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Abstract
There is a large variety of machine learning methodologies that are based on the extraction of spec-
tral geometric information from data. However, the implementations of many of these methods
often depend on traditional eigensolvers, which present limitations when applied in practical on-
line big data scenarios. To address some of these challenges, researchers have proposed different
strategies for training neural networks as alternatives to traditional eigensolvers, with one such ap-
proach known as Spectral Neural Network (SNN). In this paper, we initiate a theoretical exploration
of the optimization landscape of SNN’s objective to shed light on the training dynamics of SNN.
Unlike typical studies of convergence to global solutions of NN training dynamics, SNN presents
an additional complexity due to its non-convex ambient loss function, a feature that is common
in unsupervised learning settings. We show that the ambient optimization landscape is benign in
a quotient geometry. Furthermore, we use the experimental results to see that the parameterized
optimization landscape inherits from the benignness of the ambient landscape if the neural network
is appropriately overparameterized.

1. Main

In the past decades, researchers from a variety of disciplines have studied the use of spectral geomet-
ric methods to process, analyze, and learn from data. These methods have been used in supervised
learning [2, 5, 24], clustering [21, 27], dimensionality reduction [4, 9], and contrastive learning
[14]. While the aforementioned methods have strong theoretical foundations, their algorithmic im-
plementations often depend on traditional eigensolvers. These eigensolvers tend to underperform
in practical big data scenarios due to high computational demands and memory constraints. More-
over, they are particularly vulnerable in online settings since the introduction of new data typically
necessitates a full computation from scratch.

Spectralnet [23] and Spectral Neural Network (SNN) [14] have been proposed to overcome
these issues. In these approaches, the goal is to find neural networks that can approximate the
spectrum of a large target matrix, and the differences among the approaches lie mostly in the specific
loss functions used for training. Here we focus on SNN. A SNN is trained by minimizing the
spectral constrastive loss function:

min
θ∈Θ

L(θ)
def
= ℓ(Yθ), where ℓ(Y)

def
=

∥∥∥YY⊤ −An

∥∥∥2
F
, Y ∈ Rn×r, (1.1)

through first-order optimization methods. In the above and in the sequel, θ represents the vector
of parameters of the neural network fθ : Rd → Rr, the matrix Yθ is the n × r matrix whose
rows are the outputs fθ(x1), . . . , fθ(xn), and ∥·∥F is the Frobenius norm. The mapping fθ can be
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SPECTRAL NEURAL NETWORK

interpreted as a feature or representation map for the input data. In the remainder, Y∗ will denote a
minimizer of ℓ and we will use fθ∗ to denote the neural network that minimizes L(θ). We will make
a minimum assumption on An in the sequel. We only assume An is symmetric and PSD, which are
mild assumptions in spectral embedding setup.

In this paper, we describe the optimization landscape of ℓ under an eigengap assumption of An.
In a quotient geometry, the optimization landscape of ℓ is shown benign. We remark that the ambient
landscape of Spectralnet is recently discussed in [1]. We further observe that the parameterized
optimization landscape inherits from the ambient landscape by using some experimental results.

Related work Other types of NN-based Eigensolvers have been considered in [22] and [11]. [22]
uses a bi-level optimization algorithm to solve a constrained optimization problem. This algorithm’s
computational complexity is typically higher than the one of SNN training and it requires keeping
certain covariance matrices in memory during updates. [11] takes a similar approach as [22] but
can avoid the bi-level optimization of the latter. This, however, comes at the expense of having an
intractable theoretical computational complexity.

One of our main objects of study in this paper is the ambient problem Equation 1.1. This
formulation of the problem is related to linear networks. Linear networks are neural networks with
identity activation. A variety of prior works have studied many different aspects of shallow linear
networks such as their loss landscape and their associated optimization dynamics [3, 7, 20, 26]. Of
relevance are also other works in the literature studying optimization problems very closely related
to Equation 2.1 [8, 17, 19]. For example, in Section 3 in [17], there is a landscape analysis for
Equation 2.1 when the matrix An is assumed to have rank smaller than or equal to r. That setting is
typically referred to as overparameterized or exactly parameterized, whereas here, our focus is on
the underparameterized setting.

2. Preliminary Results

In this section, we briefly provide some technical results that will serve as foundations for the
analysis presented in this paper.

Rotational Invariance Recall the ambient optimization problem defined in Equation 1.1 as

min
Y∈Rn×r

ℓ(Y), where ℓ(Y)
def
=

∥∥∥YY⊤ −An

∥∥∥2
F
. (2.1)

Suppose Y is a stationary point of Equation 2.1. Then YO is also a stationary point for any
r × r orthogonal matrix O ∈ Or. This implies that the loss function ℓ is non-convex in any
neighborhood of a stationary point [18]. Hence we shall consider a quotient geometry to attempt to
remove the local non-convexity induced by the action of the orthogonal group. Let N n

r+ be the space
of n× r matrices with full column rank. To define the quotient manifold, we encode the invariance
mapping, i.e., Y → YO, by defining the equivalence classes [Y] = {YO : O ∈ Or}. From

[16], N n
r+

def
= N n

r+/Or is a quotient manifold of N n
r+. For a detailed introduction to Riemannian

optimization see [6]. Since ℓ is invariant within each the equivalence classes of N n
r+ , one obtains

the following optimization problem on the quotient manifold N n
r+ :

min
[Y]∈Nn

r+

H([Y])
def
=

1

2

∥∥∥YY⊤ −An

∥∥∥2
F
, (2.2)
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which can be approached via Riemannian first order methods. In this case, however, the Riemannian
gradient descent is equivalent to standard gradient descent in the Euclidean geometry. This is the
reason why the results in Section 3 directly justify the ability of the gradient based algorithm in the
Euclidean geometry to find global optimizers of the ambient space problem Equation 2.2.

