
Under review as submission to TMLR

MINDSTORES: Memory-Informed Neural Decision Synthesis
for Task-Oriented Reinforcement in Embodied Systems

Anonymous authors
Paper under double-blind review

Abstract

While large language models (LLMs) have shown promising capabilities as zero-shot planners
for embodied agents, their inability to learn from experience limits their robustness in complex
open-world environments like Minecraft. We introduce MINDSTORES, an experience-
augmented planning framework that enables embodied agents to build and leverage mental
models through natural interaction with their environment. Drawing inspiration from how
humans construct and refine cognitive mental models, our approach extends existing zero-shot
LLM planning by maintaining a database of past experiences that informs future planning
iterations. The key innovation is representing accumulated experiences as natural language
embeddings of (state, task, plan, outcome) tuples, which can then be efficiently retrieved
and reasoned over by an LLM planner to generate insights and guide plan refinement for
novel states and tasks. Through extensive experiments in the MineDojo environment, we
find that MINDSTORES learns and applies its knowledge significantly better than existing
memory-based LLM planners while maintaining the flexibility and generalization benefits
of zero-shot approaches, representing an important step toward more capable embodied AI
systems that can learn continuously through natural experience.

1 Introduction

Recent advances in large language models (LLMs) have demonstrated enhanced capabilities in reasoning
(Plaat et al., 2024; Huang & Chang, 2023), planning (Sel et al., 2025), and decision-making (Huang et al.,
2024) through methods that strengthen analytical depth. Among the numerous domains of active innovation,
the success of AI agents serves as a critical benchmark for assessing our progress toward generally capable
artificial intelligence (Brown et al., 2020).

Building embodied agents that learn continuously from real-world interactions through persistent memory
and adaptive reasoning remains a fundamental challenge in the future of artificial intelligence. Classical
approaches, such as reinforcement learning (Dulac-Arnold et al., 2021) and symbolic planning (Zheng et al.,
2025), struggle with scalability, irreversible errors, and rigid assumptions in complex environments.

A promising paradigm for such agents leverages LLMs as high-level planners (Jeurissen et al., 2024): the LLM
decomposes abstract goals into step-by-step plans (e.g., “mine wood → craft tools → smelt iron”), while a
low-level controller translates these plans into environment-specific actions (e.g., movement, object interaction).
This “brain and body” architecture capitalizes on the LLM’s capacity for structured reasoning while grounding
its outputs in the dynamics of the physical world—a critical capability for real-world applications like robotic
manipulation (Shentu et al., 2024; Bhat et al., 2024; Wang et al., 2024b), autonomous navigation (Zawalski
et al., 2024), and adaptive disaster response.

While recent LLM-based agents show promise in generating action plans for embodied tasks, many lack
experiential learning, i.e., the ability to apply insights from past experiences to planning for future tasks.
Unlike humans, who build internal models of their environment across interactions to generalize insights,
avoid errors, and reason counterfactually (e.g., “Crafting a stone pickaxe first would enable iron mining”),
existing agents cannot synthesize persistent representations of past interactions. This gap hinders their

1

Under review as submission to TMLR

Input

Review Experience

Plan Generation

Predict Outcome

Execute

Record

Failure
M

anagem
ent

N
ex

t
It

er
at

io
n

Task: Mine Iron

Review: Previous experiences for mining needs a pickaxe!

Plan: Mine , craft , mine , craft , mine

Predict: Probable failure, might die from hunger while finding iron ore.

Review: Find food before searching for iron ore.

Plan: Mine , craft , mine , craft , craft , hunt , mine

Predict: Probable success!

Execution:

Store relevant information back into database to refer to later.

Figure 1: Overview of the MINDSTORES planning architecture. The left shows the iterative experiential
learning pipeline leveraging the experience database. Database-related methods are in orange, planning steps
are in green, and Minecraft steps are in red. The right shows an example applying this pipeline to an example
task in Minecraft.

ability to tackle long-horizon tasks in open worlds like Minecraft, where success requires inferring objectives,
recovering from failures, and transferring insights across scenarios.

Minecraft exemplifies these challenges: agents must explore procedural terrains, infer task dependencies (e.g.,
stone tools before iron mining), and adapt to unforeseen challenges. Current LLM planners, namely zero-shot
architectures like DEPS (Wang et al., 2024c), exhibit critical flaws: (1) they lack persistent memory, causing
repetitive errors (e.g., using wooden pickaxes for iron mining); and (2) they underutilize LLMs’ reasoning to
synthesize experiential insights, producing brittle plans.

To address these limitations, we propose MINDSTORES, a framework that leverages LLMs to construct
dynamic mental models—internal representations guiding reasoning and decision-making, inspired by human
cognition. Just as humans build simplified models of reality to anticipate events and solve problems, our
approach equips agents to actively interpret experiences through structured reasoning. By analyzing failures
(e.g., “Wooden pickaxes break mining iron”), inferring causal rules (e.g., “Stone tools are prerequisites”), and
predicting outcomes, the LLM transforms raw interaction data into adaptive principles.

MINDSTORES augments planners with an experience database storing natural language tuples (state, task,
plan, outcome) and operates cyclically: observe, retrieve relevant experiences, synthesize context-aware plans,
act, and log outcomes. This closed-loop process enables semantic analysis of memories, iterative strategy
refinement, and outcome prediction, bridging the gap between static planning and experiential learning while
grounding agent reasoning in human-like cognitive foundations.

Hence, our key contributions are as follows:

• A cognitive-inspired formulation of artificial mental models to enable natural-language memory
accumulation and transfer learning.

• MINDSTORES, a novel open-world LLM planner leveraging the above formulation to develop
lifelong learning embodied agents.

• Extensive evaluation of MINDSTORES in Minecraft, demonstrating a significant improvement in
open-world planning tasks over existing methods.

In the remainder of this paper, we detail the theoretical foundations of mental models in Section 2, present
the MINDSTORES architecture in Section 3, and validate its performance through experiments in Sections 4

2

Under review as submission to TMLR

and 5. Our findings underscore the critical role of memory-informed reasoning in developing lifelong learning
agents for open-world environments.

2 Background

2.1 Open-World Planning for Embodied Agents

Planning for embodied agents in open-world environments presents unique challenges due to the unbounded
action space, long-horizon dependencies, and complex environmental dynamics. In environments like Minecraft,
agents must reason about sequences of actions that may span dozens of steps, where early mistakes can
render entire trajectories infeasible (Fan et al., 2022). Traditional planning approaches that rely on explicit
state representations and value functions struggle in such domains due to the combinatorial explosion of
possible states and actions.

