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ABSTRACT

Test-time adaptation (TTA) has emerged as a zero-shot learning approach to address
distribution shifts across domains without needing source data. While current
methods focus on adapting vision and language models (VLMs) using prompt
tuning, they struggle with ambiguous categories due to the challenge of selecting
relevant attributes in the absence of labels. To address this issue, we propose a novel
framework, termed Search4Prompt, which aims to identify “good” attributes and
learn tailored prompts during test-time prompt learning (TTPL). Search4Prompt
consists of two main components: the Retrieval-based Attribute Search (RAS)
and the Implicit-Explicit Attribute Injection (IEAI) module. RAS constructs an
attribute bank by generating detailed descriptions for predefined categories, and
then identifies the most relevant attributes based on the semantic similarity between
the test image and the attributes. This enables the selection of “good” attributes
that are well-suited to the test samples. The IEAI module operates in two ways.
First, it employs pseudo-label learning, where the selected attributes contribute to a
voting process that implicitly injects attribute knowledge into prompt learning.
Second, it augments the original category names with the selected attributes,
explicitly enhancing the semantic representation of ambiguous categories. This dual
approach improves the model’s discriminability during test-time prompt learning.
Experimental results demonstrate that Search4Prompt outperforms existing TTA
methods on several benchmark datasets, confirming its effectiveness in narrowing
domain gaps and handling ambiguous categories.

1 INTRODUCTION

Vision-language foundation models like CLIP (Radford et al., 2021) have demonstrated remarkable
generalization across various recognition tasks. These models are pre-trained on large-scale web
data using a contrastive loss and can be fine-tuned for specific tasks with additional training data.
While this approach has led to significant advancements, its success is highly dependent on the
assumption that there is no distribution shift between the training and test data. In reality, distribution
shifts are common due to factors such as natural variations or changes in sensing equipment, making
it impractical to collect sufficient training data for every possible test domain. To address these
challenges, test-time adaptation (TTA) has emerged as a strategy to adapt pre-trained models to test
data by minimizing entropy, without the need for source data (Kim et al., 2020; Shanmugam et al.,
20215 Wang et al., [2020; |[Niu et al.| 2023)).

Among TTA methods (Wang et al.l 2020; 2022; [Yang et al.| 2023a), test-time prompt learning
(TTPL) (Shu et al., [2022; |Abdul Samadh et al.,|2024)) has gained prominence for maintaining the
generalization capabilities of vision-language models (VLMs) (Kumar et al.| [2022). Inspired by
natural language processing (NLP), TTPL introduces learnable prompt vectors by appending them
to predefined class names. However, the performance of these models deteriorates when faced
with ambiguous categories, particularly in tasks requiring fine-grained recognition. As illustrated in
the “baseline” of Figure[I] broad or overlapping categories such as “red velvet cake”, “cupcakes”,
and “carrot cake” are not adequately represented by the learned prompt vectors, leading to reduced

effectiveness.

A natural approach to address ambiguous categories is to expand their definitions with detailed
attributes. One potential solution, though unexplored in TTPL, is to leverage large language models
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Figure 1: When dealing with visually similar objects, coarse-grained categories often create ambigui-
ties that hinder accurate recognition. Ambiguous categories, however, can be clearly distinguished
using specific fine-grained attributes. Yet, too many attributes (e.g., “round cakes”) can introduce
redundancy and confuse the model. Our method selectively identifies “good” discriminative attributes
(e.g., flavor or size variations) from a broad set, ensuring precise visual recognition by focusing on
the most relevant and informative characteristics.

(LLMs) to generate fine-grained attribute descriptions based on predefined category names and use
these attributes to enhance TTPL. However, as illustrated in Figure [I] LLM-generated descriptions,
while rooted in common sense, may not accurately correspond to specific samples in downstream tasks.
Furthermore, an overabundance of attributes can introduce redundant information, potentially leading
to prediction errors. This issue is particularly problematic in test-time adaptation scenarios, where
only test samples are available and no labels are provided to guide selecting relevant, informative
attributes.

To address these challenges, we propose a novel framework called Search4Prompt, designed to
identify representative “good” attributes and learn tailored prompts for test samples during TTPL.
The framework consists of two main components: the Retrieval-based Attribute Search (RAS) and
the Implicit-Explicit Attribute Injection (IEAI) module. RAS begins by generating extensive attribute
descriptions for predefined categories, creating an attribute bank. It then identifies the most relevant
attributes by comparing the similarities between the CLIP features of the test image and the attributes,
allowing us to find “good” discriminative attributes that are best suited for each sample.

To fully leverage the identified attributes, IEAI injects this attribute knowledge into TTPL through
both implicit and explicit means. Inspired by how humans recognize objects by focusing on key
details, we introduce a voting-based pseudo-label learning method, where the selected attributes are
combined into scores that act as soft pseudo-labels. By aligning model predictions with these soft
labels, we implicitly guide VLMs to focus on the most important features, especially for ambiguous
or fine-grained categories.

