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Abstract
Recent studies of gradient descent with large step sizes have shown that there is often a regime with
an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed
by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of sta-
bility). These phenomena are intrinsically non-linear and do not happen for models in the constant
Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in
the parameters. As such, we consider the next simplest class of predictive models, namely those
that are quadratic in the parameters, which we call second-order regression models. For quadratic
objectives in two dimensions, we prove that this second-order regression model exhibits progressive
sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability,
which we explicitly compute. In higher dimensions, the model generically shows similar behavior,
even without the specific structure of a neural network, suggesting that progressive sharpening and
edge-of-stability behavior aren’t unique features of neural networks, and could be a more general
property of discrete learning algorithms in high-dimensional non-linear models.

1. Introduction

A recent trend in the theoretical understanding of deep learning has focused on the linearized
regime, where the Neural Tangent Kernel (NTK) controls the learning dynamics [10, 11]. The NTK
describes learning dynamics of all networks over short enough time horizons, and can describe the
dynamics of wide networks over large time horizons. In the NTK regime, there is a function-space
ODE which allows for explicit characterization of the network outputs [10, 11, 18]. This approach
has been used across the board to gain insights into wide neural networks, but it suffers a major
limitation: the model is linear in the parameters, so it describes a regime with relatively trivial dy-
namics that cannot capture feature learning and cannot accurately represent the types of complex
training phenomena often observed in practice.

While other large-width scaling regimes can preserve some non-linearity and allow for cer-
tain types of feature learning [2, 19], such approaches tend to focus on the small learning-rate or
continuous-time dynamics. In contrast, recent empirical work has highlighted a number of impor-
tant phenomena arising from the non-linear discrete dynamics in training practical networks with
large learning rates [5, 6, 8, 14]. In particular, many experiments have shown the tendency for net-
works to display progressive sharpening of the curvature towards the edge of stability, in which the
maximum eigenvalue of the loss Hessian increases over the course of training until it stabilizes at a
value equal to roughly two divided by the learning rate, corresponding to the largest eigenvalue for
which gradient descent would converge in a quadratic potential [3, 4, 7, 17].
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In order to build a better understanding of this behavior, we introduce a class of models which
display all the relevant phenomenology, yet are simple enough to admit numerical and analytic
understanding. In particular, we propose a simple quadratic regression model and corresponding
quartic loss function which fulfills both these goals. We prove that under the right conditions, this
simple model shows both progressive sharpening and edge-of-stability behavior. We then empiri-
cally analyze a more general model which shows these behaviors generically in the large datapoint,
large model limit. Finally, we conduct a numerical analysis on the properties of a real neural net-
work and use tools from our theoretical analysis to show that edge-of-stability behavior “in the
wild” shows some of the same patterns as the theoretical models.

2. Basic quartic loss function

2.1. Model definition

We consider the optimization of the quadratic loss function L(θ) = z2/2, where z a quadratic
function on the P × 1-dimensional parameter vector θ and Q is a P × P symmetric matrix:

z =
1

2

[
θ>Qθ − E

]
. (1)

This can be interpreted either as a model in which the predictive function is quadratic in the input
parameters, or as a second-order approximation to a more complicated non-linear function such as
a deep network. In this objective, the gradient flow (GF) dynamics with scaling factor η is given by

θ̇ = −η∇θL = ηz
∂z

∂θ
=
η

2

[
θ>Qθ − E

]
Qθ . (2)

It is useful to re-write the dynamics in terms of z and the 1× P -dimensional Jacobian J = ∂z/∂θ:

ż = −η(JJ>)z, J̇ = −2ηzQJ . (3)

The curvature is a scalar, described by the neural tangent kernel (NTK) JJ>. In these coordinates,
we have E = JQ+J> − 2z, where Q+ denotes the Moore-Penrose pseudoinverse.

The GF equations can be simplified by two transformations. First, we transform to z̃ = ηz
and J̃ = η1/2J. Next, we rotate θ so that Q is diagonal. This is always possible since Q is
symmetric. Since the NTK is given by JJ>, this rotation preserves the dynamics of the curvature.
Let ω1 ≥ . . . ≥ ωP be the eigenvalues of Q, and vi be the associated eigenvectors (in case of
degeneracy, one can pick any basis). We define J̃(ωi) = J̃vi, the projection of J̃ onto the ith
eigenvector. Then the gradient flow equations can be written as:

dz̃

dt
= −z̃

P∑
i=1

J̃(ωi)
2,

dJ̃(ωi)
2

dt
= −2z̃ωiJ̃(ωi)

2 . (4)

The first equation implies that z̃ does not change sign under GF dynamics. Modes with positive ωiz̃
decrease the curvature, and those with negative ωiz̃ increase the curvature.

In order to study edge-of-stability behavior, we need initializations which allow the curvature
(JJ> in this case) to increase over time - a phenomenon known as progressive sharpening. Pro-
gressive sharpening has been shown to be ubiquitous in machine learning models [3], so any useful
phenomenological model should show it as well. One such initialization for this quadratic regres-
sion model is ω1 = −ω, ω2 = ω, J̃(ω1) = J̃(ω2). This initialization (and others) show progressive
sharpening at all times.
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Figure 1: Quartic loss landscape L(·) as a function of the parameters θ, where D = 2, E = 0 and
Q has eigenvalues 1 and −0.1. The GD trajectories (initialized at (1.5,−4.32), marked
with an x) converge to minima with larger curvature than at initialization and therefore
show progressive sharpening (left). The two-step dynamics, in which we consider only
even iteration numbers, exhibit fewer oscillations near the edge of stability (right).

2.2. Gradient descent

We are interested in understanding the edge-of-stability (EOS) behavior in this model: gradient
descent (GD) trajectories where the maximum eigenvalue of the NTK, JJ>, remains close to the
critical value 2/η. We define edge of stability with respect to the maximum NTK eigenvalue instead
of the maximum loss Hessian eigenvalue from [3]. We will prove this form of EOS in our simpler
models, and find that it holds empirically in more complex models. See Appendix A.1 for further
discussion.

When Q has both positive and negative eigenvalues, the loss landscape is the square of a hy-
perbolic parabaloid (Figure 1, left). As suggested by the gradient flow analysis, this causes some
trajectories to increase their curvature before convergence. This causes the final curvature to depend
on both the initialization and learning rate. One of the challenges in analyzing the gradient descent
(GD) dynamics is that they rapidly and heavily oscillate around minima for large learning rates.
One way to mitigate this issue is to consider only every other step (Figure 1, right). We will use this
observation to analyze the gradient descent (GD) dynamics directly to find configurations where
these trajectories show edge-of-stability behavior.

In the eigenbasis coordinates, the gradient descent equations are

z̃t+1 − z̃t = −z̃t
P∑
i=1

J̃(ωi)
2
t +

1

2
(z̃2
t )

P∑
i=1

ωiJ̃(ωi)
2
t (5)

J̃(ωi)
2
t+1 − J̃(ωi)

2
t = −z̃tωi(2− z̃tωi)J̃(ωi)

2
t for all 1 ≤ i ≤ P . (6)

We’ll find it convenient in the following to write the dynamics in terms of weighted averages of
J̃(ωi)

2 instead of the modes J̃(ωi):

T (α) =
P∑
i=1

ωαi J̃(ωi)
2 . (7)
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The dynamical equations become:

z̃t+1 − z̃t = −z̃tTt(0) +
1

2
(z̃2
t )Tt(1) (8)

Tt+1(k)− Tt(k) = −z̃t(2Tt(k + 1)− z̃tTt(k + 2)) . (9)

If Q is invertible, then we have E = Tt(−1) − 2z̃t. Note that by definition Tt(0) = ηJtJ
>
t is

the (rescaled) NTK. edge-of-stability behavior corresponds to dynamics which keep Tt(0) near the
value 2 as z̃t goes to 0.

2.2.1. REDUCTION TO CATAPULT DYNAMICS

If the eigenvalues of Q are {−ω, ω}, and E = 0, the model becomes equivalent to a single hidden
layer linear network with one training datapoint (Appendix A.2) - also known as the catapult phase
dynamics. This model doesn’t exhibit sharpening or edge-of-stability behavior [12]. We will ana-
lyze this model in our z̃ − T (0) variables as a warmup, with an eye towards analyzing a different
parameter setting which does show sharpening and edge of stability.

We assume without loss of generality that the eigenvalues are {−1, 1} - which can be accom-
plished by rescaling z̃. The loss function is then the square of a hyperbolic parabaloid. Since
there are only 2 variables, we can rewrite the dynamics in terms of z̃ and the curvature T (0) only
(Appendix B.1):

z̃t+1 − z̃t = −z̃tTt(0) +
1

2
(z̃2
t )(2z̃t + E) (10)

Tt+1(0)− Tt(0) = −2z̃t(2z̃t + E) + z2
t Tt(0) . (11)

For E = 0, we can see that sign(∆T (0)) = sign(Tt(0) − 4), as in [12] - so convergence re-
quires strictly decreasing curvature. For E 6= 0, there is a region where the curvature can increase
(Appendix B.1). However, there is still no edge-of-stability behavior - there is no set of initializa-
tions which starts with λmax far from 2/η, which ends up near 2/η. In contrast, we will show that
asymmetric eigenvalues can lead to EOS behavior.

2.2.2. EDGE OF STABILITY REGIME

In this section, we consider the case in which Q has two eigenvalues - one of which is large and
positive, and the other one small and negative. Without loss of generality, we assume that the largest
eigenvalue of Q is 1. We denote the second eigenvalue by −ε, for 0 < ε ≤ 1. With this notation we
can write the dynamical equations (Appendix B.1) as

z̃t+1 − z̃t = −z̃tTt(0) +
1

2
(z̃2
t )((1− ε)Tt(0) + ε(2z̃t + E)) (12)

Tt+1(0)− Tt(0) = −2z̃t(ε(2z̃t +E) + (1− ε)Tt(0)) + z̃2
t [Tt(0) + ε (ε− 1) (Tt(0)− E − 2z̃t)] .

(13)
For small ε, there are trajectories where λmax is initially away from 2/η but converges towards it
(Figure 2, left) - in other words, EOS behavior. We used a variety of step sizes η but initialized at
pairs initialized at pairs (ηz0, ηT0(0)) to show the universality of the z̃-T (0) coordinates.

