
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Query Optimization for Ontology-MediatedQuery Answering
Anonymous Author(s)

ABSTRACT
Ontology-mediated query answering (OMQA) consists in asking

database queries on knowledge bases (KBs); a KB is a set of facts

called the KB’s database, which is described by domain knowledge

called the KB’s ontology. A widely-investigated OMQA technique

is FO-rewriting: every query asked on a KB is reformulated w.r.t.

the KB’s ontology, so that its answers are computed by the rela-

tional evaluation of the query reformulation on the KB’s database.

Crucially, because FO-rewriting compiles the domain knowledge

relevant to queries into their reformulations, query reformulations

may be complex and their optimization is the crux of efficiency.

We devise a novel optimization framework for a large set of

OMQA settings that enjoy FO-rewriting: conjunctive queries, i.e.,

the core select-project-join queries, asked on KBs expressed in

datalog± and existential rules, description logic and OWL, or RDF/S.

We optimize the query reformulations produced by state-of-the-art

FO-rewriting algorithms by computing rapidly, with the help of

a KB’s database summary, simpler (contained) queries with same

answers that can be evaluated faster by RDBMSs. We show on

a well-established OMQA benchmark that time performance is

significantly improved by our optimization framework in general,

up to three orders of magnitude.

CCS CONCEPTS
• Information systems→ Query optimization; Semantic web
description languages; •Computingmethodologies→ Knowledge
representation and reasoning.

KEYWORDS
Existential rules, query optimization, data summarization

ACM Reference Format:
Anonymous Author(s). 2024. Query Optimization for Ontology-Mediated

Query Answering. In Proceedings of ACM Web Conference 2024 (WWW ’24).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Ontology-mediated query answering [9] (OMQA) is a widely stud-

ied data management problem in Artificial Intelligence, Databases

and Semantic Web. It consists in asking database-style queries

on knowledge bases (KBs). A KB is a first-order (FO) theory that

consists of a set of facts called a database, which models the ap-

plication’s data, and of a set of axioms called an ontology, which

models the application’s domain knowledge. The notable difference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Language First-Order Logic syntax Relational algebra syntax
CQ 𝑞(𝑥) = ∃𝑦 ∧𝑛

𝑖=1
𝑎𝑡𝑜𝑚𝑖 𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1

𝑎𝑡𝑜𝑚𝑖)
UCQ 𝑞(𝑥) = ∨𝑛

𝑖=1
𝐶𝑄𝑖 𝑞(𝑥) = ⋃𝑛

𝑖=1
𝐶𝑄𝑖

JUCQ 𝑞(𝑥) = ∧𝑛
𝑖=1

𝑈𝐶𝑄𝑖 𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1
𝑈𝐶𝑄𝑖)

SCQ 𝑞(𝑥) = ∃𝑦∧𝑛
𝑖=1

∨𝑚𝑖

𝑗=1
𝑎𝑡𝑜𝑚

𝑗
𝑖

𝑞(𝑥) = Π𝑥 (Z𝑛𝑖=1

⋃𝑚𝑖

𝑗=1
𝑎𝑡𝑜𝑚

𝑗
𝑖
)

USCQ 𝑞(𝑥) = ∨𝑛
𝑖=1

𝑆𝐶𝑄𝑖 𝑞(𝑥) = ⋃𝑛
𝑖=1

𝑆𝐶𝑄𝑖

Table 1: Main FO query languages used for FO-rewriting

Query reformulation language
KB language UCQ USCQ JUCQ datalog

𝑛𝑟

datalog±/existential rules [31, 32, 38] [51] [33, 45]

description logics/OWL [17, 21, 46, 52] [12] [47]

RDF/S [10, 30] [11]

Table 2: Main related works on conjunctive query answering
via FO-rewriting

between this query answering setting and the traditional database

one is that the answers to queries must be computed w.r.t. both the

facts that are stored in the KB’s database and the facts that can be

deduced from the KB’s database with the help of the KB’s ontology.

There exist two main OMQA techniques in the literature. Both

reduce OMQA to standard query evaluation on relational databases.

The first technique is called FO-rewriting, e.g., [17]. It consists in

rewriting a query asked on a KB into a so-called query reformu-

lation, so that the query answers are obtained by evaluating the

query reformulation on the KB’s database. The second technique

is called materialization, e.g., [1]. It consists in adding to the KB’s

database all the facts than can be deduced from it with KB’s on-

tology, so that the query answers are obtained by evaluating the

(original) query on the augmented KB’s database. The combination

of FO-rewriting and materialization, called the combined or hybrid

approach, has also been investigated, e.g., [40]. Crucially, both FO-

rewriting and materialization are useful because, although there

exist simple OMQA settings in which they compete, e.g., [3], there

also exist more expressive OMQA settings to which only a single

technique applies, e.g., [8].

In this paper, we focus on FO-rewriting, which was introduced

in [17]. This technique has been largely studied in OMQA set-

tings consisting of (e.g., Table 2): queries expressed as conjunc-

tive queries (CQs); KBs expressed using datalog± and existential

rules, description logics and OWL, or RDF/S; query reformulations

expressed as unions of CQs (UCQs) and non-recursive datalog

programs (datalog
𝑛𝑟
) that unfold to UCQs, unions of semi-CQs

(USCQs), or joins of UCQs (JUCQs). These languages are recalled

in Table 1. We consider all these OMQA settings in this work.

Standard OMQA via FO-rewriting is illustrated in Figure 1. It

consists in producing a query reformulation 𝑞O from a query 𝑞

and the ontology O of the KB K , and then in evaluating 𝑞O on

the database D of K stored in an RDBMS. We point out that a

query reformulation 𝑞O may be large and complex to evaluate,

e.g., [12, 33, 51]. FO-rewriting is indeed both ontology-dependent

and data-independent, hence𝑞O must accomodate to all the possible

databases and cannot be specific to the particular database D of K .

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Standard (solid and dashed, back edges) and opti-
mized (black and blue, solid edges) OMQA via FO-rewriting

So far, and similarly to semantic query optimization for deduc-

tive databases, e.g., [19], query optimization for FO-rewriting has

focused on studying equivalent representations of query reformula-

tions that can be evaluated faster: minimal (e.g., [21, 38]), compact

(e.g., [33, 51]) or cost-based (e.g., [11, 12]) reformulations. How-

ever, because these optimizations are ontology-dependent and data-

independent, optimized query reformulations remain complex to

evaluate. They correspond to syntactically different but semanti-

cally equivalent variants of non-optimized query reformulations,

thus they still need to accommodate to all the possible databases,

and not to just the fixed database at hand.

The main contribution of this paper is a novel optimization

framework for OMQA via FO-rewriting. It is illustrated in Figure 1.

This framework capitalizes on the ontology-dependent and data-

independent query optimization for FO-rewriting that have been

studied so far in the literature (Reformulation step in Figure 1).

Its originality is to include complementary data-dependent query

optimization for FO-rewriting (Summarization and Optimization

steps in Figure 1). Its purpose is to optimize the query reformulation

𝑞O produced by any off-the-shelf FO-rewriting algorithm into a

query reformulation𝑞K that is optimized for the particular database

D of K : 𝑞K is simpler than 𝑞O , as it just needs to accommodate

to D, so that it can be evaluated faster; at the same time it has the

same answers as 𝑞O on D in order to guarantee the correctness of

query answering on K . Crucially, 𝑞O is optimized for D using a

summary S of D, which is a typically small approximation of D.

This allows a trade-off between optimization time and the extent

to which 𝑞K is optimized for D.

More specifically, our optimization framework builds on the fol-

lowing contributions.

1/ We formalize the problem of data-dependent optimization of a

query reformulation using the well-known notion of query con-

tainment [1] (Section 3).

2/ We devise an optimization function Ω that rewrites a query refor-

mulation into a simpler contained one, i.e., a simpler more specific

one, with the same answers on a fixed database (Section 4.1). Con-

tainment and query answering correctness are ensured by appro-

priately removing useless subqueries from the query reformulation,

i.e., subqueries that do not participate in producing answers on the

given database while they may take time to be evaluated.