First Order Stationary Points Since An is a PSD matrix, the Eckart–Young–Mirsky theorem
(see [12]) implies that the global optimizers of Equation 2.1 are the matrices Y of the form Y =
Y∗O, where O ∈ Or and

Y∗ def
=

 | |√
λ1(An)v1 . . .

√
λr(An)vr

| |

 .

In the above, λl(An) represents the l-th largest eigenvalue of An and vl is a corresponding eigen-
vector with Euclidean norm one. In case there are repeated eigenvalues, the corresponding vl need
to be chosen to be orthogonal to each other.

Next, we need to understand the other first-order stationary points (FOSP) of Equation 2.2. We
use SVD to get Y = UDV⊤, where U ∈ Rn×k, D ∈ Rk×k is a diagonal matrix, and V ∈ Rk×r.
In addition, U⊤U = V⊤V = Ik, where k is the rank of Y and Ik is the k × k identity matrix.

Theorem 2.1 (FOSP of Equation 2.2) Let UΣU
⊤ be An’s SVD factorization, and let Λ = Σ1/2.

Then for any S subset of [n] we have that
[
USΛS

]
is a Riemannian FOSP of Equation 2.2. Further,

these are the only Riemannian FOSPs.

Theorem 2.1 shows that linear combinations of eigenvectors can be used to construct Rieman-
nian first-order stationary points (FOSP) of Equation 2.2. This theorem also shows that there are
many FOSPs of Equation 2.2. This is quite different from the regime studied in [19]. In general,
gradient descent is known to converge to a FOSP. Hence one might expect that if we initialized near
one of the saddle points, then we might converge to that saddle point.

3. Landscape of SNN’s Ambient Optimization Problem

In this section, we focus on the non-convexity due to the loss function, and show that gradient
descent converges to the global minimum of ℓ. We do this by characterizing the optimization land-
scape of ℓ. To analyze the landscape for Equation 2.2, we need expressions for the Riemannian
gradient, the Riemannian Hessian, as well as the geodesic distance d on this quotient manifold. By
Lemma 2 from [19], we have that

d ([Y1] , [Y2]) = min
Q∈Or

∥Y2Q−Y1∥F

and from Lemma 3 from [19], we have that

gradH([Y]) = 2
(
YY⊤ −An

)
Y,

HessH([Y]) [θY, θY] =
∥∥∥Yθ⊤Y + θYY⊤

∥∥∥2
F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
.

(3.1)

Finally, by the classical theory on low-rank approximation (Eckart–Young–Mirsky theorem [12]),
[Y∗] is the unique global minimizer of Equation 2.2. Let κ∗ = σ1 (Y

∗) /σr (Y
∗) be the condition
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number of Y∗. Here, σi(A) is the ith largest singular value of A, and ∥A∥ = σ1(A) is its spectral
norm. Our precise assumption on the matrix An for this section is as follows.

Assumption 1 (Eigengap) σr+1(An) is strictly smaller than σr(An).

Let µ, α, β, γ ⩾ 0. We then split the landscape of H([Y]) into the following five regions (not
necessarily non-overlapping).

R1
def
=

{
Y ∈ Rn×r

∗
∣∣d ([Y], [Y∗]) ⩽ µσr (Y

∗) /κ∗
}
,

R2
def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ d ([Y], [Y∗]) > µσr (Y
∗) /κ∗, ∥gradH([Y])∥F ⩽ αµσ3

r (Y
∗) / (4κ∗) ,

∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤∥∥

F
⩽ γ

∥∥Y∗Y∗⊤∥∥
F

}
,

R′
3

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∥Y∥ ⩽ β ∥Y∗∥ ,∥∥YY⊤∥∥
F
⩽ γ

∥∥Y∗Y∗⊤∥∥
F

}
,

R′′
3

def
=

{
Y ∈ Rn×r

∗

∣∣∣∥Y∥ > β∥Y∗∥, ∥YY⊤ ∥F ⩽ γ∥Y∗Y∗⊤∥F
}
,

R′′′
3

def
=

{
Y ∈ Rn×r

∗

∣∣∣∥YY⊤
∥∥∥
F
> γ

∥∥∥Y∗Y∗⊤
∥∥∥
F
},

We show that for small values of µ, the loss function is geodesically convex in R1. R2 is then
defined as the region outside of R1 such that the Riemannian gradient is small relative to µ. Hence
this is the region in which we are close to the saddle points. We show that for this region there is
always an escape direction (i.e., directions where the Hessian is strictly negative). R′

3, R′′
3 , and R′′′

3

are the remaining regions. We show that the Riemannian gradient is large (relative to µ) in these
regions. Finally, it is easy to see that R1

⋃
R2

⋃
R′

3 ∪R′′
3

⋃
R′′′

3 = Rn×r
∗ .

Theorem 3.1 (Local Geodesic Strong Convexity and Smoothness of Equation 2.2) Suppose 0 ⩽
µ ⩽ κ∗/3. Given that Assumption 1 holds, for any Y ∈ R1,

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)2 − (14/3)µ

)
σr (An)− 2σr+1(An),

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)2 + 14µσ2
r (Y

∗) /3

In particular, if µ is further chosen such that
(
2 (1− µ/κ∗)2 − (14/3)µ

)
σr (An)− 2σr+1(An) >

0, we have H([Y]) is geodesically strongly convex and smooth in R1.

Theorem 3.1 guarantees that the optimization problem Equation 2.2 is geodesically strongly
convex and smooth in a neighborhood of [Y∗]. It also shows that if Y is close to the global mini-
mizer, then Riemannian gradient descent stays in R1 and converges to the global minimizer of the
quotient space linearly following the proof of 6, Theorem 11.29. Without quotient out the rotation
invariance property, the Riemannian strong convexity cannot be guaranteed.