In order to quantitatively understand the progressive sharpening and edge of stability, it is useful
to look at the two-step dynamics. One additional motivation for studying the two-step dynamics
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follows from the analysis of gradient descent on linear least squares (i.e., linear model) with a large
step size λ. For every coordinate θ̃, the one-step and two-step dynamics are

θ̃t+1 − θ̃t = −λθ̃t and θ̃t+2 − θ̃t = (1− λ)2θ̃t (GD in quadratic potential) . (14)

While the dynamics converge for λ < 2, if λ > 1 the one-step dynamics oscillate when approaching
minimum, whereas the the two-step dynamics maintain the sign of θ̃ and the trajectories exhibit no
oscillations.

Likewise, plotting every other iterate in the two parameter model more clearly demonstrates the
phenomenology. For small ε, the dynamics shows the distinct phases described in [13]: an initial
increase in T (0), a slow increase in z̃, then a decrease in T (0), and finally a slow decrease of z̃
while T (0) remains near 2 (Figure 2, middle).

Unfortunately, the two-step version of the dynamics defined by Equations 12 and 13 are more
complicated – they are 3rd order in T (0) and 9th order in z̃; see Appendix B.2 for a more detailed
discussion. However we can still analyze the dynamics as z̃ goes to 0. In order to understand the
mechanisms of the EOS behavior, it is useful to understand the nullclines of the two step dynamics.
The nullcline fz̃(z̃) of z̃ and fT (z̃) of T (0) are defined implicitly by

(z̃t+2 − z̃t)(z̃, fz̃(z̃)) = 0, (Tt+2(0)− Tt(0))(z̃, fT (z̃)) = 0 (15)

where z̃t+2− z̃t and Tt+2(0)−Tt(0) are the aforementioned high order polynomials in z̃ and T (0).
Since these polynomials are cubic in T (0), there are three possible solutions as z̃ goes to 0. We are
particularly interested in the solution that goes through z̃ = 0, T (0) = 2 - that is, the critical point
corresponding to EOS.

Calculations detailed in Appendix B.2 show that the distance between the two nullclines is linear
in ε, so they become close as ε goes to 0. (Figure 2, middle). In addition, the trajectories stay near
fz̃ - which gives rise to EOS behavior. This suggests that the dynamics are slow near the nullclines,
and trajectories appear to be approaching an attractor. We can find the structure of the attractor by
changing variables to yt ≡ Tt(0) − fz̃(z̃t) - the distance from the z̃ nullcline. To lowest order in z̃
and y, the two-step dynamical equations become (Appendix B.3):

z̃t+2 − z̃t = 2ytz̃t +O(y2
t z̃t) +O(ytz̃

2
t ) (16)

yt+2 − yt = −2(4− 3ε+ 4ε2)ytz̃
2
t − 4εz̃2

t + εO(z̃3
t ) +O(y2z̃2

t ) (17)

We immediately see that z̃ changes slowly for small y - since we chose coordinates where z̃t+2 −
z̃t = 0 when y = 0. We can also see that yt+2−yt isO(ε) for yt = 0 - so for small ε, the y dynamics
is slow too. Moreover, we see that the coefficient of the εz̃2

t term is negative - the changes in z̃ tend
to drive y (and therefore T (0)) to decrease. The coefficient of the yt term is negative as well; the
dynamics of y tends to be contractive. The key is that the contractive behavior takes y to an O(ε)
fixed point at a rate proportional to z̃2, while the dynamics of z̃ are proportional to ε. This suggests
a separation of timescales if z̃2 � ε, where y first equilibrates to a fixed value, and then z̃ converges
to 0 (Figure 2, right). This intuition for the lowest order terms can be formalized, and gives us a
prediction of limt→∞ yt = −ε/2, confirmed numerically in the full model (Appendix B.5).

We can prove the following theorem about the long-time dynamics of z̃ and y when the higher
order terms are included (Appendix B.4):

5



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

0 100 200 300 400 500

Number of iterations

10-1

100

101

102

103
C

ur
va

tu
re

 (
λ

m
a
x
)

10-2

10-1

100

101

102

st
ep

 s
iz

e

0.0 0.1 0.2 0.3 0.4

z

1.8

2.0

2.2

2.4

2.6

2.8

3.0

T

y

Trajectories for ε= 0.10

zt+ 2 − zt = 0

Tt+ 2 − Tt = 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

z̃

0.1

0.0

0.1

0.2

0.3

y

y− z dynamics, ε= 0.10

Figure 2: For small ε, two-eigenvalue model shows EOS behavior for various step sizes (ε =
5 · 10−3, left). Trajectories are the same up to scaling because corresponding rescaled
coordinates z̃ and T (0) are the same at initialization. Plotting every other iterate, we see
that for a variety of initializations (black x’s), trajectories in z̃ − T (0) space stay near
the nullcline (z̃, fz̃(z̃)) - the curve where z̃t+2 − z̃t = 0 (middle). Changing variables to
y = T (0)− fz̃(z̃) shows quick concentration to a curve of near-constant, small, negative
y (right).

Theorem 1 There exists an εc > 0 such that for a quadratic regression model with E = 0 and
eigenvalues {−ε, 1}, ε ≤ εc. there exists a neighborhood U ⊂ R2 and interval [η1, η2] such that for
initial θ ∈ U and learning rate η ∈ [η1, η2], the model displays edge-of-stability behavior:

2/η − δλ ≤ lim
t→∞

λmax ≤ 2/η , (18)

for δλ of O(ε).

Therefore, unlike the catapult phase model, the small ε provably has EOS behavior - whose
mechanism is well-understood by the z̃ − y coordinate transformation.

3. Quadratic regression model

3.1. General model

While the model defined in Equation 1 provable displays edge-of-stability behavior, it required
tuning of the eigenvalues of Q to demonstrate it. We can define a more general model which
exhibits edge-of-stability behavior with less tuning. We define the quadratic regression model as
follows. Given a P -dimensional parameter vector θ, the D-dimensional output vector z is given by

z = y + G>θ +
1

2
Q(θ,θ) . (19)

Here y is a D-dimensional vector, G is a D × P -dimensional matrix, and Q is a D × P × P -
dimensional tensor symmetric in the last two indices - that is, Q(·, ·) takes two P -dimensional
vectors as input, and outputs a D-dimensional vector verifying Q(θ,θ)α = θ>Qαθ. If Q = 0, the
model corresponds to linearized learning (as in the NTK regime). When Q 6= 0, we obtain the first
correction to NTK regime. We note that:

Gαi =
∂zα
∂θi

∣∣∣∣
θ=0

, Qαij =
∂2zα
∂θi∂θj

,→ J = G + Q(θ, ·) , (20)
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for the D × P dimensional Jacobian J. For D = 1, we recover the model of Equation 1. In the
remainder of this section, we will study the limit as D and P increase with fixed ratio D/P .

The quadratic regression model corresponds to a model with a constant second derivative with
respect to parameter changes - or a second order expansion of a more complicated ML model.
Quadratic expansions of shallow MLPs have been previously studied [1, 20], and the perturbation
theory for small Q is studied in [16]. Other related models are detailed in Appendix A. We will
provide evidence that even random, unstructured quadratic regression models lead to EOS behavior.

3.2. Gradient flow dynamics

We will focus on training with squared loss L(z) = 1
2

∑
α z

2
α. We begin by considering the dynam-

ics under gradient flow (GF):

θ̇ = −∂L(z)

∂θ
= −J>z . (21)

We can write the dynamics in the output space z and the Jacobian J as

ż = Jθ̇ = −JJ>z, J̇ = −Q(J>z, ·) (22)

When Q = 0 (linearized/NTK regime), J is constant, the dynamics are then linear in z, and are
controlled by the eigenstructure of JJ>, the empirical NTK. In this regime there is no EOS behavior.

We are interested in settings where progressive sharpening occurs under GF. We can study the
dynamics of the maximum eigenvalue λmax of JJ> at early times for random initializations. In
Appendix C.1, we prove the following theorem:

Theorem 2 Let z, J, and Q be initialized with i.i.d. elements with zero mean and variances σ2
z ,

σ2
J , and 1 respectively, with distributions invariant to rotation in data and parameter space, and

have finite fourth moments. Let λmax be the largest eigenvalue of JJ>. In the limit of large D and
P , with fixed ratio D/P , at initialization we have

E[λ̇max(0)] = 0, E[λ̈max(0)]/E[λmax(0)] = σ2
z (23)

where E denotes the expectation over z, J, and Q at initialization.

Much like in the D = 1 case, Theorem 2 suggests that it is easy to find initializations that show
progressive sharpening - and increasing σz makes sharpening more prominent.

3.3. Gradient descent dynamics

We now consider finite-step size gradient descent (GD) dynamics. The dynamics for θ are given
by:

θt+1 = θt − ηJ>t zt . (24)

In this setting, the dynamic equations can be written as

zt+1 − zt = −ηJtJ>t zt +
1

2
η2Q(J>t zt,J

>
t zt) (25)

Jt+1 − Jt = −ηQ(J>t zt, ·) . (26)

7
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Figure 3: Gradient descent dynamics in the quadratic regression model. As z initialization variance
σ2
z increases, so does the curvature λmax upon convergence. As sharpening drives ηλmax

near 2, larger σz allows for non-linear effects to induce edge-of-stability behavior (right).
Resulting loss trajectories are non-monotonic but still converge to 0 (left).

If Q = 0, the dynamics reduce to discrete gradient descent in a quadratic potential - which converges
iff λmax < 2/η.

One immediate question is: when does the η2 in Equation 25 affect the dynamics? Given that
it scales with higher powers of η and z than the first term, we can conjecture that the ratio of the
magnitudes of the terms, rNL, is proportional to ||z||2 and η. A calculation in Appendix C.2 shows
that, for random rotationally invariant initializations, we have:

rNL ≡

(
E[||12η

2Q(J>0 z0,J
>
0 z0)||22]

E[||ηJ0J>0 z0||22]

)1/2

=
1

2
ησzD , (27)

where as before the expectation is taken over the initialization of z, J, and Q. This suggests that
increasing the learning rate increases the deviation of the dynamics from GF (which is obvious), but
increasing ||z|| also increases the deviation from GF.

We can see this phenomenology in the dynamics of the GD equations (Figure 3). Here we plot
different trajectories for random initializations of the type in Theorem 2 with D = 60, P = 120,
and η = 1. As σz increases, so does the curvature λmax (as suggested by Theorem 2), and when σz
isO(1), the dynamics is non-linear (as predicted by rNL) and EOS behavior emerges. This suggests
that the second term in Equation 25 is crucial for the stabilization of λmax.