3/ We define a summary of a database, which is a (typically much

smaller) homomorphic database (Section 4.1). A summary can be

used by our Ω optimization function in place of the original data-

base to perform faster a sound but incomplete identification and

removal of useless subqueries (i.e., some useless subqueries may

not be removed with a summary). Then, we adapt the quotient oper-

ation from graph theory [34] in order to build concrete summaries

tailored to our needs (Section 4.2): both small summaries for fast

optimization time and precise summaries to limit the incomplete-

ness of identifying useless subqueries.

4/ We experimentally evaluate our optimization framework on the

well-established LUBM
∃
benchmark for DL-liteR KBs (Section 5).

DL-liteR is the description logic that underpins the W3C’s OWL2

QL profile for OMQA on large KBs [17]. We show that our opti-

mization framework significantly improves query answering time

performance (up to 3 orders of magnitude).

The paper is organized as follows. We present OMQA and FO-

rewriting in Section 2. We introduce our optimization framework

and we formalize the underlying research problem in Section 3. We

devise a solution (Ω optimization function and database summaries)

to this problem in Section 4 and we experimentally evaluate this

solution in Section 5. Finally, we conclude with related work and

perspectives in Section 6. Proofs are available in the appendix.

This paper is an in-depth presentation of our optimization frame-

work that was briefly introduced in the short paper [5].

2 PRELIMINARIES
KBs. We consider FO KBs expressed using datalog± or existential

rules [8, 13–16], which we simply call rules hereafter. A KB K is

of the form K = (O,D), where O is the KB’s ontology and D
is the KB’s database. An ontology O is a set of rules of the form

∀𝑥 (𝑞1 (𝑥) → 𝑞2 (𝑥)), where 𝑞1 and 𝑞2 are CQs (recall Table 1) with

the same set 𝑥 of answer variables. Rules are used to derive entailed

facts in the KB. A database D is a set of incomplete facts, i.e., whose
terms are constants and existential variables modeling unknown

values [1, 37], whichwe simply call facts from now. The semantics of

a KBK = (O,D) is that of the FO formula

∧
rule∈O ∧∃𝑣 (∧

fact∈D),
where 𝑣 is the set of variables that appear in D.

Notation. We use small letters to denote constants, e.g., f, h, etc.,
and small italic letters to denote variables, e.g., 𝑥 , 𝑦, etc. Also, we

omit quantifiers in rules: existential variables are those that solely

appear on the right-hand side of→ by virtue of FO semantics
1
.

Example 2.1 (Running example). Let us consider the following
DL-liteR KB K = (O,D), here expressed using rules [14]:

O = {𝑟1 = 𝑤𝑤 (𝑥,𝑦) → 𝑤𝑤 (𝑦, 𝑥), 𝑟2 = 𝑠𝑢𝑝 (𝑥,𝑦) → 𝑤𝑤 (𝑥,𝑦),
𝑟3 = 𝑃ℎ𝐷 (𝑥) → 𝑠𝑢𝑝 (𝑦, 𝑥)},

D ={𝑅(f), 𝑅(h), 𝑠𝑢𝑝 (f, w), 𝑠𝑢𝑝 (h, w), 𝑃ℎ𝐷 (w),𝑤𝑤 (f, h), 𝑅(𝑢),
𝑤𝑤 (𝑢, c), 𝑃ℎ𝐷 (c)}.

The ontology O states that working with (𝑤𝑤) someone is a sym-

metric relation (𝑟1), supervising someone (𝑠𝑢𝑝) is a particular case

of working with someone (𝑟2), and PhD students (𝑃ℎ𝐷) are nec-

essarily supervised (𝑟3). The database D states that f and h are

researchers (𝑅) who supervise the PhD student w, f works with h,
and a researcher 𝑢 works with the PhD student c. ⋄

Ontology-mediated query answering.We consider FO queries
of the form 𝑞(𝑥) = 𝜙 , where 𝜙 is an FO formula, the set of free

(non-quantified) variables of which is exactly the tuple 𝑥 of answer

variables. The arity of a query 𝑞(𝑥) is the cardinality of 𝑥 ; 𝑞(𝑥) is
said Boolean if 𝑥 = ∅. A certain answer to a query 𝑞(𝑥) of arity 𝑛

on a KB K is a tuple t̄ of 𝑛 constants from K such that K |= 𝑞(t̄),
1∀𝑥 (∃𝑦 ∧𝑚

𝑖=1
𝑎𝑖 → ∃𝑧 ∧𝑛

𝑗=1
𝑏 𝑗) ⇔ ∀𝑥 (¬(∃𝑦 ∧𝑚

𝑖=1
𝑎𝑖) ∨ ∃𝑧 ∧𝑛

𝑗=1
𝑏 𝑗) ⇔

∀𝑥 (∀𝑦¬(∧𝑚
𝑖=1
𝑎𝑖) ∨ ∃𝑧 ∧𝑛

𝑗=1
𝑏 𝑗) ⇔ ∀𝑥∀𝑦 (∧𝑚

𝑖=1
𝑎𝑖 → ∃𝑧 ∧𝑛

𝑗=1
𝑏 𝑗)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

where 𝑞(t̄) is the Boolean query obtained by instantiating 𝑥 with

t̄ in 𝑞; when 𝑞 is Boolean, t̄ is the empty tuple ⟨⟩. From now, we

denote by 𝑎𝑛𝑠 (𝑞,K) the answer set of 𝑞 on K and we remark that

if 𝑞 is Boolean then the answer is true when 𝑎𝑛𝑠 (𝑞,K) = {⟨⟩} and
the answer is false when 𝑎𝑛𝑠 (𝑞,K) = ∅.

Example 2.2 (Cont.). Let us consider the CQ (recall Table 1) asking

for the supervisees who work with h that must be a researcher:

𝑞(𝑥) = ∃𝑦 𝑅(h) ∧𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥).
Its answer set onK is 𝑎𝑛𝑠 (𝑞,K) = {w}: w is obtained from 𝑅(h) ∈

D, 𝑠𝑢𝑝 (f, w) ∈ D or 𝑠𝑢𝑝 (h, w) ∈ D, and the fact𝑤𝑤 (h, w) entailed
from 𝑠𝑢𝑝 (h, w) ∈ D and 𝑟2. ⋄
Ontology-mediated query answering technique. We focus on

optimizing OMQA via FO-rewriting [17].
FO-rewriting reduces query answering on KBs to query evalu-

ation on relational databases in FO-rewritable OMQA settings. An
OMQA setting is a pair (L𝑄 ,L𝐾) of query andKB languages. Such a

setting is FO-rewritable if for anyL𝑄 query 𝑞 and anyL𝐾 ontology

O, there exists an FO query 𝑞O , called a reformulation of 𝑞 w.r.t. O,

such that for any KBK = (O,D): 𝑎𝑛𝑠 (𝑞,K) = 𝑒𝑣𝑎𝑙 (𝑞O ,D), where
𝑒𝑣𝑎𝑙 (𝑞O ,D) the relational evaluation of 𝑞O on D. Furthermore,

each FO-rewriting algorithm computes query reformulations in a

fixed FO query dialect. Recall for instance Table 2 where CQs are

reformulated into UCQs, USCQs, JUCQs or datalog
𝑛𝑟

programs. We

therefore term FO-rewriting setting a triple of query language L𝑄 ,
KB language L𝐾 and query reformulation language L𝑅 , denoted
by (L𝑄 ,L𝐾 ,L𝑅), such that (L𝑄 ,L𝐾) is an FO-rewritable OMQA

setting for which query reformulations are expressed in L𝑅 .
In this paper, we focus on FO-rewriting settings with queries

expressed in the language of CQs and query reformulations ex-

pressed in the languages of UCQs, USCQs and JUCQs. These setting

are widely considered in the literature on FO-rewriting (e.g., Ta-

ble 2). We remark that datalog
𝑛𝑟

reformulations must be unfolded

into UCQs reformulations, which we consider, to be evaluated by

RDBMSs.

