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Abstract. Extensive occlusions in real-world scenarios pose challenges
to gait recognition due to missing and noisy information, as well as body
misalignment in position and scale. We argue that rich dynamic contex-
tual information within a gait sequence inherently possesses occlusion-
solving traits: 1) Adjacent frames with gait continuity allow holistic body
regions to infer occluded body regions; 2) Gait cycles allow information
integration between holistic actions and occluded actions. Therefore, we
introduce an action detection perspective where a gait sequence is re-
garded as a composition of actions. To detect accurate actions under
complex occlusion scenarios, we propose an Action Detection Based Mix-
ture of Experts (GaitMoE), consisting of Mixture of Temporal Experts
(MTE) and Mixture of Action Experts (MAE). MTE adaptively con-
structs action anchors by temporal experts and MAE adaptively con-
structs action proposals from action anchors by action experts. Espe-
cially, action detection as a proxy task with gait recognition is an end-
to-end joint training only with ID labels. In addition, due to the lack of
a unified occluded benchmark, we construct a pioneering Occluded Gait
database (OccGait), containing rich occlusion scenarios and annotations
of occlusion types. Extensive experiments on OccGait, OccCASIA-B,
Gait3D and GREW demonstrate the superior performance of GaitMoE.
OccGait is available at https://github.com/BNU-IVC/OccGait.

Keywords: Occluded Gait Recognition · Dynamic Contextual Informa-
tion · Action Detection · Mixture of Experts

1 Introduction

Gait recognition has attracted increasing attention and gained broad applica-
tions in crime prevention, forensic identification, and social security [44] due
to its ability to accurately identify walking patterns of pedestrians from a dis-
tance in complex surveillance scenarios, e.g ., viewing angles, cloth-changing and
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Fig. 1: (a) The main four occlusion issues in gait recognition. (b) The dynamic contex-
tual information within a gait sequence can infer and integrate occlusion information.

illumination conditions [40]. Applying upstream tasks such as tracking, seg-
mentation, size normalization, and alignment to preprocess raw videos, the ob-
tained gait representations (e.g ., silhouettes or skeletons) make existing meth-
ods [3, 4, 10, 12, 23–25, 31, 32, 34, 52] achieve accurate identification. However,
current studies overlook occlusions largely existing in practical scenarios, e.g .,
occluded by carrying, obstacles, the crowd, or moving out of camera view. As
shown in Fig. 1(a), body regions occluded by obstacles or the crowd lead to
missing and noisy information, while partial visual body regions with size nor-
malization cause position and scale misalignment, which significantly degrading
fine-grained feature matching [56,58]. Direct solutions, e.g ., simply discarding or
persisting occluded frames, do not adequately address occlusion issues since par-
tially visual body regions in occluded frames may still contain key discriminative
regions while allowing them to persist will cause erroneous feature extraction and
matching. Therefore, occlusion issues have become one of the biggest bottlenecks
in gait recognition.

To address occlusion issues in gait recognition, we rethink the dynamic con-
textual information within a gait sequence: (i) Gait Continuity. Adjacent
frames with continual motion enable body regions in holistic frames to infer the
same body regions in occluded frames. As shown in Fig. 1(b), for the current
frame missing lower body information, the preceding and subsequent holistic
frames can still infer approximate motion in the occluded regions. (ii) Gait
Cycle. As shown in Fig. 1(b), we regard the current misaligned frame and ad-
jacent frames as an action. Combined with the gait cycle, i.e., a gait sequence is
formed by the repetition of a series of actions, to discover actions with similar
cues, holistic and occluded actions can be integrated into a robust action.

Driven by the above analysis, we introduce a new perspective for occluded
gait recognition, “Action Detection”. The paradigm of action detection aims to
predict the action boundaries and categories from an untrimmed video, where
predefined consecutive frames as action anchors represent potential actions and
further action anchors with high actionness scores generate action proposals [33,
43,59]. Specific to gait recognition, we associate action anchors to represent adja-
cent frames with gait continuity and further consider the gait cycle to construct



GaitMoE 3

A Gait Sequence

Action Anchors

M
T
E

M
A
E

Action Proposals Temporal Experts Action Experts

Fig. 2: Action composition. Each temporal expert focuses on one body region with
individual temporal size, constructing action anchors. Each action expert integrates
similar action anchors from different gait cycles, constructing one action proposal.

action proposals from similar action anchors. Therefore, a gait sequence can be
regarded as a composition of actions.

