic,
allowing researchers to easily substitute more powerful LLMs as they become available while maintaining the
fundamental experience-augmented planning methodology.

Our experience database uses Sentence-BERT embeddings (768-dim) stored in FAISS for efficient search.
Key parameters were determined through ablation studies:

• Optimal k = 10 neighbors (tested k = 1, 3, 5, 10, 20)

• Weighted similarity: λs = 0.4 (state), λt = 0.4 (task), λp = 0.2 (plan)

For the complete agent algorithm and associated LLM prompts, see Appendix A, and for detailed imple-
mentation aspects including environment integration and neural component configurations, see Appendix
B.

4.2 Evaluation Tasks

We evaluate on 53 Minecraft tasks grouped into 3 complexity tiers:

• Basic (MT1–MT2): Fundamental tasks (wood/stone tools, basic blocks)

• Intermediate (MT3–MT5): Progressive tasks (food, mining, armor crafting)

• Advanced (MT6–MT8): Complex tasks (iron tools, minecart, diamond)

Episode lengths range from 3,000 steps (Basic) to 12,000 steps (Challenge tasks).

For additional task details and performance statistics, see Appendix C and Table 1.

4.3 Baselines

We compare the performance of MINDSTORES to that of the following existing state-of-the-art approaches:

• DEPS: State-of-the-art zero-shot LLM planner (Wang et al., 2024c). We selected DEPS as our
primary comparison point because it represents a modern planning approach without experience
storage. This provides a clean comparison to isolate the specific benefits of our experience-based
approach. DEPS follows an iterative planning process using description, explanation, planning, and
selection, making it conceptually similar to our framework but without persistent memory.
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• Voyager: Automated curriculum learning agent (Wang et al., 2023) where we simulate zero-shot
planning with the addition of a global database. Voyager is the state-of-the-art model for Minecraft
task-planning via LLM agents. However, the authors suggest a structured curriculum learning
procedure prior to deployment for optimal performance, which is a limitation for real-world use
cases. Note that for equal comparison in our experiments, we don’t explicitly expose the agent to
any structured curriculum.

• Reflexion: LLM planner with environmental feedback (Shinn et al., 2023). Reflexion, like MIND-
STORES, incorporates environmental feedback into its planning process via natural language.
However, Reflexion is intended for general planning tasks and not explicitly designed for open-world
agents. Thus, we adapt it to MineDojo naively.

Together, these baselines represent the spectrum of current approaches to LLM-based planning systems—from
zero-shot planning without memory (DEPS) to systems with curriculum learning (Voyager) and environ-
mental feedback integration (Reflexion). This selection allows us to evaluate the specific contributions of
MINDSTORES’ experience database and retrieval system while controlling for other variables.

4.4 Ablations

To analyze the function of each individual component of the MINDSTORES framework, we perform the
following ablations:

• No Experience: Remove retrieval component

• Fixed k Values: Test k = 1, 3, 5, 10, 20 retrieval contexts

• Single-Shot: Disable iterative plan refinement (DEPS)

4.5 Metrics

To quantify each method’s performance in open-world planning in the Minecraft environment, we measure:

• Success Rate: Completion percentage across trials

• Learning Efficiency: Iterations required for skill mastery

• Complexity Scaling: Performance vs. task complexity tiers

• Retrieval Impact: Success rate vs. context size (k)

• Continuous Learning: Effect of non-discrete experience database for each task progression

5 Results and Analysis

Our experiments reveal significant performance differences between MINDSTORES and existing methods
across task categories, highlighting key insights into their scalability and effectiveness.

5.1 Performance Metrics

As we analyze Figure 3 comparing MINDSTORES to the baselines, we see an all-around improvement with
the addition of the experience database.
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Figure 4: Novel learning iterations across different
Minecraft tasks. MINDSTORES demonstrates su-
perior efficiency in complex tasks. (Note: Iteration
counts for Reflexion are capped at 500 in later tasks.)

Fundamental Tasks (MT1–MT2)

All systems achieve their strongest performance in fundamental crafting tasks, with DEPS achieving success
rates of 70.59–78.33%, Voyager at 74.93–75.39%, Reflexion at 77.63–78.11%, and MINDSTORES performing
notably better at 83.33–84.59%. Notably, there is a significant gap in Wooden Axe crafting, with MIND-
STORES achieving a 96.7% success rate compared to Voyager’s 90.5%, Reflexion’s 92.7%, and DEPS’s 96.7%.
The largest performance gap in MT1 occurs in Stick production, where MINDSTORES outperforms DEPS by
6.3%, Voyager by 4.8%, and Reflexion by 1.9%. In MT2, MINDSTORES maintains a consistent advantage,
with an average performance improvement of 6.26% over DEPS, 9.2% over Voyager, and 6.48% over Reflexion
across tasks.