A key property of the FO-rewriting settings that we consider, on

which ourwork relies, is that a query reformulation𝑞O is equivalent

to the CQ 𝑞 w.r.t. O. In particular, 𝑞O is equivalent, regardless of

the language used to express it, to the union of all the CQs that
are maximally-contained in 𝑞 w.r.t. O, i.e., the union of all the most

general CQ specializations of 𝑞 w.r.t. O. We recall that (𝑖) a query
𝑞′ is contained in a query 𝑞, denoted by 𝑞′ ⊆ 𝑞, if and only if for

each database D, 𝑒𝑣𝑎𝑙 (𝑞′,D) ⊆ 𝑒𝑣𝑎𝑙 (𝑞,D) and (𝑖𝑖) a query 𝑞′ is
contained in a query 𝑞 w.r.t. an ontology O, denoted by 𝑞′ ⊆O 𝑞,

if and only if for each KB K = (O,D), 𝑎𝑛𝑠 (𝑞′,K) ⊆ 𝑎𝑛𝑠 (𝑞,K). A
query 𝑞′ is maximally-contained in a query 𝑞 w.r.t. an ontology O
if and only if (𝑖) 𝑞′ ⊆O 𝑞 and (𝑖𝑖) for any other query 𝑞′′ ⊆O 𝑞, if

𝑞′ ⊆ 𝑞′′ then 𝑞′′ ⊆ 𝑞′ (i.e., 𝑞′ and 𝑞′′ are equivalent).

Notation. We omit existential quantifiers in queries, as non-

answer variables are existentially quantified in the query languages

we consider (recall Table 1). For instance, the CQ of Example 2.2 is

now written 𝑞(𝑥) = 𝑅(h) ∧𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥).
Example 2.3 (Cont.). Consider the following equivalent UCQ

𝑞UCQ
, USCQ 𝑞USCQ

and JUCQ 𝑞JUCQ
reformulations of 𝑞 w.r.t. O,

which are respectively computed by the Rapid [21], Compact [51]

and GDL [12] FO-rewriting tools:

𝑞UCQ (𝑥)= (𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (1)
∨(𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥)) (2)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (h, 𝑥)) (3)
∨(𝑅 (h) ∧ 𝑤𝑤 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (4)
∨(𝑅 (h) ∧ 𝑤𝑤 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥)) (5)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (6)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥)) (7)

𝑞USCQ (𝑥) = (𝑅 (h))
∧ (𝑤𝑤 (h, 𝑥) ∨ 𝑠𝑢𝑝 (h, 𝑥) ∨ 𝑤𝑤 (𝑥, h) ∨ 𝑠𝑢𝑝 (𝑥, h))
∧ (𝑠𝑢𝑝 (𝑦, 𝑥) ∨ 𝑃ℎ𝐷 (𝑥))

𝑞JUCQ (𝑥)=(𝑅 (h)) ∧
(
(𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))

∨(𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥))
∨(𝑠𝑢𝑝 (h, 𝑥))
∨(𝑤𝑤 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨(𝑤𝑤 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥))
∨(𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨(𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥))

)
𝑞UCQ

is the union of all the maximally-contained CQs in 𝑞 w.r.t. O.

𝑞USCQ
and 𝑞JUCQ

model the same union up to the distributive prop-

erty of ∧ and ∨. The answer to 𝑞 on K (i.e., w) results from (3)
in 𝑞UCQ

, shown in blue, and from the logical combination of the

subqueries shown in blue in 𝑞USCQ
and 𝑞JUCQ

, from which (3) can
be recovered by distributing the ∧’s over the ∨’s. ⋄

3 OPTIMIZATION PROBLEM
Motivation. The definition of FO-rewriting is data-independent:

a single query reformulation 𝑞O is able to answer the CQ 𝑞 on

all the KBs with ontology O. This generality of 𝑞O follows from

the fact that it is equivalent to the union of all the CQs that are

maximally-contained in 𝑞 w.r.t. O, which can also be regarded as

all the ways databases may store answers to 𝑞 according to O. As
a consequence, a query reformulation may be large and complex

to evaluate in practice [11, 12, 51]. For instance, the worst-case

number of CQs that are maximally-contained in a CQ 𝑞 w.r.t. a

lightweight RDFS, DL-liteR or datalog±0 ontology, is exponential

in the size of the CQ 𝑞 (number of atoms) [10, 17, 30, 32].

Rationale behind our optimization problem.We study the data-

dependent optimization of a query reformulation for a particular

KB, in order to trade its generality for more OMQA performance.

When the query 𝑞 is asked on a given KB K = (O,D), the data-
base D is indeed fixed and just one of all the possible databases a

reformulation 𝑞O accommodates to. In particular, within the union

of maximally-contained CQs to which 𝑞O is equivalent, many CQs

may be irrelevant to D, because they have no answer on D (i.e., D
do not store answers to 𝑞 w.r.t. O this way), and translate into

wasteful evaluation time.

Example 3.1 (Cont.). In 𝑞UCQ
, all the CQs except the CQ (3) are

irrelevant to D, and similarly in 𝑞USCQ
and 𝑞JUCQ

, where these

CQs are present up to the distribution of the ∧’s over the ∨’s. ⋄

Problem statement. Our goal is to devise an optimization frame-

work for OMQA via FO-rewriting that enjoys the following prop-

erties: generality to be used in as many FO-rewriting settings as

possible, correctness to compute the exact answer set of a query,

and effectiveness to improve query answering time performance.

Our framework relies on an optimization function Ω that turns a

given query reformulation𝑞O into an optimized query reformulation
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

for a given database D. This optimized query reformulation is

hereafter denoted by 𝑞K as it is specific to the KB K = (O,D).
For the generality of our framework, the Ω function optimizes

query reformulations from the language of (∧,∨)-combinations
of CQs (Definition 3.2 below). Our framework thus applies to FO-

rewriting settings with reformulation languages in (∧,∨)-combi-

nations of CQs, e.g., UCQ, USCQ and JUCQ.

Definition 3.2 ((∧,∨)-combination of CQs). A (∧,∨)-combination
of CQs, denoted by (∧,∨)-CQ, is either a CQ or a conjunction or

union of (∧,∨)-CQs.
The Ω function computes an optimized query reformulation 𝑞K

contained in 𝑞O (item 1 in Problem 1 below) since 𝑞O is equivalent

to a union of maximally-contained queries, in which we remove

those irrelevant to a database D, and removing disjuncts from a

union makes it more specific. However, this containment relation-

ship only ensures that the answers to 𝑞K form a subset of the

answers to 𝑞O on all the possible databases. For the correctness of

our framework, Ω thus computes an optimized query reformulation

𝑞K with same answers as 𝑞O on D (item 2 in Problem 1 below).

Finally, for the effectiveness of our framework, the Ω function

optimizes 𝑞O for D using a summary S of D (item 3 in Problem 1

below). This allows a trade-off between the number of removed

irrelevant maximally-contained queries and Ω’s runtime, i.e., opti-

mization time. As we shall see in our experiments, the optimization

time may be too high to improve OMQA time performance when

Ω identifies irrelevant maximally-contained queries in 𝑞O with the

database D instead of a typically much smaller summary S of it.

We summarize the above discussion with the formal statement

of the research problem studied in this paper.

Problem 1 (Optimization for OMQA via FO-rewriting). Let
𝑞O be a (∧,∨)-CQ query reformulation and let D be a database.
Define an optimization function Ω and a summary S of D so that
the optimization of 𝑞O for D using S, denoted by 𝑞K and computed
by Ω(𝑞O ,S), satisfies:

(1) 𝑞K ⊆ 𝑞O ,
(2) 𝑒𝑣𝑎𝑙 (𝑞K ,D) = 𝑒𝑣𝑎𝑙 (𝑞O ,D),
(3) 𝜏 (Ω(𝑞O ,S))+𝜏 (𝑒𝑣𝑎𝑙 (𝑞K ,D)) ≤ 𝜏 (𝑒𝑣𝑎𝑙 (𝑞O ,D)), with 𝜏 (·)

the time to compute · in a fixed experimental setup.

We remark that, above, item 1 cannot be safely removed from

Problem 1 since, with only items 2 and 3, 𝑞K may be an arbitrary

query with the same answer(s) as 𝑞O . E.g., “Where does The Web

Conference 2024 take place?” may be optimized by “Where does

Petra live?” just because their same answer is Singapore.