The key challenges in open-world planning stem from two main factors. First, the need for accurate multi-
step reasoning due to long-term dependencies between actions presents a significant hurdle. Second, the
requirement to consider the agent’s current state and capabilities when ordering parallel sub-goals within
a plan poses additional complexity. Consider the example of crafting a diamond pickaxe in Minecraft: the
process requires first obtaining wood, then crafting planks and sticks, mining stone with a wooden pickaxe,
crafting a stone pickaxe, mining iron ore, smelting iron ingots, and finally crafting the iron pickaxe—a
sequence that can easily fail if any intermediate step is incorrectly executed or ordered.

2.2 Zero-Shot LLM Planning

Recent work has shown that large language models can serve as effective zero-shot planners for embodied
agents through their ability to decompose high-level tasks into sequences of executable actions (Huang et al.,
2022a). The DEPS (Describe, Explain, Plan and Select) framework leverages this capability through an
iterative planning process that combines several key components (Wang et al., 2024c). The framework utilizes
a descriptor that summarizes the current state and execution outcomes, an explainer that analyzes plan
failures and suggests corrections, a planner that generates and refines action sequences, and a selector that
ranks parallel candidate sub-goals based on estimated completion steps.

The key innovation of DEPS is its ability to improve plans through verbal feedback and explanation. When
a plan fails, the descriptor summarizes the failure state, the explainer analyzes what went wrong, and the
planner incorporates this feedback to generate an improved plan. This creates a form of zero-shot learning
through natural language interaction.

However, DEPS and similar approaches maintain no persistent memory across episodes. Each new planning
attempt starts fresh, unable to leverage insights gained from previous successes and failures in similar
situations. This limitation motivates our work on experience-augmented planning.

2.3 Mental Models

Mental models theory, originally developed by Craik (1952), proposes that humans construct internal
representations of external reality to understand, predict, and control their environments. These cognitive
structures serve as simplified frameworks that abstract away unnecessary details while preserving causal
relationships essential for reasoning. In cognitive science, mental models are understood to be dynamic,
continuously updated through experience, and crucially, transferable across contexts.

Three key characteristics of human mental models particularly relevant to our work are: (1) their representation
as declarative knowledge that can be explicitly communicated and reasoned over, (2) their ability to facilitate
counterfactual reasoning about hypothetical scenarios, and (3) their role in enabling transfer learning across
superficially different but structurally similar problems.

Several insights may be drawn from this literature to inform the construction of a more intelligent LLM-based
embodied agent planner. First, by representing experiences as natural language descriptions rather than latent
vectors or symbolic structures, we may leverage the LLM’s ability to perform flexible semantic reasoning in a

3

Under review as submission to TMLR

Figure 2: Interactive planning process for crafting iron boots in Minecraft. The system initially plans to
mine iron with a wooden pickaxe but learns from past experience that this will fail. It then updates the plan
to include creating a stone pickaxe first, leading to successful iron ore mining.

form that mirrors human declarative knowledge. Second, by enabling the agent to predict outcomes before
execution, we may implement a form of counterfactual reasoning similar to how humans mentally simulate
potential actions before commitment. Third, by retrieving experiences based on semantic similarity rather
than exact matching, we may facilitate the transfer of knowledge across scenarios that share underlying
dynamics but differ in surface details.

3 Methods

3.1 Overview

We propose an experience-augmented planning framework that maintains a similar foundation to DEPS but
advances by maintaining a persistent mental model of the environment through natural language experiences.
Our approach integrates several key components into a cohesive system. The framework maintains a database
D of experience tuples (s, t, p, o) containing state descriptions s, tasks t, plans p, and outcomes o. This is
complemented by a semantic retrieval system for finding relevant past experiences, an LLM planner that
generates insights and plans informed by retrieved experiences, and a prediction mechanism that estimates
plan outcomes before execution.

3.2 Experience Database

Each experience tuple (s, t, p, o) ∈ D consists of natural language paragraphs describing the environmental
context. The state s captures the environmental context and agent’s condition. The task t represents the
high-level goal to be achieved. The plan p contains the sequence of actions generated by the planner. Finally,
the outcome o describes the execution result and failure description if applicable.

4

Under review as submission to TMLR

For each component, we compute a dense vector embedding e(x) ∈ Rd using a pretrained sentence transformer,
where x represents any of s, t, p, or o. This allows efficient similarity-based retrieval using cosine distance:

sim (x1, x2) = e (x1) · e (x2)
∥e (x1)∥ ∥e (x2)∥

While modern LLMs support expansive context windows, our choice of cosine-similarity retrieval over full-
context inclusion balances computational efficiency, relevance prioritization, and scalability. Selective retrieval
using cosine similarity was chosen for several key reasons: it effectively captures semantic relationships beyond
exact matches, normalizes vector magnitudes for comparing texts of different lengths, and efficiently handles
high-dimensional embeddings. Moreover, as will be detailed in our experiments, we found that including all
experiences in the context window introduced “experience noise” that actively distracted the model from
identifying relevant past experiences to reason about. Our embedding-based retrieval acts as a semantic filter,
distilling the most pertinent experiences while avoiding noise from irrelevant entries.

3.3 Experience-Guided Planning

Given a new state st and task tt, our algorithm proceeds through several stages. Initially, it retrieves the k
most similar past experiences based on state and task similarity:

Nk(D, st, tt) = top-k(s,t,p,o)∈D

 ∑
x∈{s,t}

λxsim(x, xt)

 (1)

The LLM is then prompted to analyze these experiences and generate insights about common failure modes
to avoid, successful strategies to adapt, and environmental dynamics to consider. Following this analysis, it
generates an initial plan pt conditioned on the state, task, experiences, and insights.

The system then predicts the likely outcome by retrieving similar past plans:

Nk(st, tt, pt) = top-k(s,t,p,o)∈D

 ∑
x∈{s,t,p}

λxsim(x, xt)

 (2)

If predicted outcomes suggest likely failure, the system returns to the plan generation stage to revise the plan.
Finally, it executes the plan and stores the new experience tuple in D. The complete process is formalized in
Algorithm 1.

