
HERTA: A High-Efficiency and Rigorous Training
Algorithm for Unfolded Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

As a variant of Graph Neural Networks (GNNs), Unfolded GNNs offer enhanced1

interpretability and flexibility over traditional designs. Nevertheless, they still suffer2

from scalability challenges when it comes to the training cost. Although many3

methods have been proposed to address the scalability issues, they mostly focus4

on per-iteration efficiency, without worst-case convergence guarantees. Moreover,5

those methods typically add components to or modify the original model, thus6

possibly breaking the interpretability of Unfolded GNNs. In this paper, we propose7

HERTA: a High-Efficiency and Rigorous Training Algorithm for Unfolded GNNs8

that accelerates the whole training process, achieving a nearly-linear time worst-9

case training guarantee. Crucially, HERTA converges to the optimum of the original10

model, thus preserving the interpretability of Unfolded GNNs. Additionally, as a11

byproduct of HERTA, we propose a new spectral sparsification method applicable12

to normalized and regularized graph Laplacians that ensures tighter bounds for our13

algorithm than existing spectral sparsifiers do. Experiments on real-world datasets14

verify the superiority of HERTA as well as its adaptability to various loss functions15

and optimizers.16

1 Introduction17

Graph Neural Networks (GNNs) have become a powerful modern tool for handling graph data18

because of their strong representational capabilities and ability to explore the relationships between19

data points [22, 2, 42]. Like many deep learning models, GNNs are generally designed by heuristics20

and experience, which makes analyzing and understanding them a difficult task. Unfolded GNNs21

[45] are a type of GNNs that are rigorously derived from an optimization problem, which makes their22

inductive bias and training dynamics easier to interpret.23

Despite their enhanced interpretability, training unfolded models can be extremely expensive, espe-24

cially when the graph is large and (relatively) dense. This issue can come from two aspects:25

1) Slow iterations: in every iteration the whole graph must be fed into the model, and the interactive26

nature of graphs prevents trivially utilizing techniques like mini-batch training;27

2) Slow convergence: the training convergence rate is related to the connectivity of the graph and28

the well-conditionedness of the node features, and the model converges slowly when the data is29

ill-conditioned.30

Many methods have been proposed to address the high cost of training unfolded models [5, 7, 47,31

14, 16, 20], primarily by using graph sampling to enable mini-batch training schemes that reduce the32

per-iteration cost (Issue 1). However, these approaches typically require distorting the underlying33

optimization objective explicitly or implicitly, thus diminishing the rigorous and interpretable nature34

of Unfolded GNNs. Moreover, existing works have mostly focused on per-iteration efficiency, while35

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

the convergence rate of the optimization in training Unfolded GNNs (Issue 2) remains un-addressed,36

leading to methods that are not robust to ill-conditioned data.37

We propose HERTA: a High-Efficiency and Rigorous Training Algorithm for Unfolded GNNs,38

which is an algorithmic framework designed to address both Issues 1 and 2, while at the same39

time preserving the rigorous and interpretable nature of Unfolded GNNs. Unlike many existing40

methods that require changing the GNN model or defining a new objective, HERTA converges to41

the optimum of the original training problem, and thus preserves the interpretability of the unfolded42

models. Moreover, HERTA uses a specialized preconditioner to ensure fast linear convergence to the43

optimum, requiring only a logarithmic number of passes over the data. We show empirically that44

HERTA can be used to accelerate training for a variety of GNN objectives, as an extension of popular45

optimization techniques.46

A key novelty of our algorithm lies in the construction of a preconditioner for the GNN objective,47

which accelerates the convergence rate. To construct this preconditioner, we design a spectral48

sparsification method for approximating the squared inverse of a normalized and regularized Laplacian49

matrix, by relying on an extension of the notion of effective resistance to overcome the limitations of50

existing graph sparsification tools. Below, we present an informal statement of our main result.51

Theorem 1.1 (Informal version of Theorem 5.1). HERTA solves the λ-regularized Unfolded GNN52

objective (4.2) with n nodes, m edges and d-dimensional node features to within accuracy ϵ in time53

Õ
(
(m+ nd)

(
log 1

ϵ

)2
+ d3

)
as long as the number of large eigenvalues of the graph Laplacian is54

O(n/λ2).55

In practice, the node feature dimensionality d is generally much smaller than the graph size m, in56

which case, the running time of HERTA is Õ
(
(m+ nd)

(
log 1

ϵ

)2)
. Notice that to describe a typical57

graph dataset with m edges, n nodes and d-dimensional node features, we need at least O(m+ nd)58

float or integer numbers. This shows the essential optimality of HERTA: its running time is of the59

same magnitude as reading the input data (up to logarithm factors).60

The condition that the graph Laplacian has O(n/λ2) large eigenvalues is not strictly necessary; it is61

used here to simplify the time complexity (see Theorem 5.1 for the full statement). This condition is62

also not particularly restrictive, since in most practical settings the GNN parameter λ is chosen as an63

absolute constant. At the same time, it is natural that the complexity of training a GNN depends on64

the number of large eigenvalues in the graph Laplacian, since this quantity can be interpreted as the65

effective dimension in the Laplacian energy function (4.1) used to define the Unfolded GNN (see66

more discussion in Section 5).67

Outline. The paper is organized as follows. In Section 2 we introduce related work. In Section 3 we68

introduce the mathematical notation and concepts used in this paper. We define our problem setting in69

Section 4. In Section 5 we present and analyze our algorithm HERTA, and introduce the techniques70

that are used in proving the main result. We conduct experiments on real-world datasets and show the71

results in Section 6. Finally, we conclude with some potential future directions in Section 7.72

2 Related Work73

Unfolded Graph Neural Networks. Unlike conventional GNN models, which are designed74

mainly by heuristics, the forward layers of Unfolded GNNs are derived by explicitly optimizing a75

graph-regularized target function [48, 45, 26, 25, 46, 50, 1]. This optimization nature of Unfolded76

GNNs allows developing models in a more interpretable and controllable way. The presence of an77

explicit optimization problem allows designers to inject desired properties into the model and better78

understand it. This approach has been used to overcome known GNN issues such as over-smoothing79

[30, 24, 44] and sensitivity towards spurious edges [51, 49].80

Efficient Graph Neural Network Training. In order to address the scalability issue of GNNs, many81

techniques have been proposed. There are two major directions in the exploration of the solutions82

of this issue. The first direction is to adopt sampling methods. These methods include node-wise83

sampling [18], layer-wise sampling [6] and subgraph-wise sampling [7, 20]. The second direction is84

to utilize embeddings from past iterations to enhance current iterations and to obtain more accurate85

representation with mini-batches and fewer forward layers [16, 14, 43].86

2

As we indicated in Section 1, all of the above methods aim at addressing Issue 1 (Slow Iterations),87

and none of them achieves a worst-case convergence guarantee without affecting the underlying88

GNN model. In contrast, HERTA addresses both Issue 1 and also Issue 2 (Slow Convergence), and89

possesses a theoretical guarantee on the training convergence rate while preserving the original target90

model.91

Matrix Sketching and Subsampling. Our techniques and analysis are closely related to matrix92

sketching and subsampling, which are primarily studied in the area of Randomized Numerical Linear93

Algebra (RandNLA, [41, 15, 27, 29]). Given a large matrix, by sketching or sampling we compress94

it to a much smaller matrix with certain properties preserved, thus accelerating the solution by95

conducting expensive computations on the smaller matrix. This type of methods lead to improved96

randomized algorithms for tasks including low rank approximation [17, 10, 8], linear system solving97

[32, 13], least squares regression [33, 28] and so on [9]. Our usage of these methods includes98

constructing spectral sparsifiers of graphs, obtained by edge subsampling [35, 36, 23], which are99

central in designing fast solvers for Laplacian linear systems [39, 21, 31].100

3 Preliminaries101

For a vector x, we denote its ℓ2 norm as ∥x∥. We use diag(x) to denote diagonalization of x into a102

matrix. For a matrix M , we use ∥M∥F and ∥M∥ to denote its Frobinius norm and operator norm.103

Let σmax(M) and σmin(M) be the largest and smallest singular value of M respectively, we denote104

its condition number as κ(M) = σmax(M)
σmin(M) . We use nnz(M) to denote the number of non-zero105

entries of M . For two positive semidefinite (PSD) matrices Σ and Σ̃, if there exists ϵ ∈ (0, 1) such106

that(1 − ϵ)Σ̃ ⪯ Σ ⪯ (1 + ϵ)Σ̃, then we say Σ ≈ϵ Σ̃, where ⪯ refers to Loewner order. We use107

δu to denote a vector with u-th entry equal to 1 and all other entries equal to 0. We also use δu,v to108

represent the v-th entry of δu, i.e. δu,v =
{
1 u = v

0 u ̸= v
.109

For a function ℓ : Rd → R that is bounded from bottom, a point w0 is called a solution of ℓ with ϵ110

error rate if it satisfies ℓ(w0) ≤ (1 + ϵ)ℓ∗ where ℓ∗ = infw ℓ(w).111

We adopt big-O notations in the time complexity analysis. Moreover, we use the notation Õ(·) to112

hide polynomial logarithmic factors of the problem size. As an example, O(log(n)) can be expressed113

as Õ(1).114

For a matrix Π ∈ Rs×n, we call it a Gaussian sketch if its entries are i.i.d. N (0, 1/s) random115

variables. For a diagonal matrix R ∈ Rn×n, we call it a diagonal Rademacher matrix if its entries116

are i.i.d. Rademacher random variables. See Appendix A for more detailed introductions.117

4 Problem Setting118

Throughout this paper, we consider a graph G with n nodes and m edges. We denote its adjacency119

matrix by A ∈ Rn×n, degree matrix by D = diag (A1) ∈ Rn×n, where 1 ∈ Rn is a vector with120

all entries equal to 1, and Laplace matrix (or Laplacian) by L = D −A ∈ Rn×n. We also use the121

normalized adjacency Â = D−1/2AD−1/2 and normalized Laplacian L̂ = I − Â. Notice that122

we assume there’s a self-loop for each node to avoid 0-degree nodes, which is commonly ensured123

in GNN implementations [22, 18], and therefore D−1/2 always exists. We also use B ∈ Rm×n to124

represent the incidence matrix of graph G, that is, if the i-th edge in G is (ui, vi), then the i-th row of125

B is δui
− δvi (the order of ui and vi is arbitrary). It is not hard to see that L = B⊤B.126

We also assume that for each node u in the graph, there is a feature vector xu ∈ Rd, and a label127

vector1 yu ∈ Rc attached with it. Let X ∈ Rn×d and Y ∈ Rn×c be the stack of xi-s and yi-s. We128

assume n ≥ max{d, c} and X and Y are both column full rank.129

The Unfolded GNN we consider in this paper is based on TWIRLS [46], which is defined by130

optimizing the following objective (called the “energy function”):131

E(Z;W) :=
λ

2
Tr
(
Z⊤L̂Z

)
+

1

2
∥Z − f(X;W)∥2F . (4.1)

1We allow the label to be a vector to make the concept more general. When labels are one-hot vectors, the
task is a classification task, and when labels are scalars, it is a regression task.