4 OPTIMIZATION FRAMEWORK
4.1 The Ω optimization function
Rationale behind the Ω optimization function. When a query

reformulation is seen as a (∧,∨)-combination of CQs, these subCQs

are parts of the maximally-contained CQs that the query reformula-

tion models. Recall for instance Example 2.3 where the maximally-

contained CQ (3) in the UCQ reformulation corresponds to the

logical combinations of the subCQs shown in blue in the JUCQ and

USCQ reformulations. Removing subCQs from a query reformula-

tion seen as (∧,∨)-combinations of CQs obviously removes all the

maximally-contained queries these subCQs are part of, and crucially

for us, removing such subCQs with no answer on a particular data-

base removes maximally-contained queries that are irrelevant to

this database. E.g., in Example 2.3, removing from 𝑞USCQ
the subCQ

𝑠𝑢𝑝 (𝑥, h) with no answer on D also removes from 𝑞USCQ
the two

irrelevant maximally-contained CQs 𝑅(h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑠𝑢𝑝 (𝑥,𝑦)
and 𝑅(h) ∧ 𝑠𝑢𝑝 (𝑥, h) ∧ 𝑃ℎ𝐷 (𝑥): without 𝑠𝑢𝑝 (𝑥, h), they cannot be

recovered by distributing the ∧’s over the ∨’s. We therefore devise

the Ω function to optimize a (∧,∨)-CQ query reformulation for a

given database by rewriting it from the bottom up to (𝑖) identify
subCQs with no answer on this database and (𝑖𝑖) propagate the
effect of their removal within the query reformulation.

Identifying CQs with no answer on a database. Checking if a
single CQ has no answer on a database can be done easily (e.g., using

exists in SQL) and efficiently in general since RDBMSs are highly-

optimized for CQs, e.g., [48]. However, doing the same check for

all the subCQs in a query reformulation may take significant time,

especially when the database is large. To mitigate this issue, Ω uses

database summaries that are (typically small) homomorphic approx-

imations of the databases they summarize. Using such summaries

instead of the databases allows trading completeness of identifying

subCQs with no answer for efficiency, while retaining soundness.

Definition 4.1 (Summary of a database). A database S is a sum-
mary of a database D iff (𝑖) there exists a homomorphism 𝜎 from

D to S, i.e., D𝜎 = S where D𝜎 is the database obtained from D
by replacing the terms

2
in D by their images in S through 𝜎 , such

that (𝑖𝑖) 𝜎 maps constants in D to constants in S, while it maps

variables in D to constants or variables in S.
In the above definition, (𝑖) ensures that S is a homomorphic

approximation ofD, while (𝑖𝑖) ensures the soundness of identifying
CQs with no answer on D using S (Theorem 4.2 below). Also, we

remark that a database is a particular summary of itself: D = S
holds when the database-to-summary homomorphism 𝜎 maps each

term to itself, i.e., when 𝜎 is the identity function.

Theorem 4.2. Let D be a database and S a summary of it with
the homomorphism 𝜎 . Let 𝑞 be a CQ 𝑞 asked on D and 𝑞𝜎 the CQ
obtained from 𝑞 by replacing its constants with their images through
𝜎 . If 𝑞𝜎 has no answer on S, then 𝑞 has no answer on D.

We stress that, as exemplified below, if 𝑞𝜎 has no answer on S
then for sure 𝑞 has no answer on D, while if 𝑞𝜎 has some answer

on S then 𝑞 may or may not have an answer on D.

Example 4.3 (Cont.). Consider the summary S of D with homo-

morphism 𝜎 such that 𝜎 (c) = 𝜎 (w) = p, 𝜎 (f) = 𝜎 (h) = 𝜎 (𝑢) = r:

S = {𝑅(r), 𝑠𝑢𝑝 (r, p), 𝑃ℎ𝐷 (p),𝑤𝑤 (r, r),𝑤𝑤 (r, p)}.
Consider the CQs (1) and (5) in 𝑞UCQ

, which we name 𝑞1
and 𝑞5

respectively. By Theorem 4.2: 𝑞1

𝜎 (𝑥) = 𝑅(r) ∧𝑤𝑤 (r, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)
has an answer on the summary S (𝑎𝑛𝑠 (𝑞1

𝜎 ,S) = {p}) then 𝑞1
may

or may not have an answer on D (here, 𝑞1
has no answer on D),

while 𝑞5

𝜎 (𝑥) = 𝑅(r) ∧𝑤𝑤 (𝑥, r) ∧𝑃ℎ𝐷 (𝑥) has no answer on S then

for sure 𝑞5
has no answer on D. ⋄

(∧,∨)-CQ optimization for a database.Our Ω function builds on

Theorem 4.2 to optimize a (∧,∨)-CQ for a database D. It rewrites

2
We recall that a term is either a variable or a constant in FO logic.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a query while (𝑖) identifying its CQs with no answer on D using a

summary S of it ((1) in Definition 4.4 below) and (𝑖𝑖) performing a

bottom-up removal of the largest subqueries with no answer on D
that these CQs are the cause of ((2) and (3) in Definition 4.4 below).

Definition 4.4 (Summary-based optimization of a (∧,∨)-CQ). Let
𝑞 be a (∧,∨)-CQ asked on a database D and S be a summary of

D with the homomorphism 𝜎 . The optimization of 𝑞 for D using S,
i.e., denoted by Ω(𝑞,S), is recursively defined as follows. Below, ∅
denotes the empty relation with appropriate arity.

The optimization of a CQ 𝑞 is:

Ω(𝑞,S) =
{

∅ if 𝑎𝑛𝑠 (𝑞𝜎 ,S) = ∅
𝑞 otherwise

(1)

where 𝑞𝜎 is obtained from 𝑞 by replacing its constants by their

images through 𝜎 .

The optimization of a conjunction of subqueries

∧𝑛
𝑖=1

𝑞𝑖 is:

Ω(
𝑛∧
𝑖=1

𝑞𝑖 ,S) =
{

∅ if ∃𝑖 ∈ [1, 𝑛] Ω(𝑞𝑖 ,S) = ∅∧𝑛
𝑖=1

Ω(𝑞𝑖 ,S) otherwise
(2)

The optimization of a disjunction of subqueries

∨𝑛
𝑖=1

𝑞𝑖 is:

Ω(
𝑛∨
𝑖=1

𝑞𝑖 ,S) =
{

∅ if ∀𝑖 ∈ [1, 𝑛] Ω(𝑞𝑖 ,S) = ∅∨
1≤𝑖≤𝑛, Ω (𝑞𝑖 ,S)≠∅ Ω(𝑞𝑖 ,S) otherwise

(3)

Above, the rewriting rule (1) follows from the soundness of

identifying CQs with no answer using a database summary (Theo-

rem 4.2), while the two other rewriting rules (2) and (3) follow from

the semantics of the ∧ and ∨ operators, respectively.

The next theorem establishes the two semantic relationships be-

tween a (∧,∨)-CQ and its optimization, that correspond to items 1

and 2 in Problem 1. In particular, it states the correctness of summary-

based optimization of a (∧,∨)-CQ w.r.t. relational query evaluation.

Theorem 4.5. Let D be a database, S a summary of D, and 𝑞 a
(∧,∨)-CQ. Then, Ω(𝑞,S) ⊆ 𝑞 and 𝑒𝑣𝑎𝑙 (𝑞,D) = 𝑒𝑣𝑎𝑙 (Ω(𝑞,S),D).

