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Abstract001

The rapid evolution of software libraries poses002
a considerable hurdle for code generation, ne-003
cessitating continuous adaptation to frequent004
version updates while preserving backward005
compatibility. While existing code evolution006
benchmarks provide valuable insights, they007
typically lack execution-based evaluation for008
generating code compliant with specific li-009
brary versions. To address this, we introduce010
GitChameleon 2.0, a novel, meticulously cu-011
rated dataset comprising 328 Python code com-012
pletion problems, each conditioned on spe-013
cific library versions and accompanied by ex-014
ecutable unit tests. GitChameleon 2.0 rig-015
orously evaluates the capacity of contempo-016
rary large language models (LLMs), LLM-017
powered agents, code assistants, and RAG sys-018
tems to perform version-conditioned code gen-019
eration that demonstrates functional accuracy020
through execution. Our extensive evaluations021
indicate that state-of-the-art systems encounter022
significant challenges with this task; enterprise023
models achieving baseline success rates in the024
48-51% range, underscoring the intricacy of025
the problem. By offering an execution-based026
benchmark emphasizing the dynamic nature027
of code libraries, GitChameleon 2.0 enables028
a clearer understanding of this challenge and029
helps guide the development of more adaptable030
and dependable AI code generation methods.031

1 Introduction032

Large language models (LLMs) are increasingly033

integral to software development, being adopted034

for tasks like code generation and review (Council,035

2024; Lambiase et al., 2025).036

Despite LLM advancements like larger context037

windows (Su et al., 2023), faster inference (Dao038

et al., 2022), and high performance on general039

coding benchmarks (Hendrycks et al., 2021; Chen040

et al., 2021), a critical capability remains under-041

evaluated: generating code that is compliant with042

Problem Statement
Instruction: Write a custom_violinplot function that 
visualizes x and y from a Pandas DataFrame; scales the 
bandwidth to 1.5. Use the library Seaborn version 0.13.0. 

import seaborn as sns
from matplotlib.axes import axes

def custom_violinpolot(data: pd.DataFrame) 
-> Axes:

    return

Attempted Solution
Model: gpt-4o-mini

Solution: 
sns.violinplot(x='x', y='y', data=data, 
bw=1.5)

Validation Result: 
AssertionError: bw parameter should not be 
used. Use bw_method and bw_adjust instead.

Figure 1: In this GitChameleon 2.0 problem, the
gpt-4o-mini model produced an incorrect solution due
for seaborn.violinplot by using the deprecated bw
parameter, instead of the appropriate bw_method and
bw_adjust required by the specified library version.

a specific library version. This task of version- 043

switching, which is essential for robust develop- 044

ment in environments with fixed or legacy de- 045

pendencies, is not well-verified in contemporary 046

LLMs. 047

Existing benchmarks, while valuable, often fo- 048

cus on migrating codebases to newer versions 049

(i.e., code evolution) or use non-executable eval- 050

uation methods. They do not fully address the 051

challenge of generating new, functionally cor- 052

rect code for a static version constraint. For in- 053

stance, PyMigBench (Islam et al., 2023) provides 054

comprehensive datasets of real-world, inter-library 055

migrations, rather than focusing on executable, 056

intra-library tasks conditioned on specific versions. 057

CodeUpdateArena (Liu et al., 2025) valuably as- 058

sesses LLM knowledge editing using synthetically 059

generated API updates for functions in popular 060
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Figure 2: An illustration of two evaluation paradigms
for code generation models. Code Evolution (right) as-
sesses model capabilities on out-of-distribution (OOD)
data, using library versions or new libraries not encoun-
tered during training. In contrast, Version-Conditioned
Generation (VCG) (left) focuses on the practical ability
to generate code for specific, in-distribution (ID) library
versions that the model has seen before.

libraries, a different approach from using docu-061

mented historical breaking changes. Other relevant062

studies, such as Wang et al. (2024b), investigate063

the propensity of LLMs to generate code with dep-064

recated APIs, which does not entirely cover the065

broader capability of generating software that ad-066

heres to precise, user-specified library versions in-067

volving various types of API changes.068

Code Evolution vs. Version Conditioned Gener-069

ation (VCG). Existing code evaluation bench-070

marks often focus on assessing the code evolu-071

tion or migration capabilities of LLMs, where072

changes occur only in the forward direction and073

typically involve unseen library versions or entirely074

new libraries. This framing inherently makes the075

task out-of-distribution (OOD), as illustrated in076

Figure 2. In contrast, version-conditioned gen-077

eration (VCG)—the ability of LLMs to produce078

code aligned with specific, previously seen library079

versions—is critical for practical deployment. It080

enables models to function reliably in real-world081

production environments or constrained settings082

where the libraries in use may not be the latest sta-083

ble versions. To better evaluate this capability, a084

benchmark must pose problems that are strictly in-085

distribution (ID) with respect to the relevant library086

version(s) required to solve them.087

To bridge this gap, our work introduces088

GitChameleon 2.0, an executable benchmark de-089

signed to assess the capability of LLMs and AI090

agents in generating version-aware Python code.091

GitChameleon 2.0 features problems centered092

on documented breaking changes from popular 093

libraries, requiring models to produce solutions 094

for explicitly specified versions (an illustrative ex- 095

ample is shown in Figure 1). The development 096

of such a benchmark faces challenges in meticu- 097

lously curating version-specific breaking changes 098

from library changelogs and crafting corresponding 099

testable scenarios. Our comprehensive evaluation 100

of diverse LLM-based tools on GitChameleon 2.0 101

reveals critical limitations in existing systems’ abil- 102

ity to handle library versioning. 103

In summary, our contributions are highlighted as 104

follows: 105

• We introduce a novel code completion bench- 106

mark GitChameleon 2.0 consisting of 328 107

Python-based version-conditioned problems, 108

including visible tests for self-debugging 109

and documentation references for Retrieval- 110

Augmented Generation (RAG). 111

• We present a comprehensive empirical study 112

on GitChameleon 2.0, evaluating the capabil- 113

ities of a diverse range of contemporary AI 114

code generation systems, including AI agents, 115

IDE-integrated and CLI-based coding assis- 116

tants, and RAG-based LLM pipelines. 117

• We reveal critical limitations in the ability 118

of current AI systems to adhere to specific 119

versioning constraints and highlight factors 120

impacting their performance, thereby provid- 121

ing insights to steer the development of more 122

adaptable and dependable AI code generation 123

methods. 124

2 GitChameleon 2.0 Benchmark 125

We introduce GitChameleon 2.0, a manually au- 126

thored benchmark that comprises 328 Python- 127

based version-conditioned problems focused on 128

popular code libraries. To evaluate performance on 129

GitChameleon 2.0, each problem is accompanied 130

by a suite of assertion-based unit tests, enabling 131

a thorough execution-based assessment of poten- 132

tial solutions. The dataset was constructed through 133

careful manual effort, with over 350 hours invested 134

in identifying historical breaking changes, crafting 135

problem statements, and validating unit tests. In the 136

following sections, we detail the dataset structure, 137

dataset statistics, evaluation metrics, and sample 138

verification process. 139
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Figure 3: Can you predict GitChameleon 2.0 per-
formance from other code generation benchmarks?
Here we present the Spearman (ρ) and Pearson
(r) correlations between GitChameleon 2.0, SWE-
Bench (Jimenez et al., 2024), and LiveCodeBench (Jain
et al., 2024). GitChameleon exhibits a moderate corre-
lation with SWE-Bench, with ρ of 0.550 and r of 0.675;
and a weak correlation with LiveCodeBench, with ρ of
0.214 and r of 0.130.

2.1 Dataset Structure140

Each dataset sample includes a problem related to141

a breaking change in a Python library.142

To validate a candidate solution, we provide143

a suite of tests, consisting of a comprehensive144

suite of Hidden Tests to be used for model per-145

formance evaluation and ranking and a concise146

Visible Test to provide execution feedback for Self-147

Debugging (Chen et al., 2023) experiments.148

The detailed structure of dataset samples is pre-149

sented in Table 5. For a schematic of the work-150

flow for evaluating a method against a sample from151

GitChameleon 2.0, see Figure 5.152

2.2 Evaluation Metrics153

The benchmark metric is the success rate on hidden154

tests, which directly penalizes version mismatches155

that cause runtime errors during our execution-156

based validation. As a secondary metric, we use the157

API Hit Rate (Wang et al., 2024a): the percentage158

of generated solutions that correctly call all APIs159

specified in the ground-truth solution. Note that160

this hit rate can be lower than the success rate, as161

functionally correct alternative solutions may use162

different APIs.163

2.3 Statistics 164

GitChameleon 2.0 consists of 328 Python-based 165

version conditioned problems based on 26 libraries 166

spanning scientific computing, data science and 167

web development. The samples were collected 168

from version releases over a period from the year 169

2014 to 2023 and exclude legacy and yanked ver- 170

sion releases. 171
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2020
2021
2022
2023

(a) Number of samples by version release year
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Argument

Function
 Name

Semantics

New 
 Feature

Other
(b) Number of samples by change category

Figure 4: (a) Most versions in GitChameleon 2.0 were
released between 2021–2023, with a few in earlier years.
(b) The most common type of change between versions
was an argument or attribute change, while semantic or
functional changes were least common.

As demonstrated in Fig. 4(a), most of the sam- 172

ples in GitChameleon 2.0 are from versions of 173

libraries released in the years 2021-2023. We in- 174

tentionally use versions that fall within the training 175

window of most evaluated models. The challenge 176

is therefore not one of data contamination, but of 177

control and disambiguation: when a model has 178

been exposed to multiple library versions, can it 179

correctly generate code for the specific version re- 180

quired by the prompt. 181

Further details about the benchmark and its con- 182

struction process are presented in Appendix A. 183

3 Empirical Study 184

We evaluate GitChameleon 2.0 in a comprehen- 185

sive selection of settings, including Greedy De- 186

coding, Chain-of-Thought (Wei et al., 2023), Self- 187

Debugging (Chen et al., 2023), RAG (Lewis et al., 188

2020), Multi-Step Agents (Yao et al., 2023) and 189

enterprise Coding Assistant software products, to 190
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Figure 5: An illustration of the workflow for a single
example within GitChameleon 2.0. The inputs, com-
prising the Problem Statement, Starter Code, and De-
pendency Info, are processed by an LLM or an AI agent
to generate a Candidate Solution. This candidate solu-
tion then undergoes validation using the Hidden Tests to
determine success on the benchmark. Results from the
Visible Tests can be fed back into the solution method
for self-debugging.

assess their ability to generate version-specific exe-191

cutable code.192

This section first presents the experimental setup,193

then reports the experiment results in each setting,194

and finally shows a breakdown of the observed195

results along a few key dimensions.196

3.1 Experimental Setup197

In this section, we present the experimental setup198

used for each of our settings. To ensure version199

compliance, we use a dual control mechanism: the200

target version is explicitly included in the model’s201

prompt, and the validation environment is config-202

ured with that exact library version. All prompts203

are shown in Appendix I. For prompt optimization,204

we used the Anthropic Prompt Improver 1. Fur-205

ther automated prompt optimization efforts did not206

make a significant change, as described in Table 11.207

3.1.1 Greedy Decoding208

We configured the generation parameters with a209

sampling temperature of 0 and a top_p value of210

0.95. We had specified a structured output schema211

that specifies the fields Answer and Explanation,212

where both are of type string.213

3.1.2 Zero-Shot Chain-Of-Thought (CoT)214

We had used the same generation parameters as215

for Greedy Decoding and an output schema that216

specifies the fields Answer and Steps, where the217

former is a of type string and the latter is a list of218

string.219

1https://docs.anthropic.com/en/docs/build-wit
h-claude/prompt-engineering/prompt-improver