3

Here Z ∈ Rn×c is the optimization variable that can be viewed as the hidden state of the model,132

W is the learnable parameter of the model, and λ > 0 is a hyper-parameter to balance the graph133

structure information and node feature information. Note that f : Rd → Rc is a function of X and is134

parameterized by matrix W .135

For the model training, given a loss function ℓ : Rn×c × Rn×c → R, the training of TWIRLS can be136

represented by the following bi-level optimization problem137

W ∗ ∈ arg min
W∈Rd×c

ℓ [Z∗(W);Y] (4.2)

s.t. Z∗(W) ∈ arg min
Z∈Rn×c

E(Z;W), (4.3)

where the solution of inner problem eq.(4.3) (i.e. Z∗(W)) is viewed as the model output. The outer138

problem eq.(4.2) is viewed as the problem of training.139

In [46], the forward process of TWIRLS is obtained by unfolding the gradient descent algorithm for140

minimizing E given a fixed W :141

Z(t+1) = Z(t) − α∇E
(
Z(t)

)
(4.4)

= (1− αλ− α)Z(t) + αÂZ(t) + αf (X;W) , (4.5)

where α > 0 is the step size of gradient descent. Notice that we fix W and view E as a function of142

Z. The model output is Z(T) for a fixed iteration number T . When α is set to a suitable value and T143

is large, it is clear that Z(T) is an approximation of Z∗ defined in eq.(4.3).144

When T →∞, the output of TWIRLS converges to the unique global optimum of eq.(4.1), which145

has a closed form146

Z∗(W) = argmin
Z

E(Z) =
(
I + λL̂

)−1

f(X;W). (4.6)

In this paper, we always assume T →∞ and thus we focus on the closed-form solution defined by147

eq.(4.6).148

The training problem is then defined as optimizing W to minimize the loss function between the149

model output Z∗(W) and label Y , i.e. ℓ : Rn×d × Rn×c → R.150

5 Algorithm and Analysis151

In this section we present our main algorithm HERTA, give the convergence result and analyze its152

time complexity. We also introduce our key techniques and give a proof sketch for the main result.153

To start we introduce the following notion.154

Definition 5.1 (Effective Laplacian dimension). For normalized Laplacian L̂ and regularization term155

λ > 0, define nλ := Tr

[
L̂
(
L̂+ λ−1I

)−1
]

to be the effective Laplacian dimension of the graph.156

Denote {λi}ni=1 as the eigenvalues of L̂. Then the effective Laplacian dimension can be written as157

nλ =
∑
i

λi

λi+λ−1 . We can see that nλ is roughly the number of eigenvalues of L̂ which are of order158

Ω(λ−1), i.e., the number of “large eigenvalues” mentioned in Theorem 1.1. It is not hard to see that159

nλ ≤ n and nλ → n as λ→∞.160

Intuitively, nλ represents the number of eigen-directions for which the Laplacian regularizer161
λ
2Tr(Z

⊤L̂Z) is large, thus having a significant impact on the energy function (4.1). For the162

remaining eigen-directions which are less significant, the effect of the regularizer is minimal. This163

can also be seen from the closed form solution of the model (4.6): when we apply matrix (I +λL̂)−1164

to a vector, the effect of the Laplacian is dominated by the I term if this vector is aligned with a165

“small” Laplacian eigen-direction (i.e., with an eigenvalue significantly smaller than λ−1), and thus166

the objective is close to the usual unregularized least squares loss.167

Based on the above discussion, it stands to reason that the larger the effective Laplacian dimension168

nλ of the graph, the more work we must do during the training to preserve the graph structure of the169

GNN.170

4

5.1 Main Result171

In this subsection, we present our main theoretical result. Before delving into the specific theorem,172

we first outline the model implementation used in our theoretical analysis. Although we make173

specific assumptions for this analysis, the experiments (see Section 6) demonstrate that our proposed174

algorithm is effective in broader settings beyond those considered here.175

Principally, the implementation of f(X;W) can be arbitrary as long as it can be trained (i.e.176

computable, smooth, etc.), however, we noticed that in [46], most of the SOTA results are achieved177

by the implementation f(X;W) = XW where W ∈ Rd×c. Therefore, hereinafter we focus on178

this specific implementation.179

For the simplicity of analysis, we present our theoretical result based on the mean squared error180

(MSE) loss defined as ℓ(Z,Y) := 1
2 ∥Z − Y ∥2F . Despite this specific choice in the analysis, we181

empirically show in Section 6 that our algorithm also works for cross entropy (CE) loss, which is the182

most commonly used loss function for node classification tasks.183

Under MSE loss, we can decompose the loss into sub-losses for each class, i.e. ℓ [Z∗(W);Y] =184 ∑c
i=1 ℓi(wi;yi), where wi and yi are the i-th column of W and Y respectively. In the following185

analysis, we will mostly focus on each ℓi. Moreover, we fix yi, and view ℓi as a function of wi.186

Theorem 5.1 (Main result). For any ϵ > 0, with a proper step size η, number of iterations T and187

constant K > 0, Algorithm 1 finds a solution Ŵ ∈ Rd×c in time188

Õ

(
(m+ nd) c

(
log

1

ϵ

)2

+ nλλ
2d+ d3

)
(5.1)

such that with probability 1− 1
n , ℓ

[
Z∗(Ŵ);Y

]
≤ (1 + ϵ) · ℓ∗, where ℓ∗ := minW ℓ [Z∗ (W ;Y)].189

Notice that if we assume nλ = O(n/λ2), then Õ(nλλ
2d) = Õ(nd). By further assuming the number190

of classes c = O(1), we recover the bound given by Theorem 1.1.191

Before heading into the details of HERTA (Algorithm 1), in next subsection we first analyze the192

original (standard) implementation of training TWIRLS and point out the efficiency bottlenecks. We193

then introduce the key techniques and methods we need to prove our main result. Finally we present194

our main algorithm HERTA, and give a proof sketch for Theorem 5.1.195

5.2 Analysis of TWIRLS Training196

In this subsection, we introduce the framework that we use to analyze the complexity of TWIRLS197

training. We also provide a complexity analysis of the original implementation used in [46].198

As noted in Section 4, the whole optimization problem can be viewed as a bi-level optimization prob-199

lem, where the inner-problem eq.(4.3) approximates the linear system solver
(
I + λL̂

)−1

(Xwi −200

ŷi), and the outer problem eq.(4.2) uses the linear system solution to approximate the optimal solution201

of the training loss. When we discuss the solution of outer problems, we treat the solver of the inner202

problem (linear solver) as a black box. We formally define a linear solver as follows.203

Definition 5.2 (Linear solver). For a positive definite matrix H ∈ Rn×n and a real number ϵ > 0,204

we call f : Rn → Rn a linear solver for H with ϵ error rate if it satisfies205

∀u ∈ Rn,
∥∥f(u)−H−1u

∥∥
H
≤ ϵ

∥∥H−1u
∥∥
H
. (5.2)

In [46], the outer problem is also solved by standard gradient descent. The gradient of ℓi (wi) is206

∇ℓi(wi) = X⊤
(
I + λL̂

)−2

(Xwi − ŷi) , (5.3)

where ŷi = (I + λL̂)yi.207

In actual implementation, the matrix inverse is calculated by linear solvers. Suppose that we have208

a linear solver for (I + λL̂) denoted by S, then by embedding it into eq.(5.3) we can obtain the209

gradient approximation as210

∇̃ℓi(wi) := X⊤S [S (Xwi − ŷi)] . (5.4)

5

The following convergence result can be derived for this approximate gradient descent. See Appendix211

for the proof.212

Lemma 5.1 (Convergence). If we minimize ℓi using gradient descent with the gradient approx-213

imation defined in eq.(5.4), where S is a linear solver of I + λL̂ with µ error rate satisfying214

µ ≤ min
{

ϵ1/2

50κ(X)λ2 , 1
}

, then, to obtain an ϵ ∈ (0, 1) error rate the outer problem (i.e. ℓi), the215

number of iterations needed is T = O
(
κ log 1

ϵ

)
, where κ := κ(X⊤(I + λL̂)−2X).216

Based on Lemma 5.1, in Appendix B we provide a detailed analysis of the time complexity of217

the implementation used by [46]. From this analysis, one can figure out two bottlenecks of the218

computational complexity for solving TWIRLS: 1) The number of iterations needed for the inner219

loop is dependent on λ; 2) The number of iterations needed for the outer loop is dependent on the220

condition number of the outer problem. Our acceleration algorithm is based on the following two221

observations, which correspond to the aforementioned bottlenecks:222

1. The data matrix in the inner loop is a graph Laplacian plus identity. It is possible to solve223

the linear system defined by this matrix faster by exploiting its structure.224

2. A good enough preconditioner can be constructed for the outer iteration using techniques225

from RandNLA.226

5.3 Key Techniques227

In this subsection, we introduce the mathematical tools that we will use in the proof of our main228

result.229

SDD Solvers. If a symmetric matrix H ∈ Rn×n satisfies230

∀1 ≤ k ≤ n, Hk,k ≥
n∑
i=1

|Hk,i| , (5.5)

it is called a symmetric diagonal dominated (SDD) matrix. It has been shown that the linear system231

defined by sparse SDD matrices can be solved in an efficient way, via a SDD solver [21, 31].232

Since I + λL̂ is indeed a SDD matrix in our problem, we can apply off-the-shelf SDD solvers. In the233

following, we use SSolveϵ(H,u) to denote the SDD solver that calculates H−1u with error rate less234

or equal to ϵ2. From Lemma A.1, the time complexity of calculating SSolveϵ(H;u) is Õ [nnz(H)].235

See Appendix A.2 for details.236

Fast Matrix Multiplication. For a matrix Q ∈ Rn×d where n > d, it is known that calculating237

Q⊤Q takes O(nd2) time if implemented by brute force. In HERTA, we manage to achieve a faster238

calculation of Q⊤Q through Subsampled Randomized Hadamard Transformation (SRHT) [37, 41].239

The key idea of SRHT is to first apply a randomized Hadamard transformation to the matrix to make240

the “information” evenly distributed in each row, then uniformly sample the rows of Q to reduce241

the dimension. In the following, we use Hadamard to represent the Hadamard transformation, see242

Appendix A.3 for the definition of Hadamard as well as a detailed introduction.243

5.4 Regularized Spectral Sparsifier244

It has been shown that for any connected graph with n nodes, (no matter how dense it is) there is245

always a sparsified graph with Õ
(
n
ϵ2

)
edges whose Laplacian is an ϵ-spectral approximation of the246

original graph Laplacian [36]. Although the existence is guaranteed, it is generally hard to construct247

such a sparsified graph. An algorithm that finds such a sparsified graph is called a spectral sparsifier.248

While there has been many existing explorations on constructing spectral sparsifier of a given graph249

with high probability and tolerable time complexity [35, 36, 23], the setting considered in this paper250

is different from the standard one: instead of graph Laplacian L, the matrix we concern is the251

normalized and regularized Laplacian L̂+ λ−1I .252

2Principally, SSolve(H; ·) is a vector function, but for convenience we sometimes also apply it to matrices,
in which case we mean applying it column-wisely. We also use the same convention for other vector functions.