Example 4.6 (Cont.). The summary-based optimization of 𝑞UCQ
,

𝑞USCQ
and 𝑞JUCQ

forD using S corresponds to the following UCQ,

USCQ and JUCQ, respectively. We also show in gray the subqueries

that would have been additionally removed (with higher optimiza-

tion time) if Ω had used D instead of S.
Ω (𝑞UCQ, S)= (𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥)) (1)

∨(𝑅 (h) ∧ 𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥)) (2)
∨(𝑅 (h) ∧ 𝑠𝑢𝑝 (h, 𝑥)) (3)

Ω (𝑞USCQ, S) = (𝑅 (h))
∧ (𝑤𝑤 (h, 𝑥) ∨ 𝑠𝑢𝑝 (h, 𝑥) ∨ 𝑤𝑤 (𝑥, h))
∧ (𝑠𝑢𝑝 (𝑦, 𝑥) ∨ 𝑃ℎ𝐷 (𝑥))

Ω (𝑞JUCQ, S)=(𝑅 (h))∧
(
(𝑤𝑤 (h, 𝑥) ∧ 𝑠𝑢𝑝 (𝑦, 𝑥))
∨ (𝑤𝑤 (h, 𝑥) ∧ 𝑃ℎ𝐷 (𝑥))
∨ (𝑠𝑢𝑝 (h, 𝑥))

)
For L𝑅 ∈ {UCQ,USCQ, JUCQ}, it can be easily checked that:

Ω(𝑞L𝑅 ,S) ⊆ 𝑞L𝑅
since Ωmakes unions more specific by removing

disjuncts, and 𝑒𝑣𝑎𝑙 (Ω(𝑞L𝑅 ,S),D) = 𝑒𝑣𝑎𝑙 (𝑞L𝑅 ,D) since both 𝑞L𝑅

and Ω(𝑞L𝑅 ,S) model the CQ (3) that produces the sole answer w. ⋄

4.2 Database summarization
The concrete database summaries that we use with our Ω opti-

mization function are defined by adapting the quotient operation

from graph theory [34] to the incomplete relational databases we

consider. The quotient operation has been widely investigated in

the literature for graph database summarization [18, 42]. It offers an

elegant summarization technique by decoupling the summarization

method, which basically fuses equivalent nodes, from the high-

level specification of equivalent nodes, defined by an equivalence

relation
3
, e.g., bisimilarity [2]. Assuming we have an equivalence

relation between database terms (the one we use will be discussed

shortly), we define a quotient database as follows.

Definition 4.7 (Quotient database). Let D be a database, ≡ be

some equivalence relation between terms, and let 𝑐1

≡, . . . , 𝑐
𝑘
≡ denote,

by abuse of notation, both the equivalence classes of the terms inD
w.r.t. ≡ and the terms used to represent these equivalence classes.

The quotient database of D w.r.t. ≡ is the database D≡ such that:

• 𝑅(𝑐𝛼1

≡ , · · · , 𝑐𝛼𝑛≡) ∈ D≡ iff there exists 𝑅(𝑡𝑒𝑟𝑚1, · · · , 𝑡𝑒𝑟𝑚𝑛) ∈ D
with 𝑡𝑒𝑟𝑚𝑖 ∈ 𝑐

𝛼𝑖
≡ and 1 ≤ 𝛼𝑖 ≤ 𝑘 , for 1 ≤ 𝑖 ≤ 𝑛,

• the term 𝑐
𝑗
≡ inD≡, for 1 ≤ 𝑗 ≤ 𝑘 , is a variable if all the equivalent

terms in D it represents according to ≡ are variables, otherwise it

is a constant.

The next proposition establishes that quotient databases can

be used by the optimization function Ω to identify CQs with no

answer on databases. It follows from the fact that in the above

definition, ≡ defines an implicit function that maps the terms in D
to the terms in D≡, which turns out to be the homomorphism 𝜎

in Definition 4.1: the first and second items in the above definition

enforce respectively the conditions (𝑖) and (𝑖𝑖) in Definition 4.1.

Proposition 4.8. Quotient databases are database summaries.

We introduce the equivalence relation ≡Ω used to build our sum-

maries, i.e., how database terms are fused into summary terms.

Since ontology languages [6, 8, 15, 20] are centered on concepts
modeled by unary relations, which are then interrelated using re-
lationships modeled by n-ary relations, we adopt a summarization

centered on the instances of concepts stored in a KB’s database: all

the terms that are instances of the same concept in the database

are represented by a single term in the database summary ((𝑖) in
Definition 4.9 below), and all the concepts with common instances

in the database have the same single term that represents all their

instances in the database summary ((𝑖𝑖) in Definition 4.9 below).

As we shall see in our experiments, ≡Ω achieves a good tradeoff

between size reduction (≥90%) and completeness of identifying CQs

with no answer on the summarized databases (92% on average).

Definition 4.9 (≡Ω equivalence relation). ≡Ω is the equivalence

relation such that two terms 𝑡1 and 𝑡2 are equivalent within a data-

base D, denoted 𝑡1 ≡Ω 𝑡2, iff (𝑖) both 𝑡1 and 𝑡2 are terms of the

same unary relation, i.e., concept, or (𝑖𝑖) there exists a term 𝑡3 in D
such that 𝑡1 ≡Ω 𝑡3 and 𝑡2 ≡Ω 𝑡3.

Example 4.10 (Cont.). The summary S in Example 4.3 is actually

the quotient database of D w.r.t. ≡Ω : it defines two equivalence

classes, one for the researchers in D, i.e., {f, h, 𝑢}, and one for the

PhD students in D, i.e., {w, c}; these two classes are represented in

S by the constants r and p, respectively. ⋄
We discuss the need of summary maintenance in case of database

updates in Section 6, as well as how our particular summaries

(quotient databases w.r.t. ≡Ω) can be efficiently updated.

3
An equivalence relation is a reflexive, symmetric, and transitive binary relation.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

5 EXPERIMENTAL EVALUATION
Our code, scripts, queries, data as well as the external resources and

tools we used are available at or from: https://github.com/OptiRef/

resources.git

Setup. For our KBs, we use the well-established extended LUBM
benchmark a.k.a. LUBM

∃
[43]. It is an adaptation of the Leight Uni-

versity benchmark a.k.a. LUBM [35] to the DL-liteR description

logic [17]. We chose this benchmark for two reasons. First, DL-liteR
is the most expressive KB language for which the reformulation of

CQs into UCQ, USCQ and JUCQ reformulations has been studied.

Second, this benchmark is widely-considered in the OMQA litera-

ture and provides opportunities to adapt many available queries to

our needs. For the ontology O of all our KBs, we used the default

benchmark ontology LUBM
∃
20
. It is made of 449 positive rules over

163 relations: 128 unary relations, a.k.a. concepts, and 35 binary

relations, a.k.a. roles. We used the EUGen (v0.1b) data generator

provided with the benchmark to generate the databases of our KBs.

We used DB2 (v11.5.5), MySQL (v8.0.34) and PostgreSQL (v14.2)

to store the generated databases and their summaries, which are

commonly used in the OMQA literature. For space considerations,

we report on the results obtained with the popular, open-source

PostgreSQL RDBMS. We obtained comparable results with DB2 and

MySQL. We adopted the data layout of [12] for the databases and

summaries, which was found to be the most efficient for evaluating

query reformulations on DL-liteR KB’s database. DL-liteR uses

unary relations for concepts, which are stored as unary tables,

and binary relations for relationships, which are stored as binary

tables. Moreover, all the values are dictionary-encoded into integers;

the dictionary is stored as a binary table. Finally, for a database

summary, the database-to-summary homomorphism 𝜎 , which maps

the database terms to the summary terms, is stored as a binary table.

For all the above-mentioned database, summary, dictionary and

homomorphism tables, each unary table has an index on its unique

attribute and each binary table has the two two-attributes indexes.

We used the Rapid (v0.93) [21], Compact (v1.0b6) [51] and GDL

(v1.0) [12] FO-rewriting tools that respectively compute UCQ, USCQ

and JUCQ reformulations of CQs w.r.t. DL-liteR ontologies. They

load and keep inmemory the ontologyw.r.t. which CQs are reformu-

lated. While Compact and GDL are the only options to respectively

compute USCQ and JUCQ query reformulations, there are other

tools besides Rapid that can be used to compute UCQ query re-

formulations, e.g., Graal [7], Iqaros [52], Nyaya [53], Presto [47],

Requiem [46], etc. Choosing Rapid instead of another tool does not

affect our conclusions, as reformulation time is negligible w.r.t. both

optimization and evaluation times: reformulation is performed

w.r.t. the in-memory ontology, while optimization and evaluation

is performed w.r.t. the on-disk data (summary and database).

Finally, to perform our experiments, we use a Ubuntu 20.04.2

Linux server with Intel Xeon 4215R 3.20GHz CPU, 128GB of RAM,

and 7TB of fast HDD.