In general, gradient descent is known to converge to a FOSP. Hence one might expect that if we
initialized near one of the saddle points, then we might converge to that saddle point. However, our
next main result of the section shows that even if we initialize near the saddle, there always exist
escape directions.
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Theorem 3.2 (Region with Negative Eigenvalue in the Riemannian Hessian of Equation 2.1)
Assume that Assumption 1 holds and α is small enough. Given any Y ∈ Rn×r

∗ such that Y ∈ R2,
there exist two explicit escaping directions θ1Y and θ2Y such that

HessH([Y])
[
θjY, θjY

]
≤ −C1∥θjY∥2F (3.2)

for some constant C1 > 0 depending on α, µ and An and for either j = 1 or 2.

Finally, the next result says that if we are not close to a FOSP, then we have large gradients.

Theorem 3.3 ((Regions with Large Riemannian Gradient of Equation 2.1)
1. ∥gradH([Y])∥F > αµσ3

r (Y
∗) / (4κ∗) , ∀Y ∈ R′

3;

2. ∥gradH([Y])∥F ⩾ 2
(
∥Y∥3 − ∥Y∥ ∥Y∗∥2

)
> 2

(
β3 − β

)
∥Y∗∥3 , ∀Y ∈ R′′

3;

3. ⟨gradH([Y]),Y⟩ > 2(1− 1/γ)
∥∥YY⊤∥∥2

F
, ∀Y ∈ R′′′

3 .
In particular, if β > 1 and γ > 1, we have the Riemannian gradient of H([Y]) has large magnitude
in all regions R′

3,R′′
3 and R′′′

3 .

The behavior, implied by our theorems, of gradient descent in Euclidean space as it goes through
the regions R1, R2, R3 is illustrated in Figures 1 and 2. See a discussion in Section 4.

These results can be seen as an under-parameterized generalization to the regression problem of
Section 5 in [19]. The proof in [19] is simpler because, in their setting, there are no saddle points
or local minima that are not global in Rn×r

∗ . Conceptually, [26] proves that in the setting r ≥ n, the
gradient flow for Equation 2.1 converges to a global minimum linearly; in particular, in their setting
there aren’t any saddle points. We complement this result by studying the case r < n.

Theorem 3.1, 3.2 and 3.3 guarantee the benigness of the ambient optimization problem, which
is necessary condition of the benigness of parameterized optimization problem Equation 1.1. Also,
these landscape results imply that perturbed gradient descent is guaranteed to converge to the global
minima in polynomial time for Equation 2.1 10, 13, 15, 25.

4. Parameterized Loss Landscape

Finally, answering whether gradient descent converges to the global minimum for the parameterized
problem (i.e., the NN training problem) is quite challenging. Hence, for this piece, we explore the
question experimentally. Specifically, we present some numerical experiments where we consider
different initializations for the training of SNN. Here we take 100 data points from MNIST and
let An be the n × n gram matrix for the data points for simplicity. We remark that while we
care about a An with a specific form for our approximation theory results, our analysis of the loss
landscape described below holds for an arbitrary positive semi-definite matrix. In Figure 1, we plot
the norm of the gradient during training when initialized in two different regions of parameter space.
Concretely, in a region of parameters for which Yθ is close to a solution Y∗ to problem 2.1 and
a region of parameters for which Yθ is close to a saddle point of the ambient loss ℓ. We compare
these plots to the ones we produce from the gradient descent dynamics for the ambient problem 2.1,
which are shown in Figure 2. We notice a similar qualitative behavior with the training dynamics
of the NN, suggesting that the landscape of problem 1.1, if the NN is properly overparameterized,
inherits properties of the landscape of ℓ.
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Appendix A. Parameterized optimization landscape

(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 1: (a) and (b) Sum of the norms of the gradients for a two-layer ReLU Neural Network. In
(a), the network is initialized near the global optimal solution and in (b) the network is initialized
near a saddle point. (c) shows the distance between the current outputs of the neural network and
the optimal solution for the case when it was initialized near a saddle point.

(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 2: Norms of the gradients for the ambient problem and the distance to the optimal solution.
In (a), Y is initialized near the global optimal solution, and in (b) Y is initialized near a saddle
point. c) shows the distance between Y and the optimal solution for the case when it was initialized
near a saddle point.

Appendix B. Full Paper
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Spectral Neural Networks: Approximation

Theory and Optimization Landscape

May 28, 2024

Abstract

There is a large variety of machine learning methodologies that are
based on the extraction of spectral geometric information from data. How-
ever, the implementations of many of these methods often depend on tra-
ditional eigensolvers, which present limitations when applied in practical
online big data scenarios. To address some of these challenges, researchers
have proposed different strategies for training neural networks as alterna-
tives to traditional eigensolvers, with one such approach known as Spec-
tral Neural Network (SNN). In this paper, we investigate key theoretical
aspects of SNN. First, we present quantitative insights into the tradeoff
between the number of neurons and the amount of spectral geometric
information a neural network learns. Second, we initiate a theoretical ex-
ploration of the optimization landscape of SNN’s objective to shed light
on the training dynamics of SNN. Unlike typical studies of convergence
to global solutions of NN training dynamics, SNN presents an additional
complexity due to its non-convex ambient loss function, a feature that is
common in unsupervised learning settings.

1 Introduction

In the past decades, researchers from a variety of disciplines have studied the use
of spectral geometric methods to process, analyze, and learn from data. These
methods have been used in supervised learning [1, 2, 3], clustering [4, 5], dimen-
sionality reduction [6, 7], and contrastive learning [8]. While the aforementioned
methods have strong theoretical foundations, their algorithmic implementations
often depend on traditional eigensolvers. These eigensolvers tend to underper-
form in practical big data scenarios due to high computational demands and
memory constraints. Moreover, they are particularly vulnerable in online set-
tings since the introduction of new data typically necessitates a full computation
from scratch.