Algorithm 1 Experience-Augmented Planning
Require: State st, Task tt, Database D, LLM M , k neighbors
Ensure: Plan pt

1: Nk ← retrieve_top_k(D, st, tt, k)
2: insights←M.analyze_experiences(Nk)
3: pt ←M.generate_plan(st, tt,Nk, insights)
4: while true do
5: similar_plans← get_similar_plans(D, st, tt, pt)
6: pred_outcome← analyze_outcomes(similar_plans)
7: if pred_outcome is success then
8: break
9: end if

10: pt ←M.revise_plan(pt, pred_outcome)
11: end while
12: outcome← execute_plan(pt)
13: D.add((st, tt, pt, outcome))
14: return pt

5

Under review as submission to TMLR

4 Experiments

4.1 Experimental Setup

We evaluate our experience-augmented planning approach in MineDojo using 8 tiers of task complexity
(MT1–MT8) (Fan et al., 2022). The observation space includes RGB view, GPS coordinates, and inventory
state, with 42 discrete actions mapped from MineDojo’s action space (Fan et al., 2022). All experiments
utilize the behavior cloning controller trained on human demonstrations, following similar methodology to
DEPS and Voyager. Due to software version constraints, our implementation of the controller achieves lower
baseline performance than the original DEPS controller. Therefore, we use our implementation of DEPS
without the experience database as the primary baseline for fair comparison. Each task is evaluated over 30
trials with randomized initial states and a fixed random seed of 42.

While our current experiments exclusively use GPT-4 (OpenAI et al., 2024b) via the OpenAI API due to
resource constraints and the requirement of low-latency LLM querying for planning tasks, we anticipate
that this serves as a lower bound on the potential performance of MINDSTORES when paired with more
advanced models. Emerging language models such as OpenAI o1 (OpenAI et al., 2024a) and Deepseek
R1 (DeepSeek-AI et al., 2025) demonstrate enhanced reasoning capabilities that could further improve the
effectiveness of our experience-based planning approach. Our architecture is designed to be model-agnostic,
allowing researchers to easily substitute more powerful LLMs as they become available while maintaining the
fundamental experience-augmented planning methodology.

Our experience database uses Sentence-BERT embeddings (768-dim) stored in FAISS for efficient search.
Key parameters were determined through ablation studies:

• Optimal k = 10 neighbors (tested k = 1, 3, 5, 10, 20)

• Weighted similarity: λs = 0.4 (state), λt = 0.4 (task), λp = 0.2 (plan)

For the complete agent algorithm and associated LLM prompts, see Appendix A, and for detailed imple-
mentation aspects including environment integration and neural component configurations, see Appendix
B.

4.2 Evaluation Tasks

We evaluate on 53 Minecraft tasks grouped into 3 complexity tiers:

• Basic (MT1–MT2): Fundamental tasks (wood/stone tools, basic blocks)

• Intermediate (MT3–MT5): Progressive tasks (food, mining, armor crafting)

• Advanced (MT6–MT8): Complex tasks (iron tools, minecart, diamond)

Episode lengths range from 3,000 steps (Basic) to 12,000 steps (Challenge tasks).

For additional task details and performance statistics, see Appendix C and Table 1.

4.3 Baselines

We compare the performance of MINDSTORES to that of the following existing state-of-the-art approaches:

• DEPS: State-of-the-art zero-shot LLM planner (Wang et al., 2024c). We selected DEPS as our
primary comparison point because it represents a modern planning approach without experience
storage. This provides a clean comparison to isolate the specific benefits of our experience-based
approach. DEPS follows an iterative planning process using description, explanation, planning, and
selection, making it conceptually similar to our framework but without persistent memory.

6

Under review as submission to TMLR

• Voyager: Automated curriculum learning agent (Wang et al., 2023) where we simulate zero-shot
planning with the addition of a global database. Voyager is the state-of-the-art model for Minecraft
task-planning via LLM agents. However, the authors suggest a structured curriculum learning
procedure prior to deployment for optimal performance, which is a limitation for real-world use
cases. Note that for equal comparison in our experiments, we don’t explicitly expose the agent to
any structured curriculum.

• Reflexion: LLM planner with environmental feedback (Shinn et al., 2023). Reflexion, like MIND-
STORES, incorporates environmental feedback into its planning process via natural language.
However, Reflexion is intended for general planning tasks and not explicitly designed for open-world
agents. Thus, we adapt it to MineDojo naively.

Together, these baselines represent the spectrum of current approaches to LLM-based planning systems—from
zero-shot planning without memory (DEPS) to systems with curriculum learning (Voyager) and environ-
mental feedback integration (Reflexion). This selection allows us to evaluate the specific contributions of
MINDSTORES’ experience database and retrieval system while controlling for other variables.

4.4 Ablations

To analyze the function of each individual component of the MINDSTORES framework, we perform the
following ablations:

• No Experience: Remove retrieval component

• Fixed k Values: Test k = 1, 3, 5, 10, 20 retrieval contexts

• Single-Shot: Disable iterative plan refinement (DEPS)

4.5 Metrics

To quantify each method’s performance in open-world planning in the Minecraft environment, we measure:

• Success Rate: Completion percentage across trials

• Learning Efficiency: Iterations required for skill mastery

• Complexity Scaling: Performance vs. task complexity tiers

• Retrieval Impact: Success rate vs. context size (k)

• Continuous Learning: Effect of non-discrete experience database for each task progression

5 Results and Analysis

Our experiments reveal significant performance differences between MINDSTORES and existing methods
across task categories, highlighting key insights into their scalability and effectiveness.

5.1 Performance Metrics

As we analyze Figure 3 comparing MINDSTORES to the baselines, we see an all-around improvement with
the addition of the experience database.

7

Under review as submission to TMLR

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Task Difficulty (MT)

Su
cc

es
s

R
at

e
(%

)
MINDSTORES DEPS

Voyager Reflexion

Figure 3: Performance comparison: MINDSTORES
consistently outperforms existing methods across
tasks. All systems show declining success rates with
increasing complexity (MT1–MT8), with MT8 result-
ing in no success for all. Mean differences: 14.42%
(vs. DEPS), 12.87% (vs. Voyager), and 10.11% (vs.
Reflexion).

Woo
d

Cob
ble

sto
ne

Coa
l

Fu
rna

ce
Sw

ord Iro
n

0

200

400

N
ov

el
Le

ar
ni

ng
It

er
at

io
ns

MINDSTORES Voyager Reflexion

Figure 4: Novel learning iterations across different
Minecraft tasks. MINDSTORES demonstrates su-
perior efficiency in complex tasks. (Note: Iteration
counts for Reflexion are capped at 500 in later tasks.)

Fundamental Tasks (MT1–MT2)

All systems achieve their strongest performance in fundamental crafting tasks, with DEPS achieving success
rates of 70.59–78.33%, Voyager at 74.93–75.39%, Reflexion at 77.63–78.11%, and MINDSTORES performing
notably better at 83.33–84.59%. Notably, there is a significant gap in Wooden Axe crafting, with MIND-
STORES achieving a 96.7% success rate compared to Voyager’s 90.5%, Reflexion’s 92.7%, and DEPS’s 96.7%.
The largest performance gap in MT1 occurs in Stick production, where MINDSTORES outperforms DEPS by
6.3%, Voyager by 4.8%, and Reflexion by 1.9%. In MT2, MINDSTORES maintains a consistent advantage,
with an average performance improvement of 6.26% over DEPS, 9.2% over Voyager, and 6.48% over Reflexion
across tasks.