Intermediate Tasks (MT3–MT5)

The maximum disparity between systems occurs in MT3 painting, where MINDSTORES achieves a 96.7%
success rate compared to DEPS’s 76.67%, Voyager’s 79.4%, and Reflexion’s 82.1%, resulting in performance
gaps of 20.03%, 17.3%, and 14.6% respectively. In cooked meat tasks, MINDSTORES maintains a 6.6–10.0%
advantage over DEPS, a 4.3–5.1% advantage over Voyager, and a 2.1–3.0% advantage over Reflexion. For
MT5 armor challenges, the performance gaps are particularly pronounced, with Leather Helmet showing
differences of 20.03% (vs. DEPS), 16.5% (vs. Voyager), and 13.2% (vs. Reflexion). Overall, MINDSTORES
maintains average advantages of +12.78% over DEPS, +12.65% over Voyager, and +9.06% over Reflexion
across intermediate tasks, demonstrating significant divergence in system performance.

Advanced Tasks (MT6–MT8)

In MT6 iron tool crafting, MINDSTORES achieves average performance improvements of 11.17% over DEPS,
7.71% over Voyager, and 6.13% over Reflexion, with the Iron Axe task showing particularly large gaps
(MINDSTORES: 23.3%, DEPS: 6.67%, Voyager: 9.7%, Reflexion: 11.3%). MT7 highlights another standout
difference, with Iron Nugget success rates at 36.7% for MINDSTORES compared to 20.0% for DEPS, 22.5%
for Voyager, and 24.9% for Reflexion. However, all systems experience a performance decline in advanced
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tasks, with MT6–MT7 success rates dropping to 15.55–20.51% for MINDSTORES, 6.67–9.34% for DEPS,
7.12–12.80% for Voyager, and 9.28–14.38% for Reflexion. Notably, on our end, MINDSTORES did not
complete the MT8 task in a statistically significant manner, along with the rest of our architectures run; still
proving the MT8 diamond task to be a formidable milestone with 0% success rate across all systems.

Learning Efficiency Analysis

MINDSTORES demonstrates superior learning efficiency, particularly for complex tasks. For basic tasks like
mining wood and cobblestone, all systems perform comparably (8 to 45 iterations) (see Figure 4). However, as
complexity increases, MINDSTORES requires significantly fewer iterations (47 to 238) compared to Voyager
(92 to 500) and Reflexion (115 to 500), which show exponential increases in required iterations. For coal
mining, MINDSTORES requires 48.9% fewer iterations than Voyager and 59.1% fewer than Reflexion. For
furnace crafting, MINDSTORES requires 51.2% fewer iterations than Voyager and 62.4% fewer than Reflexion.
The efficiency advantage becomes even more pronounced for sword crafting and iron acquisition, where
MINDSTORES requires 42.1% and 52.4% fewer iterations than Voyager respectively, while both Voyager and
Reflexion hit the iteration cap (500) for the most complex tasks (Reflexion for both sword crafting and iron
acquisition, Voyager for iron acquisition). This demonstrates MINDSTORES’ capability to learn complex
behaviors with substantially fewer environmental interactions.
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5.2 Scalability with Task Complexity and Retrieval Context Size

Performance divergence becomes pronounced with increasing task complexity. MINDSTORES maintains
efficient novel learning iterations for tasks like crafting a stone sword and mining iron, while Voyager and
Reflexion require significantly more iterations, even reaching the max range (500+) for a relatively simple
Mine Iron task (see Figure 4).

We moreover observe steady increases in success rate with increased retrieval context size until k = 10, after
which performance plateaus (see Figure 5). This implies that there exists a “sweet spot” for retrieving and
reasoning about past experiences: Too little may leave out relevant insights, while too much produces noise
that disrupts the LLM’s predictive capabilities. Additionally, increasing k-values requires greater compute, so
considering performance gains is crucial.
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5.3 Continuous Experience Building Analysis

Figure 6 shows an experiment in which the experience database is not reset between tasks but is built
continuously across multiple tasks. We observe that the entire process of completing the Minecart task takes
only 9112 steps including the previous 9 tasks, compared to the 6000 steps needed in a fresh environment.
This indicates that only approximately 200 new steps were required. The number of new task completion
steps decreases non-linearly even as task complexity grows:

• Basic crafting (Wooden Door): 3000 steps

• Mid-tier crafting (Furnace): 4879 steps

• Advanced crafting (Iron Pickaxe): 8598 steps

The system maintains a 100% success rate across all tasks, indicating robust skill transfer and knowledge
utilization from the growing experience database, which expands from 26 entries for Wooden Door to 355
entries for Minecart (see Figure 6 and Appendix Table 5). This is similar to a structured curriculum approach
to Voyager; however, the obvious bottleneck with this is the need for a curriculum to be trained before robust
deployment.