Considering a single model that struggles to capture holistic and diverse ac-
tions under complex occlusion scenarios, e.g ., the uncertainty of occluded body
regions and duration, we propose an Action Detection Based Mixture of Experts
(GaitMoE). Mixture of Experts (MoE) follows a divide-and-conquer philosophy,
breaking down complex problems into simple sub-problems. Each sub-problem
is handled by a dedicated expert, contributing collectively to solve the overall
complexity. As shown in Fig. 2, each temporal expert focuses on the correspond-
ing body region and temporal granularity, sliding at the entire gait sequence
to construct action anchors. Subsequently, each action expert integrates similar
action anchors with one action type, constructing action proposals. Finally, in-
stead of localization and classification in action detection, action proposals are
collectively as discriminative features for identification.

Additionally, the absence of publicly available gait databases with quantifi-
able occlusion metrics poses an extreme challenge for occluded gait recognition.
To this end, we establish a pioneering Occluded Gait database (OccGait) with
two characteristics: (i) Diverse Occlusion Scenarios. Each subject has 4
different types of occlusion situations, including None of Occlusion, Carrying
Occlusion, Crowd Occlusion, and Static Occlusion. (ii) Explicit Occlusion
Types. OccGait provides explicit occlusion types for each gait sequence, which
enables to qualify and quantify occlusion issues.

Our main contributions can be summarized as follows:

– To address occlusion challenges, we introduce an action detection perspective
where an Action Detection Based Mixture of Experts (GaitMoE) structures
a gait sequence as a composition of action.

– To qualify and quantify occlusion issues, we build a novel Occluded Gait
recognition benchmark (OccGait), including diverse occlusion scenarios and
explicit annotations of occlusion types.
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– To evaluate effectiveness and robustness, extensive experimental results on
OccGait, OccCASIA-B, Gait3D, and GREW demonstrate that our method
significantly outperforms other state-of-the-art methods.

2 Related Work

2.1 Gait Recognition

Gait Recognition is mainly categorized into appearance-based and model-based
approaches. Appearance-based methods [3, 4, 10, 12, 23–25, 31, 32, 34, 52] usually
uses templates of compressing a sequence of gait silhouettes (e.g ., Gait En-
ergy Image), set of frames and sequence of frames as inputs, extracting fine-
grained features (e.g ., spatial-temporal and part-level representations). Model-
based methods [14,47,48,61–63] explicitly model human body structure, e.g ., 2D
or 3D skeletons and meshes. Additionally, some researches [2, 30, 42] take other
data types as inputs, such as RGB frames, optical flow and point clouds. How-
ever, most of these methods usually neglect the fact that real-world scenarios
introduce a significant amount of occlusion.

2.2 Occluded Gait Recognition

We introduce occluded gait recognition from two aspects: (i) DataBases. For
synthesis-based databases, Chen et al. [6] simulate occluded scenarios based
on CMU Mobo [15] through adding horizontal or vertical black bars. Uddin et
al. [50] synthesize relative static and dynamic occlusions based on OUMVLP [45]
by a background rectangle mask in a fixed position or gradually changed posi-
tion. Delgado-Escano et al. [9] generate crowd occlusions based on CASIA-B [60]
and TUM-GAID [20] by augmenting persons in raw videos. Xu et al. [56, 58]
synthesize occluded scenarios by simulating cropping and size-normalized sil-
houettes. For real-world databases, Hofmann et al. [21] collect TUM-IITKGP,
including static occlusions (e.g ., standing people, a backpack, gown and hands
in pocket), dynamic occlusions (e.g ., two walking people). Chattopadhyay et
al. [5] construct a frontal and occluded gait database by estimating Kinect
depth. Li et al. [29] present an OG RGB+D dataset captured by Azure Kinect
DK sensor, containing occlusions with carrying, clothing and the crowd. How-
ever, these databases have some limitations, e.g ., the single occlusion scenario,
small occlusion regions, or not publicly available yet. (ii) Architectures. For
reconstruction-based approaches, Xu et al. [58] re-normalize and register silhou-
ettes from learned holistic information (e.g ., scales) before the following feature
extraction and matching process. Xu et al. [56] estimate SMPL with pose and
shape features from RGB occluded videos. Uddin et al. [50] reconstruct a se-
quence from the occluded sequence by a conditional deep generative adversarial
network. Peng et al. [37] register and recover occluded silhouettes with a self-
supervised alignment module and temporal recovery transformer. Guo et al. [16]
propose a Physics-Augmented Autoencoder (PAA) that generates physically in-
termediate representations through a graph-convolution-based encoder and a
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Fig. 3: The overview of GaitMoE. Best viewed in colors, the input sequence is firstly
extracted to frame-level features by C2D Block (e.g ., 2D CNNs or a residual block),
and Mixture of Temporal Experts (MTE) dispatch temporal experts (TE) with differ-
ent temporal bounding boxes to the corresponding channel segments, forming action
anchors. After horizontal partitioning (HP), Mixture of Action Experts (MAE) is in-
dependent for each part-level feature. For each channel segment, one action expert
(AE) integrates similar action anchors along the temporal dimension by weighted sum
operation, forming one action proposal. Finally, The concatenated action proposals as
part features for identification.