Intermediate Tasks (MT3–MT5)

The maximum disparity between systems occurs in MT3 painting, where MINDSTORES achieves a 96.7%
success rate compared to DEPS’s 76.67%, Voyager’s 79.4%, and Reflexion’s 82.1%, resulting in performance
gaps of 20.03%, 17.3%, and 14.6% respectively. In cooked meat tasks, MINDSTORES maintains a 6.6–10.0%
advantage over DEPS, a 4.3–5.1% advantage over Voyager, and a 2.1–3.0% advantage over Reflexion. For
MT5 armor challenges, the performance gaps are particularly pronounced, with Leather Helmet showing
differences of 20.03% (vs. DEPS), 16.5% (vs. Voyager), and 13.2% (vs. Reflexion). Overall, MINDSTORES
maintains average advantages of +12.78% over DEPS, +12.65% over Voyager, and +9.06% over Reflexion
across intermediate tasks, demonstrating significant divergence in system performance.

Advanced Tasks (MT6–MT8)

In MT6 iron tool crafting, MINDSTORES achieves average performance improvements of 11.17% over DEPS,
7.71% over Voyager, and 6.13% over Reflexion, with the Iron Axe task showing particularly large gaps
(MINDSTORES: 23.3%, DEPS: 6.67%, Voyager: 9.7%, Reflexion: 11.3%). MT7 highlights another standout
difference, with Iron Nugget success rates at 36.7% for MINDSTORES compared to 20.0% for DEPS, 22.5%
for Voyager, and 24.9% for Reflexion. However, all systems experience a performance decline in advanced

8

Under review as submission to TMLR

tasks, with MT6–MT7 success rates dropping to 15.55–20.51% for MINDSTORES, 6.67–9.34% for DEPS,
7.12–12.80% for Voyager, and 9.28–14.38% for Reflexion. Notably, on our end, MINDSTORES did not
complete the MT8 task in a statistically significant manner, along with the rest of our architectures run; still
proving the MT8 diamond task to be a formidable milestone with 0% success rate across all systems.

Learning Efficiency Analysis

MINDSTORES demonstrates superior learning efficiency, particularly for complex tasks. For basic tasks like
mining wood and cobblestone, all systems perform comparably (8 to 45 iterations) (see Figure 4). However, as
complexity increases, MINDSTORES requires significantly fewer iterations (47 to 238) compared to Voyager
(92 to 500) and Reflexion (115 to 500), which show exponential increases in required iterations. For coal
mining, MINDSTORES requires 48.9% fewer iterations than Voyager and 59.1% fewer than Reflexion. For
furnace crafting, MINDSTORES requires 51.2% fewer iterations than Voyager and 62.4% fewer than Reflexion.
The efficiency advantage becomes even more pronounced for sword crafting and iron acquisition, where
MINDSTORES requires 42.1% and 52.4% fewer iterations than Voyager respectively, while both Voyager and
Reflexion hit the iteration cap (500) for the most complex tasks (Reflexion for both sword crafting and iron
acquisition, Voyager for iron acquisition). This demonstrates MINDSTORES’ capability to learn complex
behaviors with substantially fewer environmental interactions.

0 5 10 15 200

10

20

30

k Value

Su
cc

es
s

R
at

e
(%

)

Torch Iron Boots Iron Pickaxe
Minecart Diamond

Figure 5: Success rates vs. retrieval context size k for
different tasks. Simple tasks improve steadily with
k, while more complex tasks require larger k values.
Advanced tasks remain unachievable regardless of k.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 ·104

Task Reference Number

To
ta

lS
te

ps

Completion Steps

Figure 6: Steps required for task completion with
continuous building of the experience database. (See
Appendix Table 5 for corresponding tasks.)

5.2 Scalability with Task Complexity and Retrieval Context Size

Performance divergence becomes pronounced with increasing task complexity. MINDSTORES maintains
efficient novel learning iterations for tasks like crafting a stone sword and mining iron, while Voyager and
Reflexion require significantly more iterations, even reaching the max range (500+) for a relatively simple
Mine Iron task (see Figure 4).

We moreover observe steady increases in success rate with increased retrieval context size until k = 10, after
which performance plateaus (see Figure 5). This implies that there exists a “sweet spot” for retrieving and
reasoning about past experiences: Too little may leave out relevant insights, while too much produces noise
that disrupts the LLM’s predictive capabilities. Additionally, increasing k-values requires greater compute, so
considering performance gains is crucial.

9

Under review as submission to TMLR

5.3 Continuous Experience Building Analysis

Figure 6 shows an experiment in which the experience database is not reset between tasks but is built
continuously across multiple tasks. We observe that the entire process of completing the Minecart task takes
only 9112 steps including the previous 9 tasks, compared to the 6000 steps needed in a fresh environment.
This indicates that only approximately 200 new steps were required. The number of new task completion
steps decreases non-linearly even as task complexity grows:

• Basic crafting (Wooden Door): 3000 steps

• Mid-tier crafting (Furnace): 4879 steps

• Advanced crafting (Iron Pickaxe): 8598 steps

The system maintains a 100% success rate across all tasks, indicating robust skill transfer and knowledge
utilization from the growing experience database, which expands from 26 entries for Wooden Door to 355
entries for Minecart (see Figure 6 and Appendix Table 5). This is similar to a structured curriculum approach
to Voyager; however, the obvious bottleneck with this is the need for a curriculum to be trained before robust
deployment.

5.4 Example Outputs

To illustrate how experience-augmented planning operates in practice, we highlight a representative example
from our experiments:

1. Iron Boots Crafting (MT5): In an initial attempt, the agent failed to smelt iron ore due to the
absence of a furnace. This failure was logged as an experience tuple:

• State: Inventory includes iron ore and coal.
• Task: Craft iron boots.
• Plan: “Smelt iron ore → craft boots.”
• Outcome: Failed—no furnace available.

In a subsequent trial, retrieving this experience prompted the LLM to first craft a furnace (using
cobblestone) before smelting, resolving the dependency.

This example demonstrates how MINDSTORES transforms isolated failures into actionable insights. By
grounding plans in past outcomes—such as prerequisite checks or resource prioritization—the agent avoids
repetitive errors and incrementally builds robust strategies, even in complex tasks.