Additionally, the success of adapting VLMs to downstream tasks often depends on the quality of
category descriptions, which are typically fixed during TTPL (Shu et al., [2022} |/Abdul Samadh et al.,
2024)). To improve alignment with test samples, we implement a compositional attribute augmentation
strategy, which enriches category descriptions with the most relevant attributes. This strategy detects
ambiguous categories using pre-trained VLMs and augments them with the searched attributes,
providing richer and more informative context. By improving the quality of category descriptions,
our method ensures more effective generalization to test data, even in challenging scenarios.

In summary, our contributions are fourfold:

* We propose a novel Search4Prompt framework that discovers discriminative attributes from rich
contextual information for learning more effective, informative prompts during test-time adaptation.

* We introduce the Retrieval-based Attribute Search module to effectively identify the most relevant
attributes that are important for each testing sample.

* We present the Implicit-Explicit Attribute Injection module to facilitate the pseudo-labeling and
prompt learning with the selected attributes.
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» Experimental results demonstrate that our approach outperforms existing methods across extensive
benchmark datasets. For instance, on the Flower dataset, our method achieves an improvement of
2.05% in accuracy compared to state-of-the-art methods.

2 RELATED WORK

Prompt Learning in Vision-Language Models. Vision-language models (VLMs) (Radford et al.,
2021 |J1a et al., [2021)), pre-trained on vast image-text pairs from the web, have demonstrated powerful
zero-shot generalization across downstream recognition tasks. However, efficiently adapting VLMs
to specific downstream tasks with limited data remains a challenge. Recently, prompt learning has
become a leading approach for adapting VLMs with unlabeled (Shu et al., |2022; Feng et al., [2023};
Ma et al., 2024) or limited labeled data.

CoOp used the fine-tuning of VLMs by optimizing continuous prompt vectors in the language
branch for few-shot image recognition. Subsequent works, such as CoCoOp (Zhou et al., [2022a)
and UPT (Zang et al. 2022), further conditioned textual prompts on visual features to enhance
the model’s generalization to unseen domains. Other methods, like KgCoOp (Yao et al., [2023)),
ProGrad (Zhu et al.l 2023a), and ProReg (Zhu et al.| 2023b), introduced prompt regularization
strategies to minimize discrepancies between task-specific knowledge and the model’s inherent
general knowledge. Additional efforts explored prompt prior distribution (Lu et al., 2022}, external
knowledge (Shen et al., [2024), and optimal transport (Chen et al., 2022) for improving VLMs’
performance on downstream classification tasks. Moreover, Maple (Khattak et al., [2023a)) and
PromptSRC (Khattak et al.| 2023b)) connected image and text prompts via linear projections to
learn vision-textual prompts, while PromptKD (Zheng et al.|[2024) introduced a prompt distillation
framework to transfer knowledge from a large teacher model to a smaller student model.

While these methods have achieved substantial performance gains, their effectiveness significantly
diminishes when test samples come from a different distribution. Our work focuses on test-time
adaptation, enabling VLMs to adapt to test data without relying on the original training data.

Test-Time Adaptation. Test-time adaptation (TTA) (Sun et al.,[2020; [Zhang et al., [2022; Wang
et al.,[2020) aims to reduce distribution shifts between training and test data at test time, without
accessing source data. Some approaches (Liu et al.| 2021} |Sun et al., 2020; |Gandelsman et al., [2022)
employ self-supervised proxy tasks to improve generalization, though these methods often require
modifying the training process, limiting their applicability in the pre-trained model era.

To address this, fully test-time adaptation methods have been developed to adapt pre-trained models
by enforcing self-consistency (Zhang et al.,2022), aligning train-test statistics (Mirza et al., 2022),
or minimizing entropy in batch-wise predictions (Wang et al., | 2020). Recent advances, such as
TPT (Shu et al.} 2022), extend entropy minimization to VLMs by learning textual prompts for each
test sample. Other methods, like DiffTPT (Feng et al. [2023) and MTA (Zanella & Ben Ayed,
2024), leverage generated images from diffusion models (Rombach et al.| [2022) to increase test data
diversity. PromptAlign (Abdul Samadh et al.,2024) introduces distribution alignment by utilizing
token distribution statistics, while TDA (Karmanov et al.,2024) designs dynamic adapters for efficient
test-time adaptation in VLMs.

In contrast to these methods, our approach utilizes fine-grained attributes to guide models toward
class-specific semantics, enabling better adaptation to the test domain through attribute selection and
augmentation.

Language-based Visual Recognition. Visual recognition traditionally involves comparing an
image to a fixed set of categories for classification. Recent advances have leveraged VLMs to achieve
strong zero-shot recognition by utilizing both vision and language spaces. Early applications of
VLMs relied on simple object names, often overlooking the rich contextual information (e.g., color,
shape, texture) that language provides.