6

At first glance, a spectral sparsifier also works for our problem since L̃ ≈ϵ L̂ implies L̃+ λ−1I ≈ϵ253

L̂ + λ−1I . However, it turns out that it is possible to make the bound even tighter if we take into254

account the regularization term λ−1I here. A similar argument is also made in [4]. We note that the255

setting explored in [4] is also different from ours: we consider the normalized Laplacian of a graph,256

which is not a Laplacian of any graph (even allowing weighted edges).257

To this end, we propose a new spectral sparsifier that works for L̂ + λ−1I which is used in our258

problem. This spectral sparsifier reduces the number of edges toO
(
nλ

ϵ2 log n
)
, which, as we discussed259

before, is smaller than O
(
n
ϵ2 log n

)
obtained by standard spectral sparsifier.260

Lemma 5.2 (Regularized spectral sparsifier). Let L̂ be a (normalized) graph Laplacian with m edges261

and n nodes. There exists a constant C such that for any ϵ > 0 and λ > 0, Algorithm 2 outputs262

a (normalized) graph Laplacian L̃ with n nodes and O
(
nλ

ϵ2 log n
)

edges in time Õ(m), such that263

L̃+ λ−1I ≈ϵ L̂+ λ−1I with probability at least 1− 1
2n .264

The basic idea behind Lemma 5.2 is to use ridge leverage score sampling for the normalized incidence265

matrix BD−1/2 [10], which reduces the problem to estimating a regularized version of the effective266

resistance. We modify the existing methods of estimating effective resistance [38] to make it work267

for the normalized and regularized Laplacian.268

Algorithm 1 HERTA: A High-Efficiency and Rigorous
Training Algorithm for TWIRLS

Input: L̂,X,Y , λ, c, K > 0, step size η and num-
ber of iteration T .
Set β = 1

64 , s = Kd
β2 log n, µ = min

{
ϵ1/2

50κ(X)λ2 , 1
}

and R ∈ Rn×n a diagonal Rademacher matrix;
L̃← Sparsify β

3λ
(L̂) by calling Algorithm 2;

Q← SSolve β√
3λ

(
I + λL̃;X

)
;

Q′ ← Hadamard (RQ);
Subsample s rows of Q′ uniformly and obtain Q̃;
P ← Q̃⊤Q̃;
P ′ ← P−1/2;
for i = 1 to c do
ŷi ← (I + λL̂)yi, where yi is the i-th column of
Y ;
Initialize w

(0)
i by all zeros;

for t = 1 to T do
u
(t)
i ←XP

′
w

(t−1)
i − ŷi;

u
(t)′

i ← SSolveµ
(
I + λL̂;u

(t)
i

)
;

u
(t)′′

i ← SSolveµ
(
I + λL̂;u

(t)′

i

)
;

g
(t)
i ← P

′
X⊤u

(t)′′

i ;
w

(t)
i ← w

(t−1)
i − ηg(t)

i ;
end for

end for
Output:

{
w

(T)
i

}c
i=1

.

Algorithm 2 Sparsifyϵ(L̂): Regularized
Spectral Sparsifier

Input: L̂, B̂, λ, C > 0 and expected er-
ror rate ϵ.
Set k = C logm and s = Cnλ logn

ϵ2 ,and
construct Gaussian sketch Π1 ∈
Rk×m,Π2 ∈ Rk×n;
BS ← SSolve21/4(L̂+λ−1I; (Π1B̂)⊤);
ΠS ← SSolve21/4(L̂+ λ−1I;Π⊤

2);
for i = 1 to m do
l̃i ← ∥BS b̂i∥2 + λ−1∥ΠS b̂i∥2, where
b̂⊤i is the i-th row of B̂;

end for
Z ←

∑m
i=1 l̃i;

Subsample s rows of B̂ with probabilities{
l̃i/Z

}m
i=1

and obtain B̃;

L̃← B̃⊤B̃;
Output: L̃.

269

5.5 Main Algorithm270

Now we are ready to present our main algorithm HERTA, see Algorithm 1. As mentioned before,271

HERTA is composed of two major components: constructing a preconditioner matrix P and applying272

it to the optimization problem. Below we introduce each part.273

Constructing the Preconditioner. For the outer problem which can be ill-conditioned, we first274

precondition it using a preconditioner P ∈ Rd×d which is a constant level spectral approximation of275

7

the Hessian, i.e. X⊤
(
I + λL̂

)−2

X . We claim that the matrix P constructed inside Algorithm 1276

indeed satisfies this property.277

Lemma 5.3 (Preconditioner). Let P be the matrix constructed in Algorithm 1. We have P ≈ 1
2

278

X⊤
(
I + λL̂

)−2

X with probability at least 1− 1
n .279

Solving the Outer Problem. After obtaining the preconditioner P which approximates the Hessian280

by a constant level, we use it to precondition the outer problem and provably reduce the condition281

number to a constant. With the new problem being well-conditioned, iterative methods (like gradient282

descent) take much less steps to converge.283

Lemma 5.4 (Well-conditioned Hessian). Let ℓ′ be such that ℓ′(wi) = ℓ(P−1/2wi). Suppose for284

some constant c0 ∈ (0, 1) we have P ≈c0 X⊤
(
I + λL̂

)−2

X , then the condition number of the285

Hessian of ℓ′ is bounded by286

κ
(
∇2ℓ′

)
≤ (1 + c0)

2. (5.6)

Moreover, if w′ is a solution of ℓ′ with ϵ error rate, then P−1/2w′ is a solution of ℓ with ϵ error rate.287

Notice that, the problem ℓ′ defined in Lemma 5.4 can be viewed as the original problem ℓ with X288

being replaced by XP−1/2, therefore we can use Lemma 5.1 and obtain the convergence rate of289

HERTA. With the convergence result and analysis of the running time for each step, we are able to290

prove Theorem 5.1. See Appendix C.7 for the full proof.291

Remark on the Unavoidable λ2 in Runtime. Notice that λ2 appears in the time bound given in292

Theorem 5.1. From the proof in Appendix C.5 we can see that this term originates from the squared293

inverse of I + λL̂. In Appendix D.2, we show that in the worst case even if we approximate a matrix294

to a very high precision, the approximation rate of the corresponding squared version can still be295

worse by a factor of the condition number of the matrix, which in our case leads to the unavoidable296

λ2 in the runtime.297

Remark on Sparsifying the Graph in Each Iteration. Note that in Algorithm 1, we use the298

complete Laplacian L̂ for gradient iterations (i.e., the for-loop), and the graph sampling only occurs299

when constructing the preconditioner P . We note that sampling L̂ in the for-loop can lead to extra300

loss in the gradient estimation, which forces us to sparsify the graph to a very high precision to301

ensure an accurate enough gradient for convergence. This could result in a suboptimal running302

time. Moreover, as discussed in Section 1, the current running time bound for HERTA is optimal303

up to logarithmic factors, which means that there is little to gain from performing extra sampling in304

for-loops. See Appendix D.3 for a more detailed and quantitative discussion.305

6 Experiments306

In this section, we verify our theoretical results through experiments on real world datasets. Since for307

the inner problem we use off-the-shelf SDD solvers, in this section we focus on the outer problem,308

i.e. the training loss convergence rate. In each setting we compare the training loss convergence rate309

of TWIRLS trained by our method against that trained by standard gradient descent using exactly the310

same training hyper-parameters.311

Datasets. We conduct experiments on all of the datasets used in the Section 5.1 of [46]: Cora,312

Citeseer and Pubmed collected by [34], as well as the ogbn-arxiv dataset from the Open Large Graph313

Benchmark (OGB, 19).314

Notice that for Cora, Citeseer and Pubmed, common practice uses the semi-supervised setting315

where there is a small training set and relatively large validation set. As we are comparing training316

convergence rate, we find it more comparative to use a larger training set (which makes solving the317

optimization problem of training more difficult). Therefore, we randomly select 80% of nodes as318

training set for Cora, Citeseer and Pubmed. For OGB, we use the standard training split.319

Due to limited space, we only include the results with λ = 1 and with datasets Citeseer, Pubmed and320

ogbn-arxiv in this section, and delay additional results to Appendix F.321

8

6.1 Convergence Rate Comparison Under MSE Loss322

In this section, we compare the convergence rate for models trained with MSE loss, which is well323

aligned with the setting used to derive our theory. We also adopt a variation of HERTA that allows324

using it on other optimizers and apply it on Adam optimizer. See Figure 1 for the results. Notice325

that for each figure, we shift the curve by the minimum value of the loss (which is approximated by326

running HERTA for more epochs) and take logarithm scale to make the comparison clearer.327

From the results, it is clear that on all datasets and all optimizers we consider, HERTA converges328

much faster than standard methods. It generally requires ≤ 10 iterations to get very close to the329

smallest training loss. This shows that the guarantee obtained in our theoretical results (Theorem 5.1)330

not only matches the experiments, but also holds when the setting is slightly changed (using other331

optimizers). Thus, these experimental results verify the universality of HERTA as an optimization332

framework.333

We also conduct extensive experiments with larger λ. See Appendix F for the results. These results334

verify that even when λ is relatively large, HERTA converges very fast, which suggests that the335

dominant term in Theorem 5.1 is the Õ(m) term instead of the Õ(nλλ
2d) term.336

Figure 1: The training loss comparison between
HERTA and standard optimizers on MSE loss
with λ = 1. Left: ogbn-arxiv; Right: pubmed.

Figure 2: The training loss comparison between
HERTA and standard optimizers on CE loss with
λ = 1. Left: ogbn-arxiv; Right: pubmed.

337

6.2 Convergence Rate Comparison under Cross Entropy Loss338

Note that in the theoretical analysis of Section 5, we focus on the MSE loss. However, for graph339

node classification tasks, MSE is not the most commonly used loss. Instead, most node classification340

models use the cross entropy loss. For example, the original TWIRLS paper [46] uses CE loss.341

To this end, we also adopt HERTA on training problems with CE loss. See Appendix E for the details342

of the implementation. The results are displayed in Figure 2. From these results, it is clear that343

HERTA also significantly speeds up training with CE loss. The results demonstrate that although344

originally developed on MSE loss, HERTA is not limited to it and have the flexibility to be applied to345

other type of loss functions.346

Remark on the Surprising Effectiveness of HERTA on Cross Entropy Loss. In Section 6.2, we347

observe that despite not being guaranteed by the theoretical result, HERTA shows a certain degree of348

universality in that it also works on CE loss. We claim that this phenomenon might originate from the349

fact the Hessians of TWIRLS under MSE loss and CE loss are very similar. We provide an analysis350

of the gradient and Hessian of TWIRLS under MSE and CE losses in Appendix D.1. The results351

show that the gradient under CE loss can be viewed as the gradient under MSE loss with one term352

being normalized by softmax, and the Hessian under CE loss can be viewed as a rescaled version of353

the Hessian under MSE loss. These comparisons serve as an explanation of why HERTA works so354

well with CE loss.355

7 Conclusions356

In this paper we present HERTA: a High-Efficiency and Rigorous Training Algorithm that solves the357

problem of training Unfolded GNNs on a graph within a time essentially of the same magnitude as358

the time it takes to load the input data. As a component of HERTA, we also propose a new spectral359

sparsifier that works for normalized and regularized graph Laplacian matrices.360