3.1.3 Self-Debugging 220

On examples that failed with Greedy Decoding, we 221

employed the method described in (Chen et al., 222

2023) to feed the visible test error trace along with 223

the model’s explanation of its output back to the 224

model. 225

3.1.4 Retrieval-Augmented Generation 226

We designed a RAG (Lewis et al., 2020) pipeline 227

where we first constructed a vectorized database 228

(VectorDB) by embedding each sample’s rel- 229

evant API documentation with the OpenAI 230

text-embedding-3 large model (OpenAI, 2024). 231

The corpus used for constructing the VectorDB in- 232

cluded 536 documents, with 140 samples having 233

1 associated document, 168 having 2 associated 234

documents and 20 having 3 documents. 235

Subsequently, we used DocPrompting (Zhou 236

et al., 2022) to query the VectorDB to generate 237

solutions. 238

3.1.5 Multi-Step Agent 239

We conducted experiments with a tool-calling 240

agent, as implemented by the smolagents (Roucher 241

et al., 2025) framework. This agent implementation 242

mostly follows the ReAct (Yao et al., 2023) method, 243

but, it alternates between acting and planning (Li, 244

2024) steps. 245

Following the Agentic RAG approach (Singh 246

et al., 2025), we had equipped the agent with a 247

grounding tool in order to assess its capability to 248

independently fetch relevant info for solving the 249

benchmark problems. To this end, we had experi- 250

mented with the following grounding tools: Duck- 251

DuckGo Search (DuckDuckGo, 2025), Perplex- 252

ity (Perplexity AI, 2024), and Gemini with Ground- 253

ing (Google, 2025). 254

Additionally, we examined agentic multi-step 255

self-debugging (Jin et al., 2024) by including or 256

omitting a code execution sandbox tool (Rabin 257

et al., 2025), which provides the needed depen- 258

dencies for each example. The sandbox takes a 259

Python program as input and outputs the standard 260

output from the program. 261

3.1.6 AI Coding Assistants 262

In addition to evaluating a generic agentic frame- 263

work endowed with basic tools, we also analyze 264

the performance of specialized AI coding assistant 265

software. 266

For this setting, we examine both Command- 267
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Line Interface (CLI), such as Claude Code2 cod-268

ing assistants and Integrated Development Environ-269

ment (IDE) coding assistants, such as Cline3.270

The input to the assistants is given as a Python271

file which consists of the required library, version272

and extra dependencies as in-line comments and273

subsequently the starter code. NOTE: All assistants274

had internet and terminal commands execution ac-275

cess.276

We had furthermore ablated this setting versus277

giving the full problem statement as input.278

3.2 Experiment Results279

This section presents the benchmark results in each280

setting, as described in the Experimental Setup281

section (3.1). Table 1 contains the results for282

Greedy Decoding, Self-Debug and Zero-Shot CoT.283

3.2.1 Greedy Decoding284

We observe that the largest Enterprise-grade mod-285

els, including Claude 3.7 Sonnet, Gemini 2.5286

Pro, GPT-4.1, GPT-4o, and o1, exhibit comparable287

hidden success rates, generally falling within the288

48–51% range. Among these o1 (51.2% hidden)289

achieves the highest hidden success rate.290

The open-weight Llama models are notably be-291

hind, even the recently released Llama 4 Maverick292

FP8 (40.8% hidden success rate).293

Model size clearly impacts performance: for294

instance, Gemini 2.5 Flash trails its Pro coun-295

terpart by nearly 12% on hidden tests (38.1%296

vs. 50.0%). Similarly, the mini and nano se-297

ries within the GPT family (e.g., GPT-4.1-mini,298

GPT-4.1-nano, GPT-4o-mini) consistently show299

lower performance than their larger full-size sib-300

lings, with differences on hidden tests ranging from301

approximately 4 to 15 points.302

3.2.2 Zero-Shot Chain-Of-Thought303

This approach does not uniformly improve LLM304

performance across all models. While some mod-305

els demonstrate significant gains in hidden suc-306

cess rates, a substantial number of enterprise-grade307

models and their smaller variants experience per-308

formance degradation.309

For instance, notable improvements in hidden310

success rates are observed in models such as Llama311

3.1 Instruct Turbo (from 30.2% to 36.6%, a312

2https://docs.anthropic.com/en/docs/claude-c
ode/overview

3https://cline.bot/

+6.4 point increase) and o3-mini (from 45.1% to 313

50.9%, a +5.8 point increase). 314

Conversely, several models exhibit a decrease 315

in performance with CoT. Prominent examples in- 316

clude Gemini 2.0 Flash (from 44.2% to 36.0%) 317

and even the top-performing o1 (from 51.2% to 318

41.2%). 319

3.2.3 LLM Self-Debugging 320

Hidden Success Rate: Across models, Self- 321

Debugging significantly improves the hidden suc- 322

cess rates. Observed gains range from approxi- 323

mately 10% to 20%. For instance, Llama 3.1’s 324

hidden success rate increases from 30% to 52.1%, 325

and GPT-4.1-mini shows an improvement from 326

44% to 68%. This demonstrates the strong capa- 327

bility of modern LLMs to diagnose failures and 328

generate corrected code. 329

Visible Success Rate: As expected, the im- 330

provement is even more pronounced on visible 331

tests, ranging from 13 to 37 points. For instance, 332

GPT-4.1’s success rate improves from 49% to 69%, 333

Claude 3.7 Sonnet’s success rate improves from 334

56% to 83% and Gemini 2.0 Flash improves 335

from 50% to 75%. 336
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Figure 6: Analysis of the Visible-Hidden Gap Be-
fore and After Self-Debugging. We analyze how self-
debugging affects the gap between the success rate on
visible and hidden tests. We can see that for all models,
the gap increases after self-debugging. This shows that
self-debugging on visible tests has a limited ability to
improve on the hidden tests.

Visible-Hidden Gap Analysis: In Figure 6, we 337

present the effect of self-debugging on the size of 338

the gap between the success rate on visible tests 339

and the success rate on hidden tests. 340

3.2.4 Multi-Step Agent 341

We report the performance of Multi-Step Agents 342

on GitChameleon 2.0 in Table 2. 343
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Model
Greedy Decoding Greedy with Self-Debug Zero-shot CoT

Success
Rate (%) API

Hit
Rate (%)

Success
Rate (%) API

Hit
Rate (%)

Success
Rate (%) API

Hit
Rate (%)Hidden Visible Hidden Visible Hidden

Open-Weights Models
Llama 3.1 Instruct Turbo 30.2±2.5 38.1±2.7 39.7±2.7 52.1±2.8 69.2±2.5 41.5±2.7 36.6±2.7 35.3±2.6

Llama 3.3 Instruct Turbo 70B 36.3±2.7 43.3±2.7 36.4±2.7 53.0±2.8 70.1±2.5 37.4±2.7 37.5±2.7 37.2±2.7

Llama 4 Maverick 400B 40.8±2.7 46.6±2.8 49.5±2.8 58.5±2.7 72.3±2.5 46.8±2.8 46.6±2.8 41.3±2.7

Qwen 2.5-VL Instruct 72B 48.2±2.8 55.5±2.7 43.8±2.7 64.6±2.6 77.4±2.3 45.3±2.7 45.1±2.7 43.0±2.7

Enterprise Models

Claude 3.7 Sonnet 48.8±2.8 55.8±2.7 46.0±2.8 65.9±2.6 75.9±2.4 47.6±2.8 45.1±2.7 43.4±2.7

Gemini 1.5 Pro 45.1±2.7 51.5±2.8 46.8±2.7 62.5±2.8 72.6±2.4 48.6±2.7 43.3±2.7 44.6±2.8

Gemini 2.0 Flash 44.2±2.7 50.6±2.8 43.8±2.7 70.4±2.7 79.0±2.4 49.4±2.7 36.0±2.6 41.8±2.7

Gemini 2.5 Pro 50.0±2.8 61.0±2.8 47.7±2.7 61.3±2.8 73.8±2.2 49.2±2.7 49.4±2.8 49.1±2.8

Gemini 2.5 Flash 38.1±2.6 41.8±2.7 45.4±2.7 65.9±2.8 73.2±2.4 45.8±2.7 30.8±2.5 49.8±2.8

GPT-4.1 48.5±2.8 49.1±2.8 46.8±2.7 63.4±2.8 76.8±2.1 48.3±2.7 47.9±2.8 44.5±2.7

GPT-4.1-mini 44.2±2.7 50.0±2.8 44.5±2.7 68.0±2.8 79.3±2.3 46.3±2.7 24.1±1.8 41.3±2.7

GPT-4.1-nano 33.8±2.6 35.1±2.6 43.1±2.7 67.7±2.7 74.4±2.6 45.8±2.7 11.9±1.8 32.1±2.5

GPT-4o 49.1±2.8 54.0±2.8 46.5±2.7 64.9±2.8 72.3±2.5 48.0±2.7 50.3±2.8 42.5±2.7

GPT-4o-mini 37.2±2.6 46.3±2.7 38.4±2.6 60.4±2.7 71.6±2.6 40.6±2.7 36.0±2.6 37.3±2.6

GPT-4.5 40.8±2.7 46.0±2.7 52.8±2.8 66.2±2.8 74.4±2.4 54.4±2.7 39.9±2.6 48.8±2.8

Grok 3 48.2±2.8 53.7±2.8 44.8±2.7 67.1±2.8 77.1±2.3 46.3±2.8 49.4±2.8 44.2±2.7

Mistral Medium 3 43.6±2.7 49.1±2.8 44.2±2.7 61.3±2.8 71.3±2.5 45.4±2.7 44.2±2.7 44.1±2.7

Table 1: Success rate on visible and hidden tests and API hit rate under the Greedy, Self-Debug, and Zero-shot
CoT settings, grouped by OSS vs. Enterprise models. Model ranking on the benchmark is determined by Hidden
Success Rate. Visible Success Rate figures are for context on Self-Debugging. The best result in each column is in
bold. For full model details and citations, please refer to Appendix J.

Model
Grounding
Method

Success
Rate (%)

API Hit
Rate (%)

No Sandbox Sandbox No Sandbox Sandbox

Claude
Sonnet
3.5

DuckDuckGo 41.7±2.7 55.3±2.7 42.2±2.7 48.9±2.8

Perplexity 44.1±2.7 51.4±2.8 41.8±2.7 46.0±2.8

Grounded Gemini 40.0±2.7 53.7±2.8 41.0±2.7 45.2±2.7

Gemini
1.5 Pro

DuckDuckGo 46.0±2.8 49.8±2.8 47.4±2.8 50.3±2.8

Perplexity 46.5±2.8 44.4±2.7 47.2±2.8 46.6±2.8

Grounded Gemini 44.1±2.7 49.2±2.8 49.7±2.8 51.2±2.8

GPT-4o
DuckDuckGo 23.9±2.4 33.2±2.6 44.2±2.7 48.1±2.8

Perplexity 33.5±2.6 41.5±2.7 43.2±2.7 44.7±2.7

Grounded Gemini 25.4±2.4 50.0±2.8 46.5±2.8 44.2±2.7

Table 2: Multi-Step Agent performance with different
models, grounding methods, and sandbox states. The
best result in each column is in bold.

A clear and significant trend is the substantial344

increase in success rates for all models and ground-345

ing methods when giving the agent a sandbox346

tool. Overall, Claude Sonnet 3.5 demonstrated347

the highest success rates with a sandbox, across348

all grounding methods, while Gemini 1.5 Pro349

demonstrated the best results without a sandbox.350

3.2.5 AI Coding Assistants351

Table 3 presents the success rates of various CLI352

and IDE assistants on the visible and hidden tests353

in GitChameleon 2.0.354

Name Model
Success Rate

(%)
API Hit Rate

(%)

No-prob Prob No-prob Prob

CLI Assistants

Claude Code Claude 3.7 Sonnet 32.0±2.6 48.8±2.8 44.2±2.7 45.5±2.7

Goose
GPT-4o 36.3±2.7 36.9±2.7 43.9±2.7 54.5±2.7

GPT-4.1 19.2±2.2 55.5±2.7 41.7±2.7 53.0±2.8

IDE Assistants

Cline

Claude 3.7 Sonnet 32.9±2.6 44.8±2.7 40.5±2.7 50.2±2.8

GPT-4.1 38.4±2.7 54.6±2.7 42.4±2.7 48.8±2.8

GPT-4.1-mini 27.1±2.5 42.1±2.7 32.9±2.6 52.4±2.8

GPT-4.1-nano 38.1±2.7 54.6±2.7 42.4±2.7 48.8±2.8

GPT-4o 41.5±2.7 – 42.7±2.7 –

Kilocode Claude 3.7 Sonnet 30.2±2.5 – 43.3±2.7 –

Roocode Claude 3.5 Sonnet 12.5±1.8 – 41.2±2.7 –

Table 3: Success and API-hit rates for CLI and IDE
coding assistants, under the setting where the problem
statement is given (Prob) and where it is not (No-prob),
in which case we evaluate a scenario akin to tab code-
completion. The results show that including the problem
statement improves success rate by double-digit margins
for 4 out of 5 cases evaluated.

When the problem statement is not given, Cline 355

with GPT-4.1 achieves the best result, with a suc- 356

cess rate of 38.4%. All assistants besides for Goose 357

on GPT-4o demonstrate significant gains, ranging 358

from 12 to 35 points, from including the problem 359

statement. 360
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3.2.6 Retrieval-Augmented Generation361

Model
Success

Rate (%)
API Hit

Rate (%)
Precision

(%)
Recall
(%) MRR

Open-Weights Models

Deepseek V3 48.9±2.8 48.5±2.8 41.6±2.2 50.4±2.8 0.62±0.03

Llama 4 Maverick4 45.1±2.7 50.5±2.8 41.2±2.2 49.8±2.8 0.61±0.03

Qwen3 41.8±2.7 39.6±2.7 36.3±2.0 46.9±2.8 0.56±0.03

Jamba 1.6 Large 41.8±2.7 47.1±2.8 41.9±2.2 50.7±2.8 0.62±0.03

Enterprise Models

Claude 3.7 Sonnet 56.1±2.7 53.0±2.8 41.9±2.2 50.7±2.8 0.62±0.03

Claude 4 Sonnet 59.4±2.8 55.8±2.8 41.9±2.2 50.7±2.8 0.62±0.03

Gemini 2.5 Pro 56.7±2.7 51.1±2.8 41.9±2.2 50.7±2.8 0.62±0.03

GPT-4.1 58.5±2.7 51.8±2.8 41.2±2.2 50.1±2.8 0.61±0.03

Grok3 54.3±2.7 55.2±2.8 41.6±2.2 50.4±2.8 0.62±0.03

Mistral Medium 3 52.4±2.7 51.2±2.8 41.6±2.2 50.4±2.8 0.62±0.03

Devstral Small 43.3±2.7 45.1±2.8 41.6±2.2 50.4±2.8 0.62±0.03

Nova Pro 44.2±2.7 42.4±2.7 40.7±2.2 49.6±2.8 0.60±0.03

Table 4: RAG performance for a subset of models when
retrieving k = 3 most relevant documents. The best
success rate and API hit rate results for each model
group are in bold. An extended version of the RAG
experiment results is presented in Appendix C.