physics-based decoder, which enhances the ability to reconstruct input skele-
ton sequences even when partially occluded. For reconstruction-free approaches,
Gupta et al. [17] propose a occlusion-aware module by synthetic occlusions to de-
tect occlusion type information to guide gait recognition training. Zhu et al. [64]
use SMPLify-X that provides the body shape feature decoupled from its pose
and strong prior, which enables to generate the complete shape even with mild
occlusions.

2.3 Mixture of Experts

Mixture of Experts (MoE) is a sparsely-activated architecture where a router
network output weights for aggregating multiple experts [41]. The philosophy of
divide and conquer allows MoE to reduce computational cost and increase model
capacity, and it has been widely extended to Vision Transformer [28,38,55]. Each
expert in MoE is dispatched with one sub-data (e.g ., image patches, data from
one domain) and maintains specialization, which is named “Expert”. This work
extends MoE to detect fine-grained actions in occluded gait recognition and
makes each expert concentrate on one representative action.

3 Methodology

GaitMoE mainly consists of Mixture of Temporal Experts (MTE) and Mixture
of Action Experts (MAE). We give a brief overview of the full process in Fig. 3.

3.1 Mixture of Temporal Experts

Although a gait sequence has filtered texture information and performed coarse-
aligned registration, the complex occlusions in real scenarios cause the uncer-
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Fig. 4: (a) Mixture of Temporal Experts. Dila Conv (DC) represents Dilated Convo-
lution, predefining action anchors with different dilated ratios. (b) Mixture of Action
Experts. LP denotes the linear projection. Similar action anchors adaptively integrate
into action proposals.

tainty of occluded body regions and duration. To this end, we adopt multi-scale
mechanisms in temporal and channel dimensions to extract fine-grained features.
Action Anchors. As we know, a gait sequence possesses continuity with sig-
nificant mutual information between each frame and adjacent frames. For ex-
ample, when we observe a person lifting their leg, it is likely to be followed by
a swinging leg. Some existing approaches employ temporal modeling to capture
such relationships, e.g ., 3D CNNs and LSTMs. However, uncertain and com-
plex occlusions interfere with the dynamic information. To alleviate these issues,
Fig. 4(a) shows that MTE predefines various sizes of temporal experts, which
are dilated convolutions with different dilated ratios for corresponding channel
segments. At each temporal position, each temporal expert independently con-
structs action anchors from adjacent temporal positions, which is why we name
it “Temporal Expert”. Considering adjacent occluded frames may introduce noise
information to current holistic frames, MTE preserves partial channel segments
for adaptively selecting clean regions. Let X ∈ RC×T ×H×W denote frame-level
features extracted from silhouettes by C2D Block, where C, T ,H,W represent
channel, consecutive T frames, height and width dimensions. The process of
MTE is formulated as follows:

Y = Concat(DCi(Xi), i = 1, 2, · · · ,K,X[S−K+1,S]) (1)

where Xi ∈ R C
S ×T ×H×W , Y ∈ RC×T ×H×W , S is the number of channel segments,

K is the number of temporal experts, DC is dilated convolution, and i is the
segment index. In our work, we set S = 8, K = 4, and DCi is 3D CNN with kernel
size (3, 1, 1), stride (1, 1, 1), padding (i, 0, 0), and dilated ratio i. In addition,
residual learning is embedded within MTE for easing training.