We can confirm this more generally by initializing over various η, D, P , σz , and σJ over
multiple seeds, and plotting the resulting phase diagram of the final λmax reached. We can simplify
the plotting with some rescaling of parameters and initializations. For example, in the rescaled
variables

z̃ = ηz, J̃ = η1/2J , (28)

the dynamics are equivalent to Equations 25 and 26 with η = 1. As in the z̃ − T (0) model of
Equations 8–9, λmax in the rescaled coordinates is equivalent to ηλmax in the unscaled coordinates.
We can also define rescaled initializations for z and J. If we set

σz = σ̃z/D, σJ = σ̃J/ (DP )1/4 , (29)
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then we have rNL = σ̃z which allows for easier comparison across (D,P ) pairs.
Using this initialization scheme, we can plot the final value of λmax reached as a function of

σ̃z and σ̃J for 100 independent random initializations for each σ̃z , σ̃J pair (Figure 4). We see that
the key is for rNL = σ̃z to be O(1) - corresponding to both progressive sharpening and non-linear
dynamics near initialization. In particular, initializations with small σ̃J values which converge at
the EOS correspond to trajectories which first sharpen, and then settle near λmax = 2/η. Large σ̃z
and large σ̃J dynamics diverge. There is a small band of initial σ̃J over a wide range of σ̃z which
have final λmax ≈ 2/η; these correspond to models initialized near the EOS, which stay near it.
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Figure 4: σ̃z/σ̃2
J phase planes for quadratic regression models, for various D and P . Models were

initialized with 100 random seeds for each σ̃z , σ̃J pair and iterated until convergence. For
each pair σ̃z, σ̃2

J we plot the median λmax of the NTK J>J. For intermediate σ̃z , where
both sharpening and non-linear z dynamics occur, trajectories tend to converge so λmax

of the NTK is near 2/η (EOS).

This suggests that progressive sharpening and edge of stability aren’t uniquely features of neural
network models, and could be a more general property of learning in high-dimensional, non-linear
models.

4. Connection to real world models

In this section we examine how representative is the proposed model and the developed theory to
the behavior of “real world” models. Following [3], we trained a 2-hidden layer tanh network
using the squared loss on 5000 examples from CIFAR10 with learning rate 10−2 - a setting which
shows edge of stability behavior. Close to the onset of EOS, we approximately computed λ1, the
largest eigenvalue of JJ>, and its corresponding eigenvector v1 using a Lanczos method [6, 15].
We use v1 to compute z1 = v>1 z, where z is the vector of residuals f(X,θ)−Y for neural network
function f , training inputs X, labels Y, and parameters θ. The EOS behavior in the NTK is similar
to the EOS behavior defined with respect to the full Hessian in [3] (Figure 5, left and right). Once
again, plotting the trajectories at every other step gets rid of the high frequency oscillations (Figure
5, middle). Unlike the D = 1, P = 2 model, there are multiple crossings of the critical line
λmax = 2/η line.

There is evidence that low-dimensional features of a quadratic regression model could be used
to explain some aspects of EOS behavior. We empirically compute the the second derivative of the
output f(x,θ) by automatic differentiation. We denote by Q(·, ·) the resulting tensor. We can use
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Figure 5: A FCN trained on CIFAR shows multiple cycles of sharpening and edge-of-stability be-
havior. z1, the projection of the training set residuals f(X,θ) − Y onto the top NTK
eigenmode v1, increases in magnitude and oscillates around 0 (left). Plotting dynamics
every two steps removes high frequency oscillations (middle). The largest eigenvalue λ1

crosses the edge of stability multiple times, but the second largest eigenvalue λ2 remains
below the edge of stability.

matrix-vector products to compute the spectrum of the matrix Q1 ≡ v1 ·Q(·, ·), which is projection
of the output of Q in the v1 direction, without instantiating Q in memory (Figure 6, left). This figure
reveals that the spectrum does not shift much from step 3200 to 3900 (the range of our plots). This
suggests that Q doesn’t change much as these EOS dynamics are displayed. We can also see that Q
is much larger in the v1 direction than a random direction.

Let y be defined as y = λ1η − 2. Plotting the two-step dynamics of z1 versus 2yz we see a
remarkable agreement (Figure 6, middle). This is the same form that the dynamics of z̃ takes in
our simplified model. It can also be found by iterating Equation 25 twice with fixed Jacobian for
y = λ1η − 2 and discarding terms higher order in η. This suggests that during this particular EOS
behavior, much like in our simplified model the dynamics of the eigenvalue is more important than
any rotation in the eigenbasis.

The dynamics of y is more complicated; yt+2 − yt is anticorrelated with z2
1 but there is no

low-order functional form in terms of y and z1 (Appendix D.1). We can get some insight into
the stabilization by plotting the ratio of η2Q1(Jz1v1,Jz1v1) (the non-linear contribution to the
z1 dynamics from the v1 direction) and λ1z1 (the linearized contribution), and compare it to the
dynamics of y (Figure 6, right). The ratio is small during the initial sharpening, but becomes O(1)
shortly before the curvature decreases for the first time. It remains O(1) through the rest of the
dynamics. This suggests that the non-linear feedback from the dynamics of the top eigenmode onto
itself is crucial to understanding the EOS dynamics.

5. Discussion

5.1. Lessons learned from quadratic regression models

The main lesson to be learned from the quadratic regression models is that behavior like progressive
sharpening (for both GF and GD) and edge-of-stability behavior (for GD) may be common features
of high-dimensional gradient-based training of non-linear models. Indeed, these phenomena can
be revealed in simple settings without any connection to deep learning models: with mild tuning
our simplified model, which corresponds to 1 datapoint and 2 parameters can provably show EOS

10
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Figure 6: Q is approximately constant during edge-of-stability dynamics for FCN trained on CI-
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proximated by 2z1y (middle), leading order term of models with fixed eigenbasis. Non-
linear dynamical contribution η2Q1(Jz1v1,Jz1v1) is small during sharpening, but be-
comes large immediately preceding decrease in top eigenvalue (right) - as is the case in
the simple model.

behavior. This combined with the analysis of the CIFAR model suggest that the general mechanism
may have a low-dimensional description.

Quadratic approximations of real models quantitatively can capture the early features of EOS
behavior (the initial return to λmax < 2/η), but do not necessarily capture the magnitude and
period of subsequent oscillations – these require higher order terms (Appendix D.2). Nevertheless,
the quadratic approximation does correctly describe much of the qualitative behavior, including the
convergence of λmax to a limiting two-cycle that oscillates around 2/η, with an average value below
2/η. In the simplified two-parameter model, it is possible to analytically predict the final value at
convergence, and indeed we find that it deviates slightly from the value 2/η.

A key feature of all the models studied in this work is that looking at every-other iterate (the
two-step dynamics) greatly aids in understanding the models theoretically and empirically. Near the
edge of stability, this makes the changes in the top eigenmode small. In the simplified model, the
slow z̃ dynamics (and related slow T (0) dynamics) allowed for the detailed theoretical analysis; in
the CIFAR model, the two-step dynamics is slowly varying in both z1 and λmax. The quantitative
comparisons of these small changes may help uncover any universal mechanisms/canonical forms
that explain EOS behavior in other systems and scenarios.

5.2. Future work

One avenue for future work is to quantitatively understand progressive sharpening and EOS behavior
in the quadratic regression model for large D and P . In particular, it may be possible to predict the
final deviation 2−ηλmax in the edge-of-stability regime as a function of σz , σJ , andD/P . It would
also be useful to understand how higher order terms affect the training dynamics. One possibility is
that a small number of statistics of the higher order derivatives of the loss function are sufficient to
obtain a better quantitative understanding of the oscillations around y = 2.

Finally, our analysis has not touched on the feature learning aspects of the model. In the
quadratic regression model, feature learning is encoded in the relationship between J and z, and
in particular the relationship between z and the eigenstructure of JJ>. Understanding how Q medi-
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ates the dynamics of these two quantities may provide a quantitative basis for understanding feature
learning which is complementary to existing theoretical approaches [2, 16, 19].

References

[1] Yu Bai and Jason D. Lee. Beyond Linearization: On Quadratic and Higher-Order Approxi-
mation of Wide Neural Networks. In International Conference on Learning Representations,
March 2020.

[2] Blake Bordelon and Cengiz Pehlevan. Self-Consistent Dynamical Field Theory of Kernel
Evolution in Wide Neural Networks, May 2022.

[3] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient
Descent on Neural Networks Typically Occurs at the Edge of Stability. In International Con-
ference on Learning Representations, February 2022.

[4] Jeremy M. Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medap-
ati, Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E. Dahl, and Justin
Gilmer. Adaptive Gradient Methods at the Edge of Stability, July 2022.

[5] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware Min-
imization for Efficiently Improving Generalization. In International Conference on Learning
Representations, April 2022.

[6] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An Investigation into Neural Net Opti-
mization via Hessian Eigenvalue Density. In Proceedings of the 36th International Conference
on Machine Learning, pages 2232–2241. PMLR, May 2019.

[7] Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, and Daniel Soudry. At Stability’s Edge: How
to Adjust Hyperparameters to Preserve Minima Selection in Asynchronous Training of Neural
Networks? In Eighth International Conference on Learning Representations, April 2020.

[8] Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur,
David Cardoze, George Edward Dahl, Zachary Nado, and Orhan Firat. A Loss Curvature
Perspective on Training Instabilities of Deep Learning Models. In International Conference
on Learning Representations, March 2022.

[9] Jiaoyang Huang and Horng-Tzer Yau. Dynamics of Deep Neural Networks and Neural Tan-
gent Hierarchy. In Proceedings of the 37th International Conference on Machine Learning,
pages 4542–4551. PMLR, November 2020.

[10] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems
31, pages 8571–8580. Curran Associates, Inc., 2018.

[11] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent. In Advances in Neural Information Processing Systems 32,
pages 8570–8581. Curran Associates, Inc., 2019.

12



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

[12] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The
large learning rate phase of deep learning: The catapult mechanism. March 2020.

[13] Zhouzi Li, Zixuan Wang, and Jian Li. Analyzing Sharpness along GD Trajectory: Progressive
Sharpening and Edge of Stability, July 2022.

[14] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring Gen-
eralization in Deep Learning. In Advances in Neural Information Processing Systems 30, pages
5947–5956. Curran Associates, Inc., 2017.

[15] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural Tangents: Fast and Easy Infinite Neural Net-
works in Python. arXiv:1912.02803 [cs, stat], December 2019.

[16] Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory.
May 2022. doi: 10.1017/9781009023405.

[17] Lei Wu, Chao Ma, and Weinan E. How SGD Selects the Global Minima in Over-parameterized
Learning: A Dynamical Stability Perspective. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[18] Greg Yang. Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
Architecture are Gaussian Processes. arXiv:1910.12478 [cond-mat, physics:math-ph], May
2021.