Table 4 presents the performance of various mod-362

els with RAG. Many models exhibit a significant363

(up to 10%) boost in success rate with RAG com-364

pared to greedy decoding alone. Notably, GPT-4.1,365

the best performing model achieves a success rate366

of 58.5%, up from 48.5% with greedy decoding.367

These results demonstrate that the benchmark is368

still challenging even with access to the library369

documentation, with over 40% of the problems370

remaining unsolved in the best case.371

3.3 In-Depth Analysis of Findings372

This section provides a detailed analysis of the ex-373

perimental results, focusing on model performance374

across several key dimensions. These dimensions375

include the impact of different API change types,376

a comparison between success rate and API hit377

rate, and the effectiveness of self-debugging across378

various error types.379

Comparison of Success Rate and API Hit Rate380

API hit rate shows a moderate positive Pearson381

correlation with hidden-test success under Greedy382

Decoding with the Pearson correlation coefficient383

(r = 0.392, p = 0.097, N = 19), indicating384

that models which invoke the ground truth APIs385

more often tend to perform better on hidden tests386

in the Greedy setting, but falls just short of statis-387

tical significance at 5% level. Under Zero-Shot388

CoT, the correlation remains similar in magni-389

tude (r = 0.483) and is statistically significant390

4This version of the model is not FP8-quantized, unlike
the one presented in Table 1

(p = 0.036, N = 19). In the Self-Debug regime, 391

however, the association becomes both stronger 392

and highly significant (r = 0.615, p = 0.011, 393

N = 16), demonstrating that when models can 394

iteratively refine their outputs, invoking ground 395

truth APIs becomes an especially reliable predictor 396

of hidden-test performance. 397

Analysis of Performance by Type of API Change 398

Figure 7 illustrates the performance of mod- 399

els across various API change types within the 400

GitChameleon 2.0 benchmark, revealing notable 401

variations in success rates. Semantic changes were 402

the most tractable, with success rates ranging from 403

60–80% with Self-Debug and 55–65% without. 404

New-feature additions proved to be the most chal- 405

lenging, with success rates between 25–50% for 406

Greedy Decoding and 50–65% for Self-Debug. No- 407

tably, the Code Assistant Goose exhibited a sub- 408

stantial discrepancy in its performance on semantic 409

and function-name changes compared to argument 410

changes and new features. This suggests a height- 411

ened sensitivity to change category for Goose, a 412

characteristic not observed in the enterprise models 413

or the Claude-powered tool-calling agent. 414

Self-Debug Error Categorization Figure 8 415

shows that self-debugging consistently lowers the 416

rate of every class of traceback error, both in abso- 417

lute numbers and relative terms: 418

(a) Raw Counts: We observe that for 419

all error categories—from the most common 420

(AssertionError and TypeError) down to the 421

rarest (RuntimeError)—applying Self-Debugging 422

significantly lowers the total number of failures. 423

(b) Percentage Reduction: When nor- 424

malized by the Greedy Decoding baseline, 425

reductions span roughly 50% up to about 426

90%. The biggest relative improvements ap- 427

pear in the infrequent categories—such as 428

RuntimeError and SyntaxError—while the com- 429

mon AssertionError and TypeError still see de- 430

crease in the range of 60-70%. 431

4 Related Work 432

The continuous evolution of software libraries 433

presents significant challenges for AI-driven code 434

generation. This section reviews existing bench- 435

marks designed to evaluate model performance in 436

this context. Specialized frameworks developed to 437

address the challenge are presented in appendix D.2 438

The challenge of evaluating large language mod- 439

els (LLMs) in the context of evolving software 440
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libraries and their versions has been approached441

by several benchmarks. These benchmarks, while442

valuable, often differ in scope, methodology, or443

evaluation techniques compared to GitChameleon444

2.0.445

PyMigBench Focusing on Python library mi-446

gration, this benchmark uses 321 real-world in-447

stances, evaluating both individual code transfor-448

mations and the functional correctness of entire mi-449

grated segments via unit tests (Islam et al., 2023).450

PyMigBench revealed that LLMs often handle in-451

dividual changes well but struggle with achieving452

full functional correctness, especially for complex453

argument transformations.454

VersiCode (Wu et al., 2024) and the dataset by455

Wang et al. (Wang et al., 2024b) address library456

evolution but primarily depend on string matching457

for evaluation.458

CodeUpdateArena (Liu et al., 2025) investi-459

gates model adaptation to synthetically generated460

API updates for functions in popular libraries.461

GitChameleon 2.0 distinguishes itself by focus- 462

ing on the real-world scenario where developers 463

are often constrained to specific library versions 464

due to technical debt. Unlike CodeUpdateArena’s 465

synthetic changes, GitChameleon 2.0 evaluates 466

LLMs on their ability to generate code for actual, 467

documented historical breaking changes within li- 468

brary versions they were likely exposed to during 469

training. Furthermore, diverging from the string- 470

matching evaluations of VersiCode and Wang et 471

al. (Wang et al., 2024b), GitChameleon 2.0 is 472

based on executable tests. This provides a more 473

practical and rigorous assessment of functional ac- 474

curacy in version-specific code generation. For an 475

extended discussion of how GitChameleon 2.0 is 476

differentiated from existing work, please see Ap- 477

pendix D.2. 478

5 Conclusion 479

The rapid evolution of software libraries presents 480

a critical challenge for LLM-powered AI sys- 481

tems in generating functionally correct, version- 482

conditioned code. To address this, we intro- 483

duce GitChameleon 2.0, a novel Python-based 484

benchmark meticulously curated with version- 485

conditioned problems and executable tests. Our 486

extensive evaluation reveals that state-of-the-art 487

LLMs, agents and code assistants currently strug- 488

gle significantly with this task, achieving modest 489

success rates. 490

By shedding light on current limitations 491

and facilitating execution-based evaluation, 492

GitChameleon 2.0 aims to foster the development 493

of more robust and adaptable code generation 494

models for evolving software environments. 495
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Limitations496

While we aim to provide a comprehensive and497

holistic evaluation of LLMs on the task of version-498

conditioned generation, our benchmark is currently499

limited to Python and a small set of libraries. More-500

over, we focus solely on code generation from501

natural language instructions, and do not evalu-502

ate version-to-version translation—i.e., converting503

code from one library version to another—even504

when both versions are in-distribution relative to505

the model’s training. For instance, if a model has506

been trained on PyTorch versions 1.7, 1.8, and 1.9,507

it would be valuable to assess whether it performs508

better when given a solution in 1.8 and asked to509

upgrade to 1.9 or downgrade to 1.7. Finally, we510

do not include human evaluations, which could511

provide a baseline for estimating average human512

performance on this task.513
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A Benchmark Details867

This appendix provides additional details on the868

GitChameleon 2.0 benchmark. We provide details869

on the dataset construction process, the structure of870

the dataset samples, on the processes for validating871

the examples and constructing the hidden tests, and872

finally present additional statistics regarding the873

dataset.874

A.1 Dataset Construction Process875

The examples were created by the authors, which876

took roughly 350 human hours. To construct that877

dataset, we compiled a list of popular Python li-878

braries, focusing on those that had more than 1000879

stars on Github as well as detailed documentation880

of changes between versions. For each library,881

we reviewed the change logs to identify breaking882

changes: deprecated functions, argument changes,883

alterations in behavior, and newly introduced func-884

tions.885

For each identified change, we wrote a concise886

problem statement, starter code, expected solution887

and a suite of tests, consisting of a comprehen-888

sive suite of hidden tests to be used for model889

performance evaluation and ranking and a man-890

ually written concise visible test to be used for self-891

debugging experiments. We also added a ground-892

truth set of relevant documents for RAG experi-893

ments.894

NOTE: Low-level changes—such as backend895

optimizations that do not alter the surface-level896

API—are not considered valid changes for our897

benchmark. For example, if between Torch 1.7898

and Torch 1.8 the torch.nn.Softmax() func-899

tion received a CUDA-based numerical stability im-900

provement, this does not modify the API usage of901

Softmax() and is therefore not labeled as a change902

in our benchmark. Since most changes in mature903

libraries primarily impact backend functionality,904

collecting 328 valid samples required significant905

effort.906

A.2 Structure of Dataset Samples907

The main fields of each sample are given in Table 5.908

Additionally, each problem in GitChameleon 2.0909

is associated with metadata to assist in the analy-910

sis of the results, as described in Table 6. Each911

problem is classified with a type of API evolution912

change among the categories defined in Table 7.913

Library The software library under test.
Library Version The exact version of that library.
Task Description A problem centered on a particular library

change.
Initial Code The Python snippet provided as a starting

point.
Extra Dependencies Any additional packages required to solve the

task.
Hidden Tests Comprehensive unit tests designed to maxi-

mize coverage. The success rate on these is
the benchmark metric.

Visible Test A concise test that validates the specific tar-
get behavior, intended to be used for Self-
Debugging experiments.

Reference Solution A correct, ground-truth implementation.
Reference Documents A set of version-specific reference documents,

to be used for RAG experiments.

Table 5: Problem column definitions for the
GitChameleon 2.0 dataset.

Change Category The type of library-evolution changes, as de-
fined in table 7.

Target Entity The specific function or class under test.
Solution Style “Functional” if only a function body is ex-

pected, or “Full” for a general code comple-
tion.

Web Framework Task “Yes” if the problem exercises a web-
development framework, otherwise “No.”

Table 6: Metadata column definitions.

A.3 Dataset Validation 914

To ensure the validity of the dataset examples, we 915

followed the following process: First, we created 916

a clean Docker container for each problem and 917

installed the required dependencies into it. Then, 918

we executed the visible and hidden validation tests 919

to ensure that all are successful. 920

A.4 Hidden Test Construction 921

This section presents how we generated the hidden 922

tests for each dataset example. These tests were 923

generated by instructing the Zencoder AI Coding 924

Agent 5 to create test files for each example, in- 925

corporating the appropriate dependency versions. 926

The Zencoder agent, built on the GPT-4.1 base 927

model, operated with internet search enabled and 928

was granted execution access, allowing it to self- 929

correct outputs that initially failed during runtime. 930

Further errors encountered during verification were 931

resolved by supplying error traces back to Zen- 932

coder or through an isolated instance of GPT-4o, 933

supplemented with manual inspection and inter- 934

vention where necessary. This process enabled us 935

to construct a robust and comprehensive test suite, 936

achieving a coverage of 96.5%. The decision to use 937

ZENCODER was motivated by limitations observed 938

5https://zencoder.ai
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Change Category Description
Argument or Attribute
change

The API call to a function, method, or class
has a change in arguments (e.g. name, order,
new, deprecated argument) between versions.

Function Name change The name of the API call has changed be-
tween versions (e.g. pandas.append to
pandas.concat).

Semantics or Function
Behavior change

The semantic / runtime behavior of the API
call changed between versions (e.g. returning
a different type).

New feature or addi-
tional dependency-based
change

A feature was introduced in a specific ver-
sion; therefore, to execute the same function-
ality, a model using an older version should
make use of an additional dependency (e.g.
torch.special was introduced in TORCH

1.10, previously one could use NUMPY for
the same).

Table 7: Categories of API Evolution Changes

in alternative unit test generation approaches. Rule-939

based generators such as Pynguin (Lukasczyk and940

Fraser, 2022) fail to account for version differences941

among samples that share the same or similar prob-942

lem statements. Meanwhile, AI-based unit test gen-943

erators like Claude Code and EarlyAI6 were not944

suitable: the former typically generated test classes945

where each sub-function was populated only with946

pass() statements, while the latter was restricted947

to functional-style problems and could not handle948

the more complex, class-based structures prevalent949

in GitChameleon 2.0.950

A.5 Additional Dataset Statistics951

Figure 9 presents the number of unique versions952

per library and the number of samples per library.953

B Extra Methodologies: Reasoning,954

Sampling and Prompting955

This section presents results from additional exper-956

imental methodologies:957

• Temperature Sampling: Results are shown958

in Table 9. We evaluate sampling at temper-959

ature T = 0.8 across 10 seeds using both960

the OpenAI and Gemini model suites. The961

performance difference compared to greedy962

decoding is minimal.963

• Reasoning Models: Performance results for964

the OpenAI o-series reasoning models are pro-965

vided in Table 8.966

• Self-Explained Keywords (SEK) Prompt-967

ing: We evaluate the SEK prompting method968

proposed by Fan et al. (2024), applied to both969

OpenAI and Gemini models. SEK involves970

6https://www.startearly.ai/
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Figure 9: Dataset library statistics. (a) The count of
distinct versions identified for each library, presented in
decreasing order of uniqueness. (b) The total frequency
of samples containing each library, ordered by their
occurrence count.

a two-stage process: (1) Keyword Extraction, 971

where the model generates relevant keywords 972

for the coding task, and (2) Keyword Cate- 973

gorization, where keywords are ranked and 974

classified into (a) Function, (b) General, and 975

(c) Abstract categories. TF-IDF ranking is per- 976

formed using a 50,000-document subset of the 977

EVOL-CODEALPACA-V1 corpus (Luo et al., 978

2023). As shown in our empirical analysis, 979

SEK does not yield significant improvements 980

over greedy sampling, and in several cases 981

underperforms relative to it. NOTE: Temper- 982

ature T = 0 is used in both stages of SEK 983

prompting. 984

C Extended Experiment Results and 985

Analysis 986

This section contains the following additional ex- 987

perimental results: 988

• An experiment on Automatic Prompt Opti- 989

mization of the system prompt for Greedy De- 990
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Model
Vanilla Decoding Vanilla with Self-Debug Zero-shot CoT

Success
Rate (%) API

Hit
Rate (%)

Success
Rate (%) API

Hit
Rate (%)

Success
Rate (%) API

Hit
Rate (%)Hidden Visible Hidden Visible Hidden

o1 51.2±2.8 60.1±2.7 42.1±2.7 57.6±2.7 68.6±2.6 49.2±2.8 41.2±2.7 41.3±2.7

o3-mini 44.5±2.7 52.7±2.8 40.6±2.7 66.8±2.6 76.5±2.3 45.7±2.8 50.9±2.8 40.7±2.7

o4-mini 48.2±2.8 57.0±2.7 48.3±2.8 63.1±2.7 75.0±2.4 45.4±2.7 – –
codex-mini 48.5±2.8 58.2±2.7 47.5±2.8 – – – 32.0±2.6 37.9±2.7