Experimental results on real world datasets show the effectiveness of HERTA. Moreover, it is shown361

that HERTA works for various loss functions and optimizers, despite being derived from a specific362

loss function and optimizer. This shows the universality of HERTA and verifies that it is ready to use363

in practice. See Appendix D for further discussions and possible extensions of HERTA.364

9

References365

[1] Hongjoon Ahn, Yongyi Yang, Quan Gan, Taesup Moon, and David P Wipf. Descent steps of366

a relation-aware energy produce heterogeneous graph neural networks. Advances in Neural367

Information Processing Systems, 35:38436–38448, 2022.368

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius369

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan370

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint371

arXiv:1806.01261, 2018.372

[3] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine373

learning. SIAM Rev., 60(2):223–311, 2018.374

[4] Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. Improved large-375

scale graph learning through ridge spectral sparsification. In International Conference on376

Machine Learning, pages 688–697. PMLR, 2018.377

[5] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with378

variance reduction. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th379

International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,380

Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages381

941–949. PMLR, 2018.382

[6] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks383

via importance sampling. arXiv preprint arXiv:1801.10247, 2018.384

[7] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:385

An efficient algorithm for training deep and large graph convolutional networks. In Proceedings386

of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,387

pages 257–266, 2019.388

[8] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input389

sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017.390

[9] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix391

multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.392

[10] Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank393

approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual394

ACM-SIAM Symposium on Discrete Algorithms, pages 1758–1777. SIAM, 2017.395

[11] Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank396

approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual397

ACM-SIAM Symposium on Discrete Algorithms, pages 1758–1777. SIAM, 2017.398

[12] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and399

lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.400

[13] Michał Dereziński and Jiaming Yang. Solving dense linear systems faster than via precondition-401

ing. arXiv preprint arXiv:2312.08893, 2023.402

[14] Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom403

Goldstein. VQ-GNN: A universal framework to scale up graph neural networks using vector404

quantization. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and405

Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:406

Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December407

6-14, 2021, virtual, pages 6733–6746, 2021.408

[15] Petros Drineas and Michael W Mahoney. Randnla: randomized numerical linear algebra.409

Communications of the ACM, 59(6):80–90, 2016.410

10

[16] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and411

expressive graph neural networks via historical embeddings. In Marina Meila and Tong Zhang,412

editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021,413

18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,414

pages 3294–3304. PMLR, 2021.415

[17] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:416

Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,417

53(2):217–288, 2011.418

[18] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on419

large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob420

Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information421

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,422

December 4-9, 2017, Long Beach, CA, USA, pages 1024–1034, 2017.423

[19] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele424

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.425

Advances in neural information processing systems, 33:22118–22133, 2020.426

[20] Haitian Jiang, Renjie Liu, Xiao Yan, Zhenkun Cai, Minjie Wang, and David Wipf.427

Musegnn: Interpretable and convergent graph neural network layers at scale. arXiv preprint428

arXiv:2310.12457, 2023.429

[21] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,430

combinatorial algorithm for solving sdd systems in nearly-linear time. In Proceedings of the431

forty-fifth annual ACM symposium on Theory of computing, pages 911–920, 2013.432

[22] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional433

networks. CoRR, abs/1609.02907, 2016.434

[23] Ioannis Koutis, Alex Levin, and Richard Peng. Faster spectral sparsification and numerical435

algorithms for SDD matrices. ACM Trans. Algorithms, 12(2):17:1–17:16, 2016.436

[24] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In437

Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &438

data mining, pages 338–348, 2020.439

[25] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang.440

Elastic graph neural networks. In International Conference on Machine Learning, pages441

6837–6849. PMLR, 2021.442

[26] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on443

graph neural networks as graph signal denoising. In Proceedings of the 30th ACM International444

Conference on Information & Knowledge Management, pages 1202–1211, 2021.445

[27] Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Foundations446

and algorithms. Acta Numerica, 29:403–572, 2020.447

[28] Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. Lsrn: A parallel iterative448

solver for strongly over-or underdetermined systems. SIAM Journal on Scientific Computing,449

36(2):C95–C118, 2014.450

[29] Riley Murray, James Demmel, Michael W Mahoney, N Benjamin Erichson, Maksim Mel-451

nichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek, Michał Dereziński, Miles E Lopes,452

et al. Randomized numerical linear algebra: A perspective on the field with an eye to software.453

arXiv preprint arXiv:2302.11474, 2023.454

[30] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for455

node classification. arXiv preprint arXiv:1905.10947, 2019.456

[31] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems. In457

David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA,458

May 31 - June 03, 2014, pages 333–342. ACM, 2014.459

11

[32] Richard Peng and Santosh Vempala. Solving sparse linear systems faster than matrix multiplica-460

tion. In Proceedings of the 2021 ACM-SIAM symposium on discrete algorithms (SODA), pages461

504–521. SIAM, 2021.462

[33] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear least-463

squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–13217,464

2008.465

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-466

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.467

[35] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In468

Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 563–568,469

2008.470

[36] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on471

Computing, 40(4):981–1025, 2011.472

[37] Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances473

in Adaptive Data Analysis, 3(01n02):115–126, 2011.474

[38] Nisheeth K Vishnoi et al. Lx = b laplacian solvers and their algorithmic applications. Founda-475

tions and Trends® in Theoretical Computer Science, 8(1–2):1–141, 2013.476

[39] Nisheeth K Vishnoi et al. Lx= b. Foundations and Trends® in Theoretical Computer Science,477

8(1–2):1–141, 2013.478

[40] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,479

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.480

Deep graph library: A graph-centric, highly-performant package for graph neural networks.481

arXiv preprint arXiv:1909.01315, 2019.482

[41] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and483

Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.484

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural485

networks? arXiv preprint arXiv:1810.00826, 2018.486

[43] Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. Lazygnn: Large-scale487

graph neural networks via lazy propagation. arXiv preprint arXiv:2302.01503, 2023.488

[44] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting489

over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.490

[45] Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, and David Wipf. Implicit vs unfolded491

graph neural networks. arXiv preprint arXiv:2111.06592, 2021.492

[46] Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,493

Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative494

algorithms. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International495

Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of496

Proceedings of Machine Learning Research, pages 11773–11783. PMLR, 2021.497

[47] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal498

Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph499

neural networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.500

[48] Hongwei Zhang, Tijin Yan, Zenjun Xie, Yuanqing Xia, and Yuan Zhang. Revisiting graph501

convolutional network on semi-supervised node classification from an optimization perspective.502

arXiv preprint arXiv:2009.11469, 2020.503

[49] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-504

yond homophily in graph neural networks: Current limitations and effective designs. Advances505

in neural information processing systems, 33:7793–7804, 2020.506

12

[50] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph507

neural networks with an optimization framework. In Proceedings of the Web Conference 2021,508

pages 1215–1226, 2021.509

[51] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural510

networks for graph data. In Proceedings of the 24th ACM SIGKDD international conference on511

knowledge discovery & data mining, pages 2847–2856, 2018.512

13

A Introduction to the Mathematical Tools513

In the main paper, due to space limitations, our introduction of certain mathematical tools and concepts514

remains brief. In this section, we provide a more comprehensive introduction to the mathematical515

tools utilized in the main paper.516

A.1 Subsampling517

Subsampling is used in multiple places in our Algorithm. When we say subsampling s rows of a518

matrix M ∈ Rn×d with probability {pk}nk=1 and obtain a new matrix M̃ ∈ Rs×d, it means each519

row of M̃ is an i.i.d. random vector which follows the same distribution of a random vector ξ that520

satisfies the following property:521

P
{
ξ =

√
1

spk
mk

}
= pk, (A.1)

where mk is the k-th row of matrix M . It is clear that constructing such a subsampled matrix M̃522

takes time O(sd). Moreover, if pk = 1
n , we say the subsampling is with uniform probability.523

The operator of subsampling s rows of a n-row matrix is clearly a linear transformation. Therefore524

it can be represented by a random matrix S ∈ Rs×n. Notice that when we apply S to a matrix (i.e.525

S ·M) we don’t actually need to construct such a matrix S and calculate matrix product, since we526

only carry out sampling.527

A.2 SDD Solvers528

As mentioned in the main paper, for a sparse SDD matrix M , it is possible to fast approximate its529

linear solver. The following Lemma A.1 rigorously states the bound we can obtain for SDD solvers.530

Lemma A.1 ([31]). For any SDD matrix M ∈ Rn×n and any real number ϵ > 0, there exists an531

algorithm to construct an operator SSolveϵ (M ; ·), such that SSolveϵ (M ; ·) is a linear solver for532

M with ϵ error rate and for any x ∈ Rn, calculating SSolveϵ(M ;x) takes time533

O

(
m

(
log

1

ϵ

)
poly log(m) poly log (κ(M))

)
, (A.2)

where m = nnz(M).534

A.3 Fast Matrix Multiplication535

As mentioned in the main paper, we use SRHT to achieve fast matrix multiplication. Here we further536

explain this process. We refer interested readers to [37] for more details. For a positive integer537

number n that is a power of 2, the Hadamard transformation of size n is a linear transformation538

recursively defined as follows:539

Hn :=

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
(A.3)

and H1 = 1. For a vector x ∈ Rn, we define540

Hadamard(x) :=
1√
n
Hnx. (A.4)

Notice that when n is not a power of 2, we pad the vector x with 0-s beforehand, therefore the541

requirement of n being a power of 2 is ignored in the actual usage. From its recursive nature, it is not542

hard to see that applying a Hadamard transformation to each column of an n× d matrix only takes543

O(d log n) time.544

Let R ∈ Rn×n be a diagonal matrix whose diagonal entries are i.i.d. Rademacher variables, and545

S ∈ Rs×n be a subsampling matrix with uniform probability and s = O
(
d
β2 log n

)
. For a matrix546

Q ∈ Rn×d, its SRHT with β error rate is defined as547

SRHTβ(Q) := SHadamard (RQ) , (A.5)

which is exactly the matrix Q̃ we use in Algorithm 1. A fast matrix multiplication result can be548

achieved using SRHT.549

14

Lemma A.2 ([37]). For matrix Q ∈ Rn×d where n ≥ d and rank(Q) = d, let Q̃ = SRHTβ(Q)550

where β ∈ (0, 1/4), then we have551

Q̃⊤Q̃ ≈β Q⊤Q (A.6)

with probability at least 1− 1
2n .552

B Running Time of the Original Implementation Used in [46]553

In this section we analyze the time complexity of the implementation used in [46], which uses554

gradient descent to solve both inner and outer problem.555

Inner Problem Analysis. We first analyze the time complexity of the inner problem solver used in556

[46]. Recall that for the inner problem eq.(4.3), we need to find an approximation of the linear solver557

of I+λL̂. In [46], it is implemented by a standard gradient descent. Here we consider approximately558

solving the following least square problem by gradient descent:559

v = arg min
v∈Rn

1

2

∥∥∥(I + λL̂
)
v − u

∥∥∥2
2
. (B.1)

The gradient step with step size µ is:560

v(t+1) = (1− µ)
(
I + λL̂

)2
v(t) + η

(
I + λL̂

)
u. (B.2)

Theorem B.1 (Inner Analysis). If we update v(t) through eq.(B.2) with initialization v(0) = 0 and a561

proper η, then after T = O
(
λ2 log λ

ϵ2

)
iterations we can get562 ∥∥∥∥v(T) −

(
I + λL̂

)−1

u

∥∥∥∥
(I+λL̂)

≤ ϵ

∥∥∥∥(I + λL̂
)−1

u

∥∥∥∥
(I+λL̂)

(B.3)

for any ϵ ∈ (0, 1).563

Proof. Let H = I + λL̂. Notice that the strongly convexity and Lipschitz constant of Problem564

eq.(B.1) is C = 1 and L ≤ 9λ2 respectively. From Lemma C.1, take η = 1
L and v(0) = 0, we have565

∥Hv(T) − u∥2 ≤ (1− 9λ2)T ∥u∥2 (B.4)

for any T ∈ N. Therefore,566

∥v(T) −H−1u∥2H
∥H−1u∥2H

=
∥Hv(T) − u∥2H−1

∥u∥2H−1

(B.5)

≤ 3λ
∥Hv(T) − u∥22

∥u∥22
(B.6)

≤ 3λ(1− 9λ2)T . (B.7)

To obtain an error rate ϵ, the smallest number of iterations T needed is567

T =

(
log

1

1− (9λ2)−1

)−1

log
3λ

ϵ2
+ 1 = O

[(
log

1

1− λ−2

)−1

log
κ

ϵ2

]
= O

(
λ2 log

λ

ϵ2

)
.