3.2 Mixture of Action Experts

Although action anchors contain rich dynamic information, they may have a
large amount of redundant and invalid actions. Therefore, we adopt prototype-
based architecture to adaptively select and integrate discriminative and similar



GaitMoE 7

action anchors as action proposals. Since a gait sequence can be regarded as
the composition of actions, when the sequence is occluded resulting in many
invalid actions, the action prototype needs to detect the most discriminative
action type and aggregate this action type from occluded and holistic actions. In
addition, GaitMoE adopts horizontal pooling (HP) for fine-grained part features
P ∈ RC×T , and MAE is independent for each part. Here, we omit the part index
for simplicity.
Action Proposals. To capture discriminative actions only with ID labels, MAE
shown in Fig. 4(b) predefines a set of learnable action prototypes where an action
prototype adaptively learns a type of action for recognition, that is why we name
it “Action Expert”. For fine-grained action extraction, we dispatch each action
expert to the corresponding channel segment (e.g ., action anchors), and action
experts “watch” contextual action anchors in the entire temporal dimension for
filtering action anchors with occlusions, and select and integrate similar action
anchors as action proposals. Different to MoEs [13, 27, 36, 41] where the routers
generally adopt Top-K selection and sparsely memorize information, recent MoE
works has shown remarkable performance with a fixed hash router [39], or convo-
lutional experts [7]. In this work, we introduce a soft selection for balancing the
training. Let A ∈ R C

M×M represent M action experts with C
M dimension, and

we obtain action queries Q by identify mapping on A, action keys K and values
V by different linear projections on P. Then, we dispatch each action query to
the corresponding channel segment of K to evaluate action anchors by scores
where the higher the score, the more reliable the action anchor, and vice versa.
To make one action expert concentrate on one most representative action, we
use the softmax function to calculate the scores within the corresponding chan-
nel segment of K and weighted sum operation with the corresponding channel
segment of V as an action proposal. The formulation is as follows:

Qi = Ai, Ki = PiWK, Vi = PiWV (2)

Fi =

T∑
j=1

Oi,j ⊗ Vi,j , Oi,j =
exp(Qi,jKT

i,j)∑T
j=1 exp(Qi,jKT

i,j)
(3)

where i is the channel segment index, i ∈ 1, 2, · · · ,M, j is the action anchor
index along the temporal dimension of the i segment, j ∈ 1, 2, · · · , T , WK,WV ∈
R C

M× C
M , Pi ∈ RT × C

M . Qi,j ,Ki,j ,Vi,j ∈ R1× C
M . Finally, we obtain F as one part

feature by concatenating action proposals [F1,F2, · · · ,FM] along the channel
dimension. F is fed into Separate FCs and BNNeck for identification.

3.3 Joint Loss

GaitMoE is an end-to-end joint learning framework only with ID labels, intro-
ducing action detection as a proxy task with gait recognition. The joint loss
includes two types: Triplet Loss [19] Ltp and Cross Entropy Loss Lce, which
constrains each part independently. This formulation is as follows:

L = Ltp + βLce (4)
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Fig. 5: (a) The layout and camera views during collection. (b) The 3 types of occlusion
scenarios where the number 1○ 2○ are for Carrying Occlusion, 3○ 4○ are for Crowd Oc-
clusion and 5○ 6○ are for Static Occlusion, and None Occlusion is omitted for simplicity.

where the hyper-parameter β is for balancing the two terms.

4 The OccGait Benchmark

Due to the absence of a comprehensive gait database for quantitatively and qual-
itatively analyzing the impact of various occlusion types, we collect the Occluded
Gait Database (OccGait), including 101 subjects with 4 types of occluded sce-
narios, 8 camera views, and over 80k sequences. It is worth noting that we hope
the OccGait can serve as a starting point to promote robust gait recognition for
practical applications, similar to the transition from the indoor databases, e.g.,
CASIA-X Series [44, 46, 53, 60] and OU-X Series [1, 22, 26, 35, 45, 49, 51, 57] to
the wild databases, e.g., Gait3D [62] and GREW [65].

4.1 Data Collection and Pre-processing

The OccGait is collected in an indoor gait recognition laboratory. During Occ-
Gait collection, we obtain authorization from all subjects who are informed for
academic data collection in advance. Privacy is also the highest priority in our
research. As the left in Fig. 5(a), we place 3 cameras (Cam1 of 0◦, Cam2 of 45◦,
Cam3 of 315◦) with 1920× 1080 resolution in the square area. During the data
collection process, the subjects follow this walk route (i.e., 1-2-3-4). We filter out
data with overlapping camera views caused by the combination of 3 cameras and
walking directions, and obtain gait sequences with 8 camera views on the right
in Fig. 5(a). To qualify and quantify realistic and complex occluded scenarios,
we set 4 types of occluded situations with diverse occlusions shown in Fig. 5(b),
which are None of Occlusion (i.e., Normal Walking as NM), Carrying Occlusion
(CA, 1○ 2○), Crowd Occlusion (CR, 3○ 4○), and Static Occlusion (ST, 5○ 6○).