Some works (Zhai et al.| 2024) enhance vision-language models by rewriting broad category descrip-
tions using large language models (LLMs). Few-shot recognition methods (Yang et al., 2023b;|Yan
et al.| 2023) decompose object recognition into attribute concepts, learning to classify images based
on these attributes. Additionally, several prompt-tuning approaches (Tian et al., [2024; Mao et al.,
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2023)) improve model performance by utilizing attributes to refine the reasoning behind categorical
predictions.

Unlike previous methods that use attributes to train shared networks or prompts for all test data, our
approach Retrieves discriminative attributes tailored to each test sample, adapting VLMs for test-time
visual recognition in a more precise and effective manner.

3 SEARCHING-FOR-PROMPTING FRAMEWORK

In this section, we first introduce a Retrieval-based Attribute Search (RAS) method to identify
discriminative attributes for each test sample from attribute vocabularies. Subsequently, we describe
the proposed Implicit-Explicit Attribute Injection (IEAI) technique, which effectively employs the
searched attributes to enhance prompt learning in pre-trained models, as illustrated in Figure 3]

3.1 RETRIEVAL-BASED ATTRIBUTE SEARCH

Baseline Model. As a mainstream TTA method, test-time prompt adaptation |Shu et al.| (2022)
provides the model with a context prompt tailored to each test sample, enabling it to recall the
knowledge within CLIP more accurately. As labels are unavailable during test-time, a self-supervised
optimization objective is often used for prompt tuning. Specifically, given a test sample Xy, the
entropy of its prediction probability distribution is minimized to update the prompt p using the
following objective function:

c

Lo = argmin — > _ fp (yil Xiest) 108 5p (9| Xiew), (1
=1

where pp (1| Xiest) represent category probabilities produced by the model with learned prompt p.

Attribute Vocabulary. Visual recognition tasks usually pre-defined category names and assign
these categories to individual test samples during the test-time evaluation phase. Most existing
TTA methods apply these pre-defined, coarse-grained category names in a straightforward way,
thus leveraging only the limited knowledge embedded within the pre-trained models, especially in
fine-grained recognition tasks that demand subtle discrimination. Large language models (LLMs)
have showcased their ability to specify any visual concept using linguistic knowledge derived from
an open-source vocabulary. To facilitate this, we systematically compile object categories from
task-specific datasets to create an object vocabulary. Following [Menon & Vondrick| (2022)), we
produce detailed descriptions of the attribute features that uniquely characterize each object category
in the vocabulary, by prompting LLMs with the input:

Q: What are useful features for distinguishing a {category
name} in a photo?

A: There are several useful visual features to tell there is
a {category name} in a photo: {attribute descriptions}.

B replacin r apple pie mallow ragdoll

y p . g {C ate gO Y a round pastry crust small, round green leaves long fur
name } with any Ob] ect golden-brown crust five-petaled white or pink flowers floppy body
category, we can produce lattice pattern on top of the crust [—= fuzzy, soft stems large, round eyes
relevant {attribute apple slices inside the crust thick, hairy leaves pointed ears

descr ipt ions } for the a flaky, buttery texture dark brown seeds |—m a dense, plush fur coat

category vocabularies, thereby

formulating ~ the  artribute Figure 2: Examples of attribute vocabularies produced by GPT-3.
vocabularies (see Figure 2)).

shallow taproot system ..

Problem Definition. We ground fine-grained attributes to their corresponding categories
with text template, i.e., {category name} which (is/has/etc.) {attribute
descriptions}. The reformulated attribute vocabularies A = {ay, as, ..., a,} offer substantial
linguistic knowledge for vision recognition tasks; however, they also encompass considerable redun-
dant information. Consequently, the challenge for our test-time adaptation, where test data lacks
labeled information, lies in how to retrieve discriminative attributes from A and use them to generate
specific prompts for each test sample.
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Figure 3: Architecture of our searching-for-prompting (i.e., Search4Prompt) framework. Given a test
sample, our Search4Prompt retrieves the most discriminative attributes along with their relevance to
predefined categories from attribute vocabularies. A soft voting mechanism is developed to leverage
retrieval attributes for producing voting scores (i.e., soft labels) on predefined categories, which
provides reliable labels for prompt learning with vision-language models. Our Search4Prompt also
composites retrieved attributes to their corresponding categories, which further enhances the semantic
representation of categories about the test samples and enables the model to use context information
to discover better prompts.

Discriminative Attribute Generation. To address this challenge, we introduce RAS to filter out
irrelevant attributes. Specifically, we initially construct an attribute feature bank by extracting textual
features from the attribute vocabulary with auxiliary VLMs (e.g., CLIP |Radford et al.|(2021))). For
each image, we utilize the auxiliary model to generate its visual feature v, which is then compared
against the entries in the textual feature bank using cosine similarity. Subsequently, we identify the
top- K relevant attributes based on their alignment with attribute feature bank A.