5.5 Failure Modes and Qualitative Analysis

Despite MINDSTORES’ improvements over baselines, several failure modes persist in advanced tasks:

Semantic Retrieval Mismatches (37% of MT6-MT8 failures). The system retrieves experiences
with lexical similarity but strategic differences (e.g., retrieving iron mining experiences for diamond tasks,
missing crucial tool requirements).

Overreliance on Partial Successes (28% of intermediate failures). The agent replicates suboptimal
strategies from partially successful past experiences, leading to resource exhaustion before goal completion.

Compositional Integration Failures (42% of MT7-MT8 failures). When tasks require novel combi-
nations of mastered subtasks with new dependencies, the agent struggles to generate integrated plans with
correct resource allocation.

10

Under review as submission to TMLR

For example, in Diamond Mining (MT8), the agent retrieved iron mining experiences and planned to
“mine diamonds with stone pickaxe.” Despite reaching the correct depth and locating diamond ore, it failed
to recognize that diamonds specifically require iron pickaxes—illustrating both semantic mismatch and
compositional failure.

These patterns highlight challenges in experience-based planning: balancing similarity with contextual
differences, critically evaluating past successes, and composing previously learned skills in novel configurations.

6 Related Works

6.1 Embodied Planning & Classical Methods

Early approaches used hierarchical reinforcement learning (Sutton et al., 1999) and symbolic planning
(Kaelbling & Lozano-Perez, 2011) but struggled with scalability in open-world domains like Minecraft. Hybrid
methods like PDDLStream (Garrett et al., 2020) combined symbolic planning with procedural samplers, while
DreamerV3 Hafner et al. (2024) employed latent world models. However, these methods depend on rigid
priors, lack causal reasoning, and fail to recover from irreversible errors. Reinforcement learning frameworks
(e.g., DQN (Mnih et al., 2015), PPO (Schulman et al., 2017)) and LLM-RL hybrids like Eureka (Ma et al.,
2023) also falter in dynamic, long-horizon tasks due to static reward mechanisms and error propagation.

6.2 Zero-Shot LLM Planners

DEPS (Wang et al., 2024c) pioneered zero-shot LLM planning through iterative verbal feedback, enabling
dynamic plan refinement. Subsequent works like Voyager (Wang et al., 2023) (skill libraries), ProgPrompt
(Singh et al., 2023) (code generation), and Reflexion (Shinn et al., 2023) (feedback loops) advance LLM-based
planning but share critical flaws. Namely, they suffer from brittle execution due to dependency on hardcoded
assumptions (e.g., ProgPrompt’s code templates), opaque memory due to non-interpretable representations
(e.g., Voyager’s code snippets, PaLM-E’s latent vectors (Driess et al., 2023)), and the inability to learn from
failed task executions (e.g., Inner Monologue (Huang et al., 2022b) lacks persistent memory).

6.3 Memory-Based Planners

Recent memory-augmented systems like E2CL (Wang et al., 2024a), ExpeL (Zhao et al., 2024), and AdaPlanner
(Sun et al., 2023) store experiences but face key limitations. Namely, they suffer from shallow reasoning
capabilities due to lack of environmental context (ExpeL) or causal analysis (ReAct (Yao et al., 2023)),
especially of failure modes (Voyager). Above all, these systems are often only evaluated on narrow, controlled-
environment benchmarks (e.g., ALFRED), not open-world tasks.

6.4 Mental Models in AI

While cognitive-inspired architectures like predictive coding (Rao & Ballard, 1999) and world models (Ha
& Schmidhuber, 2018) encode environmental dynamics, they rely on latent vectors (PIGLeT (Zellers et al.,
2021)) or symbolic logic (RAP (Hao et al., 2023)), sacrificing interpretability and adaptability. Neuro-symbolic
methods (Garcez & Lamb, 2023) and tree-search frameworks (LATS (Zhou et al., 2024)) further struggle
with scalability and causal reasoning.

7 Conclusion

In this paper we presented MINDSTORES, an experience-augmented planning framework that enables
embodied agents to build and leverage mental models through natural interaction with their environment.
Our approach extends zero-shot LLM planning by maintaining a database of natural language experiences that
inform future planning iterations. Through extensive experiments in MineDojo, MINDSTORES demonstrates
significant improvements over baseline approaches, particularly in intermediate-complexity tasks, while
maintaining the flexibility of zero-shot approaches. The success of our "artificial mental model" approach,

11

Under review as submission to TMLR

which represents experiences as retrievable natural language tuples and enables LLMs to reason over past
experiences, demonstrates that incorporating principles from human cognition can substantially improve
complex reasoning and experiential learning capabilities in AI systems.

However, several limitations remain. Performance degrades significantly for advanced tasks, and computational
overhead scales with database size. Additionally, MINDSTORES relies heavily on structured environmental
feedback provided as natural language descriptions, which may be difficult to obtain in less constrained real-
world settings where state information is noisy or incomplete. This feedback dependency presents challenges
for deploying such systems in domains lacking standardized state-to-text mechanisms. Moreover, it is worth
noting that our evaluation exclusively utilized GPT-4 due to practical constraints, which likely represents
a conservative estimate of MINDSTORES’ potential. As more advanced models with enhanced reasoning
capabilities become more accessible, the performance ceiling of our approach may increase significantly.

Future work should explore more sophisticated experience pruning mechanisms, hierarchical memory archi-
tectures for managing larger experience databases, and improved methods for transferring insights across
related tasks. Addressing the feedback limitation will require developing robust state-to-language translators
or multimodal encoders that can generate consistent natural language descriptions from raw sensory inputs.
Additionally, investigating ways to combine our experience-based approach with traditional reinforcement
learning could help address the challenge of long-horizon planning in complex environments.

References
Vineet Bhat, Ali Umut Kaypak, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Grounding

llms for robot task planning using closed-loop state feedback, 2024. URL https://arxiv.org/abs/2402.
08546.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://papers.nips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao,
Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li,
Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou,
Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao,
Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng
Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong

12

https://arxiv.org/abs/2402.08546
https://arxiv.org/abs/2402.08546
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Under review as submission to TMLR

Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting
Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy
Zeng, Igor Mordatch, and Pete Florence. PaLM-E: An Embodied Multimodal Language Model, March
2023. URL http://arxiv.org/abs/2303.03378. arXiv:2303.03378 [cs].

G. Dulac-Arnold, N. Levine, D.J. Mankowitz, et al. Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110:2419–2468, 2021. doi: 10.1007/s10994-021-05961-4. URL
https://doi.org/10.1007/s10994-021-05961-4.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building Open-Ended Embodied
Agents with Internet-Scale Knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, December 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/
74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html.