[19] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor Programs V: Tuning Large
Neural Networks via Zero-Shot Hyperparameter Transfer, March 2022.

[20] Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Quadratic
models for understanding neural network dynamics, May 2022.

Appendix A. Connection to other models

A.1. Hessian versus NTK maximum eigenvalue

In this work we focus on EOS dynamics of the largest eigenvalue of the NTK, rather than the
Hessian as in [3]. We note that a version of Theorem 1 is true for the maximum Hessian eigenvalue
as well. In general, the Hessian can be written as

∂2L
∂θ∂θ′

= ∇L · ∂2z

∂θ∂θ′
+ JT ∂2L

∂z∂z′
J (30)

For squared loss in particular, we have

∂2L
∂θ∂θ′

= ∇L · ∂2z

∂θ∂θ′
+ JTJ (31)

As the loss gradient goes to 0, the Hessian eigenvalues approach the eigenvalues of JJT - whose
non-zero eigenvalues are the same as those of the empirical NTK JJT. Since the theorem involves

13



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

behavior as z̃ goes to convergence, the maximum NTK and maximum Hessian eigenvalues are equal
in the limit, and the same EOS behavior applied in both cases.

For the higher dimensional models (quadratic regression model and fully connected network
on CIFAR10), our experiments show that the maximum NTK eigenvalue shows edge of stability
behavior. The CIFAR model is the same as the one in [3] which was used to illustrate the edge of
stability in terms of the maximum Hessian eigenvalues. Therefore we focused on the NTK version
of EOS in our paper, as we found it more amenable to theoretical analysis and explanation.

There are almost certainly cases where EOS behavior is displayed in the Hessian eigenvalues but
not the NTK eigenvalues, particularly in cases where the loss is highly non-isotropic in the outputs
(that is, ∂2L

∂z∂z′ is far from a multiple of the identity matrix). As pointed out in previous works in
these cases even the Hessian-based EOS is more difficult to analyze [3]. We leave understanding of
EOS with more complicated loss functions for future work.

A.2. One-hidden layer linear network

Consider a one hidden layer network with a scalar output:

f(x) = v>Ux (32)

where x is an input vector of lengthN , U is aK×N dimensional matrix, and v is aK dimensional
vector. We note that

∂2f(x)

∂vi∂vj
=

∂2f(x)

∂Uij∂Ukl
= 0,

∂2f(x)

∂vi∂Ujk
= δijxk (33)

where δij is the Kroenecker delta. For a fixed training set, this second derivative is constant; there-
fore, the one-hidden layer linear network is a quadratic regression model of the type studied in
Section 3.

In the particular case of a single datapoint x, we can compute the eigenvectors of the Q ma-
trix. Let (w,W) be an eigenvector of Q, representing the v and U components respectively. The
eigenvector equations are

ωwi = xmδijWjm (34)

ωWjm = xmδijwi (35)

Simplifying, we have:
ωw = Wx (36)

ωW = wx> (37)

We have two scenarios. The first is that ω = 0. In this case, we have w = 0, and W is a matrix
with x in its nullspace. The latter condition gives usM constraints onM ×N equations - for a total
of M(N − 1) of our M(N + 1) total eigenmodes.

If ω 6= 0, then combining the equations we have the conditions:

ω2w = (x · x)w (38)

ω2W = Wxx> (39)

This gives us ω = ±
√
x · x. We know from Equation 37 that W is low rank. Therefore, we can

guess a solution of the form
W±,i = ±eix> (40)
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where the ei are the M coordinate vectors. This suggests that we have

w±,i = (
√
x · x)ei (41)

This gives us our final 2M eigenmodes.
We can analyze the initial values of of the J̃(ωi) as well. The components of the Jacobian can

be written as:

(Jv)i ≡
∂f(x)

∂vi
= Uimxm (42)

(JU )jm ≡
∂f(x)

∂Ujm
= vjxm (43)

From this form, we can deduce that J is orthogonal to the 0 modes. We can also compute the
conserved quantity. Let J2

+ be the total weight in the positive eigenmodes, and J2
− be the total

weight in the negative eigenmodes. A direct calculation shows that

ω−1(J2
+ − J2

−) = 2f(x) (44)

which implies that E = 0.
Therefore, the single-hidden layer linear model on one datapoint is equivalent to the quartic loss

model with E = 0 and eigenvalues ±
√
x · x.

A.3. Connection to [2]

Since the one-hidden layer linear model has constant Q, the models in Section F.1 of [2] fall into
the quadratic regression class. In the case of Section F.1.1, Equation 67, we can make the mapping
to a D = 1 model explicit. The dynamics are equivalent to said model with a single eigenvalue ω0

if we make the identifications

∆ = z̃, Hy = J2
0 , γ0 =

√
2ω, y = −E/2 (45)

A.4. Connection to NTH

The Neural Tangent Hierarchy (NTH) equations extend the NTK dynamics to account for changes
in the tangent kernel by constructing an infinite sequence of higher order tensors which control the
non-linear dynamics of learning [9]. Truncation of the NTH equations at 3rd order is related to, but
not the same as the quadratic regression model, as we will show here.

The 3rd order NTH equation describes the change in the tangent kernel JJ>. Consider the
D ×D ×D-dimensional kernel K3 whose elements are given by

(K3)αβγ =
∂2zα
∂θi∂θj

JiγJjβ +
∂2zβ
∂θi∂θj

JiγJjα (46)

where repeated indices are summed over. In the NTH, for squared loss the change in the NTK JJ>

is given by
d

dt

(
JJ>

)
αβ

= −η(K3)αβγzγ (47)

For fixed Q = ∂2z
∂θ∂θ′ , this equation is identical to the GF equations for the NTK in the quadratic

regression model. We note that K3 is not constant under the quadratic regression model. Conversely,
for fixed K3, ∂2z

∂θ∂θ′ is not constant either. Therefore, the two methods can be used to construct
different low-order expansions of the dynamics.
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Appendix B. 2 parameter model

B.1. Derivation of z̃-T (0) equations

We can use the conserved quantity E to write the dynamics in terms of z̃ and T (0) only. Without
loss of generality, let the eigenvalues are 1 and λ, with −1 ≤ λ ≤ 1. (We can achieve this by
rescaling z̃.) Recall the dynamical equations

z̃t+1 − z̃t = −z̃tTt(0) +
1

2
(z̃2
t )Tt(1) (48)

Tt+1(0)− Tt(0) = −z̃t(2Tt(1)− z̃tTt(2)) (49)

We will find substitutions for T (1) and T (2) in terms of z̃ and T (0). Recall that we have

T (−1) = E + 2z̃ (50)

where E is conserved throughout the dynamics (and indeed is a property of the landscape). We will
use this definition to solve for T (1) and T (2).

Since P = 2, we can write T (−1) = bT (0)+aT (1), for coefficients a and b which are valid for
all combinations of J̃ . If J̃(λ) = 0, we have b = 1− a. If J̃(1) = 0, we have 1 = λ(1− a) + λ2a.
Solving, we have:

T (−1) = (1− a)T (0) + aT (1) for a = − 1

λ
(51)

The restrictions on λ translate to a /∈ (−1, 1). In terms of the conserved quantity E = T (−1)− 2z̃,
we have:

T (−1) = E + 2z̃ (52)

In order to convert the dynamics, we need to solve for T (1) and T (2) in terms of T (0) and z̃.
We have:

T (1) =
1

a
(T (−1) + (a− 1)T (0)) =

1

a
(E + 2z̃ + (a− 1)T (0)) (53)

We also have

T (2) = T (0) +

(
1− a
a2

)
(T (0)− E − 2z̃) (54)

This gives us

z̃t+1 − z̃t = −z̃tTt(0) +
1

2a
(z̃2
t )((a− 1)Tt(0) + 2z̃t + E) (55)

Tt+1(0)− Tt(0) = −2

a
z̃t(2z̃t + E + (a− 1)Tt(0)) + z2

t

[
Tt(0) +

(
1− a
a2

)
(Tt(0)− E − 2z̃t)

]
(56)

If λ = −ε (that is, a = ε−1) we recover the equations from the main text.
The non-negativity of J̃2 gives us constraints on the values of z̃ and T . For a > 1 (small

negative second eigenvalue), the constraints are:

T > 2z̃ + E, T > −(2z̃ + E)/a (57)

This is an upward-facing cone with vertex at z̃ = −E/2 (Figure 8, left). For a < −1, the constraints
are

− (2z̃ + E)/a < T < 2z̃ + E (58)
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Figure 7: Phase portraits for symmetric model. Arrows indicate signs of changes in z and T , and
grey area represents disallowed coordinates. Dynamics are run from an evenly spaced
grid of initializations, and the final value of the curvature T (0) is recorded. Nullclines
representing z̃t+1 − z̃t = 0 (blue) and Tt+1(0) − Tt(0) = 0 (orange) depend on E.
Trajectories show progressive sharpening but no edge-of-stability effect (right).

This is a sideways facing cone with vertex at z̃ = −E/2 (Figure 8, right). We see that in this case,
there is a limited set of values of T to converge to. Indeed, for E = 0, there is no convergence
except at T (0) = 0. This why we focus on the case of one positive and one negative eigenvalue.

We can also solve for the nullclines - the curves where either z̃t+1 − z̃t = 0 (blue in Figure 8),
or Tt+1(0)− Tt(0) = 0 (orange in Figure 8). The nullcline (z̃, fz̃(z̃)) for z̃ is given by

fz̃(z̃) =
z̃(2z̃ + E)

2a− (a− 1)z̃
(59)

The nullcline (z̃, fT (z̃)) for T (0) is given by

fT (z̃) = − (a− 1)z̃ − 2a

(a2 − a+ 1)z̃ − 2a(a− 1)
(2z̃ + E) (60)

The line z̃ = 0 is also a nullcline.
For the symmetric model ε = 1, the structure of the nullclines determines the presence or lack

of progressive sharpening. For E = 0, there is no sharpening; the phase portrait (Figure 7, left)
confirms this as the nullcline in Tt(0) divides the space into two halves, one which converges, and
the other which doesn’t. However, when E 6= 0, the nullclines split, and there is a small region
where progressive sharpening can occur (Figure 7, middle). However, there is still no edge-of-
stability behavior in this case - there is no region where the trajectories cluster near λmax = 2/η
(Figure 7, right).