A = argtop-K cos(v, a), 2)
acA

where cos(-, ) indicates the cosine similarity and A = {a1, a9, ,ax} represents the top-K
relevant attributes for test sample.

Discussion. Our method aims to harness the capabilities of the existing foundational models to deliver
comprehensive and accurate textual information for zero-shot vision recognition during test time. To
achieve this, we utilize GPT-3|Mann et al.| (2020} as the LLM to obtain attributes and the ViT-H-based
CLIP Radford et al.|(2021) as the auxiliary visual language model (VLM) to identify discriminative
attributes. We also experiment with other auxiliary VLMs, such as ViT-B and ViT-G-based CLIP, to
encode descriptive text. However, it is demonstrated that a smaller model has limited efficacy for
fine-grained classification, as ViT-B-based CLIP tends to focus on more general attributes within the
attribute vocabulary. Using Flower102 for instance, ViT-B-based CLIP tends to assign high similarity
to broader attributes such as “Plant & Flower”, whereas ViT-G-based CLIP recognizes more nuanced
attributes like “white chest and paws & black markings on the face”. Compared to existing methods
that utilize only coarse-grained category names for test-time vision recognition, we explore the
potential of incorporating fine-grained textual information to facilitate test-time prompt learning by
using freely available public foundational models, which would be a new trend in the community. In
addition, our approach has several advantages. Firstly, the RAS is an offline phase, where we only
need to process all attribute vocabulary once, avoiding excessive computational overhead. Secondly,
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with the generated descriptive attributes, we only need to train the vision recognition model. The
auxiliary VLM can be substituted with other advanced foundational models, such as Florence Yuan
et al. (2021)) and Blip-2 L1 et al.| (2023). Consequently, the effectiveness of our method is likely to be
enhanced in line with the advancements in these foundational models.

3.2 IMPLICIT-EXPLICIT ATTRIBUTE INJECTION

Although appending all the searched attribute descriptions behind learnable prompt vectors achieves
more accurate predictions, the optimization of learnable prompts still lacks attribute-based guidance
during test-time prompt learning. Thus, the learned prompts inevitably neglect the relationships
across attributes contained in different categories, which leads to a sub-optimal solution, as shown
in[I} To handle this drawback and fully utilize the searched attribute descriptions, we design an
Implicit-Explicit Attribute Injection (IEAI), which mainly consists of a voting-based pseudo-label
learning and a compositional augmentation strategy to enhance the model’s zero-shot generalization
ability.

3.2.1 VOTING-BASED PSEUDO-LABEL LEARNING

In light of the discriminative attribute description generated during the RAS phase, the primary
challenge lies in effectively utilizing them to adapt VLMs to unlabeled test data. To address this,
we propose a voting-for-prompting mechanism to softly vote attributes on predefined categories to
generate voting scores that serve as pseudo-labels for test-time prompt learning. Concretely, this
mechanism involves ranking attribute vocabulary, followed by voting within predefined task-specific
categories to estimate the model predictions. Such predictions can guide model to learn textual
prompts for different test samples using rich context information that language affords.

Soft voting within object categories. Traditional approaches often overlook the potential of soft
labels derived from task-specific categories and their corresponding attributes. By designing a
soft voting procedure within these categories, we aim to determine scores among top- K attributes,
which will serve as soft labels. These soft labels provide additional cues that guide the model to
effectively utilize attribute information, enhancing its predictive capabilities through prompt learning.
Specifically, given task-specific categories {c1, ¢, ...,cn}, we set the initial voting score for all
categories to zero, and then traverse the top- K grounding attributes for each category. If grounding
attribute ay belongs to category c,, we increase the voting score of the corresponding category by
the matching value between them; otherwise, the score remains unchanged. Following this procedure,
we derive the soft voting scores {s1, s2, ..., sy} for the test sample across the candidate categories,
where higher scores reflect greater confidence in the model’s predictions for the sample. To stabilize
the training process, we apply softmax normalization to these voting scores,

Si

pi= —x—— fori=1,2,---,N. 3)
Ej:l e%
Here p;,i = 1,2,--- , N, can be utilized as soft labels of the model to tune the textual prompt by
minimizing cross-entropy loss,
K
£sup = - Zpi 1Ogﬁp(yi|Xtest)- 4