All subjects walk the route four times for NM and two times for CA, CR
and ST, respectively, which denotes NM01, NM02, NM03, NM04, CA01, CA02,
CR01, CR02, ST01 and ST02.
None of Occlusion. To simulate walking status in real scenarios, subjects in
their clothing, walk with their walking speed. As shown in Fig. 5(a), there are
no obstacles in this situation, and the full body of each subject is fully visible.
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Carrying Occlusion. As shown in Fig. 5(b)( 1○ 2○), we establish two common
carrying scenarios for daily life: umbrellas and luggage. People with an umbrella
on a rainy day partially obstruct the upper of the body, while luggage occludes
both the torso and the lower of the body.
Crowd Occlusion. Gait recognition often requires retrieval in crowded scenes,
and human body occlusion can lead to significant interference, such as occlusion
of body edges and incorrect dynamic information, as shown in Fig. 5(b)( 3○ 4○).
We design two types of crowd occlusion, the subject walking with another person
in different directions (opposite and parallel), which results in partial occlusion
of gait sequences at certain moments and complete occlusion of gait sequences
at all times.
Static Occlusion. Gait recognition will be deployed in a wide range of scenarios,
such as in squares, malls, and other locations with numerous static obstructions.
Fig. 5(b)( 5○) demonstrates our placement of plants and chairs in the walking
route. Fig. 5(b)( 6○) shows that the complex and irregular static obstructions
hinder the lower body region.
Data Pre-processing. We adopt MaskFormer [8], a segmentation algorithm
pre-trained on large datasets (including numerous occluded scenarios), to extract
silhouettes from the original RGB data as input.

4.2 Evaluation Protocol

OccGait is divided into training and testing sets. The 51 individuals with odd
numbers as the training set while the remaining 50 with even numbers as the test
set. Our gait evaluation follows the protocols of the previous gait evaluation [60].
Given a query sequence, we measure its distance to each sequence in the gallery,
retrieving the subject with the closest distance from the gallery. To quantify
occluded gait analysis, we use the NM01 and NM02 of each subject in the testing
set as the gallery, evaluating their Rank 1 performance under different occlusions
and viewing angles.

5 Experiments

5.1 Datasets

We first conduct extensive qualitative and quantitative occlusion analyses on
OccGait and OccCASIA-B [37]. Subsequently, we further validate the generaliz-
ability and practicality of our method on Gait3D [62] and GREW [65].
OccGait is for real-scenario occlusion evaluation built by this work. The details
have been discussed in Section 4.
OccCASIA-B is a synthetic occluded gait database [37] from CASIA-B and
has similar basic statistics, containing 124 subjects, 3 different walking situa-
tions, etc., Walking in Normal (NM), Walking with a Bag (BG) and Walking
with Different Clothes (CL), 11 camera views from uniform interval of 18◦ in
[0◦, 180◦]. To simulate occlusion situations, OccCASIA-B sets 4 types of occlu-
sions: None Occlusion (NO), Crowd Occlusion (CO), Static Occlusion (SO) and
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Table 1: The Rank-1 accuracy (%) on OccGait for different probe views excluding
the identical-view cases. For evaluation, the sequences of NM01 and NM02 for each
subject are taken as the gallery. The benchmark adopts None Occlusion (NO), Carrying
Occlusion (CA), Crowd Occlusion (CR) and Static Occlusion (ST).

Method Probe View Average
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

NM

GaitSet [4] 65.7 91.7 89.1 90.7 66.7 91.9 89.4 92.1 84.7
GaitPart [12] 62.9 92.0 88.9 89.6 59.6 89.9 87.3 90.7 82.6
GaitGL [32] 73.9 94.3 92.6 93.4 68.1 93.1 91.7 92.6 87.5
STOR [37] 73.7 94.6 92.0 93.3 73.3 94.1 92.6 92.6 88.3

GaitBase [11] 68.4 91.6 88.7 91.1 74.9 93.6 88.1 91.7 86.0
GaitMoE(ours) 81.0 96.0 94.0 95.1 81.3 94.7 94.1 94.7 91.4

CA

GaitSet [4] 50.1 74.3 79.7 79.1 47.4 73.6 74.0 76.0 69.3
GaitPart [12] 42.0 69.9 74.9 78.6 37.6 66.4 66.0 63.7 62.4
GaitGL [32] 48.6 79.7 84.6 87.9 38.7 76.7 78.1 70.4 70.6
STOR [37] 55.9 83.6 83.6 86.3 54.4 81.7 83.1 81.7 76.3