To overcome some of the drawbacks of traditional eigensolvers, new frame-
works for learning from spectral geometric information that are based on the
training of neural networks have emerged. To begin discussing some of popular
training strategies, consider a data set Xn = {x1, . . . , xn} in Rd and a n × n

1



adjacency matrix An describing similarity among points in Xn. One could start
by computing the eigendecomposition of An using traditional eigensolvers and
get eigenvectors v1, . . . ,vr. Then, to generalize these eigenvectors to points
outside of Xn, one can minimize the following ℓ2 loss:

min
θ

∥fθ(Xn)− v∥2, (1)

where v = [v1,v2 . . . ,vr] and θ denotes the parameters of a neural network.
This approach, referred to as Eigensolver net, is a natural way to extend the
geometric information contained in the similarity matrix of a finite collection of
points to out-of-sample data and can be used even when the matrix An is not
PSD. On the other hand, the Eigensolver net has some drawbacks. Specifically,
one still needs to compute the eigendecomposition using traditional eigensolvers,
which is precisely what one may want to avoid.

Spectralnet [9] and Spectral Neural Network (SNN) [8] have been proposed
to overcome this issue. In these approaches, the goal is to find neural networks
that can approximate the spectrum of a large target matrix, and the differences
among the approaches lie mostly in the specific loss functions used for training;
here we focus on SNN, and provide some details on Spectralnet in Appendix
A.2. A SNN is trained by minimizing the spectral constrastive loss function:

min
θ∈Θ

L(θ)
def
= ℓ(Yθ), where ℓ(Y)

def
=
∥∥YY⊤ −An

∥∥2
F
, Y ∈ Rn×r, (2)

through first-order optimization methods. Figure 3 illustrates that SNNs can
well approximate the desired eigenvectors associated to a proximity based simi-
larity matrix. In the above and in the sequel, θ represents the vector of param-
eters of the neural network fθ : Rd → Rr, the matrix Yθ is the n × r matrix
whose rows are the outputs fθ(x1), . . . , fθ(xn), and ∥·∥F is the Frobenius norm.
The mapping fθ can be interpreted as a feature or representation map for the
input data. In the remainder, Y∗ will denote a minimizer of ℓ and we will use
fθ∗ to denote the neural network that minimizes L(θ).

In this paper, we investigate some of SNN’s theoretical underpinnings. To
make our setting more precise, through our discussion we adopt the manifold
hypothesis and assume the data set Xn = {x1, . . . , xn} to be supported on a low
dimensional manifold M embedded in Rd. Specifically, we make the following
assumption on the generation process of the data Xn.

Assumption 1. The points x1, . . . , xn are assumed to be sampled from a dis-
tribution supported on an m-dimensional manifold M that is assumed to be
smooth, compact, orientable, connected, and without a boundary. We assume
that this sampling distribution has a density ρ : M → R+ with respect to M′s
volume form and that ρ is bounded away from zero and bounded above by a
constant. In addition, ρ is assumed C2(M).

We also assume that Xn is endowed with a similarity matrix Gτ with entries

Gτ
ij = η

(
∥xi − xj∥

τ

)
, (3)

2



Figure 1: (A) Figure 2: (B)

Figure 3: (B) shows the first eigenvector for the Laplacian of a proximity graph
from data points sampled from S2 obtained using an eigensolver. (A) shows
the same eigenvector but obtained using SNN. The difference between the two
figures is minor, showing that the neural network learns the eigenvector of the
graph Laplacian well. See details in Appendix B.1.

where ∥x−y∥ denotes the Euclidean distance between x and y, τ is a proximity
parameter (which, for theoretical reasons stated below, will be assumed to scale
like 1 ≫ τ ≫ n−1/(m+4)), and η is a decreasing, non-negative function. In
short, Gτ measures the similarity between points according to their Euclidean
proximity. Examples of functions η include the indicator function ⊮[0,1] and the
Gaussian kernel. Associated to η we define the following normalization factor

cη
def
=

∫
Rm

|y1|2 η(|y|)dy, (4)

where y1 is the first coordinate of y.
FromGτ we define the adjacency matrix An that we’ll use within Equation 2

by

An
def
= D

− 1
2

G GD
− 1

2

G + aI, (5)

where (DG)ii =
∑n

j=1 Gij is the degree matrix associated to G, and a > 1 is a
fixed quantity. Here, we distance ourselves slightly from the choice made in the
original SNN paper [8], where An is taken to be G itself, and instead consider a
normalized version. This is due to the following key properties satisfied by our
choice of An.

The matrix An defined in Equation 5 satisfies the following properties:

1. An is symmetric positive definite.

2. An’s r top eigenvectors (the ones corresponding to the r largest eigenval-
ues) coincide with the eigenvectors of the r smallest eigenvalues of the
symmetric normalized graph Laplacian matrix (see [5]):

∆n
def
= I−D

−1/2
G GD

−1/2
G . (6)
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When n is large and τ scales with n appropriately, ∆n’s spectrum is known
to be closely connected to that of the weighted Laplace-Beltrami operator ∆ρ

defined as

∆ρf
def
= − 1

ρ3/2
div

(
ρ2∇

(
f
√
ρ

))
for all smooth enough f : M → R; see Section 1.4 in [10]. In the above, div
stands for the divergence operator on M, and ∇ for the gradient in M. ∆ρ

can be easily seen to be a positive semi-definite operator with respect to the
L2(M, ρ) inner product and its eigenvalues (repeated according to multiplicity)
can be listed in increasing order as

0 = λM
1 ≤ λM

2 ≤ . . . .

We will use f1, f2, . . . to denote the associated normalized (in the L2(M, ρ)-
sense) eigenfuntions.