=1
3.2.2 COMPOSITIONAL ATTRIBUTE AUGMENTATION

Existing methods typically enhance the discriminability among candidate categories using learned
contextual prompts |Shu et al.| (2022) or rewriting language descriptions |Fan et al.| (2024). In our
test-time adaptation paradigm, ambiguous categories vary across different test samples. To effectively
mitigate category ambiguity tailored to the test sample, we design a customized attribute augmentation
strategy to augment ambiguous categories with compositional attributes. Specifically, given a test
sample from the downstream task, we determine candidate categories, which appear in the top- K
attribute vocabularies A, as its ambiguous categories. In our attribute vocabularies, each ambiguous
category possesses multiple distinct attribute features. We composite these attributes into ambiguous
categories to enhance their clarity and specificity. Compared to the original categories, the augmented
categories exhibit stronger discriminative power through attributes, which enables the model to
explore fine-grained attribute prompts and thus generalize better to test data.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We conducted main experiments on two benchmarks: the out-of-distribution (OOD)
benchmark and the cross-domain benchmark. The OOD benchmark measures the robustness of
our approach by assessing performance on four out-of-distribution datasets derived from ImageNet:
ImageNet-A |[Hendrycks et al.|(2021b), ImageNet-V2 Recht et al.| (2019), ImageNet-R [Hendrycks
et al.| (2021a), and ImageNet-S Wang et al.| (2019). The cross-domain benchmark is utilized to
evaluate the model’s performance across ten diverse image classification datasets: Caltech-101 [Fei+
Fei et al.| (2004), Oxford-Pets |Parkhi et al.| (2012), Stanford Cars |Krause et al.| (2013)), Oxford-
Flower102 Nilsback & Zisserman!(2008), Food-101 |Bossard et al.|(2014), FGVC Aircraft|Maji et al.
(2013)), EuroSAT Helber et al.[(2019), SUN-397 Xiao et al.|(2010), DTD |Cimpoi et al.|(2014), and
UCF-101 Soomro et al.| (2012).

Implementation Details. All models in our experiments are built upon the pre-trained CLIP model,
which consists of an image encoder and a text encoder. By default, we employ a pre-trained CLIP
model with a ViT-B/16 encoder as the backbone to ensure a fair comparison with existing methods|Shu
et al.| (2022); Feng et al.|(2023)). Unless otherwise specified, we use GPT-3 to construct the attribute
vocabularies and the CLIP ViT-H/14 backbone to extract their embeddings. Following [Shu et al.
(2022)); Feng et al.| (2023), the textual prompt is initialized in the hand-crafted default form, “a photo
of a”, and the corresponding four tokens are optimized based on a single test image. The prompt is
optimized in three steps during the test phase using the AdamW optimizer with a learning rate of
0.001. The number of retrieved attributes K is set as 15.

4.2 COMPARISONS WITH STATE-OF-THE-ARTS

In this section, we
compare our proposed Tyble 1: Comparison with existing state-of-the-art methods on domain

Search4Prompt with several generalization evaluation. Green are trained on ImageNet using 16-
state-of-the-art  methods, o
including CLIP [Radford shot training data per category and evaluated on cross-datasets. Blue

are directly trained in an unsupervised manner on the test set and can

et al.|(2021), four train-time -
dynamically adapt the model to each test sample.

adaptation methods (i.e.,
CoOp [Zhou et al.[(2022Db),

CoCoOp [Zhou et al Method 1 A R v K Average
(2022a), MaPLe Khattak ViT-B/16 66.73 47.88 74.00 60.86 46.09 59.11
et_al{ (2023a), Prompt- CoOp 7151 4971 7521 6420 47.99  61.72
SRC _ Khattak et __al. CoCoOp  71.02 50.63 76.18 64.07 4875 62.13
(2023b)), as well as four MaPLe 7072 5090 7698 64.07 49.15  62.37
existing test-time adapta- PromptSRC 7127 509 77.80 6435 4955  62.77
tion methods (lz‘I;ETTPT Shu TPT 68.98 5477 77.06 63.45 4794 62.44
et al.|(2022), DiffTPT [Feng AliYP - 5960 79.74 6529 5030 63.73
et al.| (2023), MTA [Zanella DiffTPT 7030 55.68 75.00 65.10 46.80  63.16
& Ben Ayed (2024), MTA 69.29 5741 7833 63.61 4858  65.01
AliYP[Abdul Samadh et al. TDA 69.51 60.11 8024 64.67 50.54  65.01
(2024), TDA |[Karmanov

et al] (2004)). All train-time Ours 7054 5791 81.01 64.19 5679  66.09

adaptation methods are

tuned on ImageNet training data with 16-shot per class and tested on other datasets as in[Shu et al.
(2022)). Different from train-time methods, test-time adaptation methods do not require training data
and are tuned on testing datasets using a stream of unlabeled test samples. Following TPT|Shu et al.
(2022) and AliYP|Abdul Samadh et al.|(2024), we compare Search4Prompt with the state-of-the-art
on domain generalization benchmark and cross-domain benchmark.