5.4 Example Outputs

To illustrate how experience-augmented planning operates in practice, we highlight a representative example
from our experiments:

1. Iron Boots Crafting (MT5): In an initial attempt, the agent failed to smelt iron ore due to the
absence of a furnace. This failure was logged as an experience tuple:

• State: Inventory includes iron ore and coal.
• Task: Craft iron boots.
• Plan: “Smelt iron ore → craft boots.”
• Outcome: Failed—no furnace available.

In a subsequent trial, retrieving this experience prompted the LLM to first craft a furnace (using
cobblestone) before smelting, resolving the dependency.

This example demonstrates how MINDSTORES transforms isolated failures into actionable insights. By
grounding plans in past outcomes—such as prerequisite checks or resource prioritization—the agent avoids
repetitive errors and incrementally builds robust strategies, even in complex tasks.

5.5 Failure Modes and Qualitative Analysis

Despite MINDSTORES’ improvements over baselines, several failure modes persist in advanced tasks:

Semantic Retrieval Mismatches (37% of MT6-MT8 failures). The system retrieves experiences
with lexical similarity but strategic differences (e.g., retrieving iron mining experiences for diamond tasks,
missing crucial tool requirements).

Overreliance on Partial Successes (28% of intermediate failures). The agent replicates suboptimal
strategies from partially successful past experiences, leading to resource exhaustion before goal completion.

Compositional Integration Failures (42% of MT7-MT8 failures). When tasks require novel combi-
nations of mastered subtasks with new dependencies, the agent struggles to generate integrated plans with
correct resource allocation.
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For example, in Diamond Mining (MT8), the agent retrieved iron mining experiences and planned to
“mine diamonds with stone pickaxe.” Despite reaching the correct depth and locating diamond ore, it failed
to recognize that diamonds specifically require iron pickaxes—illustrating both semantic mismatch and
compositional failure.

These patterns highlight challenges in experience-based planning: balancing similarity with contextual
differences, critically evaluating past successes, and composing previously learned skills in novel configurations.

6 Related Works

6.1 Embodied Planning & Classical Methods

Early approaches used hierarchical reinforcement learning (Sutton et al., 1999) and symbolic planning
(Kaelbling & Lozano-Perez, 2011) but struggled with scalability in open-world domains like Minecraft. Hybrid
methods like PDDLStream (Garrett et al., 2020) combined symbolic planning with procedural samplers, while
DreamerV3 Hafner et al. (2024) employed latent world models. However, these methods depend on rigid
priors, lack causal reasoning, and fail to recover from irreversible errors. Reinforcement learning frameworks
(e.g., DQN (Mnih et al., 2015), PPO (Schulman et al., 2017)) and LLM-RL hybrids like Eureka (Ma et al.,
2023) also falter in dynamic, long-horizon tasks due to static reward mechanisms and error propagation.

6.2 Zero-Shot LLM Planners

DEPS (Wang et al., 2024c) pioneered zero-shot LLM planning through iterative verbal feedback, enabling
dynamic plan refinement. Subsequent works like Voyager (Wang et al., 2023) (skill libraries), ProgPrompt
(Singh et al., 2023) (code generation), and Reflexion (Shinn et al., 2023) (feedback loops) advance LLM-based
planning but share critical flaws. Namely, they suffer from brittle execution due to dependency on hardcoded
assumptions (e.g., ProgPrompt’s code templates), opaque memory due to non-interpretable representations
(e.g., Voyager’s code snippets, PaLM-E’s latent vectors (Driess et al., 2023)), and the inability to learn from
failed task executions (e.g., Inner Monologue (Huang et al., 2022b) lacks persistent memory).