We explore the following three questions:

Q1 How large do neural networks need to be to approximate the eigen-
vectors of ∆n and eigenfunctions of ∆ρ simultaneously?

Q2 Is it possible to use Equation 2 to build an approximating neural
network?

Q3 What can be said about the landscape of the objective function in
Equation 2?

Contributions We provide answers to the above three questions. We also
formulate and discuss open problems that, while motivated by our current in-
vestigation, we believe are of interest in their own right. In summary, the main
contributions of our work are the following:

• We provide precise tradeoffs between the size of the neural network and
the error in simultaneously approximating the eigenvectors of a large ad-
jacency matrix and the eigenfunctions of the Laplace Beltrami operator
on the manifold supporting the data; see Theorem 3.1 and Corollary 3.
In this way, we present an example of a setting where we can rigorously
quantify the error of approximation of a solution to a PDE on a manifold
with NNs.

• We show that by solving Equation 2 one can construct such approximation
provided the parameter space of the NN is rich enough; see Theorem 3.2.
Specifically, we show that the global minimizer of the loss function in
Equation 2 well approximates the eigenvectors when the neural network
is sufficiently expressive.

• Motivated by numerical evidence, we begin an exploration of the opti-
mization landscape of SNN and, in particular, provide a full description of
SNN’s associated ambient space optimization landscape. This landscape
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is proved to be benign; see discussion in Section 4. This observation opens
up a series of interesting future research directions that we briefly describe
in Section 6.

1.1 Related work

Other NN-based Eigensolvers: Other types of NN-based Eigensolvers have
been considered in [11] and [12]. [11] uses a bi-level optimization algorithm to
solve a constrained optimization problem. This algorithm’s computational com-
plexity is typically higher than the one of SNN training and it requires keeping
certain covariance matrices in memory during updates. [12] takes a similar ap-
proach as [11] but can avoid the bi-level optimization of the latter. This, how-
ever, comes at the expense of having an intractable theoretical computational
complexity.

Spectral clustering and manifold learning Several works have attempted
to establish precise mathematical connections between the spectra of graph
Laplacian operators over proximity graphs and the spectrum of weighted Laplace-
Beltrami operators over manifolds. Some examples include [13, 14, 15, 16, 17,
18, 19, 20, 21]. In this paper, we use adaptations of the results in [18] to in-
fer that, with very high probability, the eigenvectors of the normalized graph
Laplacian matrix ∆n defined in Equation 6 are essentially Lipschitz continuous
functions. These regularity estimates are one of the crucial tools for proving our
Theorem 3.1.

Contrastive Learning Contrastive learning is a self-supervised learning tech-
nique that has gained considerable attention in recent years due to its suc-
cess in computer vision, natural language processing, and speech recognition
[22, 23, 24, 25]. Theoretical properties of contrastive representation learning
were first studied by [26, 27, 28] where they assumed conditional independence.
[8] relaxes the conditional independence assumption by imposing the manifold
assumption. With the spectral contrastive loss Equation 2 crucially in use,
[8] provides an error bound for downstream tasks. In this work, we analyze
how a neural network can approximate and optimize the spectral loss function
Equation 2, which is the pertaining step of [8].

Neural Network Approximations. Given a function f with certain amount
of regularity, many works have studied the tradeoff between width, depth, and
total number of neurons needed for a neural network to approximate it [29, 30].
Specifically, [31] looks at the problem of Hölder continuous functions on the
unit cube, [32, 33] studies the class of continuous functions on the unit cube,
and [29, 34, 8] consider the case when the function is defined on a manifold. A
related area is that of neural network memorization of a finite number of data
points [35]. In this paper, we use these results to show that for our specific type
of regularity, we can prove similar results.
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Neural Networks and Partial Differential Equations [36] introduced
Physics Informed Neural Networks as a method for solving PDEs using neural
networks. Specifically, [37, 38, 36] use neural networks to parameterize the
solution of a PDE which is trained by optimizing a loss function that is designed
to be minimized when the equation is satisfied. Other works such as [39, 40,
41, 38] use neural networks to parameterize the solution operator on a given
mesh on the PDE’s domain. Finally, the search for eigenfunctions of operators
on function spaces has deep connections to PDEs. Recent works such as [42,
43, 44] demonstrate how to learn these operators. In this work we show that we
can approximate eigenfunctions to a weighted Laplace-Beltrami operator using
neural networks by minimizing the spectral loss L.

Shallow Linear Networks and Non-convex Optimization in Linear Al-
gebra Problems One of our main objects of study in this paper is the am-
bient problem Equation 2. This formulation of the problem is related to linear
networks. Linear networks are neural networks with identity activation. A
variety of prior works have studied many different aspects of shallow linear net-
works such as their loss landscape and their associated optimization dynamics
[45, 46, 47, 48], and generalization for one layer networks [49, 50, 51, 52, 53].
Of relevance are also other works in the literature studying optimization prob-
lems very closely related to Equation 7. For example, in Section 3 in [54],
there is a landscape analysis for Equation 7 when the matrix An is assumed to
have rank smaller than or equal to r. That setting is typically referred to as
overparameterized or exactly parameterized, whereas here our focus is on the
underparameterized setting. On the other hand, the case studied in Section 3
in [55] is the simplest case we could consider for our problem and corresponds
to r = 1. In this simpler case, the non-convexity of the objective is completely
due to a sign ambiguity, which makes the analysis more straightforward and the
need to introduce quotient geometries less pressing. [56] describes the global
optimization landscape of Equation 7 under the assumption that An is rank r.
In contrast, we recall that here An is assumed to be full rank.

Notation Throughout the paper, we use C > 1 and c < 1 to denote constants
which depend on ρ and the intrinsic properties of M including the embedded
dimension of M, the lower bound of the injectivity radius of M, the reach of
M, and the upper bound on the absolute values of the sectional curvature of
M.