Database summarization. We generated five LUBM databases:

LUBM1M, LUBM10M, LUBM50M, LUBM100M, LUBM150M. The

name of a database indicates the number of stored facts in mil-

lions. Also, databases are created such that LUBM1M ⊆ LUBM10M

⊆ LUBM50M ⊆ LUBM100M ⊆ LUBM150M, where ⊆ means set

inclusion, so that query answering becomes harder as data grows.

Database D |D| |S| size red. (%) sum. time (s)
LUBM1M 1,187k 93k 92.12 15

LUBM10M 10,794k 843k 92.18 86

LUBM50M 53,328k 4,160k 92.20 308

LUBM100M 106,596k 8,316k 92.19 699

LUBM150M 159,899k 12,474k 92.19 1,100

Table 3: Characteristics of the databases and summaries, data-
base size reduction and summarization time for PostgreSQL

We rely on the union-find data structure for disjoint sets [22]

for database summarization, since equivalence classes of database

terms w.r.t. ≡Ω are disjoint sets of equivalent terms w.r.t. ≡Ω . This

data structure supports two main operations, union and find, in
optimal constant amortized time complexity [49, 50], i.e., time com-

plexity is almost constant over a sequence of union or find oper-

ations. Union is used to state which values must be in a same set,

and results in merging the sets these values belong to. Find returns
the representative value of the set a given value belongs to.

We first compute the homomorphism 𝜎 from the database D to

the summary S (Definition 4.1) w.r.t. the ≡Ω equivalence relation

(Definition 4.9). Given a union-find data structure for disjoint sets

of integers, we use union to state that the (integer-encoded) terms

stored in each unary relation in D must be in a same set, as these

terms are equivalent w.r.t. ≡Ω (condition (𝑖) in Definition 4.9). By

definition of union, this ensures that if unary relations share some

terms, in which case all the terms of these relations are equivalent

w.r.t. ≡Ω (condition (𝑖𝑖) in Definition 4.9), then these terms end up

in the same set. Finally, since find returns a representative term for

the set of equivalent terms a given term belongs to, it models the

homomorphism 𝜎 from the database D to its summary S w.r.t. ≡Ω .

The computation of 𝜎 is therefore linear in the size of the data: it

needs a worst-case number of calls to union in the size ofD, each of

which is performed in constant amortized time. Then, the summary

S of the database D w.r.t. ≡Ω is computed as per Definition 4.7:

every fact inD leads to a fact in S obtained by replacing each term

by its image through 𝜎 , i.e., through find. The computation of S is

therefore linear in the size of the data: it needs a worst-case number

of calls to find in the size of D (one or two calls per fact), each of

which is performed in constant amortized time.

Table 3 shows for each database D we generated: its size |D|
and the size |S| of its summary S, i.e., numbers of facts, the D-to-

S size reduction (1 − |S|/|D|), and the summarization time with

PostgreSQL (computation and storage of 𝜎 and then of S). We

observe that ≡Ω achieves significant size reduction (≥ 90%) and

that summarization time scales linearly in the size of the data.

OMQA performance.We used ten CQs adapted from [12, 43] to

obtain a variety of numbers of maximally-contained CQs w.r.t. O
that query reformulations model (recall Section 2) and of answers.

The main characteristics of these CQs are shown in Table 4 (top).

For each database, we processed every query with 3 query an-

swering strategies per L𝑅 query reformulation languages used by

FO-rewriting tools: L𝑅 = UCQ for Rapid, L𝑅 = USCQ for Compact

and L𝑅 = JUCQ for GDL. The first strategy, denoted by L𝑅/REF,

simply consists in computing the L𝑅 query reformulation with the

FO-rewriting tool and then evaluating it with PostgreSQL; this is

how OMQA is performed via FO-rewriting, hence the state-of-the-

art baseline. The second strategy, denoted by L𝑅/DB, departs from

6

https://github.com/OptiRef/resources.git
https://github.com/OptiRef/resources.git

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Query answering
Query QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9

#atoms 8 5 5 6 6 8 8 8 6 8

#contained CQs w.r.t. O 2,759 1,949 1,701 1,151 719 495 299 183 143 31

#answers in 𝑎𝑛𝑠 (𝑞,K) (LUBM100M) 23,946 0 347,527 720 69 0 2 858,259 12 0

optimization ratio for UCQ/S 81.92 100 99.88 83.80 80.2 80 52.53 78.89 66.91 77.42

optimization ratio for USCQ/S 100 100 100 100 100 100 100 100 100 100

optimization ratio for JUCQ/S 100 100 100 100 100 100 100 78.89 100 100

Table 4: Characteristics of the queries (available at https://github.com/OptiRef/resources.git), O = LUBM
∃
20

and D = LUBM100M

L𝑅/REF by optimizing the query reformulation for the database

D before evaluating it. For this strategy, our Ω function optimizes

the query reformulation using the database D. Finally, the third

strategy, denoted by L𝑅/S, is similar to L𝑅/DB except that our

Ω function optimizes the query reformulation for D using the

summary S of D.

Table 4 (bottom) shows the optimization ratio per query obtained
with L𝑅/S on LUBM100M, i.e., the percentage of CQs with no an-

swers on LUBM100M that are identified and removed by Ω using

LUBM100M’s summary; the ratio is 0% withL𝑅/REF and 100% with

L𝑅/DB. We observe that optimization ratios are high in general,

92% on average with 52.53% the lowest value (𝑄𝐴6), thus our sum-

maries are effective to identify CQs with no answers. Similar results

are obtained on LUBM1M, LUBM10M, LUBM50M, and LUBM150M.

Figure 2 shows the times we measured when we processed our

queries with the above-mentioned strategies. For a given strategy,

the measured time is defined as optimization time (for L𝑅/DB and

L𝑅/S only) + evaluation time (recall item 3 in Problem 1). For space

considerations, we report times for LUBM10M and the ten times

larger LUBM100M. Generally, times gradually increase as the data

size grows from 1M to 150M facts. Every reported time is an average

over 5 “hot” query runs, i.e., the first “cold” query run is discarded.

L𝑅/S versus the state-of-the-art baseline L𝑅/REF. We ob-

serve that when query reformulations are optimized by Ω using S:
• Query answering performance almost always improves for UCQs

(UCQ/S for all the databases except for 𝑄𝐴6), often significantly

and up to more 3 orders of magnitude (e.g., UCQ/S for 𝑄𝐴1 on

LUBM10M and LUBM100M).

• Query answering performance frequently improves for JUCQs (in

half of the cases overall), up to one order of magnitude (e.g., JUCQ/S

for 𝑄𝐴8 on LUBM100M), otherwise performance is marginally af-

fected. We remark that when the performance visibly degrades

(e.g., 𝑄𝐴9 on LUBM100M) it is just in the order of a few tens of ms.

• Query answering performance is marginally affected for USCQs.

These observations are explained with the two following facts,

and the optimization ratios obtained with our summaries (Table 4).

(1) Optimizing reformulations with Ω removes CQs with no answer

from the top union in UCQs and from the unions on which the

top join is performed in JUCQs; in USCQs, single-atom CQs are

removed from unions on top of which joins are performed, on top

of which the top union is performed.

(2) Removing CQs with no answer from a union improves its eval-

uation time (as it may take time for an RDBMS to find out that a

CQ has no answer), while it does not change the size of its output

hence the number of tuples to process after this union.

Therefore:

• Optimizing a UCQ reformulation with Ω speeds up its entire

evaluation since Ω optimizes its top union. Also, because our sum-

maries allow high optimization ratios for UCQ/S, query answering

performance is significantly improved in general. We remark that

performance degrades for 𝑄𝐴6 because the optimization time does

not amortize with a low optimization ratio (52.53% on LUBM100M).

•Optimizing a JUCQ reformulationwithΩ speeds up the evaluation

of its sub-UCQs but does not affect the evaluation time of the top

join (as the same tuples must be joined). JUCQ reformulations

are thus more difficult to optimize than UCQ ones. This is why

query answering performance is “only” frequently improved (in

half of the cases) and marginally affected otherwise, even with high

optimization ratios for JUCQ/S (> 78% on LUBM100M).