Artur d’Avila Garcez and Luís C. Lamb. Neurosymbolic AI: the 3rd wave. Artif. Intell. Rev., 56(11):
12387–12406, March 2023. ISSN 0269-2821. doi: 10.1007/s10462-023-10448-w. URL https://doi.org/
10.1007/s10462-023-10448-w.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. PDDLStream: Integrating Symbolic
Planners and Blackbox Samplers via Optimistic Adaptive Planning. Proceedings of the International
Conference on Automated Planning and Scheduling, 30:440–448, June 2020. ISSN 2334-0843. doi: 10.1609/
icaps.v30i1.6739. URL https://ojs.aaai.org/index.php/ICAPS/article/view/6739.

David Ha and Jürgen Schmidhuber. World Models. March 2018. doi: 10.5281/zenodo.1207631. URL
http://arxiv.org/abs/1803.10122. arXiv:1803.10122 [cs].

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models, 2024. URL https://arxiv.org/abs/2301.04104.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with
Language Model is Planning with World Model. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 8154–8173,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
507. URL https://aclanthology.org/2023.emnlp-main.507/.

Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models: A Survey.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL https://aclanthology.org/
2023.findings-acl.67/.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents, March 2022a. URL http://arxiv.org/abs/
2201.07207. arXiv:2201.07207 [cs].

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey
Levine, Karol Hausman, and Brian Ichter. Inner Monologue: Embodied Reasoning through Planning with
Language Models, July 2022b. URL http://arxiv.org/abs/2207.05608. arXiv:2207.05608 [cs].

13

https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2303.03378
https://doi.org/10.1007/s10994-021-05961-4
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
http://arxiv.org/abs/1803.10122
https://arxiv.org/abs/2301.04104
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.findings-acl.67/
https://aclanthology.org/2023.findings-acl.67/
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2201.07207
http://arxiv.org/abs/2207.05608

Under review as submission to TMLR

Zhijian Huang, Tao Tang, Shaoxiang Chen, Sihao Lin, Zequn Jie, Lin Ma, Guangrun Wang, and Xiaodan
Liang. Making Large Language Models Better Planners with Reasoning-Decision Alignment, August 2024.
URL http://arxiv.org/abs/2408.13890. arXiv:2408.13890 [cs].

Dominik Jeurissen, Diego Perez-Liebana, Jeremy Gow, Duygu Cakmak, and James Kwan. Playing nethack
with llms: Potential & limitations as zero-shot agents, 2024. URL https://arxiv.org/abs/2403.00690.

Leslie Pack Kaelbling and Tomas Lozano-Perez. Hierarchical task and motion planning in the now. In 2011
IEEE International Conference on Robotics and Automation, pp. 1470–1477, Shanghai, China, May 2011.
IEEE. ISBN 978-1-61284-386-5. doi: 10.1109/ICRA.2011.5980391. URL http://ieeexplore.ieee.org/
document/5980391/.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
February 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL https://www.nature.com/articles/
nature14236. Publisher: Nature Publishing Group.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos,
Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre
Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum,
Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz
Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie,
Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea
Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive
Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David
Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund
Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann,
Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman,
Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu
Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera
Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason
Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero
Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon,
Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina
Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin
Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz
Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason
Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan,
Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang,
Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian,
Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam
Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel
Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah
Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal,
Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal
Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom
Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie
Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann

14

http://arxiv.org/abs/2408.13890
https://arxiv.org/abs/2403.00690
http://ieeexplore.ieee.org/document/5980391/
http://ieeexplore.ieee.org/document/5980391/
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236

Under review as submission to TMLR

Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng
Shao, and Zhuohan Li. Openai o1 system card, 2024a. URL https://arxiv.org/abs/2412.16720.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai,
Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes
Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar
Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim,
Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk,
Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta,
Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell,
Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder,
Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam,
Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick
Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter,
Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu,
Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang,
Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report,
2024b. URL https://arxiv.org/abs/2303.08774.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Reasoning with
Large Language Models, a Survey, July 2024. URL http://arxiv.org/abs/2407.11511. arXiv:2407.11511
[cs].

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpretation of
some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87, January 1999. ISSN 1546-1726.
doi: 10.1038/4580. URL https://www.nature.com/articles/nn0199_79. Publisher: Nature Publishing
Group.

15

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2407.11511
https://www.nature.com/articles/nn0199_79

Under review as submission to TMLR

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Optimization
Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347. arXiv:1707.06347 [cs].

Bilgehan Sel, Ruoxi Jia, and Ming Jin. LLMs Can Plan Only If We Tell Them, January 2025. URL
http://arxiv.org/abs/2501.13545. arXiv:2501.13545 [cs].

Yide Shentu, Philipp Wu, Aravind Rajeswaran, and Pieter Abbeel. From llms to actions: Latent codes as
bridges in hierarchical robot control, 2024. URL https://arxiv.org/abs/2405.04798.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: language
agents with verbal reinforcement learning. Advances in Neural Information Processing Systems, 36:
8634–8652, December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language
models. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530,
2023. doi: 10.1109/ICRA48891.2023.10161317.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. AdaPlanner: Adaptive Plan-
ning from Feedback with Language Models. Advances in Neural Information Processing Systems,
36:58202–58245, December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, August 1999.
ISSN 0004-3702. doi: 10.1016/S0004-3702(99)00052-1. URL https://www.sciencedirect.com/science/
article/pii/S0004370299000521.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models, October 2023.
URL http://arxiv.org/abs/2305.16291. arXiv:2305.16291 [cs].

Hanlin Wang, Chak Tou Leong, Jian Wang, and Wenjie Li. E^2CL: Exploration-based Error Correction
Learning for Embodied Agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 7626–7639, Miami, Florida, USA,
November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.448.
URL https://aclanthology.org/2024.findings-emnlp.448/.

Jiaqi Wang, Enze Shi, Huawen Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Bao Ge,
and Shu Zhang. Large language models for robotics: Opportunities, challenges, and perspectives. Journal
of Automation and Intelligence, 2024b. ISSN 2949-8554. doi: https://doi.org/10.1016/j.jai.2024.12.003.
URL https://www.sciencedirect.com/science/article/pii/S2949855424000613.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, Explain, Plan
and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents,
July 2024c. URL http://arxiv.org/abs/2302.01560. arXiv:2302.01560 [cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. ReAct:
Synergizing Reasoning and Acting in Language Models, March 2023. URL http://arxiv.org/abs/2210.
03629. arXiv:2210.03629 [cs].