6.3 Memory-Based Planners

Recent memory-augmented systems like E2CL (Wang et al., 2024a), ExpeL (Zhao et al., 2024), and AdaPlanner
(Sun et al., 2023) store experiences but face key limitations. Namely, they suffer from shallow reasoning
capabilities due to lack of environmental context (ExpeL) or causal analysis (ReAct (Yao et al., 2023)),
especially of failure modes (Voyager). Above all, these systems are often only evaluated on narrow, controlled-
environment benchmarks (e.g., ALFRED), not open-world tasks.

6.4 Mental Models in AI

While cognitive-inspired architectures like predictive coding (Rao & Ballard, 1999) and world models (Ha
& Schmidhuber, 2018) encode environmental dynamics, they rely on latent vectors (PIGLeT (Zellers et al.,
2021)) or symbolic logic (RAP (Hao et al., 2023)), sacrificing interpretability and adaptability. Neuro-symbolic
methods (Garcez & Lamb, 2023) and tree-search frameworks (LATS (Zhou et al., 2024)) further struggle
with scalability and causal reasoning.

7 Conclusion

In this paper we presented MINDSTORES, an experience-augmented planning framework that enables
embodied agents to build and leverage mental models through natural interaction with their environment.
Our approach extends zero-shot LLM planning by maintaining a database of natural language experiences that
inform future planning iterations. Through extensive experiments in MineDojo, MINDSTORES demonstrates
significant improvements over baseline approaches, particularly in intermediate-complexity tasks, while
maintaining the flexibility of zero-shot approaches. The success of our "artificial mental model" approach,

11



Under review as submission to TMLR

which represents experiences as retrievable natural language tuples and enables LLMs to reason over past
experiences, demonstrates that incorporating principles from human cognition can substantially improve
complex reasoning and experiential learning capabilities in AI systems.

However, several limitations remain. Performance degrades significantly for advanced tasks, and computational
overhead scales with database size. Additionally, MINDSTORES relies heavily on structured environmental
feedback provided as natural language descriptions, which may be difficult to obtain in less constrained real-
world settings where state information is noisy or incomplete. This feedback dependency presents challenges
for deploying such systems in domains lacking standardized state-to-text mechanisms. Moreover, it is worth
noting that our evaluation exclusively utilized GPT-4 due to practical constraints, which likely represents
a conservative estimate of MINDSTORES’ potential. As more advanced models with enhanced reasoning
capabilities become more accessible, the performance ceiling of our approach may increase significantly.

Future work should explore more sophisticated experience pruning mechanisms, hierarchical memory archi-
tectures for managing larger experience databases, and improved methods for transferring insights across
related tasks. Addressing the feedback limitation will require developing robust state-to-language translators
or multimodal encoders that can generate consistent natural language descriptions from raw sensory inputs.
Additionally, investigating ways to combine our experience-based approach with traditional reinforcement
learning could help address the challenge of long-horizon planning in complex environments.
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Appendix A: Agent Algorithm and LLM Prompts

A.1 Agent Algorithm

1 def run_agent(
2 environment, # MineDojo environment
3 max_steps=1000, # Maximum steps to run
4 goal_input="" # Optional high-level goal
5 ):
6 # Initialize metrics and experience tracking
7 metrics_logger = MetricsLogger()
8 experience_store = ExperienceStore()
9

10 # Initial environment reset
11 obs, _, _, info = environment.step(environment.action_space.no_op())
12

13 step = 0
14 while step < max_steps:
15 # 1. Create structured state description
16 state_json = get_state_description(obs, info)
17

18 # 2. Get next immediate task
19 sub_task = get_next_immediate_task(state_json)
20 metrics_logger.start_subtask()
21

22 # 3. Plan action sequence
23 actions = plan_action(state_json, info["inventory"], sub_task)
24

25 # 4. Execute actions and track experience
26 obs, reward, done, info = execute_action_sequence(actions)
27

28 # 5. Store experience and update metrics
29 if done:
30 store_experience(state_json, reward, done)
31 break
32

33 step += len(actions)
34

35 environment.close()
36 metrics_logger.print_summary()

A.2 LLM Prompts

A.2.1 Environment Description Prompt

1 You are an expert Minecraft observer. Describe the current environment state focusing on:
2 1. The agent's immediate surroundings (blocks, entities, tools)
3 2. Environmental conditions (weather, light, temperature)
4 3. Agent's physical state (health, food, equipment)
5 4. Notable resources or dangers
6