Table 8: Success rate on visible and hidden tests and API hit rate under the Vanilla, Self-Debug, and Zero-shot CoT
settings, for the OpenAI o-series models. Model ranking on the benchmark is determined by Hidden Success Rate.
Visible Success Rate figures are for context on Self-Debugging. The best result in each column is in bold. For full
model details and citations, please refer to Appendix J.

coding is described in Table 11.991

• An experiment on static analysis based gener-992

ated solutions fixing to ensure model failures993

are not attributed to confounding factors like994

indentation problems and unused imports or995

variable declarations. Refer to Table 13 for996

further details.997

• Table 12 contains an extended set of RAG998

results, including both additional models and999

the setting where only a single document is1000

retrieved.1001

We also present the following additional analy-1002

ses:1003

• A comparison of success rates between Self-1004

Debug and Greedy Decoding, when broken1005

down by version release year (Figure 10) and1006

by library (Figure 11).1007

• A comparison of success rates between RAG1008

and Greedy Decoding by library is shown in1009

Figure 12.1010

• Figure 13 analyzes the intra-model sample1011

agreement rates in the Greedy Decoding, Zero-1012

Shot CoT and RAG settings.1013

Model
Hidden Success

Rate (%)
API Hit

Rate (%)

o1 50.5±0.8 44.0±0.8

o3-mini 46.4±1.6 42.5±0.6

GPT-4.1 48.9±1.4 48.1±1.0

GPT-4.1-mini 45.9±1.3 46.9±0.6

GPT-4.1-nano 33.8±1.1 43.8±0.8

GPT-4o 47.2±1.2 45.1±0.9

GPT-4o-mini 40.2±1.2 41.0±1.1

Gemini 1.5 Pro 45.4±1.2 45.5±0.7

Gemini 2.5 Pro 41.0±3.4 48.3±1.7

Gemini 2.0 Flash 43.4±3.1 42.5±0.9

Gemini 2.5 Flash 46.4±0.8 46.8±1.2

Table 9: Hidden Success Rate using temperature sam-
pling (T = 0.8), averaged over 10 seeds. A compari-
son to the greedy decoding baseline in Table 1 reveals
that the changes in performance between greedy de-
coding and temperature sampling are mixed. For most
models, the differences are small, but for a few specific
models, the changes are big and noteworthy. For the
majority of models evaluated (8 out of 11), the perfor-
mance change is minor, typically within +/- 2 percentage
points. For example, Gemini-2.5-pro, shows a notable
decrease in success rate (-9.0 points).
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Figure 10: Success Rate Breakdown by Version Release Year. Lighter and darker shaded bars represent values
obtained with and without Self-Debugging, respectively. Standard error is drawn as a black line. This plot shows
that the release year does not significantly impact the results for most evaluated settings.

Model
Hidden Success

Rate (%)
API

Hit Rate (%)

GPT-4o 29.6±2.5 43.6±2.7

GPT-4o-mini 27.7±2.5 40.3±2.7

GPT-4.1 43.6±2.7 49.4±2.8

GPT-4.1-mini 41.2±2.7 44.0±2.7

GPT-4.1-nano 32.9±2.6 43.8±2.7

GPT-4.5 33.8±2.6 58.0±2.7

Gemini 1.5 Pro 44.5±2.7 45.7±2.8

Gemini 2.0 Flash 41.2±2.7 43.4±2.7

Gemini 2.5 Pro 47.3±2.8 50.0±2.8

Gemini 2.5 Flash 48.2±2.8 43.4±2.7

Table 10: Success and API hit rates under the SEK
setting. While SEK, being a two-round prompting
scheme, is expected to outperform greedy decoding,
we observe that it does not yield significant improve-
ments. For example, with GPT-4.1, the success rate
actually drops by 4.9% when using SEK compared to
greedy decoding.

Model Best Round Success Rate (%) ∆ (%)

GPT-4.1-mini 1 42.1±2.7 –2.1
GPT-4.1-nano 3 37.5±2.7 +3.7
GPT-4.1 1 50.0±2.8 +1.5
GPT-4o 0 49.1±2.8 0.0

Table 11: Automatic System Prompt Optimization
results. The prompt was optimized for at most 5 rounds
using the method described in (Ye et al., 2025), with
early stopping if the improvement over previous round
is less than 1.5%. We used GPT-4.1 as the mutation
model and a random fixed 20% subset of the dataset for
the optimization process. For the initial prompt, we use
the same system prompt that we had used for our Greedy
Decoding experiments, as given in Figure 17. We report
the delta of the hidden test success rate, in comparison to
the Greedy Decoding baseline. The results demonstrate
the limited utility of further optimizing the prompts we
had used in our experiments.
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Model k = 1 k = 3

Success
Rate (%)

API Hit
Rate (%)

Success
Rate (%)

API Hit
Rate (%)

Precision
(%)

Recall
(%) MRR

Open-Weights Models

CommandA 43.6±2.7 43.9±2.7 48.2±2.8 45.4±2.7 41.9±2.7 50.7±2.8 0.63±0.03

CommandR 7B 23.2±2.3 36.3±2.7 23.2±2.3 35.6±2.6 41.6±2.7 50.4±2.8 0.62±0.03

Deepseek R1 50.9±2.8 44.8±2.7 51.2±2.8 47.9±2.8 41.5±2.7 50.1±2.8 0.62±0.03

Reka Flash-3 8.5±1.5 34.5±2.6 11.6±1.8 31.9±2.6 29.9±2.5 39.6±2.8 0.47±0.03

Jamba 1.6 Mini 18.0±2.1 35.4±2.6 29.3±2.5 40.4±2.7 41.6±2.7 50.1±2.8 0.62±0.03

OpenHands LM 32B v0.1 34.8±2.6 41.0±2.7 28.9±2.5 36.5±2.7 25.9±2.4 33.7±2.7 0.42±0.03

Llama 4 Scout 38.7±2.7 45.1±2.7 39.3±2.7 43.6±2.7 41.3±2.7 50.4±2.8 0.62±0.03

Enterprise Models

Arcee CoderL 46.3±2.8 47.3±2.8 36.6±2.7 40.4±2.7 31.1±2.6 41.0±2.8 0.49±0.03

Claude 3.5 Haiku 43.6±2.7 47.9±2.8 43.0±2.7 47.5±2.8 41.9±2.7 50.7±2.8 0.62±0.03

Claude 3.5 Sonnet 8.5±1.5 18.6±2.1 49.4±2.8 51.5±2.8 41.9±2.7 50.7±2.8 0.62±0.03

Codestral 44.2±2.7 47.3±2.8 46.0±2.8 48.5±2.8 41.9±2.7 50.7±2.8 0.62±0.03

CommandR+ 32.0±2.6 43.0±2.7 36.6±2.7 41.9±2.7 41.6±2.7 50.4±2.8 0.62±0.03

Gemini 2.5 Flash 54.3±2.8 50.5±2.8 55.2±2.8 51.2±2.8 41.9±2.7 50.7±2.8 0.62±0.03

GPT-4.1-mini 46.9±2.8 50.0±2.8 48.8±2.8 50.0±2.8 41.3±2.7 50.4±2.8 0.62±0.03

GPT-4.1-nano 38.1±2.7 45.1±2.7 37.8±2.7 45.0±2.7 41.3±2.7 50.4±2.8 0.62±0.03

GPT-4o-mini 41.5±2.8 45.4±2.7 43.3±2.8 46.8±2.8 41.0±2.7 50.1±2.8 0.62±0.03

GPT-4o 48.2±2.8 47.0±2.7 52.1±2.8 49.4±2.8 40.6±2.7 49.5±2.8 0.61±0.03

Inflection 3 Productivity 24.7±2.8 42.0±2.6 21.9±2.7 44.2±2.7 41.9±2.7 50.7±2.8 0.62±0.03

LFM 40B MoE 30.8±2.7 38.3±2.7 20.7±2.7 34.0±2.7 33.8±2.7 44.8±2.8 0.53±0.03

Table 12: RAG performance of additional models when retrieving k = 1 and k = 3 most relevant documents.
Precision is shown only for k = 3 as it is equivalent to Recall in the k = 1 case. This table shows that retrieving
three documents is better in almost all cases than retrieving a single document, despite the incurred false positives
that arise due to most of the examples having less than three relevant documents.
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Figure 11: Success Rate Breakdown by Library. This figure shows the differences in success rate between the
libraries included in GitChameleon 2.0. All evaluated settings do very well on NumPy, which is to be expected
given the popularity of the library and the subsequent abundance of code that uses it. The success rates on the web
development frameworks are notably lower than on the scientific computing libraries, perhaps due to having more
complex abstractions.

18



10% 5% 0% 5% 10% 15% 20%
Success Rate Lift

pandas
numpy

torch
scipy
flask

django
librosa
sympy

scikit-learn
falcon

(a) GPT-4.1

20% 10% 0% 10% 20% 30% 40%
Success Rate Lift

flask
numpy

torch
scipy

pandas
falcon
librosa
sympy
django

scikit-learn

(b) GPT-4.1-mini

20% 10% 0% 10% 20% 30% 40% 50%
Success Rate Lift

django
flask
torch

pandas
scipy

falcon
numpy
librosa
sympy

scikit-learn

(c) GPT-4.1-nano

Figure 12: ∆ Success Rate of RAG over Greedy Decoding, per library. The 10 most frequent libraries in
GitChameleon 2.0 are shown here. The plots demonstrate a trend where smaller models are less effective at using
RAG, with the full-size GPT-4.1 improving on 7 libraries, the mini version improving on 5 and the nano version
improving only on 3.
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Figure 13: Intra model sample agreement rates. These plots show the rate of samples that have the same pass/fail
result among all pairs of models, under the Greedy Decoding, Zero-Shot CoT and RAG settings. Each cell in these
plots represents the agreement rate of a pair of models, with the rate also being color-coded. The high agreement
rates in all three subfigures show that ensembling different models would have a limited effect on the success rates.
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Assistant Model Linter
Pylint
Score ↑

Success
Rate (%)

Cline (IDE) GPT-4.1
N/A 1.06 54.6±2.8

Black + Isort 1.69 54.6±2.8

Ruff 2.64 54.6±2.8

Goose (CLI) GPT-4o
N/A 0.53 36.3±2.7

Black + Isort 1.82 36.3±2.7

Ruff 2.92 36.3±2.7

Claude
Code (CLI)

Claude
3.7 Sonnet

N/A 0.00 48.8±2.8

Black + Isort 1.92 48.8±2.8

Ruff 2.60 48.8±2.8

Table 13: Static Analysis and Auto-
linting/Formatting. Pylint7 scores are averaged
across code samples and are scored out of 10. The
success rate numbers presented are the same as in
Table 3 wherein Goose has no access to problem
statement while Cline and Claude are provided with the
same. We observe that the original generated solutions
via coding assistants do not meet minimum quality
standard requirements, however when improved via
auto-linters like Black8, ISort9 and Ruff10, their code
quality improves but with no impact to the success
rate. This demonstrates that there are no confounding
errors like indentation issues, unused imports and other
formatting issues influencing our evaluation results
observed. NOTE: For Ruff formatting, we used the
already formatted/ linted solutions via Black and ISort.

D Related Work1014

This section discusses additional lines of related1015

work and provides a detailed comparison of the dif-1016

ferentation of GitChameleon 2.0 versus previous1017

efforts.1018

7https://pylint.pycqa.org/en/latest/index.html
8https://black.readthedocs.io/en/stable/
9https://pycqa.github.io/isort/

10https://docs.astral.sh/ruff/

D.1 Code Evolution Datasets 1019

While the main text provides a high-level overview 1020

of the most similar benchmarks, this section 1021

offers a more detailed differentiation between 1022

GitChameleon 2.0 and other relevant works. We 1023

categorize these benchmarks based on several key 1024

dimensions, including their evaluation method 1025

(execution-based vs. non-executable) and, most 1026

importantly, their core task format (instruction- 1027

based generation vs. completion- or repair- 1028

based tasks). This distinction is critical as it tests 1029

different capabilities of language models. 1030

D.1.1 Task Format: Instruction-Based 1031

Generation 1032

GitChameleon 2.0 is fundamentally an 1033

instruction-based benchmark. For each 1034

problem, the model is given a natural language 1035

"Problem Statement" and starter code. The core 1036

challenge is to comprehend the user’s intent and 1037

generate a new, functionally correct solution that 1038

adheres to specific version constraints. This tests a 1039

model’s ability to translate human requirements 1040

into code. 1041

D.1.2 Task Format: Code Update, Repair, and 1042

Completion 1043

In contrast, many other benchmarks focus on tasks 1044

where the primary input is existing code, not a 1045

natural language instruction. The model’s goal is 1046

to modify, repair, or complete a given code snippet. 1047

Code Update and Repair Benchmarks A sig- 1048

nificant body of work evaluates a model’s ability to 1049

modify or repair existing code. 1050

• CodeUpdateEval (Liu et al., 2024) and 1051

JavaVersionGenBench (Ciniselli et al., 2024) 1052

are code modification benchmarks for Python 1053

and Java, respectively. They provide a model 1054

with a working piece of code and require it to 1055

be updated to a newer library version. 1056

• RustEvo2 (Liang et al., 2025) is a code re- 1057

pair benchmark for Rust. It provides a model 1058

with code that is broken due to a dependency 1059

update and asks it to generate a fix based on 1060

compiler errors. 1061

These tasks are distinct from GitChameleon 2.0’s, 1062

as they test a reactive, corrective capability rather 1063

than the proactive generation of new code from a 1064

specification. 1065
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Benchmark Language Evaluation Method Core Task Source of Changes Key Differentiator from
GitChameleon 2.0

GitChameleon 2.0 Python Execution-Based Generation for a static ver-
sion: Writes new code for a
specific, often older, library
version.