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic control
via embodied chain-of-thought reasoning, 2024. URL https://arxiv.org/abs/2407.08693.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha Kembhavi, Ali Farhadi,
and Yejin Choi. PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural

16

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2501.13545
https://arxiv.org/abs/2405.04798
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/b5c8c1c117618267944b2617add0a766-Abstract-Conference.html
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
http://arxiv.org/abs/2305.16291
https://aclanthology.org/2024.findings-emnlp.448/
https://www.sciencedirect.com/science/article/pii/S2949855424000613
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2407.08693

Under review as submission to TMLR

Language Processing (Volume 1: Long Papers), pp. 2040–2050, Online, August 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.acl-long.159. URL https://aclanthology.org/2021.
acl-long.159/.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. ExpeL: LLM
Agents Are Experiential Learners. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):
19632–19642, March 2024. ISSN 2374-3468. doi: 10.1609/aaai.v38i17.29936. URL https://ojs.aaai.
org/index.php/AAAI/article/view/29936. Number: 17.

Wenqing Zheng, S. P. Sharan, Zhiwen Fan, Kevin Wang, Yihan Xi, and Zhangyang Wang. Symbolic visual
reinforcement learning: A scalable framework with object-level abstraction and differentiable expression
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(1):400–412, 2025. doi:
10.1109/TPAMI.2024.3469053.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
Agent Tree Search Unifies Reasoning Acting and Planning in Language Models, June 2024. URL http:
//arxiv.org/abs/2310.04406. arXiv:2310.04406 [cs].

17

https://aclanthology.org/2021.acl-long.159/
https://aclanthology.org/2021.acl-long.159/
https://ojs.aaai.org/index.php/AAAI/article/view/29936
https://ojs.aaai.org/index.php/AAAI/article/view/29936
http://arxiv.org/abs/2310.04406
http://arxiv.org/abs/2310.04406

Under review as submission to TMLR

Appendix A: Agent Algorithm and LLM Prompts

A.1 Agent Algorithm

1 def run_agent(
2 environment, # MineDojo environment
3 max_steps=1000, # Maximum steps to run
4 goal_input="" # Optional high-level goal
5):
6 # Initialize metrics and experience tracking
7 metrics_logger = MetricsLogger()
8 experience_store = ExperienceStore()
9

10 # Initial environment reset
11 obs, _, _, info = environment.step(environment.action_space.no_op())
12

13 step = 0
14 while step < max_steps:
15 # 1. Create structured state description
16 state_json = get_state_description(obs, info)
17

18 # 2. Get next immediate task
19 sub_task = get_next_immediate_task(state_json)
20 metrics_logger.start_subtask()
21

22 # 3. Plan action sequence
23 actions = plan_action(state_json, info["inventory"], sub_task)
24

25 # 4. Execute actions and track experience
26 obs, reward, done, info = execute_action_sequence(actions)
27

28 # 5. Store experience and update metrics
29 if done:
30 store_experience(state_json, reward, done)
31 break
32

33 step += len(actions)
34

35 environment.close()
36 metrics_logger.print_summary()

A.2 LLM Prompts

A.2.1 Environment Description Prompt

1 You are an expert Minecraft observer. Describe the current environment state focusing on:
2 1. The agent's immediate surroundings (blocks, entities, tools)
3 2. Environmental conditions (weather, light, temperature)
4 3. Agent's physical state (health, food, equipment)
5 4. Notable resources or dangers
6

7 Current state:
8 ${state_json_str}
9

10 Provide a clear, concise description that would be useful for planning actions.

A.2.2 Situation Analysis Prompt

18

Under review as submission to TMLR

1 You are an expert Minecraft strategist. Given the current state and environment description:
2 1. Analyze available resources and their potential uses
3 2. Identify immediate opportunities or threats
4 3. Consider crafting possibilities based on inventory
5 4. Evaluate progress towards goals
6

7 Environment description:
8 ${description}
9

10 Current state:
11 ${state_json_str}
12

13 Provide strategic insights about the current situation.

A.2.3 Strategy Planning Prompt

1 You are an expert Minecraft planner. Create a strategic plan considering:
2 1. The current goal: ${goal}
3 2. Available resources and tools
4 3. Environmental conditions
5 4. Potential obstacles or requirements
6 5. Do not assume intermediate tasks can be achieved without running another agent loop
7 6. Specify quantities and required actions
8

9 Environment description:
10 ${description}
11

12 Situation analysis:
13 ${explanation}
14

15 Current state:
16 ${state_json_str}
17

18 Create a specific, actionable plan that moves towards the goal.

A.2.4 Action Selection Prompt

1 You are an expert Minecraft action selector. Convert the plan into specific actions:
2 1. Use only valid Minecraft actions (move_forward, move_backward, jump, craft, etc.)
3 2. Consider the current state and available resources
4 3. Break down complex tasks into simple action sequences
5 4. Ensure actions are feasible given agent capabilities
6 5. Make actions incremental and build progressively
7

8 Available actions:
9 - forward [N]: Move forward N steps (default 1)

10 - backward [N]: Move backward N steps (default 1)
11 - move_left
12 - move_right
13 - jump
14 - sneak
15 - sprint
16 - attack [N]
17 - use
18 - drop
19 - craft

19

Under review as submission to TMLR

20 - equip [item]
21 - place [block]
22 - destroy
23 - look_horizontal +/-X
24 - no_op
25

26 Strategic plan:
27 ${plan}
28

29 Current state:
30 ${state_json_str}
31

32 Return ONLY a list of actions, one per line, that can be directly executed.

A.2.5 Outcome Evaluation Prompt

1 Evaluate the outcome of a Minecraft action sequence in brief.
2

3 Initial state (JSON): ${initial_state}
4 Final state (JSON): ${final_state}
5 Reward: ${reward}
6 Done: ${done}
7 GPT Plan: ${gpt_plan}
8 Executed Actions: ${executed_actions}
9

10 Format response as: outcome|success|explanation

Appendix B: Implementation Details

B.1 Core Components

Our implementation leverages:

• MineDojo environment for Minecraft interaction

• OpenAI GPT-4 API for planning and reasoning

• SBERT for semantic embeddings

• FAISS for efficient similarity search

• Custom logging system for experiment tracking

The codebase is structured into modules for state processing, experience management, action planning,
metrics collection, and environment interaction.

B.2 Environment Integration

1 env = minedojo.make(
2 task_id="survival",
3 image_size=(480, 768),
4 seed=40,
5 initial_inventory=[
6 InventoryItem(slot=0, name="wooden_axe", quantity=1),
7]
8)

20

Under review as submission to TMLR

The action space includes movement (forward, backward, left, right, jump, sneak, sprint), interaction (attack,
use, drop, craft, equip, place, destroy), camera control (look_horizontal, look_vertical), and special (no_op).