GaitBase [11] 58.1 82.0 84.3 85.6 54.3 79.9 80.1 79.3 75.4
GaitMoE(ours) 68.3 87.7 88.9 89.6 61.7 86.4 86.6 87.3 82.1

CR

GaitSet [4] 58.3 84.7 80.1 77.4 52.3 77.9 77.6 85.6 74.2
GaitPart [12] 48.1 81.9 76.4 69.6 39.0 67.6 68.1 79.3 66.3
GaitGL [32] 47.4 89.0 81.3 77.1 41.0 75.0 77.1 87.6 71.9
STOR [37] 55.6 88.4 86.0 81.7 52.0 81.7 83.0 88.4 77.1

GaitBase [11] 62.4 86.9 83.1 82.1 60.0 85.4 80.7 87.6 78.5
GaitMoE(ours) 63.1 90.6 86.6 84.4 57.6 81.6 84.9 90.3 79.9

ST

GaitSet [4] 54.1 86.3 86.7 82.3 54.1 86.7 86.4 83.6 74.2
GaitPart [12] 44.6 83.7 85.7 77.3 39.1 83.4 84.1 77.4 71.9
GaitGL [32] 36.7 87.7 90.7 80.0 37.6 86.6 90.4 82.3 74.0
STOR [37] 50.3 90.0 91.3 87.4 54.9 90.1 91.3 89.1 80.6

GaitBase [11] 57.7 89.9 87.4 85.9 59.9 88.9 87.4 85.4 80.3
GaitMoE(ours) 62.9 93.3 92.1 89.4 63.6 91.1 93.6 91.4 84.7

Detect Occlusion (DO), which denotes a walking person without occlusions, oc-
cluded by another one in a crowded area, occluded by static occlusions, e.g .,
benches, bicycles and fire hydrants, and losing body regions in the up, down,
left, or right direction. The OccCASIA-B takes the first 74 subjects as the train-
ing set where each gait sequence with 0.6 of occlusion probability generates one
of the 4 types of occluded scenarios. The remaining 50 subjects are used for
occlusion evaluation. For each occlusion benchmark, except for the first 4 NM
sequences used as the holistic gallery set, the remaining sequences are generated
with the corresponding occlusion scenario.

Gait3D samples two segments of continuous two-hour video clips from each
of seven-day raw videos in a supermarket, including complex covariates (e.g .,
occlusions, view angles) for practical gait recognition. It contains 3000 subjects
with 25309 sequences, taking 2000 subjects as the training dataset and 1000
subjects as the testing dataset.

GREW is a large-scale wild gait database, containing 26345 subjects with
128671 sequences captured by 882 cameras. It provides 4 types of silhouettes,
optical flow, and 2D/3D human poses. The benchmark takes 20000 subjects as
the training dataset and 6000 subjects as the testing dataset, and each subject
provides two sequences for the gallery set and two sequences for the probe set.
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Table 2: The Rank-1 accuracy (%) on OccCAISA-B across different views, excluding
the identical-view cases. The NO, CO, SO, and DO denote the testing sets of Non-
Occlusion, Crowd Occlusion, Static Occlusion, and Detection Occlusion accordingly.
Based on the walking condition, probe sequences are grouped into Normal Walking
(NM), Carrying Bags (BG), and Cloth-changing Condition (CL).

Methods NO CO SO DO
NM BG CL Mean NM BG CL Mean NM BG CL Mean NM BG CL Mean

GaitSet [4] 92.4 83.0 65.2 80.2 80.7 69.6 50.4 66.9 86.0 76.6 57.8 73.5 85.7 72.7 52.7 70.4
GaitPart [12] 92.3 84.9 68.9 82.0 80.2 70.6 53.3 68.1 85.0 77.3 60.5 74.3 80.7 68.4 52.4 67.2
GaitGL [32] 94.5 89.2 75.3 86.4 84.4 74.8 57.7 72.3 87.4 81.8 66.9 78.7 86.2 76.2 61.5 74.6
STOR [37] 95.9 90.9 77.1 88.0 88.8 80.7 64.3 77.9 91.2 85.6 69.9 82.3 93.2 86.3 70.1 83.2

GaitBase [11] 94.4 88.5 68.7 83.9 87.6 78.0 57.5 74.4 90.1 82.7 62.0 78.3 89.9 80.4 58.5 76.3
GaitMoE(ours) 96.2 91.5 80.7 89.5 90.0 83.3 68.3 80.5 91.9 86.0 73.9 83.9 93.4 87.3 75.3 85.3

Table 3: Comparisons on Gait3D and GREW.