(B.8)

568

Overall Running Time. As we proved above in Theorem B.1, the number of iterations needed for569

solving the inner problem to error rate β with the implementation of [46] is Õ
(
λ2 log 1

β

)
, which570

is related to the hyper-parameter λ. For each inner iteration (i.e. eq.(B.2)), we need to compute571

(I + λL)(Xw − ŷ). Since this is a sparse matrix multiplication, the complexity of this step is572

O(m+ nd). Putting things together, we have the time complexity of calling inner problem solver is573

Õ
(
(m+ nd)λ2 log 1

β

)
.574

15

From Lemma 5.1, the number of outer iterations needed is Õ
(
κo log

1
ϵ

)
, where κo is the condition575

number of the outer problem. Moreover, Lemma 5.1 also indicates that we require β ≤ ϵ1/2

25κ(X)λ , so576

solving inner problem takes Õ(λ2 log 1/β) = Õ(λ2 log 1/ϵ). In each outer iteration, we need to call577

inner problem solver constant times, and as well as performing constant matrix vector multiplications578

whose complexity is O(nd). Therefore the overall running time of solving the training problem is579

Õ
[
κo
(
λ2(m+ nd) + nd

) (
log 1

ϵ

)2]
.580

C Proof of Theoretical Results581

We first note that since L̂ is normalized, all the eigenvalues of L̂ are in the range [0, 2). Therefore,582

we have σmin(I + λL̂) = 1 and σmax(I + λL̂) ≤ 1 + 2λ. In the whole paper we view λ as a large583

value (i.e. λ≫ 1). In practice, it is possible to use a small λ, in which case the algorithm works no584

worse than the case where λ = 1. Therefore the λ used in the paper should actually be understood as585

max{λ, 1}. With this assumption, below we assume σmax(I + λL̂) ≤ 3λ for convenience.586

C.1 Descent Lemma587

In this subsection, we introduce a descent lemma that we will use to analyze the convergence rate.588

This is a standard result in convex optimization, and we refer interested readers to [3] for more details.589

Lemma C.1. If ℓ : Rd → R is L-Lipschitz smooth and c-strongly convex, and we have a sequence of590

points
{
w(t)

}T
t=1

in Rd such that591

w(t+1) = w(t) − ηg(t), (C.1)

where
∥∥g(t) −∇ℓ

(
w(t)

)∥∥
2
≤ γ

∥∥∇ℓ (w(t)
)∥∥

2
and γ < 1, η = 1−γ

(1+γ)2L , then we have592

ℓ
(
w(T)

)
− ℓ∗ ≤

[
1− κ−1

(
1− γ
1 + γ

)2
]T [

ℓ
(
w(0)

)
− ℓ∗

]
, (C.2)

where ℓ∗ = infw∈Rd ℓ(w) and κ = L
c .593

Proof. From the condition
∥∥g(t) −∇ℓ

(
w(t)

)∥∥
2
≤ γ

∥∥∇ℓ (w(t)
)∥∥

2
, we have that594

(1− γ)∥g(t)∥2 ≤
∥∥∥∇ℓ(w(t)

)∥∥∥
2
≤ (1 + γ)∥g(t)∥2 (C.3)

and595

−2
〈
g(t),∇ℓ

(
w(t)

)〉
=
∥∥∥g(t) −∇ℓ

(
w(t)

)∥∥∥2
2
−
∥∥∥g(t)

∥∥∥2
2
−
∥∥∥∇ℓ(w(t)

)∥∥∥2
2

(C.4)

≤
[
(γ2 − 1)− (1− γ)2

] ∥∥∥∇ℓ(w(t)
)∥∥∥2

2
(C.5)

= 2(γ − 1)
∥∥∥∇ℓ(w(t)

)∥∥∥2
2

(C.6)

From Lipschitz smoothness, we have596

ℓ
(
w(t+1)

)
− ℓ

(
w(t)

)
≤ −η

〈
g(t),∇ℓ

(
w(t)

)〉
+

1

2
Lη2∥g(t)∥22 (C.7)

≤
(
η(γ − 1) +

1

2
Lη2(1 + γ)2

)∥∥∥∇ℓ(w(t)
)∥∥∥2

2
. (C.8)

It’s not hard to show that the optimal η for eq.(C.8) is η = 1−γ
L(1+γ)2 . Substituting η = 1−γ

L(1+γ)2 to597

eq.(C.8) and use convexity we can get598

ℓ
(
w(t+1)

)
− ℓ∗ ≤

[
ℓ
(
w(t)

)
− ℓ∗

]
− (1− γ)2

2L(1 + γ)2

∥∥∥∇ℓ(w(t)
)∥∥∥2

2
(C.9)

≤
[
ℓ
(
w(t)

)
− ℓ∗

]
− c(1− γ)2

L(1 + γ)2

[
ℓ
(
w(t)

)
− ℓ∗

]
(C.10)

16

By induction we have599

ℓ
(
w(T)

)
− ℓ∗ ≤

[
1− κ−1

(
1− γ
1 + γ

)2
]T [

ℓ
(
w(0)

)
− ℓ∗

]
. (C.11)

600

C.2 Bound of Loss Value by Gradient601

In this subsection, we derive an inequality that allows us to bound the value of loss function by the602

norm of gradient.603

Lemma C.2. If ℓ : Rd → R is a C -strongly convex and smooth function, and w∗ =604

argminw∈Rd ℓ(w) is a global optimal, then for any w ∈ Rd and ϵ ∈ (0, 1), we have605

ℓ(w) ≤ max

{
(1 + ϵ)ℓ(w∗),

1

ϵC
∥∇ℓ(w)∥2

}
. (C.12)

Proof. Using the inequality (4.12) from [3], we have606

ℓ(w) ≤ 1

2C
∥∇ℓ(w)∥2 + ℓ(w∗). (C.13)

If ℓ(w) ≥ (1 + ϵ)ℓ(w∗), we have607

ℓ(w) ≤ 1

2C
∥∇ℓ(w)∥2 + 1

1 + ϵ
ℓ(w). (C.14)

Shifting the terms in eq.(C.14) gives ℓ(w) ≤ 1+ϵ
2C ϵ∥∇ℓ(w)∥2 ≤ 1

ϵC ∥∇ℓ(w)∥2, which proves the608

claim.609

610

C.3 Proof of Lemma 5.1611

Given a point w ∈ Rd, we first consider the error between the estimated gradient ∇̃ℓi(w) and the612

true gradient∇ℓi(w). Below we denote H = I +λL̂ and z = Xw− ŷi. It’s not hard to notice that613

ℓi(w) = 1
2

∥∥H−1z
∥∥2 and∇ℓi(w) = X⊤H−2z. Moreover, we denote ℓ∗i = infw ℓ

∗
i as the optimal614

value of ℓi.615

we have616 ∥∥∥∇̃ℓi(w)−∇ℓi(w)
∥∥∥ =

∥∥X⊤ [S (H−1z
)
−H−2z + S(S(z))− S

(
H−1z

)]∥∥ (C.15)

≤
∥∥X⊤ [S (H−1z

)
−H−2z

]∥∥+ ∥∥X⊤ [S(S(z)−H−1z)
]∥∥ . (C.16)

As shown, the gradient error can be decomposed into two terms, namely
∥∥∥∇̃ℓi(w)−∇ℓi(w)

∥∥∥ =617

E1 + E2, where E1 =
∥∥X⊤ [S (H−1z

)
−H−2z

]∥∥ and E2 =
∥∥X⊤ [S(S(z)−H−1z)

]∥∥.618

Below we analyze each part separately.619

Notice that, as we assumed X is full-rank, ℓi is a strongly convex function with parameter C =620

σmin

(
X⊤H−2X

)
≥ σmin(X)2

9λ2 . Let D =
{
w ∈ Rd

∣∣ ℓi(w) ≤ (1 + ϵ)ℓ∗i
}

. If w ∈ D, then w is621

already a good enough solution. Below we assume w ̸∈ D, in which case by Lemma C.2, we have622

ℓi(w) ≤ 1
ϵC ∥∇ℓi(w)∥2, which means623

∥∥H−1z
∥∥2 ≤ 2

C ϵ

∥∥X−1H−2z
∥∥2 ≤ 18λ2

σmin(X)2ϵ
. (C.17)

17

For E1, we have624

E1 =
∥∥X⊤ [S (H−1z

)
−H−2z

]∥∥
2

(C.18)

≤ σmax(X)
∥∥S (H−1z

)
−H−2z

∥∥
2

(C.19)

≤ σmax(X)
∥∥S (H−1z

)
−H−2z

∥∥
H

(C.20)

≤ σmax(X)µ
∥∥H−2z

∥∥
H

(C.21)

≤ σmax(X)µ
∥∥H−1z

∥∥
2

(C.22)

≤
√

18

ϵ
κ(X)λµ

∥∥X⊤H−2z
∥∥
2

(C.23)

≤ 5ϵ−1/2κ(X)λµ∥∇ℓi(w)∥2. (C.24)

For E2, we have625

E2 =
∥∥X⊤ [S(S(z)−H−1z)

]∥∥
2

(C.25)

≤ σmax(X)(1 + µ)∥H−1
(
S(z)−H−1z

)
∥H (C.26)

≤ σmax(X)(1 + µ)∥S(z)−H−1z∥H (C.27)

≤ σmax(X)(1 + µ)µ∥H−1z∥H (C.28)

≤
√

18

ϵ
κ(X)(1 + µ)µλ

√
3λ∥X⊤H−2z∥2 (C.29)

≤ 20ϵ−1/2κ(X)µλ2∥∇ℓi(wi)∥2. (C.30)

Combine the bound of E1 and E2, we have626 ∥∥∥∇̃ℓi(wi)−∇ℓi(wi)
∥∥∥ ≤ E1 + E2 ≤ 25ϵ−1/2κ(X)µλ2∥∇ℓi(wi)∥2. (C.31)