• Optimizing a USCQ reformulation with Ω only removes atomic

CQs from its inner unions while it does not take time for an RDBMS

to figure out that these atomic CQs are empty. The optimization

thus marginally affects the evaluation time of these inner unions,

and the evaluation time of the subsequent joins and top union

is not affected. USCQ reformulations are thus more difficult to

optimize than UCQ and JUCQ ones. This is why query answering

performance is marginally affected in general, even with maximal

optimization ratios for USCQ/S (100% on LUBM100M).

L𝑅/DB versus L𝑅/REF and L𝑅/S. We observe that when Ω opti-

mizes query reformulations usingD instead of S, query answering
performance may improve or degrade:

• Query answering performance is marginally to significantly bet-

ter with UCQ/DB than with the baseline UCQ/REF, although the

performance with UCQ/DB is generally worse than with UCQ/S

(except for 𝑄𝐴6 that has a low optimization ratio of 52.53%).

• Query answering performance with JUCQ/DB is always worse

than with the baseline JUCQ/REF and almost always worse than

with JUCQ/S (except for 𝑄𝐴7 on LUBM10M and for 𝑄𝐴7 and 𝑄𝐴8

on LUBM100M).

• Query answering performance with USCQ/DB is always worse

than with the baseline USCQ/REF and with USCQ/S.

These observations are explained by the extra-time spent by

L𝑅/DB w.r.t.L𝑅/S in completely optimizing a query reformulation

using the database (recall that optimization ratios are of 100% for

L𝑅/DB): optimization time with L𝑅/DB is in general significantly

higher than with L𝑅/S, because a database is much larger than

its summary, while at the same time L𝑅/DB provides a moderate

gain in optimization ratios because they are already very high with

L𝑅/S in general. This is why L𝑅/DB performs worse than L𝑅/S

7

https://github.com/OptiRef/resources.git

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 2: Query answering times (ms, logscale) with PostgreSQL on LUBM10M (left) and LUBM100M (right)

overall, and worse than L𝑅/REF when optimization time is higher

than the time saved when the optimized reformulation is evaluated.

Conclusion. Our experiments show that our summaries can be

fast to compute (linear in data size), small (<10% of data size) and

effective to identify CQs with no answer on a database (92% on av-

erage). They also show that, when our Ω optimization function uses

summaries, OMQA time performance can be significantly improved

(item 3 in Problem 1) for UCQ reformulations in general and fre-

quently for JUCQ reformulations, while performance is marginally

affected for USCQ ones.

6 RELATEDWORK AND CONCLUSION
We devised a novel optimization framework for OMQA via FO-

rewriting. Our framework is complementary to, and capitalizes on,

the optimizations that have been proposed so far in the literature,

e.g., [11, 12, 21, 33, 38, 51]. These optimizations are both ontology-

dependent and data-independent. They exploit the ontology’s rules

to find equivalent query reformulations that can be evaluated faster

on relational databases, similarly to semantic query optimization

that exploits the rules of deductive databases, e.g., [19]. The nov-

elty of our framework is to add a complementary data-dependent

optimization step to query reformulations produced by state-of-

the-art FO-rewriting tools, e.g., [7, 11, 12, 21, 46, 47, 51–53]. This

framework is general enough to apply to a variety of FO-rewriting

settings, in particular those in Table 2, and it guarantees the cor-

rectness of OMQA on the queried KBs. For the FO-rewriting set-

tings in which it was evaluated, it significantly improves OMQA

time performance for the widely-adopted UCQ query reformula-

tions, e.g., [10, 17, 21, 30–33, 38, 45–47, 52], and for the JUCQ ones

of [11, 12]. Finally, an originality of our framework is that it builds

on the Ω optimization function that rewrites a query reformulation

into a simpler contained one, by pruning away subqueries that are

useless to its evaluation on a given database. Notably, useless sub-

queries are identified rapidly by using database summaries, which

we devised for this particular purpose by adapting the quotient

operation [34] to databases.

Alternative summaries. Database summaries, in particular those

based on the quotient operation, have been mainly investigated

for graph databases, e.g., [18, 42], and description logic databases

a.k.a. ABoxes [23–25, 27] for the purpose of data exploration and

of data management optimization (consistency checking and query

answering). To the best of our knowledge, summaries have not been

used for the optimization of OMQA via FO-rewriting. We adapted

the quotient operation to relational databases and we defined the

new equivalence relation ≡Ω for the special task of sound and fast

identification of CQswith no answer on a database.≡Ω departs from

prior equivalence relations by being based on the instances of con-

cepts that KB’s databases describe with n-ary relationships between

them, and not on bisimulation [36], e.g., [26, 44], or cooccurrence

of relationships [28, 29]. A perspective is to study alternative data-

base summaries for our framework, which could improve further

OMQA time performance: summaries could be obtained either via

the quotient operation and other equivalence relations than ≡Ω , or

with other procedures than the quotient operation.

Summary maintenance upon database updates. Although the

computation of our summaries is linear in the size of databases, the

summarization times we reported in our experiments show that

it would be prohibitive to redo full summarization upon updates.

We therefore rely on incremental summary maintenance. We re-

mark that the need for incremental maintenance is shared with

the two other OMQA techniques, materialization, e.g., [30, 41] and

combined approach, e.g., [39, 40, 43], though we need to maintain

a summary that is a small and simple homomorphic approximation

of the KB’s database, while materialization and combined approach

need to maintain a large and complex (approximation of a) chase

of the KB’s database, i.e., database plus entailed facts. By defini-

tion of a summary built with ≡Ω , in the worst case, an insertion

fuses two equivalence classes and a deletion splits an equivalence

class into several ones. Maintenance rewrites the affected summary

facts, i.e., in which some term moves from an equivalence class to

another, based on the updated homomorphism 𝜎 modeled with a

union-find data structure (recall Section 5) that also supports the

delete operation in optimal constant amortized time complexity [4].

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Query Optimization for Ontology-MediatedQuery Answering WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley. http://webdam.inria.fr/Alice/

[2] Sergio Abriola, Pablo Barceló, Diego Figueira, and Santiago Figueira. 2018. Bisim-

ulations on Data Graphs. J. Artif. Intell. Res. 61 (2018), 171–213.
[3] Afnan G. Alhazmi, Tom Blount, and George Konstantinidis. 2022. ForBackBench:

A Benchmark for Chasing vs. Query-Rewriting. Proc. VLDB Endow. 15, 8 (2022),
1519–1532.

[4] Stephen Alstrup, Mikkel Thorup, Inge Li Gørtz, Theis Rauhe, and Uri Zwick.

2014. Union-Find with Constant Time Deletions. ACM Trans. Algorithms 11, 1
(2014), 6:1–6:28.

[5] Anonymized. [n. d.].

[6] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook. Cambridge

University Press.

[7] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML, Vol. 9202. 328–344.
[8] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011.

On rules with existential variables: Walking the decidability line. Artificial
Intelligence 175, 9-10 (2011), 1620–1654.

[9] Meghyn Bienvenu. 2016. Ontology-Mediated Query Answering: Harnessing

Knowledge to Get More from Data. In IJCAI. 4058–4061.
[10] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mug-

nier. 2019. Reformulation-Based Query Answering for RDF Graphs with RDFS

Ontologies. In ESWC, Vol. 11503. Springer, 19–35.
[11] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2015. Optimizing

Reformulation-based Query Answering in RDF. In EDBT. 265–276.
[12] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2016. Teaching an

RDBMS about ontological constraints. PVLDB (2016), 1161–1172.

[13] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. Datalog
±
: a unified

approach to ontologies and integrity constraints. In ICDT. 14–30.
[14] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-

based framework for tractable query answering over ontologies. In PODS. 77–86.
[15] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas

Pieris. 2010. Datalog+/-: A Family of Logical Knowledge Representation and

Query Languages for New Applications. In LICS. 228–242.
[16] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris. 2011. A

logical toolbox for ontological reasoning. SIGMOD Rec. 40, 3 (2011), 5–14.
[17] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering

in Description Logics: The DL-Lite Family. J. Autom. Reasoning (2007), 385–429.

[18] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos,

Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019. Summarizing

semantic graphs: a survey. VLDB J. 28, 3 (2019), 295–327.
[19] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-Based Approach

to Semantic Query Optimization. ACM Trans. Database Syst. 15, 2 (1990), 162–
207.