B.2. Two-step dynamics

The two-step difference equations can be derived by iterating Equations 12 and 13. We have

z̃t+2 − z̃t = p0(z̃t, ε) + p1(z̃t, ε)Tt(0) + p2(z̃t, ε)Tt(0)2 + p3(z̃t, ε)Tt(0)3 (61)

T (0)t+2 − Tt(0) = q0(z̃t, ε) + q1(z̃t, ε)Tt(0) + q2(z̃t, ε)Tt(0)2 + q3(z̃t, ε)Tt(0)3 (62)

17



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

4 2 0 2 4

z

0

1

2

3

4

5

6

T

E= 1.50, λ2 = − 0.83

dz= 0

dT= 0

4 2 0 2 4

z

0

1

2

3

4

5

6

7

T

E= 1.50, λ2 = 0.31

dz= 0

dT= 0

Figure 8: Phase planes of D = 1, P = 2 model. Grey region corresponds to parameters forbidden
by positivity constraints on J̃(ωi)

2. For λ > 0, allowed region is smaller and intersects
z̃ = 0 at a small range only. Nullclines can be solved for analytically.

Here the pi and qi are polynomials in z̃, maximum 9th order in z̃ and 6th order in ε. They can be
computed explicitly but we choose to omit the exact forms for now.

For fixed ε, we can solve for the z̃ two-step nullclines (z̃t+2 − z̃t = 0) and the T nullclines
(Tt+2(0)−Tt(0) = 0) using Cardano’s formula to solve for T as a function of z̃. In particular, each
nullcline equation has a solution that goes through z̃ = 0, T (0) = 2, independent of ε. This is the
family of solutions that we will focus on.

Let (z̃, fz̃,ε(z̃)) be the nullcline of z̃, and let (z̃, fT,ε(z̃)) be the nullcline of T (0). We will show
that the T values of the nullclines, as a function of z̃ and ε, is differentiable around z̃ = 0, ε = 0.

The nullclines are defined by the implicit equations

0 = 6z̃3ε− 2T z̃ − 3T z̃2(ε− 1)− T z̃3(ε+ 2)(2ε+ 1) + T 2z̃ +
7

2
T 2z̃2(ε− 1)

+
1

2
T 2z̃3

(
9ε2 − 10ε+ 9

)
− 1

2
T 3z̃2(ε− 1)− 1

2
T 3z̃3

(
3ε2 − 4ε+ 3

)
+O(z̃4)

(63)

0 = −8z̃2ε− 12z̃3(ε− 1)ε+ 4T z̃(ε− 1) + 2T z̃2
(
3ε2 − ε+ 3

)
+ 4T z̃3(ε− 1)

(
ε2 + 4ε+ 1

)
− 2T 2z̃(ε− 1)− T 2z̃2

(
7ε2 − 8ε+ 7

)
− T 2z̃3(ε− 1)

(
9ε2 − ε+ 9

)
+ T 3z̃2

(
ε2 − ε+ 1

)
+ T 3z̃3(ε− 1)

(
3ε2 − ε+ 3

)
+O(z̃4)

(64)

We omit the higher order terms for now in anticipation of differentiating at z̃ = 0 to use the implicit
function theorem. Dividing by z̃, we have the equations

0 = 6z̃2ε− 2T − 3T z̃(ε− 1)− T z̃2(ε+ 2)(2ε+ 1) + T 2 +
7

2
T 2z̃(ε− 1)

+
1

2
T 2z̃2

(
9ε2 − 10ε+ 9

)
− 1

2
T 3z̃(ε− 1)− 1

2
T 3z̃2

(
3ε2 − 4ε+ 3

)
+O(z̃3)

(65)

0 = −8z̃ε− 12z̃2(ε− 1)ε+ 4T (ε− 1) + 2T z̃
(
3ε2 − ε+ 3

)
+ 4T z̃2(ε− 1)

(
ε2 + 4ε+ 1

)
− 2T 2(ε− 1)− T 2z̃

(
7ε2 − 8ε+ 7

)
− T 2z̃2(ε− 1)

(
9ε2 − ε+ 9

)
+ T 3z̃

(
ε2 − ε+ 1

)
+ T 3z̃2(ε− 1)

(
3ε2 − ε+ 3

)
+O(z̃3)

(66)

18



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

We immediately see that z̃ = 0, T = 2 solves both equations for all ε. Let w(ε, z̃, T ) and v(ε, z̃, T )
be the right hand sides of Equations 65 and 66 respectively. We have

∂w

∂T

∣∣∣∣
(0,0,2)

= 2,
∂v

∂T

∣∣∣∣
(0,0,2)

= 4 (67)

In both cases the derivative is invertible. Therefore, fz̃,ε(z̃) and fT,ε(z̃) are continuously differen-
tiable in both z̃ and ε in some neighborhood of 0. In fact, since w and v are analytic in all three
arguments, fz̃,ε(z̃) and fT,ε(z̃) are analytic as well.

We can use the analyticity to solve for the low-order structure of the nullclines. One way to
compute the values of the derivatives is to define the nullclines as formal power series:

fz̃(z̃) = 2 +
∞∑
j=1

∞∑
k=1

aj,kε
j z̃k (68)

fT (z̃) = 2 +

∞∑
j=1

∞∑
k=1

bj,kε
j z̃k (69)

We can then solve for the first few terms of the series using Equations 65 and 66. From this proce-
dure, we have:

fz̃,ε(z̃) = 2 + 2 (1− ε) z̃ + 2
(
1− ε+ ε2

)
z̃2 +O(z̃3) (70)

fT,ε(z̃) = 2−
(
2− 3ε+ 2ε2

)
1− ε

z̃ +
1

2

(
4− ε+ 4ε2

)
z̃2 +O(z̃3) (71)

The difference f∆,ε(z̃) between the two is:

f∆(z̃) ≡ fz̃(z̃)− fT (z̃) = − ε

1− ε
z̃ − 3

2
εz̃2 +O(z̃3) (72)

As ε decreases, for the low order terms the distance between the nullclines also decreases.
We can show that the difference goes as ε. The one-step dynamical equations for ε = 0 are

z̃t+1 − z̃t = −z̃tTt(0) +
1

2
z̃2
t Tt(0) (73)

Tt+1(0)− Tt(0) = −2z̃tTt(0) + z2
t Tt(0) (74)

Therefore, ∆z̃ = 2∆T . This means that both the one step AND two-step nullclines are identical.
Since fz̃,0(z̃) = fT,0(z̃), and both are differentiable with respect to ε, we have:

fz̃,ε(z̃)− fT,ε(z̃) = εf∆,ε(z̃) (75)

for some function f∆,ε(z̃) which is analytic in ε and z̃ in a neighborhood around (0, 0).
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B.3. Two-step dynamics of y

It is useful to define dynamical equations in coordinates (z̃, y) where y is the difference between
T (0) and the z̃ nullcline:

y ≡ T (0)− fz̃,ε(z̃) (76)

To lowest order in z̃ and ε we have

y = T (0)− 2− 2 (1− ε) z̃ − 2
(
1− ε+ ε2

)
z̃2 +O(z̃3) (77)

We note that y = 0, at z̃ = 0 corresponds to T (0) = 2. y near but slightly less than 0 is equivalent
to edge-of-stability behavior. For positive z̃, y = 0 implies T (0) > 2.

We can write the dynamics of z̃ and y. The dynamics for z̃ are given by:

z̃t+2− z̃t = p0(z̃t, ε) +p1(z̃t, ε)(yt+ fz̃,ε(z̃t)) +p2(z̃t, ε)(yt+ fz̃,ε(z̃t))
2 +p3(z̃t, ε)(yt+ fz̃,ε(z̃t))

3

(78)
We know that the right hand side of this equation is analytic in z̃, ε, and (trivially) y as well. By
evaluating the multiple continuous derivatives of f , we can write:

z̃t+2 − z̃t = 2ytz̃t + y2
t z̃tf1,ε(z̃t, yt) + ytz̃

2
t f2,ε(z̃t) (79)

Here, f1,ε and f2,ε are analytic in z̃, ε, and y in some neighborhood around 0.
This means that we have the bounds

|f1,ε(z̃, y)| < F1, |f2,ε(z̃, y)| < F2 (80)

for (z̃, ε, y) ∈ [−z̃d, z̃d]× [0, εd]× [−yd, yd] for some non-negative constants F1 and F2. Note that
this bound is independent of ε.

Now we consider the dynamics of y. We have:

yt+2 − yt = Tt+2(0)− Tt(0)− fz̃,ε(z̃t+2) + fz̃,ε(z̃t) (81)

Since limz̃→0,y→0 z̃t+2 = 0, fz̃,ε(z̃t+2) is analytic in some neighborhood of (0, 0, 0). Therefore
yt+2 − yt is analytic as well. Substituting, we have

yt+2 − yt = q0(z̃t, ε) + q1(z̃t, ε)[y + fz̃,ε(z̃)] + q2(z̃t, ε)[y + fz̃,ε(z̃)]
2 + q3(z̃t, ε)[y + fz̃,ε(z̃)]

3

− fz̃,ε(z̃t + 2ytz̃t + y2
t z̃tf1,ε(z̃t, yt) + ytz̃

2
t f2,ε(z̃t)) + fz̃,ε(z̃t)

(82)

If we write fz̃,ε(z̃) = fT,ε(z̃) + εf∆,ε(z̃), then we can write:

yt+2 − yt = q0(z̃t, ε) + q1(z̃t, ε)[fT,ε(z̃)] + q2(z̃t, ε)[fT,ε(z̃)]
2 + q3(z̃t, ε)[fT,ε(z̃)]

3

2q2(z̃t, ε)[fT,ε(z̃)(y + εf∆,ε(z̃))] + 3q3(z̃t, ε)[(fT,ε(z̃))(y + εf∆,ε(z̃))
2 + (fT,ε(z̃))

2(y + εf∆,ε(z̃))]

q0(z̃t, ε) + q1(z̃t, ε)[y + εf∆,ε(z̃)] + q2(z̃t, ε)[y + εf∆,ε(z̃)]
2 + q3(z̃t, ε)[y + εf∆,ε(z̃)]

3

− fz̃,ε(z̃t + 2ytz̃t + y2
t z̃tf1,ε(z̃t, yt) + ytz̃

2
t f2,ε(z̃t)) + fz̃,ε(z̃t)

(83)
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By the definition of the nullclines, the first four terms vanish. Once again using the differentiability
of the nullclines, as well as f1,ε and f2,ε, we can rewrite the dynamics in terms of the expansion:

yt+2 − yt = −2(4− 3ε+ 4ε2)ytz̃
2
t − 4εz̃2

t + y2
t z̃

2
t g1,ε(z̃t, yt) + εz̃3

t g2,ε(z̃t) (84)

Here g1,ε and g2,ε are analytic near zero in z̃, y, and ε. We have the bounds

|g1,ε(z̃, y)| < G1, |g1,ε(z̃, y)| < G2 (85)

for (z̃, ε, y) ∈ [−z̃d, z̃d] × [0, εd] × [−yd, yd] for some non-negative constants G1 and G2. This
bound is also independent of ε.