7 Current state:
8 ${state_json_str}
9

10 Provide a clear, concise description that would be useful for planning actions.

A.2.2 Situation Analysis Prompt
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1 You are an expert Minecraft strategist. Given the current state and environment description:
2 1. Analyze available resources and their potential uses
3 2. Identify immediate opportunities or threats
4 3. Consider crafting possibilities based on inventory
5 4. Evaluate progress towards goals
6

7 Environment description:
8 ${description}
9

10 Current state:
11 ${state_json_str}
12

13 Provide strategic insights about the current situation.

A.2.3 Strategy Planning Prompt

1 You are an expert Minecraft planner. Create a strategic plan considering:
2 1. The current goal: ${goal}
3 2. Available resources and tools
4 3. Environmental conditions
5 4. Potential obstacles or requirements
6 5. Do not assume intermediate tasks can be achieved without running another agent loop
7 6. Specify quantities and required actions
8

9 Environment description:
10 ${description}
11

12 Situation analysis:
13 ${explanation}
14

15 Current state:
16 ${state_json_str}
17

18 Create a specific, actionable plan that moves towards the goal.

A.2.4 Action Selection Prompt

1 You are an expert Minecraft action selector. Convert the plan into specific actions:
2 1. Use only valid Minecraft actions (move_forward, move_backward, jump, craft, etc.)
3 2. Consider the current state and available resources
4 3. Break down complex tasks into simple action sequences
5 4. Ensure actions are feasible given agent capabilities
6 5. Make actions incremental and build progressively
7

8 Available actions:
9 - forward [N]: Move forward N steps (default 1)

10 - backward [N]: Move backward N steps (default 1)
11 - move_left
12 - move_right
13 - jump
14 - sneak
15 - sprint
16 - attack [N]
17 - use
18 - drop
19 - craft
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20 - equip [item]
21 - place [block]
22 - destroy
23 - look_horizontal +/-X
24 - no_op
25

26 Strategic plan:
27 ${plan}
28

29 Current state:
30 ${state_json_str}
31

32 Return ONLY a list of actions, one per line, that can be directly executed.

A.2.5 Outcome Evaluation Prompt

1 Evaluate the outcome of a Minecraft action sequence in brief.
2

3 Initial state (JSON): ${initial_state}
4 Final state (JSON): ${final_state}
5 Reward: ${reward}
6 Done: ${done}
7 GPT Plan: ${gpt_plan}
8 Executed Actions: ${executed_actions}
9

10 Format response as: outcome|success|explanation

Appendix B: Implementation Details

B.1 Core Components

Our implementation leverages:

• MineDojo environment for Minecraft interaction

• OpenAI GPT-4 API for planning and reasoning

• SBERT for semantic embeddings

• FAISS for efficient similarity search

• Custom logging system for experiment tracking

The codebase is structured into modules for state processing, experience management, action planning,
metrics collection, and environment interaction.

B.2 Environment Integration

1 env = minedojo.make(
2 task_id="survival",
3 image_size=(480, 768),
4 seed=40,
5 initial_inventory=[
6 InventoryItem(slot=0, name="wooden_axe", quantity=1),
7 ]
8 )
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The action space includes movement (forward, backward, left, right, jump, sneak, sprint), interaction (attack,
use, drop, craft, equip, place, destroy), camera control (look_horizontal, look_vertical), and special (no_op).

B.3 Neural Components

Embedding configuration:

• Model: SBERT ‘all-MiniLM-L6-v2’

• Output dimension: 768

• Normalization: L2

• Distance metric: cosine similarity

FAISS index parameters:

• Index type: IndexFlatL2

• Dimension: 768

• Metric: L2 distance

Appendix C: Additional Tables

Table 1: Task Details
Meta Name Number Example Steps Given Tool
MT1 Basic 14 Make a wooden door 3000 Axe
MT2 Tool 12 Make a stone pickaxe 3000 Axe
MT3 Hunt and Food 7 Cook the beef 6000 Axe
MT4 Dig-down 6 Mine Coal 6000 Axe
MT5 Equipment 9 Equip the leather helmet 3000 Axe
MT6 Tool (Complex) 7 Make shears and bucket 6000 Axe
MT7 IronStage 13 Obtain an iron 6000 Axe
MT8 Challenge 1 Obtain a diamond! 12000 Axe
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Table 2: Task Details with MINDSTORES, DEPS, Voyager, and Reflexion Percentages
Category Task Name MINDSTORES (%) DEPS (%) Voyager (%) Reflexion (%)