2 Preliminary Results

In this section, we briefly provide some technical results that will serve as foun-
dations for the analysis presented in this paper.These preliminary results also
provide some context for our discussion in the rest of the paper.
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2.1 Rotational Invariance

Recall the ambient optimization problem defined in Equation 2 as

min
Y∈Rn×r

ℓ(Y), where ℓ(Y)
def
=
∥∥YY⊤ −An

∥∥2
F
. (7)

Suppose Y is a stationary point of Equation 7. Then YO is also a stationary
point for any r×r orthogonal matrixO ∈ Or. This implies that the loss function
ℓ is non-convex in any neighborhood of a stationary point [57]. Hence we shall
consider a quotient geometry to attempt to remove the local non-convexity
induced by the action of the orthogonal group. Let Nn

r+ be the space of n× r
matrices with full column rank. To define the quotient manifold, we encode
the invariance mapping, i.e., Y → YO, by defining the equivalence classes

[Y] = {YO : O ∈ Or}. From [58], Nn
r+

def
= Nn

r+/Or is a quotient manifold of

Nn

r+. For a detailed introduction to Riemannian optimization see [59]. Since ℓ

is invariant within each the equivalence classes of Nn

r+ , one obtains the following
optimization problem on the quotient manifold Nn

r+ :

min
[Y]∈Nn

r+

H([Y])
def
=

1

2

∥∥YY⊤ −An

∥∥2
F
, (8)

which can be approached via Riemannian first order methods. In this case,
however, the Riemannian gradient descent is equivalent to standard gradient
descent in the Euclidean geometry. This is the reason why the results in Section
4 directly justify the ability of the gradient based algorithm in the Euclidean
geometry to find global optimizers of the ambient space problem Equation 8.

2.2 First Order Stationary Points

Since An is a PSD matrix, the Eckart–Young–Mirsky theorem (see [60]) implies
that the global optimizers of Equation 7 are the matrices Y of the form Y =
Y∗O, where O ∈ Or and

Y∗ def
=

 | |√
λ1(An)v1 . . .

√
λr(An)vr

| |

 .

In the above, λl(An) represents the l-th largest eigenvalue of An and vl is a
corresponding eigenvector with Euclidean norm one. In case there are repeated
eigenvalues, the corresponding vl need to be chosen to be orthogonal to each
other. For convenience, we rescale the vectors vl as follows:

ul
def
=

√
nvl.

In this way we guarantee that

∥ul∥2L2(Xn)
def
=

1

n

n∑
i=1

(ul(xi))
2 = 1, (9)
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i.e., the rescaled eigenvectors ul are normalized in the L2-norm with respect to
the empirical measure 1

n

∑n
i=1 δxi . In terms of the rescaled eigenvectors ul, we

can rewrite Y∗ as follows:

Y∗ =

 | |√
λ1(An)

n u1 . . .
√

λr(An)
n ur

| |

 . (10)

Remark 1. As discussed in Remark 2 below, under Assumptions 1 we can
assume that all the λs(An) are quantities of order 1.

Next, we need to understand the other first-order stationary points (FOSP)
of Equation 8. We use SVD to get Y = UDV⊤, where U ∈ Rn×k, D ∈ Rk×k

is a diagonal matrix, and V ∈ Rk×r. In addition, U⊤U = V⊤V = Ik, where k
is the rank of Y and Ik is the k × k identity matrix.

Theorem 2.1 (FOSP of Equation 8). Let UΣU
⊤

be An’s SVD factorization,
and let Λ = Σ1/2. Then for any S subset of [n] we have that

[
USΛS

]
is

a Riemannian FOSP of Equation 8. Further, these are the only Riemannian
FOSPs.

Theorem 2.1 shows that linear combinations of eigenvectors can be used to
construct Riemannian first-order stationary points (FOSP) of Equation 8. This
theorem also shows that there are many FOSPs of Equation 8. This is quite
different from the regime studied in [56]. In general, gradient descent is known
to converge to a FOSP. Hence one might expect that if we initialized near one
of the saddle points, then we might converge to that saddle point. A careful
landscape analysis will be presented in section 4.

2.3 Spectral Convergence of ∆n to ∆ρ

The first result for this section, whose proof we omit as it is a straightforward
adaptation of the proof of Theorem 2.4 in [17] –which considers the unnormalized
graph Laplacian case–, relates the eigenvalues of ∆n and ∆ρ.

Theorem 1 (Convergence of eigenvalues of graph Laplacian; Adapted from
Theorem 2.4 in [17]). Let l ∈ N be fixed. Under Assumptions 1, with probability
at least 1− Cn exp

(
−cnτm+4

)
over the sampling of the xi, we have:∣∣∣∣∣cηλM

s − λ̂s

τ2

∣∣∣∣∣ ≤ Clτ, ∀s = 1, . . . , l.

In the above, λ̂1 ≤ · · · ≤ λ̂l are the first eigenvalues of ∆n in increasing order,
Cl is a deterministic constant that depends on M’s geometry and on l, and cη
is a scaling constant that depends on the kernel η determining the graph weights
(see Equation 4). We also recall that m denotes the intrinsic dimension of the
manifold M.

8



Remark 2. From Theorem 1 and Equation 29 we see that the top l eigenvalues
of An (for l fixed), i.e., λ1(An), . . . , λl(An), can be written as

λs(An) = 1 + a− cηλ
M
s τ2 +O(τ3)

with very high probability. In particular, although each individual λs(An) is
an order one quantity, the difference between any two of them is an order τ2

quantity.

The above remark is an important observation. In particular, it implies that if
Y is any saddle point of ℓ, then ∥Y −Y∗∥F = O(

√
rτ).