[20] Michel Chein and Marie-Laure Mugnier. 2009. Graph-based Knowledge Represen-
tation - Computational Foundations of Conceptual Graphs. Springer.

[21] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. 2011. Optimized

Query Rewriting for OWL2QL. In CADE. 192–206.
[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, 3rd Edition. MIT Press.

[23] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum, Edith

Schonberg, Kavitha Srinivas, and Li Ma. 2007. Scalable Semantic Retrieval

through Summarization and Refinement. In AAAI. 299–304.
[24] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg, and Kavitha

Srinivas. 2009. Scalable Highly Expressive Reasoner. J. Web Semant. 7, 4 (2009),
357–361.

[25] Cheikh-Brahim El Vaigh and François Goasdoué. 2021. A Well-founded Graph-

based Summarization Framework for Description Logics. In Description Logics.
[26] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserving

graph compression. In SIGMOD. 157–168.
[27] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha

Srinivas. 2006. The Summary Abox: Cutting Ontologies Down to Size. In ISWC.
343–356.

[28] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2019. Incremental

structural summarization of RDF graphs. In EDBT. 566–569.
[29] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2020. RDF graph

summarization for first-sight structure discovery. VLDB J. 29, 5 (2020), 1191–
1218.

[30] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. 2013. Efficient query

answering against dynamic RDF databases. In EDBT. 299–310.
[31] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2011. Ontological queries:

Rewriting and optimization. In ICDE. 2–13.

[32] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and

Optimization for Ontological Databases. ACM Trans. Database Syst. 39, 3 (2014),
25:1–25:46.

[33] Georg Gottlob and Thomas Schwentick. 2012. Rewriting Ontological Queries

into Small Nonrecursive Datalog Programs. In KR.
[34] Jonathan L. Gross, Jay Yellen, and Ping Zhang (Eds.). 2013. Handbook of Graph

Theory. Chapman & Hall / CRC Press, Taylor & Francis.

[35] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for

OWL knowledge base systems. J. Web Semant. 3, 2-3 (2005), 158–182.
[36] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995.

Computing Simulations on Finite and Infinite Graphs. In FOCS. 453–462.
[37] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-

tional Databases. J. ACM 31, 4 (1984), 761–791.

[38] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.

2015. Sound, complete and minimal UCQ-rewriting for existential rules. Semantic
Web (2015), 451–475.

[39] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael

Zakharyaschev. 2010. The Combined Approach to Query Answering in DL-Lite.

In KR.
[40] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael

Zakharyaschev. 2011. The Combined Approach to Ontology-Based Data Access.

In IJCAI. 2656–2661.
[41] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2019.

Fast Query Answering over Existential Rules. ACM Trans. Comput. Log. 20, 2
(2019), 12:1–12:48.

[42] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summa-

rization Methods and Applications: A Survey. ACM Comput. Surv. 51, 3 (2018),
62:1–62:34.

[43] Carsten Lutz, Inanç Seylan, David Toman, and FrankWolter. 2013. The Combined

Approach to OBDA: Taming Role Hierarchies Using Filters. In ISWC. 314–330.
[44] Tova Milo and Dan Suciu. 1999. Index Structures for Path Expressions. In ICDT.

277–295.

[45] Giorgio Orsi and Andreas Pieris. 2011. Optimizing Query Answering under

Ontological Constraints. PVLDB 4, 11 (2011), 1004–1015.

[46] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. 2009. Efficient Query

Answering for OWL 2. In ISWC. 489–504.
[47] Riccardo Rosati and Alessandro Almatelli. 2010. Improving Query Answering

over DL-Lite Ontologies. In KR.
[48] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System

Concepts, Seventh Edition. McGraw-Hill Book Company.

[49] Robert Endre Tarjan. 1985. Amortized Computational Complexity. SIAM Journal
on Algebraic Discrete Methods 6, 2 (1985), 306–318.

[50] Robert Endre Tarjan and Jan van Leeuwen. 1984. Worst-case Analysis of Set

Union Algorithms. J. ACM 31, 2 (1984), 245–281.

[51] Michaël Thomazo. 2013. Compact Rewritings for Existential Rules. In IJCAI.
1125–1131.

[52] Tassos Venetis, Giorgos Stoilos, and Giorgos B. Stamou. 2012. Incremental Query

Rewriting for OWL 2 QL. In DL.
[53] Roberto De Virgilio, Giorgio Orsi, Letizia Tanca, and Riccardo Torlone. 2012.

NYAYA: A System Supporting the Uniform Management of Large Sets of Seman-

tic Data. In ICDE. 1309–1312.

APPENDIX
Proof of Theorem 4.2. We prove the theorem by showing that

its contrapositive holds, i.e., if 𝑞 has some answer on D, then 𝑞𝜎
has some answer on S. If 𝑞 has an answer on D, then there exists

a homomorphism ℎ from 𝑞 to D such that ℎ(𝑞) ⊆ D where every

free variable is mapped to a constant, every existential variable is

mapped to a constant or variable, and every constant is mapped

to itself. Moreover, the composition 𝜎 ◦ ℎ is a homomorphism

from 𝑞 to S such that 𝜎 ◦ ℎ(𝑞) ⊆ S where, by definition of a

database summary, every free variable is mapped to a constant,

every existential variable is mapped to a constant or variable, and

every constant is mapped to its image through 𝜎 . Let us now build

a homomorphism 𝑔 from 𝑞𝜎 to S such that 𝑔(𝑞𝜎) = 𝜎 ◦ ℎ(𝑞) ⊆ S:
it suffices that 𝑔 maps every variable exactly as 𝜎 ◦ ℎ does, while it

maps every constant to itself (constants have already been replaced

by their image through 𝜎 in 𝑞𝜎). Since defined this way 𝑔 maps free

variables to constants, 𝑞𝜎 has an answer on S. □
9

http://webdam.inria.fr/Alice/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Proof of Theorem 4.5. Let us first prove Ω(𝑞,S) ⊆ 𝑞. We

prove this by induction on the depth 𝑑 of 𝑞 defined as the maximal

nesting of the ∧ and ∨ operators on top of CQs, with the induc-
tion hypothesis that Ω performs rewritings (rules (1), (2) and (3)

in Definition 4.4) that are contained in the rewritten query. Base
case, 𝑑 = 0: rule (1) rewrites 𝑞 either by (second case) itself or by

(first case) ∅, and clearly, 𝑞 is contained in itself and ∅ is contained

in 𝑞. Induction step, 𝑑 > 0: rule (2) rewrites a conjunction either

by (second case) a contained one (induction) or by (first case) ∅
that is by definition contained in the rewritten conjunction; rule

(3) rewrites a disjunction either by (second case) a contained one

(induction), or by ∅ (first case) that is by definition contained in

the rewritten disjunction.

Let us now prove that 𝑒𝑣𝑎𝑙 (𝑞,D) = 𝑒𝑣𝑎𝑙 (Ω(𝑞,S),D). Again,
we prove this by induction on the depth 𝑑 of 𝑞 defined as the

maximal nesting of ∧ and ∨ operators on top of CQs, with the

induction hypothesis that Ω performs rewritings (rules (1), (2) and

(3) in Definition 4.4) that are equivalent w.r.t. the database D. Base
case, 𝑑 = 0: rule (1) rewrites 𝑞 either by (second case) itself or by

(first case) ∅ if 𝑞 has no answer on S, hence on D according to

Theorem 4.2, i.e., 𝑞 is equivalent to ∅ on D. Induction step, 𝑑 > 0:

rule (2) rewrites a conjunction either by (second case) an equivalent

one (induction) or by (first case) ∅ if a 𝑞𝑖 subquery has no answer

on D (induction), hence the conjunction is equivalent to ∅ on D;

rule (3) rewrites a disjunction either by (second case) an equivalent

one (induction), or by ∅ (first case) if all its subqueries have no

answer on D, hence the disjunction is equivalent to ∅ on D. □

10

	Abstract
	1 Introduction
	2 Preliminaries
	3 Optimization problem
	4 Optimization framework
	4.1 The optimization function
	4.2 Database summarization

	5 Experimental evaluation
	6 Related work and conclusion
	References