Real, documented histori-
cal breaking changes.

(Baseline for comparison)

CodeUpdateEval Python Execution-Based Code Updating: Modifies ex-
isting code to work with a
newer library version.

Real-world software up-
date commits.

Focuses on migrating code for-
ward to a newer version, not gen-
erating for a static one.

JavaVersionGenBench Java Execution-Based Code Updating: Modifies ex-
isting Java code to handle ver-
sion updates.

Real-world Java projects. Focuses on the Java ecosystem
and its specific language/tooling
challenges.

LLM-Deprecated-APl Python Non-Executable Deprecation Fixing: Identi-
fies and replaces specific dep-
recated API calls.

A curated list of depre-
cated APIs.

Uses a non-executable evalua-
tion method and has a narrow
scope focused only on API dep-
recation.

LibEvolutionEval Python Non-Executable Code Completion: Fills in a
missing part of a code snippet
based on context.

API documentation and re-
lease notes.

Is a completion-based task that
does not test functional correct-
ness through execution.

RustEvo2 Rust Execution-Based Code Repair: Fixes existing
code that fails to compile after
a dependency update.

Real breaking changes
from Rust libraries
("crates").

Focuses on the Rust ecosystem
and a reactive, compiler-error-
driven repair task.

CODEMENV Python Execution-Based Environment Compatibility:
Generates code that is com-
patible with a complex envi-
ronment specification.

A broad set of environ-
ment configurations.

Has a broader focus on overall
environment compatibility, not
specifically on historical break-
ing changes.

Table 14: Detailed comparison of GitChameleon 2.0 with related benchmarks across several key dimensions,
highlighting differences in evaluation methodology, core task, and primary programming language.

Completion-Based and Non-Executable Bench-1066

marks Another category of benchmarks uses1067

non-executable metrics or focuses on code com-1068

pletion.1069

• LibEvolutionEval (Kuhar et al., 2024) is1070

a non-executable benchmark structured as a1071

"fill-in-the-middle" completion-based task.1072

Its evaluation is based on textual similarity1073

metrics (e.g., F1 score), not the functional cor-1074

rectness of the code.1075

• LLM-Deprecated-APl (Wang et al., 2025b),1076

which we note in our introduction, focuses on1077

replacing deprecated APIs. This is a specific1078

type of repair task that is evaluated using non-1079

executable string matching.1080

• CODEMENV (Cheng et al., 2025) evaluates1081

a model’s ability to generate code compat-1082

ible with a complex environment specifica-1083

tion. While execution-based, its task is primar-1084

ily driven by satisfying technical constraints1085

rather than implementing a distinct, high-level1086

natural language instruction.1087

For a detailed breakdown, Table 14 contrasts1088

GitChameleon 2.0 with these related benchmarks1089

across several key methodological dimensions.1090

D.2 Specialized Frameworks and Repair 1091

Techniques 1092

Recognizing the unique challenges of library evo- 1093

lution, researchers and practitioners are develop- 1094

ing specialized frameworks and automated repair 1095

techniques that often combine LLMs with other 1096

methods. 1097

D.2.1 DepsRAG 1098

This framework utilizes a multi-agent system built 1099

around RAG and Knowledge Graphs specifically 1100

for reasoning about software dependencies (Al- 1101

hanahnah et al., 2024). It employs distinct agents 1102

managed by an LLM: one to construct and query 1103

the dependency KG, another for web searches, and 1104

a critic agent to review and refine the generated 1105

responses, aiming for higher accuracy in complex 1106

dependency analysis tasks. 1107

D.2.2 Dr.Fix 1108

This tool represents a family of approaches using 1109

LLMs, often combined with program analysis and 1110

RAG, for automated program repair. It focuses on 1111

fixing API misuse in LLM-generated code based on 1112

the taxonomy of misuse types. It employs a detect- 1113

reason-fix pipeline and demonstrates substantial 1114

improvements in repair accuracy metrics such as 1115

BLEU and Exact Match (Behrang et al., 2025). 1116
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D.2.3 ReplaceAPI / InsertPrompt1117

These are lightweight, targeted techniques de-1118

signed specifically to mitigate the use of depre-1119

cated APIs in LLM-based code completion. Re-1120

placeAPI performs a direct, post-generation sub-1121

stitution of known deprecated API calls with their1122

replacements, achieving high fix rates in evalua-1123

tions (Wang et al., 2025b). InsertPrompt modifies1124

the input prompt to discourage the generation of1125

deprecated APIs in the first place. They serve as1126

valuable baseline approaches for this specific prob-1127

lem (Wang et al., 2025a).1128

D.2.4 Conclusion1129

These works indicate a trend towards hybrid and1130

agentic systems, moving beyond single LLM calls1131

to more sophisticated architectures that integrate1132

LLMs with other methods for handling library evo-1133

lution. GitChameleon 2.0 serves as an essential1134

resource for evaluating such systems.1135

In the subsequent sections we present qualitative1136

sample analyses and model generation differences.1137

E Case Study: Code Assistant Failure1138

With Search1139

Here we present an example where a coding as-1140

sistant (Zencoder) fails at solving a problem in1141

our benchmark even when it can search the in-1142

ternet for the correct API call. The task re-1143

quired using the torch.special module or equiv-1144

alent scipy.special to calculate the the modi-1145

fied Bessel function of the first kind of order 0.1146

This can be computed using torch.special.i01147

or scipy.special.i0 if the version pre-dates the1148

introduction of torch.special.1149

E.1 Inputs1150

Problem Statement: Calculate the modified1151

Bessel function of the first kind, order 0 using py-1152

torch’s special functions if available in this version,1153

otherwise you may use another library.1154

Environment1155

• Python Version: 3.71156

• Pytorch Version: 1.101157

Starting Code1158
1159

import torch1160
def bessel_i0(input_tensor: torch.Tensor1161

) -> torch.Tensor:11621163

Listing 1: Initial Python function signature provided.

E.2 Model Attempt and Failure 1164

The model’s attempt involved manually implement- 1165

ing the modified Bessel function, handling small 1166

and large inputs as separate cases. 1167

Assistant Trace 1168
1169

[truncated] 1170
**Web search ** 1171
Done 1172
Let me check if the torch.special module 1173

with Bessel functions is 1174
specifically available in PyTorch 1175
1.10.0. 1176

1177
1178

**Web search ** 1179
Done 1180
The search results dont specifically 1181

confirm if torch.special.i0 is 1182
available in PyTorch 1.10.0. Let me 1183
search more specifically. 1184

1185
1186

**Web search ** 1187
Done 1188
Since Im not getting clear information 1189

about the availability of torch. 1190
special.i0 in PyTorch 1.10.0 , Ill 1191
implement the function manually 1192
using the mathematical definition of 1193
the modified Bessel function of the 1194
first kind of order 0. 1195

Now , lets implement the solution: 11961197

Listing 2: The assistant’s trace while designing the
solution.

Proposed Solution 1198
1199

def bessel_i0(input_tensor: torch.Tensor 1200
) -> torch.Tensor: 1201
result = torch.zeros_like(input_ 1202

tensor) 1203
abs_x = torch.abs(input_tensor) 1204

1205
# For small values (|x| < 15), use 1206

the series expansion 1207
small_mask = abs_x < 15.0 1208
small_x = abs_x[small_mask] 1209

1210
if small_x.numel() > 0: 1211

small_result = torch.ones_like( 1212
small_x) 1213

term = torch.ones_like(small_x) 1214
x_squared_over_4 = (small_x / 1215

2.0) ** 2 1216
1217

# Sum the series until 1218
convergence or max 1219
iterations 1220

for k in range(1, 30): # 30 1221
terms should be enough for 1222
good precision 1223
term = term * x_squared_over 1224

_4 / (k ** 2) 1225
small_result = small_result 1226

+ term 1227
1228

# Check for convergence 1229
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if torch.all(term < 1e-10 *1230
small_result):1231
break1232

1233
result[small_mask] = small_1234

result1235
1236

# For large values (|x| $\geq$ 15),1237
use the asymptotic approximation1238

large_mask = ~small_mask1239
large_x = abs_x[large_mask]1240

1241
if large_x.numel() > 0:1242

large_result = torch.exp(large_x1243
) / torch.sqrt(2 * math.pi *1244
large_x)1245

result[large_mask] = large_1246
result1247

1248
return result}12491250

Listing 3: The solution proposed by the assistant.

Error Traceback:1251

1252
TestBesselI0.test_large_values _________1253

_______________1254
def test_large_values(self):1255

""" Test bessel_i0 with large1256
positive and negative values."""1257

input_tensor = torch.tensor ([10.0 ,1258
-10.0, 20.0, -20.0], dtype=torch1259
.float32)1260

result = bessel_i0(input_tensor)1261
expected = torch.from_numpy(scipy_i01262

(input_tensor.numpy()))1263
1264

> torch.testing.assert_close(1265
result , expected)1266

E AssertionError: Tensor -likes are1267
not close!12681269

Listing 4: Error trace for the implementation of
bessel_i0.

Explanation: The failure in the manual imple-1270

mentation arises because the asymptotic approxi-1271

mation1272

I0(x) ≈
ex√
2πx

1273

has only O(1/x) accuracy and omits higher-order1274

correction terms, so for x ≳ 20 its relative error ex-1275

ceeds the test tolerance of 10−5. To fix this, either1276

use the built-in torch.special.i0(x) or include1277

at least the first correction term in the expansion:1278

I0(x) ≈
ex√
2πx

(
1− 1

8x

)
,1279

which reduces the large-x error below the required1280

threshold.1281

F Case Study: Self-Debugging in Batched 1282

Matrix Exponential Computation 1283

This appendix details an instance where self- 1284

debugging helped rectify an initially incorrect so- 1285

lution from GPT-4.5 for computing the matrix ex- 1286

ponential of batched matrices. The task required 1287

leveraging the scipy.linalg.expm function while 1288

ensuring compatibility with batched inputs. 1289

F.1 Inputs 1290

Problem Statement: Complete the function that 1291

computes the matrix exponential of batched matri- 1292

ces, non specified parameters should use the default 1293

value 1294

Environment: 1295

• Python Version: 3.10 1296

• SciPy Version: 1.8.1 1297

Starting Code 1298
1299

from scipy import linalg 1300
import numpy as np 1301

1302
def compute_matrix_exponential(A: np. 1303

ndarray) -> np.ndarray: 1304
# Model needs to complete this 1305

function 1306
pass 13071308

Listing 5: Initial Python function signature provided.

F.2 First Model Attempt and Failure 1309

The model’s first attempt involved reshaping the 1310

input array and applying scipy.linalg.expm di- 1311

rectly. 1312

Initial Model Output 1313
1314

from scipy import llinalg 1315
import numpy as np 1316

1317
def compute_matrix_exponential(A: np. 1318

ndarray) -> np.ndarray: 1319
return linalg.expm(A) 13201321

Listing 6: First attempt by the model to define
compute_matrix_exponential.

Model’s Explanation (Initial): The function di- 1322

rectly returns linalg.expm(A) because SciPy’s expm 1323

computes the matrix exponential for a given matrix. 1324

Given that A is a batch of matrices, SciPy should 1325

naturally handle this batch input and apply the ex- 1326

ponential operation to each matrix independently, 1327

producing the correct batched result. 1328

Result: Failure 1329
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Error Traceback Failure: Calling1330

linalg.expm(A) on a 3D array A ∈ Rb×n×n1331

makes SciPy treat it as one “matrix,” and raises1332

ValueError: expected a square matrix1333

because it only supports 2D inputs.1334
1335

Traceback (most recent call last):1336
File "/app/repo/eval_venvs/gcham_venv_111/ lib/1337

python3.10/site -packages/scipy/sparse/linalg/1338
_matfuncs.py", line 601, in _expm1339

raise ValueError('expected a square matrix ')1340
ValueError: expected a square matrix13411342

Listing 7: Error traceback from the initial model output.

F.3 Self-Debugging Process and Correction1343

The self-debugging process recognized that sim-1344

ply calling linalg.expm was insufficient. Instead,1345

linalg.expm must be applied individually to each1346

2D matrix within the batch. Additionally, a crucial1347

pre-condition is that each matrix within the batch1348

must be square.1349

Second Model Attempt (Post-Debugging) The1350

model regenerated the solution, incorporating input1351

validation and iterating over the individual matrices1352

in the batch.1353

Regenerated Model Output1354
1355

from scipy import linalg1356
import numpy as np1357

1358
def compute_matrix_exponential(A: np.1359

ndarray) -> np.ndarray:1360
return np.stack([ linalg.expm(A[i])1361

for i in range(A.shape [0]) if A[1362
i].shape [0] == A[i].shape [1]],1363
axis =0)13641365

Listing 8: Corrected compute_matrix_exponential
after self-debugging.