Now, consider the optimization. Let
{
w

(t)
i

}T
t=1

be a sequence such that627

w
(t+1)
i = w(t) − η

˜
∇ℓi

(
w

(t)
i

)
. (C.32)

Let κ be the condition number of X⊤H−2X and let ℓ∗i be the optimal value of ℓi. Let γ =628

25ϵ−1/2κ(X)λ2µ ≤ 1
2 . From Lemma C.1, we have with a proper value of η,629

ℓi

(
w

(T)
i

)
− ℓ∗ ≤

(
1−

(
1− γ
1 + γ

)2

κ−1

)T [
ℓi

(
w

(0)
i

)
− ℓ∗i

]
(C.33)

≤
(
1− (9κ)−1

)T [
ℓi

(
w

(0)
i

)
− ℓ∗i

]
. (C.34)

Therefore, the number of iterations T required to achieve ϵ error rate is630

T = O

((
log

1

1− (9κ)−1

)−1

log
1

ϵ

)
= O

(
κ log

1

ϵ

)
. (C.35)

C.4 Proof of Lemma 5.2631

The basic idea of Algorithm 2 is to use ridge leverage score sampling methods to obtain a spectral632

sparsifier. Let B̂ = BD−1/2 be the normalized incidence matrix and b̂i the i-th row of B̂. Given633

λ−1 > 0, for i ∈ {1, 2, · · · ,m}, the i-th ridge leverage score is defined as634

li := b̂⊤i (L̂+ λ−1I)−1b̂i (C.36)

= b̂⊤i (L̂+ λ−1I)−1L̂(L̂+ λ−1I)−1b̂i + λ−1b̂⊤i (L̂+ λ−1I)−2b̂i (C.37)

= ∥B̂(L̂+ λ−1I)−1b̂i∥2 + λ−1∥(L̂+ λ−1I)−1b̂i∥2. (C.38)

18

It is not affordable to compute all the m ridge leverage scores exactly. Therefore, we first use635

Johnson–Lindenstrauss lemma to reduce the dimension. Recall that in Algorithm 2 we define636

Π1 ∈ Rk×m and Π2 ∈ Rk×n to be Gaussian sketches (that is, each entry of the matrices are i.i.d637

Gaussian random variables N (0, 1/k)). We set k = O(logm), and by using Lemma C.3 we have638

the following claim holds with probability at least 1− 1
8n :639

∥Π1B̂(L̂+ λ−1I)−1b̂i∥ ≈21/4−1 ∥B̂(L̂+ λ−1I)−1b̂i∥ for all i ∈ {1, 2, · · · ,m}. (C.39)

Similarly,the following claim also holds with probability at least 1− 1
8n :640

∥Π2(L̂+ λ−1I)−1b̂i∥ ≈21/4−1 ∥(L̂+ λ−1I)−1b̂i∥ for all i ∈ {1, 2, · · · ,m}. (C.40)

By summing over above two inequalities (after squared) and taking an union bound, with probability641

1− 1
4n we have642

∥Π1B̂(L̂+ λ−1I)−1b̂i∥2 + λ−1∥Π2(L̂+ λ−1I)−1b̂i∥2 ≈√
2−1 li for all i ∈ {1, 2, · · · ,m}.

(C.41)

However it is still too expensive to compute Π1B̂(L̂ + λ−1I)−1 and Π2(L̂ + λ−1I)−1, since643

computing (L̂ + λ−1I)−1 itself takes prohibitive O(n3) time. Instead, notice that L̂ + λ−1I is a644

SDD matrix, thus we can apply the SDD solver to the k columns of matrix (Π1B̂)⊤ and (Π2)
⊤645

respectively. According to Lemma A.1, there is a linear operator SSolveϵ(L̂+ λ−1I;x) that runs in646

time Õ(nnz(L̂+ λ−1I) · log 1/ϵ) = Õ(m log 1/ϵ) such that for any x⊤ ∈ Rn, it outputs x̃ that satis-647

fies ∥x̃−x⊤(L̂+ λ−1I)−1∥L̂+λ−1I ≤ ϵ∥x
⊤(L̂+ λ−1)∥L̂+λ−1I . For our purpose we set ϵ = 21/4.648

Denote BS as the matrix obtained by applying each column of (Π1B̂)⊤ to SSolveϵ(L̂+ λ−1I;x),649

that is, the j-th row of SSolve21/4(L̂+ λ−1I; (Π1B̂)⊤j). Similarly we denote ΠS as the matrix with650

j-th row equals to SSolve21/4(L̂+ λ−1I; (Π2)
⊤
j). By using Lemma A.1 to both solvers we have651

∥BS b̂i∥2 + λ−1∥ΠS b̂i∥2 ≈√
2−1 ∥Π1B̂(L̂+ λ−1I)−1b̂i∥2 + λ−1∥Π2(L̂+ λ−1I)−1b̂i∥2

(C.42)

for all i ∈ {1, 2, · · · ,m}. By eq.(C.41) and eq.(C.42), if we set l̃i := ∥BS b̂i∥2 + λ−1∥ΠS b̂i∥2,652

then with probability 1− 1
4n , we obtain all the approximation of ridge leverage scores {l̃i}mi=1 such653

that l̃i ≈1/2 li holds for all i. Notice that since BS ,ΠS ∈ Rk×n, and that each b̂i only contains 2654

non-zero entries, thus it takes Õ(k ·m) to pre-compute BS and ΠS , and takes O(2k ·m) to compute655

{BS b̂i,ΠS b̂i}mi=1. To summarize, computing all l̃i takes Õ(km) = Õ(m logm) = Õ(m). With656

these ridge leverage score approximations, we apply Lemma C.4 to matrix B̂ with choice δ = 1/4n.657

By setting L̃ := B̂⊤S⊤SB̂ we have L̃+ λ−1I ≈ϵ L̂+ λ−1I holds with probability 1− 1/4n. By658

applying another union bound we obtain our final result:659

L̃+ λ−1I ≈ϵ L̂+ λ−1I with probability 1− 1

2n
. (C.43)

Finally, according to Lemma C.4, the number of edges of L̃ is s = Cnλ log(n
2)/ϵ2 =660

O(nλ log n/ϵ
2). Since the last step of computing L̃ = (SB̂)⊤(SB̂) only takes O(s) = Õ(nλ/ϵ

2)661

due to the sparsity of B̂, the overall time complexity of Algorithm 2 is Õ(m+ nλ/ϵ
2).662

Lemma C.3 (Johnson–Lindenstrauss, [12]). Let Π ∈ Rk×n be Gaussian sketch matrix with each663

entry independent and equal to N (0, 1/k) where N (0, 1) denotes a standard Gaussian random664

variable. If we choose k = O
(

log(1/δ)
ϵ2

)
, then for any vector x ∈ Rn, with probability 1− δ we have665

(1− ϵ)∥x∥ ≤ ∥Πx∥ ≤ (1 + ϵ)∥x∥. (C.44)

Lemma C.4 (Spectral approximation, [11]). Let S be an s×m subsampling matrix with probabilities666

pi = ℓ̃i/Z where ℓ̃i ≈1/2 ℓi and Z is the normalization constant. If we have s ≥ Cnλ log(n/δ)/ϵ2667

for some constant C > 0 and ϵ, δ ∈ (0, 1/2], then we have668

B̂⊤S⊤SB̂ + λ−1I ≈ϵ B̂⊤B̂ + λ−1I (C.45)

holds with probability 1− δ. Here nλ = Tr[L̂(L̂+ λ−1I)−1].669

19

C.5 Proof of Lemma 5.3670

We first prove a lemma which is related to the approximation rate of squared matrices.671

Lemma C.5. Suppose that Σ and Σ̃ are two n × n PD matrices, and Σ̃ ≈ β
κ
Σ, where κ is the672

condition number of Σ and β ∈
(
0, 18

)
, then we have673

Σ̃2 ≈8β Σ2. (C.46)

Proof. Let ϵ = β
κ . The condition Σ ≈ϵ Σ̃ implies that

∥∥∥Σ− Σ̃
∥∥∥ ≤ ϵ ∥Σ∥. We have674 ∥∥∥(Σ− Σ̃

)
x
∥∥∥ =

∥∥∥(Σ− Σ̃
)
Σ−1Σx

∥∥∥ (C.47)

≤
∥∥∥(Σ− Σ̃

)
Σ−1

∥∥∥× ∥Σx∥ (C.48)

≤
∥∥∥(Σ− Σ̃

)∥∥∥∥∥Σ−1
∥∥× ∥Σx∥ (C.49)

≤ ϵ ∥Σ∥
∥∥Σ−1

∥∥× ∥Σx∥ (C.50)

= ϵκ ∥Σx∥ (C.51)
= β ∥Σx∥ . (C.52)

For any x ∈ Rn, by triangle inequality we have675

∥Σx∥ −
∥∥∥(Σ− Σ̃

)
x
∥∥∥ ≤ ∥∥∥Σ̃x

∥∥∥ ≤ ∥Σx∥+
∥∥∥(Σ− Σ̃

)
x
∥∥∥ . (C.53)

Subtracting the inequality
∥∥∥(Σ− Σ̃

)
x
∥∥∥ ≤ β ∥Σx∥ we derived before into eq.(C.53) and squaring676

all sides, we have677

(1− β)2x⊤Σ2x ≤ x⊤Σ̃x ≤ (1 + β)2x⊤Σ2x. (C.54)

Since 0 < β < 1
8 , the claim is proved.678

Let T = X⊤
(
I + λL̂

)−2

X be the true Hessian. Let T̃ = X⊤
(
I + λL̃

)−2

X be the approxi-679

mated Hessian using sparsified Laplacian L̃. By Lemma 5.2, I + λL̃ ≈ β
3λ

I + λL with probability680

at least 1− 1
2n . From Lemma C.5, we have T̃ ≈8β T .681

Next, we show that Q⊤Q ≈O(β) T . Let H̃ = I + λL̃. Let S be the operator defined by682

SSolve β√
3λ

(
H̃, ·

)
, i.e. qj = S(xj) where qj and xj are the j-th column of Q and X respectively.683

From Lemma A.1 we have for any z ∈ Rd,684

∥∥∥Qz − H̃−1Xz
∥∥∥2
2
=

∥∥∥∥∥∥
d∑
j=1

zj

(
S(xj)− H̃xj

)∥∥∥∥∥∥
2

2

(C.55)

=

∥∥∥∥∥∥S
 d∑
j=1

zjxj

− H̃

 d∑
j=1

zjxj

∥∥∥∥∥∥
2

2

(C.56)

≤ β2

3λ

∥∥∥H̃−1Xz
∥∥∥2
H̃

(C.57)

≤ β2∥H̃−1Xz∥22. (C.58)

Therefore we have685

(1− β)∥H̃−1Xz∥2 ≤ ∥Qz∥ ≤ (1 + β)∥H̃−1Xz∥2, (C.59)

20

and this is equivalent to686

(1− β)2z⊤(XH̃−2X)z ≤ z⊤Q⊤Qz ≤ (1 + β)2z⊤
(
X⊤H̃−2X

)
z. (C.60)

Notice that X⊤H̃−2X = T̃ . We conclude that Q⊤Q ≈2β+β2 T̃ . When β < 1
8 , we have687

Q⊤Q ≈4β T̃ .688

Lastly, from Lemma A.2 and the discussions in Appendix A.3, we have there exists a constant689