B.3 Neural Components

Embedding configuration:

• Model: SBERT ‘all-MiniLM-L6-v2’

• Output dimension: 768

• Normalization: L2

• Distance metric: cosine similarity

FAISS index parameters:

• Index type: IndexFlatL2

• Dimension: 768

• Metric: L2 distance

Appendix C: Additional Tables

Table 1: Task Details
Meta Name Number Example Steps Given Tool
MT1 Basic 14 Make a wooden door 3000 Axe
MT2 Tool 12 Make a stone pickaxe 3000 Axe
MT3 Hunt and Food 7 Cook the beef 6000 Axe
MT4 Dig-down 6 Mine Coal 6000 Axe
MT5 Equipment 9 Equip the leather helmet 3000 Axe
MT6 Tool (Complex) 7 Make shears and bucket 6000 Axe
MT7 IronStage 13 Obtain an iron 6000 Axe
MT8 Challenge 1 Obtain a diamond! 12000 Axe

21

Under review as submission to TMLR

Table 2: Task Details with MINDSTORES, DEPS, Voyager, and Reflexion Percentages
Category Task Name MINDSTORES (%) DEPS (%) Voyager (%) Reflexion (%)

MT1 Wooden Door 83.3 66.7 72.0 75.5
MT1 Stick 90.0 83.7 85.2 88.1
MT1 Wooden Slab 83.3 73.7 78.1 80.4
MT1 Planks 80.0 73.3 76.0 78.5
MT1 Fence 80.0 66.7 70.4 73.2
MT1 Sign 86.7 73.3 77.5 79.9
MT1 Trapdoor 80.0 56.7 65.3 67.8
MT2 Furnace 70.0 56.67 60.3 63.4
MT2 Crafting Table 93.3 83.3 85.7 88.9
MT2 Wooden Axe 96.7 96.7 90.5 92.7
MT2 Wooden Sword 90.0 86.7 84.0 87.1
MT2 Wooden Hoe 86.7 86.7 81.2 84.5
MT2 Stone Pickaxe 76.7 73.3 70.9 73.8
MT2 Stone Sword 83.3 80.0 77.0 79.5
MT2 Stone Shovel 70.0 66.7 65.1 67.5
MT2 Wooden Shovel 86.7 63.3 68.4 71.0
MT3 Cooked Beef 60.0 43.3 50.2 52.6
MT3 Bed 50.0 43.3 47.5 49.7
MT3 Item Frame 86.7 83.3 80.1 83.0
MT3 Cooked Mutton 73.3 66.7 69.0 71.2
MT3 Painting 96.7 76.67 79.4 82.1
MT3 Cooked Porkchop 53.3 43.3 48.2 50.3
MT4 Torch 13.3 3.3 5.1 7.0
MT4 Cobblestone Wall 66.7 53.3 57.0 60.5
MT4 Lever 86.7 73.3 75.2 78.3
MT4 Coal 23.3 10.0 12.5 15.1
MT4 Stone Slab 70.0 53.33 58.3 60.9
MT4 Stone Stairs 73.3 63.33 65.0 68.4
MT5 Iron Boots 27.0 16.67 19.3 21.7
MT5 Iron Helmet 10.0 0.0 2.5 4.1
MT5 Shield 23.3 13.3 15.0 17.4
MT5 Iron Chestplate 10.0 0.0 2.0 3.9
MT5 Leather Boots 63.3 60.0 58.2 61.0
MT5 Iron Leggings 3.3 3.3 4.0 5.8
MT5 Leather Helmet 66.7 46.67 50.2 53.5
MT6 Iron Pickaxe 6.67 0.0 2.8 3.5
MT6 Bucket 13.3 6.7 8.0 9.5
MT6 Iron Sword 23.3 6.7 10.3 12.9
MT6 Iron Hoe 23.3 13.3 15.2 17.1
MT6 Iron Axe 23.3 6.67 9.7 11.3
MT6 Shears 33.3 16.67 19.8 22.0
MT7 Minecart 13.3 0.0 4.5 6.1
MT7 Iron Nugget 36.7 20.0 22.5 24.9
MT7 Furnace Minecart 6.7 3.3 5.0 6.4
MT7 Rail 13.3 6.7 7.9 9.2
MT7 Cauldron 10.0 3.3 4.7 5.8
MT7 Iron Bars 13.3 6.7 8.1 9.5
MT8 Diamond 0.0 0.0 0.0 0.0

22

Under review as submission to TMLR

Task MINDSTORES Voyager Reflexion
Mine Wood 10 12 9
Mine Cobblestone 34 42 39
Mine Coal 54 85 106
Make Furnace 89 147 198
Make Stone Sword 187 263 500
Mine Iron 276 500 500

Table 3: Time steps required to complete different Minecraft tasks across three systems. (Values for Voyager
and Reflexion are capped at 500 in some tasks.)

Task MINDSTORES DEPS
(Predicted) (No Prediction)

MT1 83.3% 70.6%
MT2 84.59% 78.33%
MT3 70.0% 59.26%
MT4 53.33% 40.65%
MT5 33.33% 20.55%
MT6 20.5% 9.34%
MT7 15.55% 6.67%
MT8 0.0% 0.0%

Table 4: Success rate comparison with outcome prediction (MINDSTORES) vs. without (DEPS).

Task Number Task Name Novel DB Size Success Steps till Completion
1 Wooden Door 26 Yes 3000
2 Wooden Shovel 56 Yes 4357
3 Furnace 81 Yes 4879
4 Cooked Beef 134 Yes 5602
5 Cooked Porkchop 141 Yes 5802
6 Torch 197 Yes 6458
7 Stone Slab 199 Yes 6578
8 Iron Pickaxe 289 Yes 8598
9 Iron Axe 300 Yes 8986
10 Minecart 355 Yes 9112

Table 5: Task Performance Summary

23

	Introduction
	Background
	Open-World Planning for Embodied Agents
	Zero-Shot LLM Planning
	Mental Models

	Methods
	Overview
	Experience Database
	Experience-Guided Planning

	Experiments
	Experimental Setup
	Evaluation Tasks
	Baselines
	Ablations
	Metrics

	Results and Analysis
	Performance Metrics
	Scalability with Task Complexity and Retrieval Context Size
	Continuous Experience Building Analysis
	Example Outputs
	Failure Modes and Qualitative Analysis

	Related Works
	Embodied Planning & Classical Methods
	Zero-Shot LLM Planners
	Memory-Based Planners
	Mental Models in AI

	Conclusion