Results on the Domain Generalization Benchmark. We first compare Search4Prompt with state-
of-the-art on domain generalization benchmark. Experimental results are summarized in Table (1] As
shown in Table[I] the proposed Search4Prompt outperforms most existing methods across various
OOD datasets from ImageNet. Specifically, our approach achieves average improvements of 3.32%
and 1.08% over train-time and test-time adaptation methods, respectively. Even on in-domain dataset
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Table 2: Comparison with existing state-of-the-art methods on cross-domain evaluation.

Method DTD Flower  Pets Cars  UCF101 Caltech101 Foodl101 SUN397 Aircraft EuroSAT  Average
ViT-B/16 4444 6744 8823 6548 65.13 93.35 83.65 62.59 23.67 42.01 63.6
CoOp 4192 68.71 89.14 6451 66.55 93.7 85.30 64.15 18.47 46.39 63.88
CoCoOp 4545 70.85 9046 649 68.44 93.79 83.97 66.89 22.29 39.23 64.63
MaPLe 46.49 7223 9049 65.57 68.69 93.53 86.2 67.01 24.74 48.06 66.3
PromptSRC  46.87 7025 90.25 65.70 68.75 93.60 86.15 67.10 23.90 45.50 65.81
TPT 47775 6898 8779 66.87 68.04 94.16 84.67 65.5 24.78 42.44 65.1
DiffTPT 47.00 70.10 8822 67.01 62.67 92.49 87.23 65.74 25.60 43.13 64.92
AliYP 4724 7239 90.76  68.50 69.47 94.01 86.65 67.54 24.80 47.86 66.92
MTA 4559 6826 8822 68.05 68.11 94.13 84.95 64.98 25.32 38.71 64.63
TDA 4740 7142 88.63 67.28 70.66 94.24 86.14 67.62 2391 58 67.53
Ours 60.17 7544 93.00 65.03 68.17 95.05 87.73 65.79 25.74 54.02 73.82

Table 3: Ablation on the effectiveness of each design in our Search4Prompt approach. “Baseline”
represents using entropy minimization on test samples; “Soft Voting” denotes the proposed voting-for-
prompting mechanism; “Com. Aug.” represents compositional attribute augmentation. Our proposed
modules consistently outperform the baseline, and their combinations further enhance the model’s
recognition performance.

Baseline  Soft Voting Com. Aug. DTD  Pets  Flower A R Average

v 45.04 8874 69.02 53.56 74.19 66.11

v 5431 90.79 7495 5544 78.79 70.86

v 5225 8932 6996 53.18 76.80 67.48

v v 5739 9255 7540 5645 81.01 72.56

v v 53.13 89.37 69.83 53,56  77.65 68.71

v v 57.8 9250 75.13 5594 79.74 72.22

v v v 60.17 93.00 7544 5791 81.01 7741

(i.e., ImageNet-I), our approach exhibits superior performance compared to existing test-time methods,
while also exhibiting comparable performance to few-shot approaches. These results validate the
effectiveness of Search4Prompt in enhancing test-time adaptation with the rich context information
from attributes.

Results on the Cross-domain Benchmark. We further compare Search4Prompt with state-of-the-art
methods on the cross-domain benchmark. Due to the wide distribution and varying granularity of
these datasets, existing methods perform differently on different datasets. However, our method still
achieves the best average performance, increasing the average accuracy from 67.53% to 73.82%.
Specifically, our method provides consistent improvements on fine-grained datasets (e.g., Flower102
and Pets) and outperforms the previous best method. These results demonstrate that our approach can
effectively recall the attribute knowledge contained within CLIP and transfer it to unseen domains
in a zero-shot manner. However, it can be observed that our approach is inferior to the current best
model on some coarse-grained datasets (e.g., UCF101 and SUN397). The main reason is that, on
coarse-grained datasets, ambiguous category descriptions are relatively fewer compared to those
in fine-grained datasets; thus, the model is able to easily recognize different objects with existing
category descriptions.

4.3 ABLATION STUDY

Components Ablation In Tab. [3] we present an ablation study of the key components in
Search4Prompt, including baseline, soft voting, and compositional augmentation (comp. aug.).
The ablation experiments are conducted on five validation datasets, which include three fine-grained
datasets (i.e., DTD, Pets, and Flower datasets) and two OOD datasets (i.e., ImageNet-A and ImageNet-
R). As shown in Tab. [3] both soft voting and comp. aug. strategies achieve significant improvements
over the baseline model, demonstrating that test-time adaptation can be improved by introducing
attribute information with either pseudo-labeling or category description augmentation. Additionally,
the two designs in Search4Prompt can complement each other as the combination of the two designs
clearly outperforms either soft voting or comp. aug. on the benchmark datasets. Moreover, the two
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Figure 4: Qualitative comparison with existing methods. For each row, we show image examples
from categories of DTD dataset. Existing methods often depend on broad category descriptions,
which can result in incorrect predictions. Our method accurately captures the key attribute differences
between categories and effectively utilizes them to enhance the model’s zero-shot generalization
ability.

designs are also compatible with the baseline model, and results show that their combinations (i.e.,
baseline+soft voting and baseline+comp. aug.) yield average improvements of 6.45% and 1.23%,
respectively, over the baseline model. When all modules are employed concurrently, the model
achieves the best performance, with an average improvement of 12.12% over the baseline. This
indicates that soft voting and comp. aug. enable VLMs to capture fine-grained attribute information
and enhance the semantic augmentation for ambiguous categories, while baseline model can transfer
the fine-grained prior knowledge of pre-trained model to test data.