Model’s Explanation (Regenerated): The cor-1366

rected solution applies linalg.expm separately to1367

each 2D square matrix in the batch using a list1368

comprehension, then re-stacks the results into a 3D1369

array. This ensures each call to expm receives a1370

valid input, resolving the error.1371

Result: Success1372

F.4 Analysis of the Correction1373

The regenerated output effectively addressed the1374

shortcomings of the initial attempt:1375

• Fix: Apply expm to each 2D slice Ai ∈ Rn×n1376

and re-stack, ensuring every call gets a proper1377

square matrix.1378

This revised approach correctly computes the ma- 1379

trix exponential for each matrix in the batch and 1380

handles the data dimensions appropriately, thus re- 1381

solving the ValueError and fulfilling the problem 1382

requirements. 1383

G Qualitative Analysis 1384

This section presents additional qualitative studies 1385

of attempted solutions in the Greedy Decoding and 1386

the Chain-of-Thought settings. 1387

G.1 Greedy Decoding 1388

G.1.1 Example 1: (PyTorch) 1389

Problem Statement: Calculate the logarithm of 1390

the cumulative distribution function of the standard 1391

normal distribution using available functions. If 1392

not available in PyTorch, use another library. 1393

Environment: 1394

• Python Version: 3.7 1395

• Torch Version: 1.9.0 1396

• Extra Dependencies: scipy==1.7.3, 1397

numpy==1.21.6 1398

Starting Code 1399
1400

import torch 1401
def log_ndtr(input_tensor: torch.Tensor) 1402

-> torch.Tensor: 1403
pass 14041405

Listing 9: Greedy Example 1 Starting Code

Solution 1406
1407
1408

import numpy as np 1409
from scipy.stats import norm 1410
output = torch.from_numpy(norm. 1411

logcdf(input_tensor.numpy())) 1412
return output 14131414

Listing 10: Greedy Example 1 Solution

Claude 3.7 Failure Output 1415
1416

import torch 1417
import math 1418
from torch.distributions import Normal 1419

1420
def log_ndtr(input_tensor: torch.Tensor) 1421

-> torch.Tensor: 1422
normal = Normal(0, 1) 1423
return normal.cdf(input_tensor).log 1424

() 14251426

Listing 11: Claude 3.7 Output

Gemini 2.5 Pro Failure Output 1427
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1428
import torch1429
from torch.distributions import Normal1430

1431
def log_ndtr(input_tensor: torch.Tensor)1432

-> torch.Tensor:1433
loc = torch.tensor (0.0, device=input_1434

tensor.device , dtype=input_tensor.1435
dtype)1436

scale = torch.tensor (1.0, device=input1437
_tensor.device , dtype=input_tensor1438
.dtype)1439

1440
standard_normal = Normal(loc=loc ,1441

scale=scale)1442
1443

log_cdf_values = standard_normal.log_1444
cdf(input_tensor)1445

1446
return log_cdf_values14471448

Listing 12: Gemini 2.5 Pro Output

Analysis of Model Outputs1449

Both Claude 3.7 and Gemini 2.5 Pro incor-1450

rectly attempt to compute the log-CDF of the1451

standard normal distribution using PyTorch’s1452

Normal distribution. Claude 3.7 computes1453

normal.cdf(input_tensor).log(), which is1454

numerically unstable for large negative inputs since1455

the CDF approaches zero and its logarithm can un-1456

derflow to −∞, leading to invalid results. Gemini1457

2.5 Pro mistakenly calls a non-existent log_cdf1458

method on the PyTorch Normal object, causing an1459

immediate AttributeError in PyTorch 1.9. This1460

reflects a confusion between PyTorch and other li-1461

braries (such as SciPy or TensorFlow Probability)1462

that do provide this method. In summary, neither1463

model provides a robust or correct implementation;1464

the only reliable approach in this environment is to1465

use scipy.stats.norm.logcdf as shown in the1466

reference solution, or to implement a numerically1467

stable approximation in PyTorch when SciPy is1468

unavailable.1469

G.1.2 Greedy Example 2 (SciPy)1470

Problem Statement: complete the following func-1471

tion that check if all the batch of matrices are in-1472

vertible, using numpy 1.25.1.1473

Environment:1474

• Python Version: 3.101475

• Scipy Version: 1.11.11476

Starting Code1477
1478

import warnings1479
from scipy.linalg import det1480
import numpy as np1481
warnings.filterwarnings('error ')1482

1483
def check_invertibility(matrices: np. 1484

ndarray) -> np.bool_: 1485
pass 14861487

Listing 13: Greedy Example 3 Starting Code

Solution 1488
1489

return np.all(det(matrices)) 14901491

Listing 14: Greedy Example 3 Solution

Gemini 2.5 Correct Output 1492
1493

import warnings 1494
from scipy.linalg import det 1495
import numpy as np 1496
warnings.filterwarnings('error ') 1497

1498
def check_invertibility(matrices: np. 1499

ndarray) -> np.bool_: 1500
try: 1501

# Check if matrices is a batch 1502
of matrices 1503

if matrices.ndim < 3: 1504
# If it's a single matrix , 1505

add a batch dimension 1506
matrices = np.expand_dims( 1507

matrices , axis =0) 1508
1509

# Check if all matrices are 1510
square 1511

batch_size , rows , cols = 1512
matrices.shape 1513

if rows != cols: 1514
return np.bool_(False) 1515

1516
# Calculate determinants for all 1517

matrices in the batch 1518
determinants = np.array([det( 1519

matrix) for matrix in 1520
matrices ]) 1521

1522
# A matrix is invertible if its 1523

determinant is not zero 1524
# Check if all determinants are 1525

non -zero 1526
return np.bool_(np.all( 1527

determinants != 0)) 1528
1529

except Exception: 1530
# If any error occurs during 1531

computation , return False 1532
return np.bool_(False) 15331534

Listing 15: Gemini 2.5 Pro Output

GPT 4.1 Failure Output 1535
1536

import warnings 1537
from scipy.linalg import det 1538
import numpy as np 1539
warnings.filterwarnings('error ') 1540

1541
def check_invertibility(matrices: np. 1542

ndarray) -> np.bool_: 1543
for matrix in matrices: 1544

try: 1545
d = det(matrix) 1546

26



if np.isclose(d, 0):1547
return np.bool_(False)1548

except Warning:1549
return np.bool_(False)1550

return np.bool_(True)15511552

Listing 16: GPT 4.1 Output

Analysis of Model Outputs1553

Gemini 2.5 Pro produces a robust solution that1554

handles both single matrices and batches, verifies1555

that matrices are square, computes the determinant1556

for each matrix, and correctly checks if all deter-1557

minants are non-zero to determine invertibility, re-1558

turning False on any exception to ensure safe fail-1559

ure. In contrast, GPT 4.1’s output contains a subtle1560

but critical error in exception handling: the code1561

attempts to catch Warning as an exception, but1562

Python treats warnings and exceptions differently,1563

so this approach is ineffective—especially since1564

warnings.filterwarnings(’error’) escalates1565

warnings to exceptions that should be caught as1566

Exception. As a result, GPT 4.1’s function may1567

fail or produce unpredictable results in the presence1568

of numerical issues or shape mismatches, despite1569

using the correct logic for checking determinant1570

values.1571

G.1.3 Greedy Example 3 (SymPy)1572

Problem Statement: Write a custom jacobi sym-1573

bols function that compute the Jacobi symbol.1574

Environment:1575

• Python Version: 3.91576

• Sympy Version: 1.131577

Starting Code1578
1579

import sympy1580
1581

def custom_jacobi_symbols(a: int , n: int1582
) -> int:1583
pass15841585

Listing 17: Greedy Example 4 Starting Code

Solution1586
1587

return sympy.jacobi_symbol(a, n)15881589

Listing 18: Greedy Example 4 Solution

GPT 4.1 Correct Output1590
1591

import sympy1592
1593

def custom_jacobi_symbols(a: int , n: int1594
) -> int:1595
return sympy.ntheory.jacobi_symbol(a1596

, n)15971598

Listing 19: GPT 4.1 Output

O1 Failure Output 1599
1600

import sympy 1601
1602

def custom_jacobi_symbols(a: int , n: int 1603
) -> int: 1604
return sympy.ntheory.residues.jacobi 1605

_symbol(a, n) 16061607

Listing 20: O1 Output

Analysis of Model Outputs 1608

GPT-4.1 provides the correct solution by 1609

calling sympy.ntheory.jacobi_symbol, 1610

which is the proper and documented API 1611

for computing the Jacobi symbol in SymPy 1612

1.13. In contrast, O1 incorrectly uses 1613

sympy.ntheory.residues.jacobi_symbol, 1614

assuming that the function is nested in the 1615

residues submodule; however, in this version 1616

of SymPy, jacobi_symbol is not found there, 1617

resulting in an AttributeError on all tests. 1618

This error highlights a lack of up-to-date API 1619

knowledge or reliance on outdated documentation. 1620

G.1.4 Greedy Example 4 (Flask) 1621

Problem Statement: Complete the app set-up so 1622

that, when given a batch of matrix, the json en- 1623

coding compute the determinants of each matrix, 1624

before flattening and converting the result to a list, 1625

we are using scipy 1.11.1. Do not run the app in 1626

your code. 1627

Environment: 1628

• Python Version: 3.10 1629

• Flask Version: 3.0.0 1630

• Extra Dependencoes: scipy==1.11.1 1631

Starting Code 1632
1633

import flask 1634
import numpy as np 1635
from scipy import linalg 1636

1637
app = flask.Flask('test1 ') 1638
@app.route('/data') 1639
def data(num_list): 1640

return flask.jsonify ({'numbers ': num 1641
_list}) 1642

def eval_app(app , data_fn, num_arr): 1643
with app.test_request_context (): 1644

response = data_fn(num_arr) 1645
return response.get_data(as_text 1646

=True) 1647
1648

class MyCustomJSONHandler(flask.json. 1649
provider.DefaultJSONProvider): 1650
def default(self , obj): 1651

if isinstance(obj , np.ndarray) 1652
and len(obj.shape)==3 and 1653
obj.shape [-1]==obj.shape[-2] 1654
: 1655
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pass16561657

Listing 21: Greedy Example 5 Starting Code

Solution1658
1659

res = linalg.det(obj)1660
return res.tolist ()1661

return super ().default(obj)1662
1663

app.json_provider_class =1664
MyCustomJSONHandler1665

app.json = app.json_provider_class(1666
app)16671668

Listing 22: Greedy Example 5 Solution

Gemini 2.5 Pro Correct Output1669
1670

import flask1671
import numpy as np1672
from scipy import linalg1673

1674
app = flask.Flask('test1 ')1675
@app.route('/data')1676
def data(num_list):1677

return flask.jsonify ({'numbers ': num1678
_list})1679

def eval_app(app , data_fn, num_arr):1680
with app.test_request_context ():1681

response = data_fn(num_arr)1682
return response.get_data(as_text1683

=True)1684
1685

class MyCustomJSONHandler(flask.json.1686
provider.DefaultJSONProvider):1687
def default(self , obj):1688

if isinstance(obj , np.ndarray)1689
and len(obj.shape)==3 and1690
obj.shape [-1]==obj.shape[-2]1691
:1692
# Calculate determinants for1693

each matrix in the1694
batch1695

determinants = linalg.det(1696
obj)1697

# Convert the resulting 1D1698
array of determinants to1699
a list1700

return determinants.tolist ()1701
# Fallback to the default1702

serialization for other1703
types1704

return super().default(obj)1705
1706

# Apply the custom JSON provider to the1707
app1708

app.json = MyCustomJSONHandler(app)17091710

Listing 23: Gemini 2.5 Pro Output

Claude 3.7 Failure Output1711
1712

import flask1713
import json1714

1715
app = flask.Flask('test')1716
@app.route('/data')1717
def data(num_set):1718

return flask.jsonify ({'numbers ': num1719
_set})1720

1721
def eval(app , data_fn, num_set): 1722

with app.test_request_context (): 1723
response = data_fn(num_set) 1724
return response.get_data(as_text 1725

=False) 1726
1727

def app_set_up(app: flask.Flask) -> None 1728
: 1729
def set_encoder(obj): 1730

if isinstance(obj , set): 1731
return sorted(list(obj)) 1732

raise TypeError(f"Object of type 1733
{type(obj)} is not JSON 1734

serializable") 1735
1736

app.json.encoder = lambda: json. 1737
JSONEncoder(default=set_encoder) 17381739

Listing 24: Claude 3.7 Output

Analysis of Model Outputs 1740

Gemini 2.5 Pro provides a so- 1741

lution that correctly subclasses 1742

flask.json.provider.DefaultJSONProvider 1743

and overrides the default method to check 1744

for batches of square matrices, compute their 1745

determinants using scipy.linalg.det, and 1746

serialize the result as a list, fully aligning with 1747

both the requirements and Flask 3.0.0’s JSON 1748

provider API. In contrast, Claude 3.7’s output 1749

incorrectly tries to customize JSON serialization 1750

by modifying app.json.encoder—a property 1751

that is not available in Flask 3.0.0—and focuses 1752

on encoding sets rather than NumPy arrays, 1753

neglecting the determinant computation altogether. 1754

Consequently, Claude’s approach fails with an 1755

AttributeError and does not satisfy the task 1756

requirements even if the encoder logic were 1757

correct, while Gemini’s implementation is robust 1758

and functional for the specified environment. 1759

G.2 Zero-Shot Chain-Of-Thought 1760

G.2.1 CoT Example 1 (Torch) 1761

Problem Statement: Calculate the modified 1762

Bessel function of the first kind, order 1 using Py- 1763

Torch’s special functions if available in this version, 1764

otherwise you may use another library. 1765

Environment: 1766

• Python Version: 3.7 1767

• Torch Version: 1.9.0 1768

• Extra Dependencies: scipy==1.7.3, 1769

numpy==1.21.6 1770

Starting Code 1771
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1772
import torch1773
def bessel_i1(input_tensor: torch.Tensor1774