Next we discuss the convergence of eigenvectors of ∆n toward eigenfunctions
of ∆ρ. For the purposes of this paper (see some discussion below), we follow a
strong, almost C0,1 convergence result established in [18] for the case of unnor-
malized graph Laplacians. A straightforward adaptation of Theorem 2.6 in [18]
implies the following.

Theorem 2 (Almost C0,1 convergence of graph Laplacian eigenvectors; Adapted
from Theorem 2.6 in [18]). Let r ∈ N be fixed and let u1, . . . , ur be normalized
eigenvectors of ∆n as in Equation 9. Under Assumptions 1, with probability at
least 1− Cτ−6m exp

(
−cnτm+4

)
over the sampling of the xi, we have:

∥fs − us∥L∞(Xn) + [fs − us]τ,Xn ≤ Crτ. ∀s = 1, . . . , r, (11)

for normalized (in the L2(M, ρ) sense) eigenfuctions fi : M → R of ∆ρ. In the

above, ∥·∥L∞(Xn) is the norm ∥v∥L∞(Xn)
def
= maxxi∈Xn

|v(xi)|, dM(·, ·) denotes
the geodesic distance on M, and [·]τ,Xn is the seminorm

[v]τ,Xn

def
= max

xi,xj∈Xn

|v(xi)− v(xj)|
dM(xi, xj) + τ

.

2.4 Regularity of the Eigenvectors of ∆n

An essential corollary of Theorem 2 is the following set of regularity estimates
satisfied by eigenvectors of the normalized graph Laplacian ∆n.

Corollary 1. Under the same setting, notation, and assumptions as in Theorem
2, the functions us satisfy

|us(xi)− us(xj)| ≤ Ls(dM(xi, xj) + τ2), ∀xi, xj ∈ Xn (12)

for some deterministic constant Ls which depends on s and some intrinsic prop-
erties of M.

Proof. From Equation 11 we have

|(us(xi)− fs(xi))− (us(xj)− fs(xj))| ≤ Csτ(dM(xi, xj) + τ), ∀xi, xj ∈ Xn.
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It follows from the triangle inequality that

|us(xi)− us(xj)| ≤ |us(xi)− fs(xi)− (us(xj)− fs(xj))|+ |fs(xi)− fs(xj)|
≤ Csτ(dM(xi, xj) + τ) + C ′

sdM(xi, xj)

≤ Ls(dM(xi, xj) + τ2).

In the above, the second inequality follows from inequality 11 and the fact that
fs, being a normalized eigenfunction of the elliptic operator ∆ρ, is Lipschitz
continuous with some Lipschitz constant C ′

s.

Remark 3. We observe that the τ2 term on the right hand side of Equation 12
is strictly better than the term that appears in the explicit regularity estimates in
Remark 2.4 in [18], where the dependence on τ is O(τ). It turns out that in the
proof of Theorem 3.2 it is essential to have a correction term for the distance
that is o(τ), as we have thanks to the above corollary.

3 Spectral Approximation with neural networks

Question Q1 is a particular example of the more general problem below.

Problem 1. Given a family of neural networks F , a compact set K with density
ρ, a Lipschitz function f : K → R, n potentially noisy data points (xi, yi)
sampled IID according to ρ and ε > 0, does there exist fθ ∈ F such that fθ
nearly interpolates the data

max
i=1,...,n

∥yi − fθ(xi)∥ = O(ε)

and the network is a good approximation of the true function ∥f − fθ∥L∞(K) =
O(ε)?

Prior work on universal approximation has focused on two different types
of questions. First, given a compact set K and a function f : K → R with
some form of regularity and ε > 0, we are interested in determining if there
is a neural network fθ of constrained size such that ∥f − fθ∥L∞(K) < ε. This
problem is known as universal approximation. Second, given finite amount of
data (x1, y1), . . . , (xn, yn), we are interested in the smallest network fθ such that
yi = fθ(xi). This problem is known as memorization. However, both of these
problems have drawbacks. The problem with universal approximation is that
it ignores the data. Hence universal approximation is disconnected from the
experimental procedures. The problem with memorization is that it ignores the
behavior of the neural network away from the given data points.

Recent works have studied a new problem known as benign overfitting [51].
Given a neural network that perfectly fits the training data we are interested in
whether the network exactly fits true data-generating function. This notion has
been further refined to notions of benign, tempered, and catastrophic overfitting
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[61]. Building on this, researchers have developed an interest in understanding
near interpolators [62]. These are networks that do not exactly fit the data but
nearly fit the data.

In this context, Problem 1 can be interpreted as asking for the existence
of a near interpolator that benignly overfits the data. Problem 1 is an inter-
esting interplay between the two types of questions – universal approximation
and benign overfitting. Prior work has provided rates for the neural network
approximation problem. However, the existence of an (nearly) interpolating
network does not imply that the existence of one that does so in a benign or
tempered manner. Hence understanding how big networks need to be before
we can guarantee the existence of a network that benignly overfits is in its own
right an interesting question.

In what follows we make precise the setting where we can answer Question
Q1, which we recall is concerned with approximation of eigenvectors of ∆n and
eigenfunctions of ∆M. Here, the former can be interpreted as noisy versions of
the latter.

3.1 Multilayer ReLU Neural Network Family

For concreteness, in this work we use multi-layer ReLU neural networks. To be
precise, our neural networks are parameterized functions f : Rd → Rr of the
form:

f(x) = WL · ReLU (WL−1 · · ·ReLU (W1x+ b1) · · ·+ bL−1) + bL, x ∈ Rd.
(13)

More specifically, for a given choice of parameters r, κ, L, p,N we will consider
the family of functions:

F(r, κ, L, p,N) =

{
f | f(x) has the form 13, where:

Wl ∈ Rp×p,bl ∈ Rp for l = 2, . . . , L− 1,

W1 ∈ Rp×d,b1 ∈ Rp,WL ∈ Rr×p,bL ∈ Rr.