MT1 Wooden Door 83.3 66.7 72.0 75.5
MT1 Stick 90.0 83.7 85.2 88.1
MT1 Wooden Slab 83.3 73.7 78.1 80.4
MT1 Planks 80.0 73.3 76.0 78.5
MT1 Fence 80.0 66.7 70.4 73.2
MT1 Sign 86.7 73.3 77.5 79.9
MT1 Trapdoor 80.0 56.7 65.3 67.8
MT2 Furnace 70.0 56.67 60.3 63.4
MT2 Crafting Table 93.3 83.3 85.7 88.9
MT2 Wooden Axe 96.7 96.7 90.5 92.7
MT2 Wooden Sword 90.0 86.7 84.0 87.1
MT2 Wooden Hoe 86.7 86.7 81.2 84.5
MT2 Stone Pickaxe 76.7 73.3 70.9 73.8
MT2 Stone Sword 83.3 80.0 77.0 79.5
MT2 Stone Shovel 70.0 66.7 65.1 67.5
MT2 Wooden Shovel 86.7 63.3 68.4 71.0
MT3 Cooked Beef 60.0 43.3 50.2 52.6
MT3 Bed 50.0 43.3 47.5 49.7
MT3 Item Frame 86.7 83.3 80.1 83.0
MT3 Cooked Mutton 73.3 66.7 69.0 71.2
MT3 Painting 96.7 76.67 79.4 82.1
MT3 Cooked Porkchop 53.3 43.3 48.2 50.3
MT4 Torch 13.3 3.3 5.1 7.0
MT4 Cobblestone Wall 66.7 53.3 57.0 60.5
MT4 Lever 86.7 73.3 75.2 78.3
MT4 Coal 23.3 10.0 12.5 15.1
MT4 Stone Slab 70.0 53.33 58.3 60.9
MT4 Stone Stairs 73.3 63.33 65.0 68.4
MT5 Iron Boots 27.0 16.67 19.3 21.7
MT5 Iron Helmet 10.0 0.0 2.5 4.1
MT5 Shield 23.3 13.3 15.0 17.4
MT5 Iron Chestplate 10.0 0.0 2.0 3.9
MT5 Leather Boots 63.3 60.0 58.2 61.0
MT5 Iron Leggings 3.3 3.3 4.0 5.8
MT5 Leather Helmet 66.7 46.67 50.2 53.5
MT6 Iron Pickaxe 6.67 0.0 2.8 3.5
MT6 Bucket 13.3 6.7 8.0 9.5
MT6 Iron Sword 23.3 6.7 10.3 12.9
MT6 Iron Hoe 23.3 13.3 15.2 17.1
MT6 Iron Axe 23.3 6.67 9.7 11.3
MT6 Shears 33.3 16.67 19.8 22.0
MT7 Minecart 13.3 0.0 4.5 6.1
MT7 Iron Nugget 36.7 20.0 22.5 24.9
MT7 Furnace Minecart 6.7 3.3 5.0 6.4
MT7 Rail 13.3 6.7 7.9 9.2
MT7 Cauldron 10.0 3.3 4.7 5.8
MT7 Iron Bars 13.3 6.7 8.1 9.5
MT8 Diamond 0.0 0.0 0.0 0.0
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Task MINDSTORES Voyager Reflexion
Mine Wood 10 12 9
Mine Cobblestone 34 42 39
Mine Coal 54 85 106
Make Furnace 89 147 198
Make Stone Sword 187 263 500
Mine Iron 276 500 500

Table 3: Time steps required to complete different Minecraft tasks across three systems. (Values for Voyager
and Reflexion are capped at 500 in some tasks.)

Task MINDSTORES DEPS
(Predicted) (No Prediction)

MT1 83.3% 70.6%
MT2 84.59% 78.33%
MT3 70.0% 59.26%
MT4 53.33% 40.65%
MT5 33.33% 20.55%
MT6 20.5% 9.34%
MT7 15.55% 6.67%
MT8 0.0% 0.0%

Table 4: Success rate comparison with outcome prediction (MINDSTORES) vs. without (DEPS).

Task Number Task Name Novel DB Size Success Steps till Completion
1 Wooden Door 26 Yes 3000
2 Wooden Shovel 56 Yes 4357
3 Furnace 81 Yes 4879
4 Cooked Beef 134 Yes 5602
5 Cooked Porkchop 141 Yes 5802
6 Torch 197 Yes 6458
7 Stone Slab 199 Yes 6578
8 Iron Pickaxe 289 Yes 8598
9 Iron Axe 300 Yes 8986
10 Minecart 355 Yes 9112

Table 5: Task Performance Summary
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