We can summarize these bounds in the following lemma:

Lemma 3 Define y = T − fz̃(z̃). The two step dynamics of z̃ and y are given by

z̃t+2 − z̃t = 2ytz̃t + y2
t z̃tf1,ε(z̃t, yt) + ytz̃

2
t f2,ε(z̃t) (86)

yt+2 − yt = −2(4− 3ε+ 4ε2)ytz̃
2
t − 4εz̃2

t + y2
t z̃

2
t g1,ε(z̃t, yt) + εz̃3

t g2,ε(z̃t, yt) (87)

Where f1,ε, f2,ε, g1,ε, g2,ε are all analytic in z̃, y, and ε. Additionally, there exist positive z̃c, yc, and
εc such that

|f1,ε(z̃, y)| < F1, |f2,ε(z̃, y)| < F2, |g1,ε(z̃, y)| < G1, |g1,ε(z̃, y)| < G2 (88)

for all (z̃, ε, y) ∈ [−z̃d, z̃d] × [0, εd] × [−yd, yd], where F1, F2, G1, and G2 are all non-negative
constants.

We can use this Lemma to analyze the dynamics for small fixed ε, for small initializations of z̃,
y. The control of the higher order terms will allow for an analysis which focuses on the effects of
the lower order terms.

B.4. Proof of Theorem 5

Using Lemma 3, the dynamics in z̃ and y can be written as:

z̃t+2 − z̃t = 2ytz̃t + y2
t z̃tf1,ε(z̃t, yt) + ytz̃

2
t f2,ε(z̃t) (89)

yt+2 − yt = −2(4− 3ε+ 4ε2)ytz̃
2
t − 4εz̃2

t + y2
t z̃

2
t g1,ε(z̃t, yt) + εz̃3

t g2,ε(z̃t, yt) (90)

Let ε < εd. Then we can use the bounds from Lemma 3 to control the contributions of the higher
order terms to the dynamics:

Lemma 4 Given constants A > 0 and B > 0, there exist z̃c and yc such that for z̃ ∈ [0, 2z̃c],
y ∈ [−yc, yc], we have the bounds:

|y2z̃f1,ε(z̃, y) + yz̃2f2,ε(z̃)| ≤ A|2yz̃| (91)

|y2z̃2g1,ε(z̃, y)| ≤ B

8
|2(4− 3ε+ 4ε2)yz̃2| (92)

|εz̃3g2,ε(z̃, y)| ≤ B

4
|4εz̃2| (93)
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Proof We begin by the following decomposition:

|y2z̃f1,ε(z̃, y) + yz̃2f2,ε(z̃)| ≤ |y2z̃f1,ε(z̃, y)|+ |yz̃2f2,ε(z̃)| (94)

From Lemma 3, there exists a region [−z̃d, z̃d] × [0, εd] × [−yd, yd] where the magnitudes of f1,ε,
f2,ε, g1,ε, and g2,ε are bounded by F1, F2, G1, and G2 respectively.

|y2z̃f1(z̃, y) + yz̃2f2(z̃)| ≤ F1y
2z̃ + F2yz̃

2 (95)

|y2z̃2g1(z̃, y)| ≤ G1y
2z̃2 (96)

|z̃3g2(z̃, y)| ≤ G2z̃
3 (97)

Define z̃c and yc as

yc = min(A/F1, B/2G1, yd), z̃c = min(A/2F2, B/2G2, yc) (98)

The desired bounds follow immediately.

We consider an initialization (z̃0, y0) such that z̃0 ≤ z̃c and y0 ≤ yc, and y0 ≤ z̃2
0 . Armed with

Lemma 4, we can analyze the dynamics. There are two phases; in the first phase, z̃ is increasing,
and y is decreasing. The first phase ends when y becomes negative for the first time - reaching a
value of O(ε). In the second phase, z̃ is decreasing, and y stays negative and O(ε).

B.4.1. PHASE ONE

Let tsm be the time such that for t ≤ tsm, z̃t ≤ 2z̃0. (We will later show that z̃t ≤ 2z̃0 over the
whole dynamics.) For t ≤ tsm, using Lemma 4, the change in z̃ can be bounded from below by

z̃t+2 − z̃t ≥ 2ytz̃t(1−A) (99)

Therefore at initialization, z̃ is increasing. It remains increasing until yt becomes negative, or z̃t ≥
2z̃0. We want to show that yt becomes negative before z̃t ≥ 2z̃0.

For any t ≤ tsm, Lemma 4 gives the following upper bound on yt+2 − yt:

yt+2 − yt ≤ −(8−B)ytz̃
2
t − (4−B)εz̃2

t (100)

Let t− be the first time that yt becomes negative. Since z̃t is increasing for t ≤ t−, we have

yt+2 − yt ≤ −(8−B)ytz̃
2
0 − (4−B)εz̃2

0 (101)

This gives us the following bound on yt:

yt ≤ y0e
−(8−B)z̃20t (102)

valid for t ≤ t− and t ≤ tsm.
We will now show that t− < tsm. Suppose that tsm ≤ t−. Then at tsm + 2, z̃tsm+2 > 2z̃0 for

the first time. Summing the bound in Equation 99, we have:

z̃tsm+2 − z̃0 ≤
tsm∑
t=0

2ytz̃t(1 +A) ≤ 4z̃0(1 +A)

tsm∑
t=0

yt (103)

22



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

where the second bound comes from the definition of tsm. Using our bound on yt, we have:

z̃tsm+2 − z̃0 ≤ 4z̃0(1 +A)

tsm∑
s=0

y0e
−(8−B)z̃20s ≤ (1 +A)

2

y0

z̃0
(104)

Since y0 ≤ z̃2
0 , z̃tsm+2 ≤ 2z̃0. However, by assumption z̃tsm+2 > 2z̃0. We arrive at a contradiction;

tsm is not less than or equal to t−.
There are three possibilities: the first is that t− is well-defined, and t− < tsm. Another pos-

sibility is that t− is not well-defined - that is, yt never becomes negative. In this case the bounds
we derived are valid for all t. Therefore using Equation 102, there exists some time tε where
ytε < (4−B)εz̃2

0 . Then, using Equation 101 we have ytε+2 < 0. Therefore, we conclude that t− is
finite and less than tsm.

Since the well defined value t− < tsm,, when y first becomes negative, z̃t− ≤ 2z̃0. This means
that we can continue to apply the bounds from Lemma 4 at the start of the next phase. At t = t−−2,
applying Lemma 4 and z̃t− ≤ 2z̃0, we have

yt− − yt−−2 ≥ −4(8 +B)yt−−2z̃
2
0 − 4(4 +B)εz̃2

0 (105)

which gives us yt− ≥ −4(4 +B)εz̃2
0 . This concludes the first phase. To summarize we have

− 4(4 +B)εz̃2
0 < yt− ≤ 0, z̃t− ≤ 2z̃0 (106)

B.4.2. PHASE TWO

Now consider the second phase of the dynamics. We will show that y remains negative and O(ε),
and z̃ decreases to 0. While y is negative, z̃ decreases. While y ≥ −y0, from Lemma 4 we have

z̃t+2 − z̃t ≤ (1−A)2ytz̃t (107)

Therefore as long as −y0 ≤ y < 0, z̃t is decreasing. If this is true for all subsequent t, z̃0 will
converge to 0.

We will now show that y remains negative andO(ε), concluding the proof. Let y∗ = − ε
2−(3/2)ε+2ε2

.
We can re-write the dynamical equation for y as

yt+2 − yt = −2(4− 3ε+ 4ε2)z̃2
t (yt − y∗) + y2

t z̃
2
t g1(z̃t, yt) + z̃3

t g2(z̃t, yt) (108)

Applying Lemma 4 to the higher order terms, we have:

yt+2 − yt ≤ −2(4− 3ε+ 4ε2)z̃2
t (yt − y∗) +B(|yt|+ ε)z̃2

t (109)

yt+2 − yt ≥ −2(4− 3ε+ 4ε2)z̃2
t (yt − y∗)−B(|yt|+ ε)z̃2

t (110)

These inequalities are valid as long as |yt| < yc.
At t−, y∗ < yt < 0. When y∗ < yt < 0, then |yt| ≤ |y∗|. Note that ε < 2|y∗|. From Equation

109, we have
yt+2 − yt ≤ −2(4− 3ε+ 4ε2)z̃2

t (yt − y∗) +B(−yt + ε)z̃2
t (111)

From this inequality we can conclude that

yt+2 ≤ (1− 2(4− 3ε+ 4ε2)z̃2
t −B)yt + z̃2

t [2(4− 3ε+ 4ε2)y∗ +Bε] (112)
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If B < 1, then both terms are negative. We can conclude that if y∗ < yt < 0, yt+2 < 0. In fact,
from the last term we can conclude that yt+2 < −4εz̃2

t .
Now we must show that when y∗ < yt < 0, yt+2 does not become too negative (namely, smaller

than −yc). Using Equation 110, we have:

yt+2 > y∗(1 + 3Bz̃2
0) if yt > y∗ (113)

This means that if yt starts larger than y∗, it will be at most 3Bz̃2
0y
∗ below y∗ at the next step. Since

B < 1, yt+2 > −yc if y∗ < yt < 0.
Finally, we will show that if y∗(1 + 3B/(8−B)) < yt < y∗, y∗(1 + 3B/(8−B)) < yt+2 < 0.

Since yt−+2 fits this condition, we can conclude that yt is negative for all t > t−, with magnitude
bounded from below by y∗(1 + 3B/(8−B)), and complete the proof.