Method Venue Gait3D GREW
Rank-1 mAP Rank-1 Rank-5

GaitSet [4] AAAI19 36.7 30.0 46.3 63.6
GaitPart [12] CVPR20 28.2 47.6 44.0 60.7
GaitGL [32] ICCV21 29.7 22.3 47.3 63.6

SMPLGait [62] CVPR22 46.3 37.2 - -
MTSGait [62] MM22 48.7 37.6 55.3 71.3
GaitBase [11] CVPR23 64.6 - 60.1 -
DANet [34] CVPR23 48.0 - - -

GaitGCI [10] CVPR23 50.3 39.5 68.5 80.8
DyGait [54] ICCV23 66.3 56.4 71.4 83.2
HSTL [52] ICCV23 61.3 55.5 62.7 76.6

GaitMoE-T(ours) - 71.3 62.5 74.4 84.9
GaitMoE-B(ours) - 73.7 66.2 79.6 89.1

5.2 Implementation Details

We provide details about the training process. Inputs. All datasets are resized to
64× 44. In addition, we employ spatial alignment module [37] as pre-processing
to re-align input silhouettes for OccGait and OccCASIA-B. We adopt batch
size [P, K] and the number of iterations, [8, 16], 40K for OccGait, OccCASIA-B,
[32, 4], 60K for Gait3D, and [32, 4], 180K for GREW. We sample 30 frames of
each gait sequence in the training stage and all frames are used for inference.
Network. For OccGait and OccCASIA-B, we stack three 2D convolution blocks
as our Baseline with the number of channels (64, 128, 256). Each 2D convolution
block is followed by an MTE. After Horizontal Pooling with the part parameter
of 64, we set individual MAE for each part as in Fig. 4(b) and M is set to 16.
For Gait3D and GREW, we replace our Baseline with GaitBase-like architec-
ture (4 residual blocks or 10 residual blocks) [11,18], setting channels to (64, 128,
256, 512). More Details are shown in Supplementary Materials. Optimization.
GaitMoE is an end-to-end joint training framework only with ID labels. We
use the optimizer of SGD with an initial learning rate of 0.1, which is decreas-
ing by a factor of 0.1 per [10K, 20K, 30K], [10K, 20K, 30K], [20K, 40K, 50K],
[80K, 120K, 150K] for OccGait, OccCASIA-B, Gait3D and GREW, respectively.
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Table 4: Impact of MTE and MAE on OccGait, OccCASIA-B and Gait3D.

OccGait OccCASIA-B Gait3D
MTE MAE NM CA CR ST NO CO SO DO Rank-1 mAP

87.7 69.0 75.1 77.2 85.8 75.9 79.6 80.0 59.2 48.6
✓ 89.7 78.3 77.3 81.2 88.2 76.9 82.1 83.6 66.2 56.6

✓ 89.4 78.4 77.4 81.8 87.6 78.3 81.7 82.5 67.2 57.3
✓ ✓ 91.4 82.1 79.9 84.7 89.5 80.5 83.9 85.3 71.3 62.5

Table 5: The number of Action Experts in MAE on OccGait.

MTE MAE NM CA CR ST Mean
✓ 1 89.5 78.3 78.0 82.1 82.0
✓ 8 90.6 80.7 79.1 83.3 83.4
✓ 16 91.4 82.1 79.9 84.7 84.5
✓ 32 90.8 81.2 79.9 84.6 84.1

For joint loss, we set β = 0.1 for OccGait, OccCASIA-B, and β = 1.0 for Gait3D
and GREW. All the models are trained on NVIDIA 8×3090 GPUs.