C ′ ∈ (0, 1/4), such that690

P = Q̃⊤Q̃ ≈C′ Q⊤Q (C.61)

with probability at least 1− 1
2n .691

Put the results above together and we get692

P ≈12β+C′ T . (C.62)

Notice that 12β + C ′ < 1
2 . Using a union bound can prove that the fail probability of this whole693

process is bounded by 1
n .694

C.6 Proof of Lemma 5.4695

Let F = (I + λL̂)X . We have the Hessian of ℓ′ is696

∇2ℓ′ = P− 1
2F⊤FP− 1

2 . (C.63)

From the condition that P ≈c0 F⊤F , we have F⊤F ⪯ (1 + c0)P , which implies697

P−1/2F⊤FP−1/2 ⪯ (1 + c0)I. (C.64)

Similarly, since P ⪯ (1 + c0)F
⊤F , we have698 (

F⊤F
)−1 ⪯ (1 + c0)P

−1, (C.65)
which implies699 [

λmin(P
−1/2F⊤FP−1/2)

]−1

= λmax

(
P 1/2

(
F⊤F

)−1
P 1/2

)
(C.66)

≤ 1 + c0. (C.67)
.700

Notice that ℓ′ and ℓ have the same global optimal value, let it be ℓ∗. For any w′ satisfies ℓ′(w′)−ℓ∗ ≤701

γ, we have702

ℓ
(
P 1/2w′

)
− ℓ∗ = ℓ′(w′)− ℓ∗ ≤ γ. (C.68)

Therefore, if w′ is a solution of ℓ′ with ϵ error rate, then P 1/2w′ is a solution of ℓ with ϵ error rate.703

C.7 Proof of Theorem 5.1704

As we noted in the main paper, Algorithm 1 is composed by two components: constructing the705

preconditioner P and applying it to the optimization.706

Constructing the Preconditioner. From Lemma 5.2, the first step that applies spectral sparsifier707

to get L̃ requires Õ(m) time and the number of non-zero entries in L̃ is Õ
(
nλλ

2
)
. By Lemma A.1,708

running the SDD solver with error rate β
3λ in the second step requires Õ

(
nλλ

2
)

time. Notice that709

since X is an n × d matrix, we actually need to run SDD solver for d times, and this introduces710

another d factor in the time complexity.711

As we noted in Appendix A.3, applying the Hadamard transformation to RQ requires Õ(d) time,712

and applying the subsampling requires Õ(n) time. Since Q̃ ∈ Rs×d, calculating P = Q̃⊤Q713

requires O(d2s) time. Since s = Õ(d), this step takes Õ(d3) time. We use brute force to calculate714

P ′ = P−1/2, and this takes O(d3) time.715

As a summary, constructing the preconditioner P ′ takes Õ(nλλ
2d+ nd+ d3) time. Notice that we716

only perform this step once during the whole algorithm.717

21

Performing the Iterations. Next we consider the time required for each iteration. We calculate718

u(t) from right to left and it takes O(nd) time. Next, we need to perform two SDD solvers with error719

rate µ. From Lemma A.1, it takes Õ
[
m log

(
1
µ

)]
, which is Õ

[
m log

(
1
ϵ

)]
. Calculating g(t) and720

w(t) is straight-forward and takes Õ(nd) time.721

To conclude, performing each iteration requires Õ
[
m log

(
1
ϵ

)
+ nd

]
time. By Lemma 5.1 and722

Lemma 5.3, with a proper step size, the number of iterations needed for solving outer problem is723

Õ (log 1/ϵ).724

Combining the analysis above together, to overall complexity is725

Õ

[
nλλ

2d+ nd+ d3 +

(
m log

(
1

ϵ

)
+ nd

)
log

(
1

ϵ

)]
= Õ

(
nλλ

2d+ d3 + (m+ nd) (log 1/ϵ)
2
)
,

(C.69)
which proves the claim.726

D Further Discussions727

In this section, we extend some of the discussions in the main paper.728

D.1 An Analysis of CE Loss v.s. MSE Loss729

Although HERTA is derived from MSE loss, the experiment result shows it also works on CE loss. In730

this subsection we provide an analysis showing the similarity of the gradient and Hessian of TWIRLS731

on CE loss and MSE loss, to offer a intuitive explanation why a method that is derived from MSE732

loss can work on CE loss.733

In this section, for a node u ∈ {1, 2, · · · , n}, we use y(u) ∈ Rc to represent the u-th row of Y734

(notice we use super-script here to distinguish from yi used before), hu ∈ Rn to represent the u-th735

row of
(
I + λL̂

)−1

. For p ∈ {1, 2, · · · d}, we use xp ∈ Rn to denote the p-th column of X . For736

i ∈ {1, 2, · · · c}, we use y(u)i to denote the i-th entry of y(u) (or in other words the (u, i)-th entry of737

Y), and wp,i to denote the (p, i)-th entry of W .738

The MSE loss of TWIRLS can be decomposed into summation of sub-losses of each node, i.e.739

ℓ(W) =

n∑
u=1

1

2

∥∥∥h⊤
uXW − y(u)

∥∥∥2
F
=

n∑
u=1

ℓ(u) (W) , (D.1)

where ℓ(u)(W) = 1
2

∥∥W⊤X⊤hu − y(u)
∥∥2
F . For a specific class i ∈ {1, 2, · · · , c}, we have the740

gradient of ℓ(u) w.r.t. wi is741

∂ℓ(u)

∂wi
= X⊤huh

⊤
uXwi −X⊤hu × y(u)i . (D.2)

It is not hard to see from eq.(D.2) that the Hessian of ℓ(u) with respect to wi is742

∇2
wi
ℓ(u) (W) = X⊤huh

⊤
uX. (D.3)

For classification tasks, the target y(u)-s are one-hot vectors representing the class of the node. Notice743

when we calculate cross entropy loss, we use softmax to normalize it before feeding it into the loss744

function. In the following for a vector v ∈ Rc whose i-th entry is vi, we define745

softmax(v)i =
exp(vi)∑c
j=1 exp(vj)

. (D.4)

Suppose the u-th node belongs to class k, then the cross entropy loss of the u-th node is defined as746

CE(u)(W) = − log softmax
(
h⊤
uXW

)
k

(D.5)

= −h⊤
uXwk + log

c∑
j=1

exp
(
h⊤
uXwj

)
, (D.6)

22

The gradient of CE(u) w.r.t. wi is747

∂CE(u)

∂wi
= −δi,k ×X⊤hu +

X⊤hu exp
(
h⊤
uXwi

)∑c
j=1 exp (h

⊤
uXwj)

(D.7)

= X⊤husoftmax
(
h⊤
uXW

)
i
−X⊤hu × y(u)i . (D.8)

By taking another partial differentiation, we have748

∂2CE(u)

∂wp,i∂wq,i
=

(
x⊤
p hu

) (
x⊤
q hu

)
exp

(
h⊤
uXwi

)∑c
j=1 exp (h

⊤
uXwj)

−
(
x⊤
p hu

) (
x⊤
q hu

) [
exp

(
h⊤
uXwi

)]2[∑c
j=1 exp (h

⊤
uXwj)

]2 (D.9)

=
(
x⊤
p hu

) (
x⊤
q hu

) [
si − s2i

]
, (D.10)

where si = softmax
(
h⊤
uXW

)
i
. Rewriting eq.(D.10) into matrix form, we have749

∇2
wi

CE(u)(W) = (si − s2i)X⊤huh
⊤
uX. (D.11)

Comparing eq.(D.2) and eq.(D.8), we can notice that the gradient of MSE loss and CE loss are750

essentially the same except the term h⊤
uXwi in eq.(D.2) is normalized by softmax in eq.(D.8).751

Additionally, by comparing the Hessian of MSE loss eq.(D.3) and the Hessian of CE loss eq.(D.11),752

we have the latter is a rescaled version of the former. These similarities intuitively explains why our753

method can be also used on CE loss.754

D.2 The Unavoidable λ2 in the Running Time755

Lemma C.5 essentially states the following idea: even when two PD matrices are very similar (in756

terms of spectral approximation), if they are ill-conditioned, their square can be very different. In757

this subsection, we prove that the bound obtained in Lemma C.5 is strict up to constant factors by758

explicitly constructing a worst case. Notice that, in this subsection we discuss the issue of squaring759

spectral approximators in a broader context, thus in this subsection we possibly overload some760

symbols used before to simplify the notation.761

First we consider another definition of approximation rate: for two PD matrices Σ and Σ̃, we define762

the approximation rate as763

ψ
(
Σ, Σ̃

)
= max

{∥∥∥Σ−1/2Σ̃Σ−1/2
∥∥∥ ,∥∥∥Σ̃−1/2ΣΣ̃−1/2

∥∥∥} . (D.12)

This definition is easier to calculate in the scenario considered in this subsection, and can be easily764

translated to the definition we used in Section 3: when ϵ = ψ
(
Σ, Σ̃

)
∈ (0, 1), we have Σ̃ ≈ϵ Σ,765

and when ψ
(
Σ, Σ̃

)
is larger than 1 we don’t have an approximation in the form defined in Section 3.766

Let γ > 1 and δ ∈ (0, 1) be real numbers. Define767

Σ =

[
1 0
0 1

] [
γ 0
0 1

] [
1 0
0 1

]
, (D.13)

and768

Σ̃ =

[√
1− δ2 −δ
δ

√
1− δ2

] [
γ 0
0 1

] [√
1− δ2 δ
−δ

√
1− δ2

]
. (D.14)

It’s not hard to compute the error rate ψ
(
Σ, Σ̃

)
=
∥∥∥Σ−1/2Σ̃Σ−1/2

∥∥∥ ≈ Θ(γδ2). While if we769

consider the squared matrices, we have ψ
(
Σ2, Σ̃2

)
=
∥∥∥Σ−1Σ̃2Σ−1

∥∥∥ ≈ γ2δ2. In this case,770

ψ
(
Σ2, Σ̃2

)
is larger than ψ

(
Σ, Σ̃

)
by a factor of γ, which is the condition number of Σ. When γ771

is very large and δ is very small, we can have a small ψ
(
Σ, Σ̃

)
while large ψ

(
Σ2, Σ̃2

)
, which .772

23

A More General Construction. For a PD matrix Σ and its spectral approximation Σ̃, we call773

ψ(Σ2,Σ̃2)
ψ(Σ,Σ̃)

the Squared Error Rate. As noted above, in the worst case the squared error rate can be as774

large as the condition number of Σ. However, the construction above is limited to 2× 2 matrices.775

Now we construct a more general worst case of the squared error rate and perform a loose analysis.776

Although not rigorously proved, the construction and the analysis suggest the origination of large777

squared error rates: it approaches the upper bound (condition number) when the eigenspace of the778

two matrices are very well aligned but not exactly the same.779

Let A be an ill-conditioned matrix with all eigenvalues very large except one eigenvalue equals to780

1, and the eigenvalues of B are all closed to the eigenvalues of A. Specifically, Let the SVD of781

A be A = Udiag(λ)U⊤, where λ = [λ1 λ2 · · ·λn], and suppose λn = 1 and λk ≫ 1,∀k ≤782

n − 1. For simplicity we just let A and B have the same eigenvalues. Suppose the SVD of B is783

B = V diag(λ)V ⊤ and let Λ = diag(λ). We denote the one sided error rate of A and B by ϵ, i.e.784

ϵ =
∥∥A−1/2BA−1/2

∥∥. We have785

ϵ =
∥∥∥Λ−1/2U⊤V ΛV ⊤UΛ−1/2

∥∥∥ (D.15)

=
∥∥∥Λ−1/2WΛW⊤Λ−1/2

∥∥∥ , (D.16)

where W = U⊤V .786

Since λn = 1 and for all k ≤ n− 1, λk ≫ 1, we have787

Λ− 1
2 =


λ
−1/2
1

λ
− 1

2
2

. . .