We will first show that y∗(1 + 3B/(8 − B)) < yt implies that y∗(1 + 3B/(8 − B)) < yt+2.
Let yt = (1 + δt)y

∗, for δt < 3B/(8−B). We will show that δt+2 < 3B/(8−B). Using Equation
110, we have:

yt+2 ≥ (1 + δt)y
∗ − 8z̃2

t δty
∗ −Bz̃2

t (ε− (1 + δt)y
∗) (114)

Substituting yt+2 = (1 + δt+2)y∗, and dividing both sides by y∗ we have

δt+2 − δt ≤ −(8−B)z̃2
t δt + 3Bz̃2

t (115)

If δt < 3B/(8−B), then we have δt+2 < 3B/(8−B) as desired.
Finally, we will show that 0 < δt < 3B/(8−B) implies that δt+2 > −1 - that is, [1 + 3B/(8−

B)]y∗ < yt < y∗ implies [1 + 3B/(8−B)]y∗ < yt+2 < 0. Equation 109 implies

yt+2 ≤ (1 + δt)y
∗ − 8z̃2

t δty
∗ +Bz̃2

t (ε− (1 + δt)y
∗) (116)

which gives us
δt+2 − δt ≥ −(8−B)z̃2

t δt − 3Bz̃2
t (117)

If δt > 0 implies
δt+2 > −3Bz̃2

t (118)

If 3Bz̃2
0 < 1, then δt+2 > −1. This means that yt+2 < 0 if [1 + 3B/(8−B)]y∗ < yt < y∗.

Finally, we make some choices of B and z̃0 to guarantee convergence. Choose z̃2
0 < 3/7, and

choose B < 1
2 . Then in summary, what we have shown for phase two is:

• At the start of the phase (time t−), y∗ < yt− < 0.

• If y∗ < yt < 0, t > t−, y∗(1 + 3Bz̃2
0) < yt+2 < −4εz̃2

t .

• If [1 + 3B/(8−B)]y∗ < yt < y∗, t > t−, [1 + 3B/(8−B)]y∗ < yt+2 < 0.

Through our choices of z̃0 and B, we know that [1 + 3B/(8−B)]y∗ < y∗(1 + 3Bz̃2
0). Therefore,

the entire trajectory for t > t− is accounted for by these regions, and [1 + 3B/(8−B)]y∗ < yt < 0
for all t > t−. Additionally, we know that at least once every 2 steps, yt < −4εz̃2

t . This means that
the dynamics of z̃t can be bounded from above by

z̃t+2 − z̃t ≤ −2ε2z̃4
t (119)
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From this we can conclude that z̃t converges to 0.
Therefore, for any positive initialization with z̃0 ≤ z̃c, y0 ≤ yc, and y0 ≤ z̃2

0 , we have:

lim
t→∞

z̃t → 0, lim
t→∞

y = −yf (120)

where yf = O(ε).
Now we can prove the statement of Theorem 1. Given a model with ε ≤ εc, there is a continuous

mapping between θ − η space and z̃ − y space. Since there is some neighborhood in z̃ − y space
that displays edge-of-stability behavior (Tt(0) converging to within O(ε) of 2), the inverse image of
that neighborhood is a neighborhood in θ − η space that displays edge-of-stability behavior. This
concludes the proof.

B.5. Low order dynamics

In order to predict the final value of y, and understand the convergence to the fixed point, We can
study the low order dynamics in z̃ and y. The low order dynamical equations are:

z̃t+2 − z̃t = 2ytz̃t (121)

yt+2 − yt = −2(4− 3ε+ 4ε2)ytz̃
2
t − 4εz̃2

t (122)

For these reduced dynamics, we can show the following:

Theorem 5 For the dynamics defined by Equations 121 and 122, for ε � 1, for positive inititial-
izations z̃0 � 1, y0 � 1 with the additional constraints −ε log(ε) � 16z̃2

0 and y0 < 2z̃2
0 , we

have
lim
t→∞

z̃t = 0, lim
t→∞

yt = −ε/2 +O(ε2) (123)

Proof The proof distinguishes two phases in the time evolution:

• Phase 1: z̃ starts positive and increases, y starts positive and decreases. At the end of the
phase we want z̃t ≤ 2z̃0 and y to be negative but bounded by −16z̃2

0ε.

• Phase 2: z̃ decreases slowly, and y settles to the fixed point (relatively) quickly, up to error
O(ε2).

Let ε � 1. Consider an initialization (z̃0, y0) where both variables are positive, such that
z̃0 � 1, ε log(ε) � z̃2

0 , and y0 � z̃2
0 . From Equations 121 and 122, we see that the dynamics of y

will depend on the balance of the two terms.
Initially z̃ increases and y decreases. We analyze the dynamics of y assuming that z̃ is fixed,

and then compute the corrections.
Phase 1. At initialization, the first term in the dynamics dominates, since by assumption εz̃2

t �
ytz̃

2
t �. Since z̃2

0 � 1, y initially decreases exponentially with decay rate bounded from above by
8z̃2

0 . Therefore within log(−ε/y0)/8z̃2
0 steps, y < ε.

At this point, the rate of change of y is at least −4εz̃2
0 . Therefore, in no more than 1/4z̃2

0

additional steps, y becomes negative. Let t− be the first time that y becomes negative. We note that
yt− ≥ −4εz̃2

0 under this analysis - the first term in Equation 122 is less than yt in magnitude, so the
smallest value that yt+2 can take if yt is positive is −4εz̃2

0 .

25



SECOND-ORDER REGRESSION MODELS EXHIBIT PROGRESSIVE SHARPENING TO THE EDGE OF STABILITY

We can now understand the corrections due to the change in z̃. We note that e−8z̃20t is an upper
bound for y - since z̃ is increasing, and the −4εz̃2

t decreases y faster than exponential decay from
the first term. Since z̃ is increasing, yt ≥ e−8z̃20t as long as y remains positive (t < t−). Let tsm be a
time such that z̃tsm < 2z̃0. We can bound the change in z̃t for t < tsm. We know that yt ≥ y0e

−8z̃20t.
The change in z̃ can be bounded by

z̃tsm − z̃0 ≤
tsm∑
t=0

2ztyt ≤ 4z̃0

tsm∑
t=0

yt ≤ 4z̃0y0

tsm∑
t=0

e−8z̃20t ≤ 1

2
· y0

z̃0
. (124)

If y0 < 2z̃2
0 , then the bound holds independent of the value of tsm, as long as the bound on y is

correct. We know that the bound on y is correct until time t−; therefore, tsm ≥ t−.
Phase 2. This proves that there exists a time t−, such that z̃t− ≤ 2z̃, and −16z̃2

0ε ≤ yt− ≤ 0.
Now that y is negative, it will stay negative, and z̃ will decrease until it reaches 0. In order to
understand the dynamics, we will use a change of coordinates. Consider solving Equation 122 for
yt+2 − yt = 0 for z̃t 6= 0. We have

y∗ = − ε

2− 3/2ε+ 2ε2
(125)

Consider now the coordinate δt defined by the equation

yt = −(1 + δt)
ε

2− 3/2ε+ 2ε2
(126)

The dynamics of δt are given by

δt+2 = (1− 2(4− 3ε+ 4ε2)z̃2
t )δt (127)

Since z̃t � 1, δt is strictly decreasing in magnitude. We can bound δt from above by

|δt| ≤ exp

−8
t∑

s=t−

z̃2
s

 |δt− | (128)

Since δ starts negative, and is decreasing in magnitude, we know that yt > − ε
2−3/2ε+2ε2

. This
means that we can bound z̃t by

z̃t ≥ 2e−εtz̃0 (129)

Substitution gives us the following bound on δt:

|δt| ≤ exp

−8

t∑
s=t−

4e−2εsz̃2
0

 |δt− | (130)

Using the integral approximation for the sum, the bound becomes

|δt| ≤ exp

(
−32z̃2

0

∫ t

0
e−2εsds

)
δt− = exp

(
−16z̃2

0/ε(1− e−2εt)
)
|δt− | (131)

From our previous analysis, we know that −1 ≤ δt− ≤ 0. In the limit of large t we have

lim
t→∞
|δt| ≤ exp

(
−16z̃2

0/ε
)
|δt− | (132)
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If we have the condition
16z̃2

0/ε ≥ − log(ε) (133)

then limt→∞ |δt| ≤ ε2.
If we want limt→∞ yt = −ε/2 +O(ε2), then we need the condition

16z̃2
0 ≥ −ε log(ε) (134)

or equivalently −ε log(ε) < 16z̃2
0 . Under these conditions, limt→∞ z̃t = 0 and limt→∞ yt =

−ε/2 +O(ε2).

This result can be confirmed numerically by running the dynamical equations from a variety
of initializations, computing the median eigenvalue (restricted to the range [1.9, 2.0]), and plotting
versus ε (Figure 9).We note that since the dynamics is slow, the ODE given by

˙̃z = 2yz̃ (135)

ẏ = −2(4− 3ε+ 4ε2)yz̃2 − 4εz̃2 (136)

also obtains the same limit (Figure 9). The ODE suggests that the concentration relies on both the
equal-orders in z̃ of the y0 and y1 terms, as well as a separation of timescales - z̃ converges to 0 at
a rate of ε, while y converges to the fixed point at a rate z̃2

t . In both cases, the deviation from −ε/2
scales as O(ε2) (Figure 9, right).
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2

ODE
Discrete dynamics
0.83ε2

Figure 9: Final values of y, normalized deviation from critical value T (0) = 2, for discrete dynam-
ics and ODE approximation. Deviation is well approximated by ε/2 over a large range
(left). Deviations from ε/2 are O(ε2) (right).

B.6. Parameter space vs. z̃ − T space

Most of our analysis has been focused in the normalized z̃−T coordinate space. In this section, we
confirm that the more usual setup in parameter space is consistent with the normalized coordinate
space. In particular, EOS behavior is often described by fixing an initialization, and training with
different learning rates - as in Figure 1.
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We can plot the dynamics of T (0) for the trajectories from Figure 1. We see that for small
learning rates there is convergence to T (0) < 2, large learning rates there’s divergence, and for
intermediate learning rates there is convergence to 2− ε/2 (Figure 10).

This confirms that the theorem is useful to describe the more traditional method of discovering
and exploring EOS behavior.
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η= 1.90

η= 1.60

η= 1.30

η= 1.00

η= 0.70

2− ε/2

Figure 10: Dynamics of T for trajectories from Figure 1. For small learning rate η, trajectories
converge to T < 2, and for large learning rates trajectories diverge. For intermediate
trajectories, we have EOS behavior, where final T is predicted by Theorem 1.

Appendix C. Quadratic regression model dynamics

We use Einstein summation notation in this section - repeated indices on the right-hand-side of
equations are considered to be summed over, unless they show up on the left-hand-side.

C.1. Proof of Theorem 2

Let z, J, and Q be initialized with i.i.d. random elements with 0 mean and variance σ2
z , σ2

J , and
1 respectively. Furthermore, Let the distributions be invariant to rotations in both data space and
parameter space, and have finite 4th moment.