) -> torch.Tensor:1775
pass17761777

Listing 25: CoT Example 1 Starting Code

Solution1778
1779

import numpy as np1780
from scipy.special import i1 as1781

scipy_i11782
output = torch.from_numpy(scipy_i1(1783

input_tensor.numpy()))1784
return output17851786

Listing 26: CoT Example 1 Solution

Claude 3.7 Correct Output1787
1788

import torch1789
from scipy import special1790

1791
def bessel_i1(input_tensor: torch.Tensor1792

) -> torch.Tensor:1793
# Convert PyTorch tensor to NumPy1794

array1795
input_numpy = input_tensor.cpu().1796

numpy()1797
1798

# Apply the modified Bessel function1799
of the first kind , order 11800

result_numpy = special.i1(input_1801
numpy)1802

1803
# Convert back to PyTorch tensor1804
result_tensor = torch.from_numpy(1805

result_numpy).to(input_tensor.1806
device)1807

1808
# Ensure the output has the same1809

dtype as the input1810
result_tensor = result_tensor.to(1811

dtype=input_tensor.dtype)1812
1813

return result_tensor18141815

Listing 27: Claude 3.7 Output

Gemini 2.5 Pro Failure Output1816
1817

import torch1818
def bessel_i1(input_tensor: torch.Tensor1819

) -> torch.Tensor:1820
""" Calculates the modified Bessel1821

function of the first kind ,1822
order 1.1823

1824
Args:1825

input_tensor: The input tensor.1826
1827

Returns:1828
A tensor containing the element -1829

wise modified Bessel1830
function of the first kind ,1831
order 1.1832

"""1833
# Check if torch.special.i1 is1834

available (it is in torch 1.9.0)1835
if hasattr(torch.special , 'i1'):1836

return torch.special.i1(input_ 1837
tensor) 1838

else: 1839
# Fallback or error handling if 1840

needed for other versions 1841
# For torch 1.9.0, this else 1842

block should not be reached. 1843
raise NotImplementedError("torch 1844

.special.i1 is not available 1845
in this PyTorch version.") 18461847

Listing 28: Gemini 2.5 Pro Output

Analysis of Model Outputs 1848

Claude 3.7 provides a robust solution by cor- 1849

rectly identifying that torch.special.i1 is not 1850

available in PyTorch 1.9.0 and instead leverag- 1851

ing scipy.special.i1 to compute the modified 1852

Bessel function, converting the result back to a 1853

PyTorch tensor and ensuring proper device and 1854

dtype handling; this approach is fully compatible 1855

with the given environment and passes all tests. 1856

In contrast, Gemini 2.5 Pro mistakenly assumes 1857

that torch.special.i1 exists in PyTorch 1.9.0, 1858

checks for its presence using hasattr, and raises 1859

a NotImplementedError when unavailable; how- 1860

ever, since this function is absent in the specified 1861

version, the code fails every test due to the raised 1862

exception. 1863

G.2.2 CoT Example 2 (Scikit-learn) 1864

Problem Statement: Adapt the use of ‘manhattan 1865

distances‘ to obtain a pairwise distance matrix. 1866

Environment: 1867

• Python Version: 3.10 1868

• Scikit-learn Version: 1.1 1869

• Extra Dependencies: numpy==1.23.5 1870

Starting Code 1871
1872

from sklearn.metrics.pairwise import 1873
manhattan_distances 1874

import numpy as np 1875
def get_pairwise_dist(X: np.ndarray ,Y: 1876

np.ndarray) -> np.ndarray: 1877
distances = manhattan_distances(X, Y 1878

, sum_over_features=False) 1879
pass 18801881

Listing 29: CoT Example 2 Starting Code

Solution 1882
1883

return np.sum(distances , axis =1) 18841885

Listing 30: CoT Example 2 Solution

GPT 4.1 Correct Output 1886
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1887
from sklearn.metrics.pairwise import1888

manhattan_distances1889
import numpy as np1890
def get_pairwise_dist(X: np.ndarray , Y:1891

np.ndarray) -> np.ndarray:1892
distances = manhattan_distances(X, Y1893

)1894
return distances18951896

Listing 31: GPT 4,1 Output

Claude 3.7 Failure Output1897
1898

from sklearn.metrics.pairwise import1899
manhattan_distances1900

import numpy as np1901
def get_pairwise_dist(X: np.ndarray ,Y:1902

np.ndarray) -> np.ndarray:1903
distances = manhattan_distances(X, Y1904

, sum_over_features=False)1905
return np.sum(distances , axis =2)19061907

Listing 32: Claude 3.7 Pro Output

Analysis of Model Outputs1908

In this example, GPT 4.1 provides1909

a correct implementation by calling1910

manhattan_distances(X, Y) without the1911

sum_over_features argument, which by default1912

returns the desired pairwise distance matrix of1913

shape (nsamplesX , nsamplesY ). In contrast, Claude1914

3.7 incorrectly sets sum_over_features=False,1915

causing the output to be a 3D array of shape,1916

and then applies np.sum(distances, axis=2),1917

which does not match the problem’s intent and1918

produces incorrect results if further summed in-1919

correctly. The misuse of the sum_over_features1920

parameter and the erroneous axis for reduction1921

demonstrates a misunderstanding of the scikit-1922

learn API and leads to a failure, while GPT 4.1’s1923

output is concise and correct for all valid input1924

shapes.1925

G.2.3 CoT Example 3 (Falcon)1926

Problem Statement: Create a class named Cus-1927

tomRouter to manage your application’s routes.1928

The class should maintain an internal dictionary1929

named routes for storing the mapping between1930

URI templates and their associated resources. Im-1931

plement an add_route method that accepts three1932

arguments: a URI template, a resource, and1933

additional keyword arguments. This method1934

should use Falcon’s routing utility—specifically,1935

the map_http_methods function from the fal-1936

con.routing module—to generate a mapping of1937

HTTP methods to resource handlers. If a ’fallback’1938

parameter is provided in the keyword arguments,1939

it should be passed to map_http_methods. The1940

method should then store a tuple consisting of the 1941

resource and the generated method mapping in the 1942

routes dictionary, using the URI template as the key, 1943

and finally return the generated method mapping. 1944

You must not modify the provided starting code, 1945

which includes the empty CustomRouter class. In- 1946

stead, complete the solution by dynamically adding 1947

the required method in the solution() function. 1948

Environment: 1949

• Python Version: 3.10 1950

• Falcon Version: 2.0 1951

Starting Code 1952
1953

class CustomRouter: 1954
def __init__(self): 1955

self.routes = {} 1956
1957
1958

def solution () -> None: 1959
1960

def add_route( 19611962

Listing 33: CoT Example 3 Starting Code

Solution 1963
1964

self , uri_template , resource , ** kwargs): 1965
from falcon.routing import map_ 1966

http_methods 1967
method_map = map_http_methods( 1968

resource , kwargs.get(' 1969
fallback ', None)) 1970

self.routes[uri_template] = ( 1971
resource , method_map) 1972

return method_map 1973
1974

CustomRouter.add_route = add_route 19751976

Listing 34: CoT Example 3 Solution

O1 Correct Output 1977
1978

import falcon 1979
from falcon.routing import map_http_ 1980

methods 1981
1982

class CustomRouter: 1983
def __init__(self): 1984

self.routes = {} 1985
1986

def solution () -> None: 1987
def add_route(self , uri_template , 1988

resource , ** kwargs): 1989
fallback = kwargs.pop('fallback ' 1990

, None) 1991
if fallback is not None: 1992

method_map = map_http_ 1993
methods(resource , 1994
fallback=fallback) 1995

else: 1996
method_map = map_http_ 1997

methods(resource) 1998
self.routes[uri_template] = ( 1999

resource , method_map) 2000
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return method_map2001
CustomRouter.add_route = add_route20022003

Listing 35: O1 Output

GPT 4.1 Failure Output2004
2005

from falcon.routing import map_http_2006
methods2007

2008
def solution () -> None:2009

def add_route(self , uri_template ,2010
resource , ** kwargs):2011
fallback = kwargs.pop('fallback '2012

, None)2013
if fallback is not None:2014

method_map = map_http_2015
methods(resource ,2016
fallback=fallback)2017

else:2018
method_map = map_http_2019

methods(resource)2020
self.routes[uri_template] = (2021

resource , method_map)2022
return method_map2023

2024
CustomRouter.add_route = add_route20252026

Listing 36: GPT 4.1 Output

Analysis of Model Outputs2027

In this case, the O1 output provides a fully2028

correct solution by dynamically attaching an2029

add_route method to the CustomRouter class,2030

properly handling the optional fallback argu-2031

ment, and updating the routes dictionary accord-2032

ing to the problem statement. The method is in-2033

serted via the solution() function without mod-2034

ifying the provided class definition, and it uses2035

Falcon’s map_http_methods utility to construct2036

the method mapping as required. In contrast, the2037

GPT 4.1 output omits the explicit definition of the2038

CustomRouter class in its solution, violating the2039

requirement to use the existing starting code. Al-2040

though the logic within the solution() function2041

is correct, the absence of a CustomRouter defi-2042

nition in the completed module would lead to a2043

NameError or otherwise prevent the expected dy-2044

namic method attachment. The critical distinction2045

is that O1 respects all constraints including not2046

modifying the class definition directly, while GPT2047

4.1 provides an incomplete module, failing to meet2048

the initialization requirements set by the problem.2049

H Logic vs. Knowledge Retention2050

The goal of our proposed benchmark,2051

GitChameleon, is to evaluate a model’s ability to2052

retain version-specific knowledge—specifically,2053

whether it can recall the functionalities associated2054

with particular library versions it has been trained 2055

on. Notably, this capability is distinct from the 2056

ability to generate logically correct code. While 2057

we do not explicitly disentangle whether model 2058

failures on our evaluation suite stem from incorrect 2059

logic generation or incorrect API version usage, 2060

our benchmark is intentionally designed so that 2061

most problems primarily test knowledge retention 2062

rather than complex logic reasoning. For each 2063

problem in our dataset, we compute the number 2064

of logic-related nodes in the Abstract Syntax Tree 2065

(AST) of the ground-truth solution and present 2066

their distribution in Figure 14. As shown, most 2067

ground-truth solutions contain fewer than five 2068

logic-related AST nodes. This supports our claim 2069

that the benchmark is primarily designed to assess 2070

version-specific knowledge retention rather than 2071

complex logic-based code generation. 2072

Table 15: Criteria for classifying AST nodes as logic-
related.

Condition Classification

Calling a user-defined function ✓
Calling built-in Python operators (e.g., +) ✓
Calling a math or utility function with non-
obvious purpose

✓

Calling a library method (e.g.,
torch.from_numpy)

✗

Composing multiple calls together ✓

The criteria for classifying AST nodes as logic- 2073

related are provided in Table 15, and we include 2074

visualizations of the ASTs for two example ground- 2075

truth solutions for further illustration in Figures 15 2076

and 16 respectively. 2077

1. Sample ID: 0, Logic Nodes: 3 2078
2079

import torch 2080
def log_ndtr(input_tensor: torch. 2081

Tensor) -> torch.Tensor: 2082
import numpy as np 2083
from scipy.stats import norm 2084
output = torch.from_numpy(norm. 2085

logcdf(input_tensor.numpy()) 2086
) 2087

return output 20882089

Listing 37: Sample 0 Ground Truth Solution

2. Sample ID: 329, Logic Nodes: 0 2090
2091

import matplotlib.pyplot as plt 2092
def use_seaborn () -> None: 2093

plt.style.use("seaborn") 20942095

Listing 38: Sample 329 Ground Truth Solution
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Figure 14: Logic Nodes Distribution over samples’
ground truth solutions’ ASTs. Most ground truth
solutions have less than five logic nodes.

I Prompt Templates2096

This appendix contains all the prompts we had used2097

for our experiments:2098

• The prompts for greedy sampling are given in2099

Figure 17.2100

• The prompts for self-debugging are given in2101

Figure 18.2102

• The prompt for the multi-step agent is given2103

in Figure 19.2104

• The prompt for RAG is given in Figure 20.2105

• The prompt and file format for Coding Assis-2106

tants are given in Figure 21.2107

• The prompt for SEK is given in Figure 22 (for2108

keywords generation) and Figure 23 (for code2109

generation).2110

J Artifacts and Model Details2111

This appendix provides citations for various arti-2112

facts and models mentioned in the paper.2113

J.1 Libraries2114

This is the full list of libraries included in2115

GitChameleon 2.0.2116

• PyTorch (Paszke et al., 2019)2117

• Geopandas (Jordahl et al., 2020)2118

• NLTK (Loper and Bird, 2002)2119

• NetworkX (Hagberg et al., 2008)2120

• GeoPy11 2121

• Gradio (Abid et al., 2019) 2122

• Scikit-Learn (Buitinck et al., 2013) 2123

• Matplotlib (Hunter, 2007) 2124

• PyCaret12 2125

• Pandas (The pandas development team, 2020; 2126

McKinney, 2010) 2127

• NumPy (Harris et al., 2020) 2128

• LightGBM13 2129

• spaCy 14 2130

• Django15 2131

• SciPy (Virtanen et al., 2020) 2132

• Flask16 2133

• Jinja217 2134

• SymPy18 2135

• Seaborn19 2136

• mitmproxy20 21 2137

• pytest 22 2138

• Falcon web framework23 2139

• Tornado web server24 2140

• Plotly25 2141

• Librosa26 2142

• Pillow 27 2143

11https://pypi.org/project/geopy/
12https://pycaret.org/
13https://lightgbm.readthedocs.io/
14https://spacy.io/
15https://www.djangoproject.com/
16https://flask.palletsprojects.com/
17https://jinja.palletsprojects.com/
18https://www.sympy.org/en/index.html
19https://seaborn.pydata.org/
20https://mitmproxy.org/
21https://mitmproxy.org/
22https://pytest.org/
23https://falconframework.org/
24https://www.tornadoweb.org/
25https://plotly.com/python/
26https://librosa.org/doc/latest/index.html
27https://python-pillow.org/
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Figure 15: AST visualization for the ground-truth solution of Sample ID 0. The three color-coded call nodes (in
grey and green) represent the logic-related components, classified under the “composing multiple calls together”
category. The corresponding ground-truth code is shown in Code block 37 for reference.