λ
− 1

2
n

 ≈

0

0
. . .

1

 , (D.17)

and therefore788

ϵ =
∥∥∥Λ−1/2WΛW⊤Λ−1/2

∥∥∥ ≈ (WΛW⊤)n,n =

n∑
k=1

W 2
k,nλk, (D.18)

where Ai,j represents the (i, j)-th entry of a matrix A.789

For simplicity, we assume all λk(k ≤ n− 1) are approximate equal, i.e. λ1 ≈ λ2 · · · ≈ λn−1 = γ.790

Then we have791

ϵ =

n∑
k=1

W 2
k,nλk (D.19)

≈ γ

[
n−1∑
k=1

W 2
k,n +

1

γ
W 2

n,n

]
(D.20)

≈ γ
n−1∑
k=1

W 2
k,n (D.21)

= γ
(
1−W 2

n,n

)
. (D.22)

Recall W = U⊤V , we have Wn,n = u⊤
n vn, where un and vn are the n-th column of U and V792

respectively. Thus we have793

ϵ ≈ γ
[
1−

(
u⊤
n vn

)2]
. (D.23)

Now we can see the spectral approximation error ϵ is determined by two terms: the condition number794

γ and the matchness of the eigenvectors corresponds to small eigenvalues, which is evaluated by795 [
1−

(
u⊤
n vn

)2]
. When γ is very large but

[
1−

(
u⊤
n vn

)2] is small, B can still be a spectral796

approximation of A. For example if (1 − u⊤
n vn) ≈ γ−1, we can get a spectral approximation797

error ϵ ≈ 1. However, after we square the matrices, the eigenvalues will also get squared, but798

eigenvectors remains unchanged. That will enlarge the spectral approximation error by a factor of γ,799

i.e.
∥∥A−1B2A−1

∥∥ ≈ γ2γ−1 = γ, which becomes very large. In this case the squared error rate is800

γ, the condition number of A.801

24

D.3 Applying Graph Sparsification in Each Iteration802

As mentioned in the main paper, unlike most existing work, in our algorithm we don’t sparsify the803

graph in each training iteration. The proof of Lemma 5.1 (see Appendix C.3) suggests the reason804

why performing graph sparsification in each iteration can lead to suboptimal running time. In this805

subsection we illustrate this claim in detail. The intuition is that, in order to ensure convergence of806

the training, we require a small error rate in the gradient estimation, which is of the order ϵ1/2 as we807

have showed in Appendix C.3. It is acceptable for the SDD solver because the running time of the808

SDD solver only logarithmly depends on the error rate. However, if we sparsify the graph, to obtain809

an ϵ1/2 error rate we will need to sample O(nλ/ϵ) edges, which grows linearly with 1/ϵ, and can be810

large especially when ϵ is very small. Below is a more detailed analysis.811

Consider in the for-loop of Algorithm 1 we replace the L̂ by a sparsified version L′ = Sparsifyω

(
L̂
)

,812

where ω ∈ (0, 1). Let H ′ = I + λL′. From Lemma 5.2, we have H ′ ≈ω H . Consider E1 defined813

in Appendix C.3, it now becomes814

E′
1 =

∥∥X⊤ [S (H ′−1z
)
−H−2z

]∥∥ (D.24)

≤ σmax (X)
∥∥S (H ′−1z

)
−H−2z

∥∥ . (D.25)

Here we can not proceed by using the fact that S is a linear solver, because now S is not a linear815

solver for H but for H ′, thus we will have to split the error term again:816

E′
1 ≤ σmax (X)

∥∥S (H ′−1z
)
−H ′−2z

∥∥+ σmax(X)
∥∥H−2z +H ′−2z

∥∥ . (D.26)

Of the two terms on the right-hand side of eq.(D.26), the first one can be bounded with a similar817

method used in Appendix C.3, and the second term is bounded by818

σmax(X)
∥∥H−2z −H ′−2z

∥∥ ≤ σmax (X)
∥∥I −H−1H ′−2H−1

∥∥ ∥H−2z∥ (D.27)

≤ σmax (X)ω
∥∥H−2z

∥∥ (D.28)

≤
√

8

ϵ
κ(X)λω ∥∇ℓi (w)∥ . (D.29)

Therefore, in order to obtain E′
1 ≤ ∥∇ℓi(w)∥, we at least require ω ≤ ϵ−1/2

√
8κ(X)λ

= O
(
ϵ−1/2

)
. From819

Lemma 5.2, the number of edges in the sparsified graph ω error rate is O(nλ/ϵ). A similar analysis820

can be also applied to E2, and by repeating the proof in Appendix C.3, we obtain an overall running821

time bound822

O(m+ nλλ
2d+ d3 + nλϵ

−1 log 1/ϵ), (D.30)

which, although eliminates the m
(
log 1

ϵ

)2
term, introduces an extra nλϵ−1 log 1

ϵ term, and is usually823

worse than the original bound we derived in Theorem 5.1, especially when requiring a relatively824

small ϵ.825

That being said, although not very likely, when ϵ and / or λ are large, it is possible that directly826

sparsifying the graph in each iteration is beneficial. Considering this, we can adopt a mixed strategy:827

when nλϵ−1 ≤ m log(1/ϵ), we sparsify the graph in each iteration, elsewise we don’t. This leads to828

the following overall running time bound:829

O

[
m+ nλλ

2d+ d3 +min

{
m log

1

ϵ
, nλϵ

−1

}
log

1

ϵ

]
, (D.31)

which is slightly better than the one we presented in Theorem 5.1.830

D.4 Possible Directions for Extending HERTA to More Complex Models831

The assumption that f(X;W) = XW provides us with a convenience that the Hessian of this832

model is a constant matrix. Therefore in Algorithm 1 we only need to calculate the preconditioner P833

for one time. However, if f(X;W) is implemented by a non-linear network, then the Hessian will834

change by the time and might be hard to calculate, which will be a key challenge to using a more835

complex f . We note that this can be possibly addressed by constructing a linear approximation of836

f using its Jaccobian. In each iteration, we can use the Jaccobian to replace the X used in current837

25

version of HERTA, and recalculate P at each iteration. Since the convergence is fast, we only need838

to recalculate the Jaccobian for a small number of iterations, so should not bring massive change to839

the running time of the algorithm.840

The attention mechanism of TWIRLS in [46] is achieved by adding a concave penalty function to841

each summand of the the Tr
(
Z⊤L̂Z

)
term in eq.(4.1). For specific penalty functions, it might842

still possible to find a inner problem solver, as long as the problem stay convex. We note that this843

depends on concrete implementation of the penalty term used. Investigating how to fast solve the844

inner problem under various penalty functions should also be an important problem for future study.845

E Implementation Details846

In the experiments, the datasets are loaded and processed using the DGL package [40]. We use the847

original inner problem solver in [46] since it is not computation bottleneck. It can be in principle848

replaced by any implementation of SDD solvers.849

For the calculating the gradient of the preconditioned model, we presented a calculation method in850

Algorithm 1 which maintains the lowest computational complexity. In preliminary experiments, we851

tested this calculation method with using the autograd module in pytorch3 and verified that they have852

the same output, and similar computational efficiency on real world datasets (again in practice this853

step is not a bottleneck). Therefore, we simply use pytorch autograd module to compute gradients in854

experiments.855

Using the pytorch autograd module also enables us to apply HERTA on various loss functions and856

optimizers: we only need to perform the preconditioning and indicate the loss function. The gradient857

and optimization algorithm with be automatically realized by pytorch.858

In order to ensure a fair comparison and prevent confounding factors, we don’t using any common859

training regularization techniques like weight decay or dropout. For each setting, we repeat the860

experiment with learning rates in {0.001, 0.01, 0.1, 1, 10} and choose the trial which the training loss861

does not explode and with the lowest final training loss to report in the main paper.862

F Additional Experiment Results863

In this section, we present additional experiment results.864

F.1 Experiments with Larger λ865

All the experiments presented in the main paper are with λ = 1. In this subsection, we present results866

with λ = 20. See Figures 3 and 4 for results with MSE loss and CE loss respectively. The results867

supports our observation in the main paper that HERTA works consistently well on all settings.868

Figure 3: The training loss comparison between HERTA and standard optimizers on MSE loss with
λ = 20. Dataset used from left to right: ogbn-arxiv, pubmed.

3https://pytorch.org/

26

Figure 4: The training loss comparison between HERTA and standard optimizers on CE loss with
λ = 20. Dataset used from left to right: ogbn-arxiv, pubmed.

F.2 Additional Results on Cora and Citeseer869

In this subsection we present results on Cora and Citeseer, which are other citation datasets used in870

[46]. See Figure 5 and Figure 7 for results with λ = 1 and λ = 20 on Cora respectively. See Figure 6871

and Figure 8 for results with λ = 1 and λ = 20 on Citeseer respectively. It is clear that the results on872

Cora is consistent with our observation on other datasets.873

Figure 5: The training loss comparison between HERTA and standard optimizers on Cora with λ = 1.
Left: CE loss. Right: MSE loss.

Figure 6: The training loss comparison between HERTA and standard optimizers on Cora with λ = 1.
Left: CE loss. Right: MSE loss.

27

Figure 7: The training loss comparison between HERTA and standard optimizers on Cora with
λ = 20. Left: CE loss. Right: MSE loss.

Figure 8: The training loss comparison between HERTA and standard optimizers on Citeseer with
λ = 20. Left: CE loss. Right: MSE loss.

28

	Introduction
	Related Work
	Preliminaries
	Problem Setting
	Algorithm and Analysis
	Main Result
	Analysis of TWIRLS Training
	Key Techniques
	Regularized Spectral Sparsifier
	Main Algorithm

	Experiments
	Convergence Rate Comparison Under MSE Loss
	Convergence Rate Comparison under Cross Entropy Loss

	Conclusions
	Introduction to the Mathematical Tools
	Subsampling
	SDD Solvers
	Fast Matrix Multiplication

	Running Time of the Original Implementation Used in twirls
	Proof of Theoretical Results
	Descent Lemma
	Bound of Loss Value by Gradient
	Proof of lem:outer-analysis-naive
	Proof of lem:regularized-spectral-sprsification
	Proof of lem:preconditioner
	Proof of thm:after-preconditioning
	Proof of thm:main

	Further Discussions
	An Analysis of CE Loss v.s. MSE Loss
	The Unavoidable 2 in the Running Time
	Applying Graph Sparsification in Each Iteration
	Possible Directions for Extending HERTA to More Complex Models

	Implementation Details
	Additional Experiment Results
	Experiments with Larger
	Additional Results on Cora and Citeseer