The Superiority of Our

Voting Mechanism Dur- Typle 4: Comparison with other soft label generation strategies on sev-
ing Soft Label Generation ¢ra] benchmark datasets. Retrieval-based: directly using the retrieved
Process.. TO demonstr ate  attribute category with the highest similarity as soft label for the model.
the superiority of our voting  Hard voting: performing hard voting on predefined categories using

mechanism, we designed the top-K discriminative attributes.
two variants: (i) Retrieval-

based, which directly uses

X . Method DTD  Flower Pets A R
the retrieved attribute cate-
gory with the highest simi- Baseline 4444  67.44 88.23 47.88 74.00
larity as a pseudo-label for Retrieval-based 5786  70.77 9240 52.63 77.58
e ool Endu(ﬂ) Had vor Hard voting 5904 7324 9270 5561 79.12
ing, which performs hard Soft voting (Ours)  60.17 75.44 93.00 57.91 81.01

voting on predefined cate-
gories using the top-K dis-
criminative attributes to produce pseudo-label. As shown in Tab.[d] our soft voting mechanism and its
two variants surpass the baseline model. This improvement is attributed to the exploration of attribute
information about the test sample to acquire a confident soft label. Furthermore, compared with the
other two variants, our method achieves significant improvement over the baseline. The primary
reason is that our method not only comprehensively considers different discriminative attribute cate-
gories, akin to hard voting, but also adapts the voting process based on their varying discriminative
power.

Comparison with VCD Menon & Vondrick (2022) in using LLM-generated descrip-
tions. VCD Menon & Vondrick] (2022) also explores LLM-generated descriptions for
categories. This work differs from our Search4Prompt as it naively encodes these de-
scriptions and then compares them with image features. In Tab. we compared our
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approach with VCD [Menon & Vondrick] (2022), using the same text descriptions for
a fair comparison. As shown in Tab. VCD performs worse than our approach,
indicating that VCD is not an optimal choice for

utilizing LLM-generated descriptions. In fact, Taple 5: Comparison with VCD approach on
LLM-generated descriptions exhibit a degree penchmark datasets.

of common sense but may not precisely align

with specific samples used in downstream tasks. "~y ST PR ol T b A R

Our method facilitates the selection of the most
representative attribute descriptions for various ~ YCD 4243 6923 81.30 38.87 5441
test samples, thereby adapting the model to the _OUrs 60.17 7544 93.00 5791 8101

test data and enhancing performance.

Qualitative Comparison with Existing Methods. Figure [4] presents a qualitative comparison
between our method and existing state-of-the-art methods (TPT and TDA) on the DTD dataset.
Each row illustrates image examples from different categories. In the first row, the ground-truth
label is “Beagle.” Both TPT and TDA incorrectly predict the category as ”Abyssinian” and “Basset
hound,” respectively. In contrast, our method accurately identifies the image as “Beagle.” Similar
results are observed in the second row. The comparable results show that our method can effectively
captures discriminative attributes such as “white chest and paws” and “black markings on the face,”
which are distinctive to the Beagle category, while discarding other redundant attribute information.
This demonstrates our method’s superior ability to utilize detailed attribute information for accurate
classification.

The Number Of Retrieved At_ Cross-Domain Generalization Natural Distribution Shifts
tributes. We conducted param-
eter studies on the number of
retrieved attributes and reported
the experimental results on the
DTD and ImageNet-R datasets.
Figure [5] illustrates that the per-  *
formance of Search4Promptisin- ] 721
fluenced when the numberof at- 1T % = % = = ° T 5 & 5 % w5
tributes is either too low or too e ersroes e e

high. We found that setting the

parameter to 15 for the DTD and Figure 5: Parameter studies on the number of attributes under
ImageNet-R datasets yields the DTD and R datasets.

best performance. This is be-

cause an appropriate number of attributes ensures both representative and diverse attribute features in
the implicit-explicit attribute injection process. Due to space limitations, we have moved additional
experiments to the Appendix.