Figure 16: AST visualization for the ground-truth solution of Sample ID 329. No logic nodes are present, as the
only call node corresponds to the “calling a library method” category. The ground-truth solution is provided for
reference in Code block 38.
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Figure 17: Prompts for Greedy Sampling

(a) System Prompt for Zero-Shot Prompting

You are a skilled Python programmer
tasked with solving a coding problem.
Your goal is to provide a clear,
efficient, and correct solution that
meets all the specified requirements.

↪→
↪→
↪→
↪→

Please provide your solution following
these guidelines:↪→

1. Use the required library in your
solution.↪→

2. Incorporate the provided starter code
correctly.↪→

3. Write your solution in Python.
4. Format your solution within a markdown

code block.↪→
5. Ensure your code is clean, efficient,

and well-commented.↪→
6. Output only the code block and nothing

else.↪→

Example output format:

```python
# [Your code here, incorporating the

starter code]↪→

# [Additional code and comments as needed]
```

After writing your solution, please review
it to ensure all requirements are met
and the code is correct and efficient.

↪→
↪→

Here are the key elements for this task:

(b) System Prompt for Chain-Of-Thought Prompting

You are a skilled Python programmer
tasked with solving a coding problem.
Your goal is to provide a clear,
efficient, and correct solution that
meets all the specified requirements.

↪→
↪→
↪→
↪→

First, let's think step-by-step. Then,
please provide your solution
following these guidelines:

↪→
↪→

1. Use the required library in your
solution.↪→

2. Incorporate the provided starter code
correctly.↪→

3. Write your solution in Python.
4. Format your solution within a markdown

code block.↪→
5. Ensure your code is clean, efficient,

and well-commented.↪→
6. Output nothing else after the code

block.↪→

Example output format:

[Step-by-step thinking]
```python
# [Your code here, incorporating the

starter code]↪→

# [Additional code and comments as needed]
```

After writing your solution, please review
it to ensure all requirements are met
and the code is correct and efficient.

↪→
↪→

Here are the key elements for this task:

(c) User Prompt

1. Required Library:
<library>
{{library}}
</library>

2. Python version:
<python>
{{python_version}}
</python>

2. Coding Problem:
<coding_problem>
{{coding_problem}}
</coding_problem>

3. Starter Code:
<starter_code>
{{starter_code}}
</starter_code>
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• tqdm 282144

• Kymatio292145

J.2 Models2146

Open-Weights Models2147

The following open-weights models were evalu-2148

ated:2149

• Llama 3.1 Instruct Turbo: (Kassianik2150

et al., 2025)2151

• Llama 3.3 Instruct Turbo 70B: (AI, 2025)2152

• Llama 4 Maverick 400B: (AI, 2025)2153

• Qwen 2.5-VL Instruct 72B: (Qwen et al.,2154

2025)2155

• Qwen 3 235B:(Yang et al., 2025)2156

• Command A 111B: (Cohere et al., 2025)2157

• DeepSeek R1 685B: (DeepSeek-AI, 2025)2158

• DeepSeek v3: (DeepSeek-AI et al., 2025)2159

• Openhands LM 32B v0.1: (Wang, 2025)2160

• Reka Flash-3: (Reka)2161

• Jamba 1.6 Mini, Large: (Lieber et al.,2162

2024)2163

Enterprise Models2164

The following enterprise models were evaluated:2165

• Arcee CoderL: (Arcee)2166

• Claude 3.5 Haiku302167

• Claude 3.5 Sonnet312168

• Claude 3.7 Sonnet: (Anthropic, 2025)2169

• Claude 4 Sonnet322170

• CommandR+332171

• Gemini 1.5 Pro: (Team et al., 2024)2172

• Gemini 2.0 Flash: (Kampf, 2025)2173

28https://github.com/tqdm/tqdm
29https://librosa.org/doc/latest/index.html
30https://www.anthropic.com/claude/haiku
31https://www.anthropic.com/news/claude-3-5-sonnet
32https://www.anthropic.com/claude/sonnet
33https://cohere.com/blog/command-r-plus-micro

soft-azure

• Gemini 2.5 Pro: (Cloud, 2025) 2174

• Gemini 2.5 Flash: (Cloud, 2025) 2175

• GPT-4.1: (OpenAI, 2025a) 2176

• GPT-4.1-mini: (OpenAI, 2025a) 2177

• GPT-4.1-nano: (OpenAI, 2025a) 2178

• GPT-4o: (OpenAI, 2024) 2179

• GPT-4o-mini: (OpenAI, 2024) 2180

• GPT-4.5: (OpenAI, 2025b) 2181

• o1: (OpenAI, 2024) 2182

• o3-mini: (OpenAI, 2024) 2183

• codex-mini34 2184

• Grok 3: (xAI, 2025) 2185

• Mistral Medium 3: (Mistral AI, 2025) 2186

• Devstral Small35 2187

• Inflection 3 Productivity36 2188

• Liquid LFM 40B MoE37 2189

• Nova Pro:(Intelligence, 2024) 2190

J.3 Coding Assistants (CLI/IDE) 2191

The following coding assistants were studied as 2192

part of the experimentation pipeline: 2193

• Claude Code38 (CLI) 2194

• Goose39 (CLI) 2195

• Cline40 (IDE-VSCode) 2196

• RooCode41 (IDE-VSCode) 2197

• KiloCode42 (IDE-VSCode) 2198

34https://platform.openai.com/docs/models/code
x-mini-latest

35https://mistral.ai/news/devstral
36https://openrouter.ai/inflection/inflectio

n-3-productivity
37https://www.liquid.ai/blog/liquid-foundatio

n-models-our-first-series-of-generative-ai-mod
els

38https://docs.anthropic.com/en/docs/claude-c
ode/overview

39https://block.github.io/goose/
40https://cline.bot/
41https://roocode.com/
42https://kilocode.ai/

35

https://github.com/tqdm/tqdm
https://librosa.org/doc/latest/index.html
https://cohere.com/blog/command-r-plus-microsoft-azure
https://cohere.com/blog/command-r-plus-microsoft-azure
https://platform.openai.com/docs/models/codex-mini-latest
https://platform.openai.com/docs/models/codex-mini-latest
https://mistral.ai/news/devstral
https://openrouter.ai/inflection/inflection-3-productivity
https://openrouter.ai/inflection/inflection-3-productivity
https://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generative-ai-models
https://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generative-ai-models
https://www.liquid.ai/blog/liquid-foundation-models-our-first-series-of-generative-ai-models
https://docs.anthropic.com/en/docs/claude-code/overview
https://docs.anthropic.com/en/docs/claude-code/overview
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Figure 18: Prompts for Self-Debugging

(a) System Prompt

You are an expert programming assistant.
Your task is to fix issues in a generated
Python solution for a given programming
problem. You are provided with:

↪→
↪→
↪→

- A problem statement
- Starter code
- A previously generated incorrect solution
- A top-level execution trace or error

message↪→
- Dependencies information (versions,

libraries).↪→

Please generate a corrected Python solution
by following these strict guidelines:↪→

1. Use the required libraries explicitly in
your code.↪→

2. Correctly incorporate the provided
starter code - do not remove or alter
its structure.

↪→
↪→
3. Write in standard Python syntax.
4. Wrap your entire solution within a single

Markdown code block.↪→
5. Do not include any text outside the code

block - no explanations, comments,
docstrings, or usage examples.

↪→
↪→
6. Ensure the code is clean, efficient, and

syntactically valid.↪→
7. Avoid interactive, stateful, or

environment-dependent constructs (e.g.,
Django projects, web servers).

↪→
↪→
8. Your output must be executable in a

non-interactive environment (e.g., a
test harness or script runner).

↪→
↪→

Example output format:

```python
# [Your corrected code here]
```

Before submitting, carefully review your
code for correctness, completeness, and
adherence to all constraints.

↪→
↪→

(b) User Prompt

<Problem>
{problem}
</Problem>

<Python Version>
{python_version}
</Python Version>

<Library>
{library}
</Library>

<Version>
{version}
</Version>

<Extra Dependencies>
{additional_dependencies}
</Extra Dependencies>

<Starting Code>
{starting_code}
</Starting Code>

<Generated Solution>
{solution}
</Generated Solution>

<Trace>
{top_level_trace}
</Trace>
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Figure 19: Tool-Calling Agent Prompt

You are to solve a coding problem in Python.

# Instructions:

* The coding problem requires using the
library {library}=={version}. Try using
the problem with only this library and
the standard Python libraries.

↪→
↪→
↪→

* Do a thorough research on the web about how
to solve the coding problem for the given
library version. Repeat multiple times
if needed.

↪→
↪→
↪→

* BEFORE FINISHING YOUR WORK, YOU MUST check
your solution to the coding problem by
running the `docker_problem_sandbox`
tool.

↪→
↪→
↪→

* Use the `final_answer` tool to return a
self-contained Python script that solves
the problem. DO NOT INCLUDE ANY TEXT
BESIDES FOR THE CODE IN THE FINAL ANSWER.

↪→
↪→
↪→

* The solution needs to be in a markdown code
block.↪→

* The solution needs to start with the
starter code provided below.↪→

# Coding Problem:

{problem}

# Starter Code:

```python
{starting_code}
```

Figure 20: RAG Prompt

You are an AI assistant specialized in
solving Python programming problems using
information derived from documentation.

↪→
↪→

Each query may specify particular libraries
and version constraints. Your task is to
generate a correct, efficient, and
minimal Python solution that adheres
strictly to these requirements.

↪→
↪→
↪→
↪→

Please follow these rules when crafting your
response:↪→

1. Use only the specified libraries and
respect the given version constraints.↪→

2. Incorporate any provided starter code as
required.↪→

3. Write only Python code- no in- line
comments or usage examples. Do not
provide anything in the response but the
code.

↪→
↪→
↪→
4. Ensure the code is clean, minimal, and

adheres to best practices.↪→
5. The code must be executable in a

non-interactive environment (e.g., avoid
frameworks like Django or code requiring
a web server).Context:

↪→
↪→
↪→
{context}

Based on the above, respond to the user query
below.↪→

Query: {query}

Here, {context} refers to the context of the top-k re-
trieved documents from the vectorized database for that
query and {query} is the same as the User Prompt given
in Figure 17(c).
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Figure 21: Prompt and File Format for Coding Assistants

(a) Prompt

Solve each sample_{i}.py in this folder
then subsequently save your solutions
as py files with the same name in a
separate subfolder called "{assistant
name}" that just completes the starting
code provided in the sample and uses
the instructions written in the
comments at the start of each file.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

(b) Input File Format

# Complete using the following libraries
and/or extra dependencies and their
versions:

↪→
↪→
# problem statement: {problem}
# library: {library}
# version: {version}
# extra_dependencies: {extra_dependencies}
{starting_code}

(a) presents the prompt template we had used for our Coding Assistant experiments. (b) shows the format of the
example files referenced in the prompt.

Figure 22: Prompts for SEK (Keyword Generation Stage)

(a) System Prompt

You are a seasoned Python developer at a
Fortune 500 company who excels at
analyzing complex code. Analyze the
given code problem from the problem
statement and starter code provided. Try
to extract the keywords from the code
problem. For each identified keyword:

↪→
↪→
↪→
↪→
↪→
↪→
1. Provide the keyword.
2. Give a formalized explanation of the

keyword using technical languages.↪→

Provided Format:
Keywords:[Keywords]
Explainations:[Formalized explanations]

Guidelines:
- Prioritize keywords that are crucial to

understanding the input parameters,
return content or supplementary
information.

↪→
↪→
↪→
- Use precise languages in explanations and

provide formalized definitions where
appropriate.

↪→
↪→
- Ensure explanations are consistent with

the behaviors expected based on the
problem description.

↪→
↪→
- Limit to the top 1-3 important keywords to

focus on core concepts.↪→
- You are supposed to output a structured

JSON output containing the extracted
keywords and their corresponding
formalized explanations in individual
lists of strings. The keys for this JSON
must be Keywords and Explainations.

↪→
↪→
↪→
↪→
↪→
- Strictly adhere to the provided format, do

not output anything else.↪→

(b) User Prompt

<Problem Statement>
{problem}
</Problem Statement>

<Starting Code>
{starting_code}
</Starting Code>
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Figure 23: Prompts for SEK (Code Generation Stage)

(a) System Prompt

You are a skilled Python programmer tasked
with solving a coding problem. Your goal
is to provide a clear, efficient, and
correct solution that meets all the
specified requirements.

↪→
↪→
↪→
↪→

Please provide your solution following these
guidelines:↪→

1. Use the required library in your solution.
2. Incorporate the provided starter code

correctly.↪→
3. Write your solution in Python.
4. Format your solution within a markdown

code block.↪→
5. Ensure your code is clean and efficient.
6. Output only the code block and nothing

else. Do not add any in-line comments,
documentations, references or usage
examples.

↪→
↪→
↪→
7. Make sure your code is executable in a

non-interactive environment. For example,
do not write code which requires building
a Django project or deploying a web-app.

↪→
↪→
↪→

Example output format:

```python
# [Your code here, incorporating the starter

code]↪→
```

After writing your solution, please review
it to ensure all requirements are met
and the code is correct and efficient.

↪→
↪→

Here are the key elements for this task:

(b) User Prompt

<Python Version>
{python_version}
</Python Version>

<Library>
{library}
</Library>

<Version>
{version}
</Version>

<Extra Dependencies>
{extra_dependencies}
</Extra Dependencies>

<Problem Statement>
{problem}
</Problem Statement>

<Keywords>
Analyze the following key terms and their

relationships within the problem
context:

↪→
↪→
{General_Keywords}
{Abstract_Keywords}
</Keywords>

<Starting Code>
{starting_code}
</Starting Code>
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