In order to understand the development of the curvature at early times, we consider coordinates
which convert J into its singular value form. In these coordinates, we can write:

Jαi =

{
0 if α 6= i

σα if α = i
(137)

The singular values σα are the square roots of the singular values of the NTK matrix. We assume
that they are ordered from largest (σ1) to smallest in magnitude. By assumption, under this rotation
the statistics of z and Q are left unchanged.
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The time derivatives at t = 0 can be computed directly in the singular value coordinates. The
first derivative is given by

d

dt
σ2
α = 2σασ̇α (138)

Using the diagonal coordinate system, we have

E

[
d

dt
σ2
α

]
= E[QαβjJβjzβ] = 0 (139)

However, the average second derivative is positive. Calculating, we have:

d2

dt2
σ2
α = 2(σ̇2

α + σασ̈α) (140)

We can compute the average at initialization. We have:

E[σ̇2
α] = E[QαβjJβjzβQαδkJδkzδ] = E[δβδδjkJβjJδkzβzδ] (141)

E[σ̇2
α] = E[QαβjJβjzβQαδkJδkzδ] =

∑
j

E[J2
βjz

2
β] = DPσ2

Jσ
2
z (142)

To compute the second term, we compute J̈αi:

J̈αi = −Qαij(Jβj żβ + J̇βjzβ) (143)

Expanding, we have:
J̈αi = Qαij(JβjJβkJδkzδ + QβjkJδkzδzβ) (144)

In the diagonal coordinates Jαα = σα. This gives us:

E[σασ̈α] = E[σαQααjQβjkJδkzδzβ] (145)

Averaging over the Q, we get:

E[σασ̈α] = PE[σαδαβδαkJδkzδzβ] = E[σαzαzδJδα] (146)

Which evaluates to:
E[σασ̈α] = σ2

zPE[σ2
α] (147)

In the limit of largeD and P , for fixed ratioD/P , the statistics of the Marchenko-Pastur distribution
allow us to compute the derivative of the largest eigenmode as

E[σ0σ̈0] = σ2
zσ

2
JP

2D(1 +
√
D/P )2 (148)

Taken together, this gives us

E

[
d2λmax
dt2

]
= σ2

zσ
2
JDP (P (1 +

√
D/P )2 + 1) (149)

We confirm the prediction numerically in Figure 11.
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Figure 11: Average λ̈max(0) versus σz , various D and P (100 seeds).

That is, the second derivative of the maximum curvature is positive on average. If we normalize
with respect to the eigenvalue scale, in the limit of large D and P we have:

E

[
d2λmax
dt2

]
/E[λmax] = σ2

z (150)

Therefore, increasing σz increases the relative curvature of the λmax trajectory. This gives us the
proof of Theorem 2.

This result suggests that as σz increases, so does the degree of progressive sharpening. This
can be confirmed by looking at GF trajectories (Figure 12). The trajectories with small σz don’t
change their curvature much, and the loss decays exponentially at some rate. However, when σz
is larger, the curvature increases initially, and then stabilizes to a higher value, allowing for faster
convergence to the minimum of the loss.

C.2. Timescales for gradient descent

Consider a random initialization of z, J, and Q, where the terms are i.i.d. with zero mean variances
σ2
z , σ2

J , and 1 respectively, and finite fourth moments. Furthermore, suppose that z, J, and Q are
rotationally invariant in both input and output space. Under these conditions, we hope to compute

r2
NL ≡

E[||12η
2Qαij(Jβi)0(zβ)0(Jδj)0(zδ)0||22]

E[||η(Jαi)0(Jiβ)0(zβ)0||22]
=

1

4
η2σ2

zD
2 (151)
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Figure 12: Gradient flow trajectories of loss and max NTK eigenvalues for quadratic regression
models for varying σz . As σz increases, λmax changes more quickly, and is generally
increasing. Models with higher σz converge faster in GF dynamics.

at initialization, in the limit of large D and P .
The denominator is given by:

E[JαiJβi(zβ)JαjJδj(zδ)] = σ2
zE[JαiJβiJαjJδjδβδ] = σ2

zE[JαiJβiJαjJβj ] (152)

Evaluation gives us:

E[JαiJβi(zβ)JαjJδj(zδ)] = σ2
z(σ

4
J(P (P − 1)D) + C4DP ) (153)

where C4 is the 4th moment of Jαi. To lowest order in D and P

E[JαiJβi(zβ)JαjJδj(zδ)] = σ2
zσ

4
JDP

2 +O(DP ) (154)

Evaluating the numerator, we have:

E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = E[JβizβJδjzδJγmzγJνnzν ](δimδjn + (M4 − 1)δijmn)
(155)

where M4 is the 4th moment of Qαij . This gives us:

1

D
E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = E[JβizβJδjzδJγizγJνjzν ]+

(M4 − 1)E[JβizβJδizδJγizγJνizν ]
(156)

Next, we perform the z averages. We have

1

D
E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = σ4

zE[JβiJδjJγiJνj ](δβδδγν + δβγδδν + δβνδδγ)

+ (C4 − σ4)E[JβiJδjJγiJνj ]δβδγν

+ (M4 − 1)σ4
zE[JβiJδiJγiJνi](δβδδγν + δβγδδν + δβνδδγ)

+ (M4 − 1)(C4 − σ4)E[JβiJδiJγiJνi]δβδγν
(157)
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where C4 is the 4th moment of z. Simplification gives us:

1

D
E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = σ4

z(E[JβiJβjJδiJδj ] + E[JβiJδjJβiJδj ] + E[JβiJδjJδiJβj ])

+ (C4 − σ4
z)E[JβiJβjJβiJβj ]

+ (M4 − 1)σ4
z(E[JβiJβiJγiJγi] + E[JβiJδiJβiJδi] + E[JβiJδiJδiJβi])

+ (M4 − 1)(C4 − σ4)E[JβiJβiJβiJβi]

(158)

For large D and P , the final three terms are asymptotically smaller than the first term. Evaluating
the first term, to leading order we have:

1

D
E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = σ4

zσ
4
J(2DP 2 + 2D2P +D2P 2) +O(D2P +DP 2)

(159)
E[QαijJβizβJδjzδQαmnJγmzγJνnzν ] = σ4

zσ
4
JD

3P 2 +O(D3P +D2P 2) (160)

This gives us:

r2
NL =

1

4

σ4
zσ

4
JD

3P 2

σ2
zσ

4
JDP

2
=

1

4
σ2
zD

2 (161)

to leading order, in the limit of large D and P .

C.3. Dependence on D and P

We can see empirically that the sharpening is more pronounced in the overparameterized regime
where D > P . Using the trajectories from Figure 4, we can make a scatter plot of the normalized
maximum NTK eigenvalues ηλmax at both initialization and the final point of the dynamics (Figure
C.3). In all cases, a variety of initializations (x-axis) lead to final values which concentrate around
2 (y-axis).

We can see that the concentration is tightest for the overparameterized regime where P > D
(right plot). We hypothesize that for large D and P , the EOS behavior is stronger and more likely
to happen when P > D. We leave futher exploration of this hypothesis for future work.

Appendix D. Analysis of real models

D.1. Dynamics of y in CIFAR10 model

The dynamics of y in the CIFAR10 model analyzed in Section 4 are more complicated than the z1

dynamics. We see from Figure 5 that there is a z1 and y-independent component of the two-step
change in y. We can approximate this change b by computing the average value of yt+2 − yt for
small z1 (taking z1 < 10−4 in this case). We can then subtract off b from yt+2 − yt, and plot the
remainder against z2

t (Figure 14 left). We see that yt+2 − yt − b is negatively correlated with z2
t ,

particularly for large zt. However, yt+2 − yt is clearly not simply function of z1.
The two-step model dynamics could be written as (ay + c)z̃2. If we plot (yt+2 − yt − b)/z2

1

versus yt, we again don’t have a single-valued function (Figure 14, right). Therefore, the functional
form of yt+2 − yt is not given by b+ ayz2

1 + cz2
1 .
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Figure 13: Scatter plots of initial vs. final normalized maximum eigenvalues ηλmax for quadratic
regression models. Trajectories are taken from the data used to generate Figure 4. For
large D and P , as the model becomes overparameterized (P > D), a subset of trajec-
tories show tighter EOS behavior where ηλmax concentrates close to 2 for a variety of
initializations.
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Figure 14: Gradient flow trajectories of loss and max NTK eigenvalues for quadratic regression
models for varying σz . As σz increases, λmax changes more quickly, and is generally
increasing. Models with higher σz converge faster in GF dynamics.

D.2. Quadratic expansion of 2-class CIFAR model

We trained a CIFAR model using the first two classes only with 5000 datapoints using the Neural
Tangents library [15] - which let us perform 2nd and 3rd order Taylor expansions of the model at
arbitrary parameters. The models were 2-hidden layer fully-connected networks, with hidden width
256 and Erf non-linearities. Models were initialized with the NTK parameterization, with weight
variance 1 and bias variance 0. The targets were scalar valued - +1 for the first class, −1 for the
second class. A learning rate of 0.003204 was used in all experiments. All plots were made using
float-64 precision.

Taking a quadratic expansion at initialization, we see that the loss tracks the full model for the
first 1000 steps in this setting (Figure 15, left), but misses the edge-of-stability behavior. We use
Neural Tangents to efficiently compute the NTK to get the top eigenvalue λ1 (and consequently, y).
We can also compute z1 by computing the associated eigenvector v1 and projecting residuals z. If
the quadratic expansion is taken closer to the edge of stability, the dynamics of z1 well approximates
the true z1 dynamics, up to a shift associated with exponential growth of z1 occurring at different
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times (Figure 15, middle). We see that the shape of the first peak in |z1| is the same for the full
model and the quadratic model, but the subsequent oscillations are faster and more quickly damped
in the full model. This suggests that the initial EOS behavior may be captured by the quadratic
model, but the detailed dynamics require an understanding of higher order terms. For example, the
3rd order Taylor expansion improves the prediction of the magnitude and period of the oscillations,
but still misses key quantitative features (Figure 15, right).
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Figure 15: Quadratic expansion of FCN model trained on two-class CIFAR. Expanding at initial-
ization gives good approximation to full model for 1000 steps, after which EOS behavior
occurs in full model but not approximate one (left). When z1 is small, quadratic model
tracks full model; however, initial exponential increase may happen earlier in approxi-
mate model (middle). Magnitude of z1 has larger oscillations in full model compared to
approximate model. Third-order Taylor expansion better captures magnitude and period
of oscillations, but still misses quantitative features (right).
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