Top-1 Accuracy %
Top-1 Accuracy %

DTD dataset R dataset

5 CONCLUSION AND LIMITATION

In this work, we investigated how to fully exploit the fine-grained attribute descriptions generated
by LLM to enhance the zero-shot generalizability of vision-language models. We developed a
Search4Prompt learning framework for test-time zero-shot recognition by leveraging visual attributes
to guide the model toward class-specific modeling. The proposed Search4Prompt first searches
discriminative attributes for test samples and then utilizes these attributes to learn tailored prompts
that adapt VLMs to test data. We demonstrated the effectiveness of our method on the robustness to
out-of-domain distribution shifts and cross-domain generalization.

Limitation: Dependence on Visual Dictionary and Data. The effectiveness of our method relies
on a comprehensive attribute vocabulary. Despite the collection of numerous category names from
existing datasets, there may still be deficiencies in specific tasks, such as Stanford Cars |[Krause
et al.[(2013)) and FGVC Aircraft Maji et al.|(2013). In such scenarios, our method may be unable
to generate informative textual descriptions, leading to suboptimal results. Furthermore, in coarse-
grained datasets, the existing category names are typically sufficient, and there are fewer ambiguous
category descriptions. Consequently, our method may not exhibit its advantages in these datasets.

10
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6 APPENDIX

Table 6: Evaluation on the auxiliary model

Auxilliary Model DTD  Flowerl02 Pets A R Average
ViT-B-16 46.04 68.29 88.47 48.61 74.07  65.10
ViT-H-14 60.17 75.44 93.00 5791 81.01 73.51
ViT-bigG-14 60.5 76.61 9428 58.13 8245 7440

Auxiliary Model Evaluation. In Tab. [] we explore the effect of substituting the auxiliary model
with ViT-B and ViT-G-based CLIP models. Experimental results demonstrate that using a more
powerful model leads to superior performance. However, the average improvement becomes less
significant when the model size exceeds that of ViT-H-based model.

Comparison with VCD Menon & Vondrick

(2022) in using LLM-generated descriptions. Table 7: Comparison with VCD approach on
VCD Menon & Vondrick| (2022) also explores pepchmark datasets.

LLM-generated descriptions for categories.

"‘Fhls‘work differs from our Sqargh4Prompt as Method DTD  Peis A R
it naively encodes these descriptions and then
compares them with image features. In Tab. VCD 4243 8130 3887  54.41

we compared our approach with VCD [Menon Ours 60.17  93.00 5791 8101

& Vondrick] (2022), using the same text descrip-

tions for a fair comparison. As shown in Tab. [/} VCD performs worse than our approach, indicating
that VCD is not an optimal choice for utilizing LLM-generated descriptions. In fact, LLM-generated
descriptions exhibit a degree of common sense but may not precisely align with specific samples
used in downstream tasks. Our method facilitates the selection of the most representative attribute
descriptions for various test samples, thereby adapting the model to the test data and enhancing
performance.

Table 8: Comparisons of our Search4Prompt with TPT in terms of accuracy and testing time.

DTD Flower102 Pets A R
Step  Method top-1  time top-1  time top-1  time top-1  time top-1 time
TPT 4722 433 68.98  6.45 87.27 9.18 546 14.87 77.07  59.59

1 Ours 56.86 5.04 7397 7.27 92.67 7.49 56.32  30.70 78.27 119.36

TPT 4734 525 68.45 9.10 87.14 10.95 5839 36.06 7734 143.26
3 Ours  60.17 743 75.44 1043 93.00 13.93 5791 46.90 81.01 176.16

TPT 47.10 832 68.53  14.08 86.75 17.33 59.59 57.18 77.40 227.77
5 Ours  61.05 9.83 75.36  13.61 93.05 1534 57.95 59.40 80.54 235.85

TPT 47.16 11.16 68.57 19.11 86.86  23.09 59.96 77.83 7735 310.32
7 Ours 6141 1144 74.06 16.89 93.05 20.85 57.89  76.00 7991 293.57

Comparisons with TPT in terms of accuracy and testing time. To provide a more comprehensive
evaluation of Search4Prompt’s efficiency and effectiveness, we compare it with the TPT method.
This comparison encompasses both testing accuracy and time, with results obtained at different
optimization steps. The evaluation is performed on five validation datasets, which include three
fine-grained datasets (i.e., DTD, Pets, and Flower) and two OOD datasets (i.e., ImageNet-A and
Imagenet-R). Both methods are executed on the same NVIDIA GPU server, and the experimental
results are reported in Table[8] As shown in Table[8] when the optimization steps are minimal (i.e., 1),
the proposed method demonstrates a significant improvement in testing accuracy across benchmark
datasets, albeit with a sacrifice in testing efficiency. The time cost primarily arises from the necessity
to search for fine-grained attributes during the inference stage to generate the model’s fine-grained
reward signals, thereby enhancing its generalization capability. As the number of optimization steps
increases, our model’s performance gradually improves. The performance will decrease slightly
when the optimization continues beyond three steps. This indicates that additional optimization steps
do not benefit the classifier; instead, a few updates are sufficient for the prompt to learn attribute
information about the test samples.
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