5.3 Main Results

To evaluate the effectiveness of GaitMoE, we first compare with other state-of-
the-art methods on OccGait and OccCASIA-B with controlled occlusions, and
then further make comparisons on Gait3D and GREW with complex covariates
(e.g ., uncertain occlusions).
Comparison on OccGait. To qualitatively and quantitatively validate Gait-
MoE, we build the real-scenario gait database, OccGait, containing a wide range
of occlusions and explicit annotations. Meanwhile, spatial and scale misalignment
may occur in all occlusion scenarios. Tab. 1 shows that GaitMoE outperforms
other state-of-the-art methods under all types of occlusions. Notably, CR causes
interference from other pedestrians to overshadow the main subject information
at certain angles, causing the model to overly focus on the obstructer, not the
target. However, the Average results still show SoTA in the main manuscript,
which validates the occlusion-solving traits.
Comparison on OccCASIA-B. Tab. 2 shows the overall results where set-
based and temporal-based gait recognition methods (i.e., GaitSet, GaitPart,
GaitGL, GaitBase) suffer from severe degradation under the occlusion scenario,
comparing to their performances in their paper on holistic CASIA-B. Although
STOR with silhouette registration alleviates the misalignment issue, the complex
walking patterns under occlusions make the feature extraction difficult. Our
proposed method outperforms all methods by a large margin, especially in the
extremely challenging cloth-changing (CL) condition, e.g ., exceeds GaitBase by
12.0% in NO, and 16.8% in DO. The experimental results demonstrate that
GaitMoE effectively filters invalid occluded actions and extracts robust actions.
Comparisons on Gait3D and GREW. We have validated the effectiveness of
our method on the controlled occlusion environment (i.e., OccCASIA-B and Oc-
cGait). The large-scale wild gait databases also provide complex and uncertain
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Fig. 6: The visualization of action composition. Here are an occluded gait sequence,
action proposals and the selection map of action anchors. Alphabet denotes the action
proposal. Each rectangle denotes one action proposal, and each row within one action
proposal denotes an action anchor.

occlusion scenarios. As shown in Tab. 3, GaitMoE-T (4 residual blocks) and
GaitMoE-B (10 residual blocks) also achieve the highest performance among
state-of-the-art methods, which further proves the generalizability and practi-
cality of our method.

5.4 Ablation Study

In this section, we mainly qualitatively and quantitatively validate the MTE and
MAE in OccGait, OccCASIA-B and Gait3D. Besides, we provide the visualiza-
tion of action detection on OccCASIA-B.
The Effectiveness of MTE and MAE. Tab. 4 shows that each of MTE and
MAE can extract better dynamic information. Especially, the combination of
MTE and MAE i.e., GaitMoE, achieves a significant increase over Baseline,
which proves that our proposed method discovers the representative actions
by first coarse action extraction (i.e., action anchors), and then fine-grained
action extraction (i.e., action proposals). Besides, we select (8, 4) for (S, K) on
temporal experts since a smaller S or larger K degrades original information,
and a larger S or smaller K restricts dynamic information. More Details are
shown in Supplementary Materials. We also quantify the impact on the number
of action experts. Tab. 5 illustrates that more experts may result in redundant
actions, while fewer experts may not be able to capture the diverse actions. We
select 16 as the parameter of GaitMoE.
The Visualization of Action Composition. To better understand and in-
terpret the action detection in gait recognition, we visualize the key module
MAE of action detection in Fig. 6, we select part index 60, action anchor with
2 dilated ratios and 6 action proposals as the example. MTE enables to infer
the occluded region information by consecutive frames. For an example in E,
the right occluded frame can hallucinate the missing region through the middle
frame. MAE enables to select and integrate the most discriminative similar ac-
tion anchors from different gait cycles. For an example in F, although missing
information occurs, MAE combines multiple similar action anchors to further
confirm this action type (i.e., swinging legs), integrating occluded information.
Trade-off between Accuracy and Efficiency. As Fig. 7 shows, we compare
all parameters of these models. For FLOPs, models input a 30-frame gait se-
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DyGait (ICCV, 66.3 %)
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GaitSet (AAAI, 36.7 %)
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Fig. 7: The model comparisons on accuracy and efficiency. Rank-1 (%), Param. (M)
and FLOPs. (G) on Gait3D.

quence without Separate FCs and BNNeck for significant comparisons. GaitMoE
makes a trade-off and achieves SoTA without substantially increasing compu-
tational cost. In contrast, DyGait demands significant computation due to 3D
convolutions and GaitBase offers better efficiency with 2D convolutions but lower
accuracy.

5.5 Conclusion and Limitations

In this paper, we introduce an action detection perspective where a gait se-
quence is regarded as a composition of actions, allowing holistic body regions
to infer occluded body regions and information integration between holistic and
occluded actions. To detect accurate actions under complex occlusion scenar-
ios, we propose an Action Detection Based Mixture of Experts (GaitMoE) to
leverage dynamic contextual information i.e., gait continuity and gait cycle, to
construct action anchors and action proposals. To obtain qualitative and quanti-
tative occlusion analysis, we propose a novel Occluded Gait Recognition bench-
mark (OccGait) as a pioneering database with a wide range of occlusion scenar-
ios and explicit annotations. Extensive experimental results have demonstrated
that GaitMoE effectively captures accurate and robust actions for occluded gait
recognition. In addition. we provide some limitations where the selection map
of action anchors shown in Fig. 6 shows that some of the experts in GaitMoE
present redundancy and similarity. We will explore the optimization and design
for expert selection in the future.
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