∥Wl∥∞,∞ ≤ κ, ∥bl∥∞ ≤ κ for l = 1, . . . , L,

L∑
l=1

∥Wl∥0 + ∥bl∥0 ≤ N

}
(14)

where ∥ · ∥0 denotes the number of nonzero entries in a vector or a matrix,
∥·∥∞ denotes the ℓ∞ norm of a vector. For a matrix M , we use ∥M∥∞,∞ =
maxi,j |Mij |. For convenience, after specifying the quantities r, κ, L, p,N , we
denote by Θ the space of admissible parameters θ = (W1,b1, . . . ,WL,bL) in
the function class F(r, κ, L, p,N), and we use fθ to represent the function in
Equation 13.
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3.2 Spectral approximation with multilayer ReLU NNs

In this section, we answer Question Q1 by providing Theorem 3.1 and Corollary
3. Specifically, we provide upper bounds on the size of the neural network size so
that with high probability there exists a neural network that nearly interpolates
the data and well approximates the true eigenfunctions of ∆ρ. We provide
bounds in terms of the width, the depth, the number of non-zero parameters,
and the size of the parameters.

Lemma 1. Let u : Xn → R be a function satisfying

|u(x)− u(x̃)| ≤ L(dM(x, x̃) + τ2), ∀x, x̃ ∈ Xn (15)

for some L and τ > 0. Then there exists a 3L-Lipschitz function g̃ : M → R
such that

∥u− g̃∥L∞(Xn) ≤ 5Lτ2. (16)

Remark 4. Lemma 1 guarantees that if a function u, defined in any given
metric space, is (L, τ2)-almost Lipschitz, then we can find a function g̃ that
is L-Lipschitz continuous in the same space and is within uniform distance τ2

from u.

By combining Lemma 1 and Theorem 2, and using some universal approxi-
mation theory results for neural networks, we will be able to prove the following
result, whose proof can be found in Appendix E.

Theorem 3.1 (Spectral approximation of normalized Laplacians with neural
networks). Let r ∈ N be fixed. Under Assumptions 1, there are constants c, C
that depend on M, ρ, and the embedding dimension r, such that, with probability
at least

1− Cτ−6m exp
(
−cnτm+4

)
,

for every ε ∈ (0, 1) there are κ, L, p,N and a ReLU neural network fθ ∈
F(r, κ, L, p,N) (defined in Equation 14), such that:
1.

√
n∥Yθ −Y∗∥∞,∞ ≤ C(ε+ τ2), and thus also ∥Yθ −Y∗∥F ≤ C

√
r(ε+ τ2) .

2. The depth of the network, L, satisfies: L ≤ C
(
log 1

ε + log d
)
, and its width,

p, satisfies p ≤ C (ε−m + d).
3. The number of neurons of the network, N , satisfies: N ≤ Cr

(
ε−m log 1

ε + d log 1
ε + d log d

)
,

and the range of weights, κ, satisfies κ ≤ C
n1/(2L) .

Theorem 3.1 can be interpreted as follows. First, we note that the high
probability statement is with respect to the sampling of the data points. Here
we see that the probability depends on the number of data points and our
scale parameter τ . Specifically, if our scale parameter doesn’t decay too quickly

(τ ≫ n− 1
m+4 ), then as n → ∞, the probability goes to 1. Theorem 3.1 also

bounds the error in terms of two different norms. Additionally, we provide
explicit rates of the width, depth, as well as the magnitude of the parameters.
Note these rates do not depend on the connectivity parameter τ .
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Remark 5. Notice that the term
√
n∥Y∗∥∞,∞ is of order one. Consequently,

the estimate in Theorem 3.1 is a non-trivial error bound.

The bound in ∥·∥∞,∞ between Yθ and Y∗ in Theorem 3.1 can be used to
bound the difference between YθY

⊤
θ and Y∗Y∗⊤ in ∥·∥∞,∞.

Corollary 2. For fθ as in Theorem 3.1 we have

√
n∥YθY

⊤
θ −Y∗Y∗⊤∥∞,∞ ≤ Cr(ε+ τ2), (17)

and thus also
∥YθY

⊤
θ −Y∗Y∗⊤∥F ≤

√
rCr(ε+ τ2),

for some deterministic constant Cr.

The τ2 term that appears in the bound for ∥Yθ−Y∗∥F in Theorem 3.1 cannot
be obtained simply from convergence of eigenvectors of ∆n toward eigenfunc-
tions of ∆ρ in L∞. More concretely, if we use a standard universal approxi-
mation result such as Theorem 3 from [63] to approximate the eigenfunctions
f1, . . . , fr and then the convergence result for ∆n to ∆ρ (such as Theorem 1 from
[17]), we would get that ∥Yθ −Y∗∥F = O(

√
rτ). However, we know from Re-

mark 2, that for any saddle point Y, we have that ∥Y−Y∗∥F is order O(
√
rτ).

Hence being distance O(
√
rτ) is not useful, as it does not tell us whether we

are near a global minimizer of our problem or to a saddle point. To prove our
results, we thus need to use a stronger notion of convergence (almost C0,1) that
in particular implies sharper regularity estimates for eigenvectors of ∆n (see
Corollary 1 and Remark 3 below it). In turn, the sharper τ2 term is essential
for our proof of Theorem 3.2 below to work, which formalizes our answer to
Question Q2.

So far we have discussed approximations of the eigenvectors of An (and thus
also of ∆n) with neural networks, but more can be said about generalization of
these NNs. In particular, the NN in our proof of Theorem 3.1 can be shown
to approximate eigenfunctions of the weighted Laplace-Beltrami operator ∆ρ.
Precisely, we have the following result.

Corollary 3. Under the same setting, notation, and assumptions as in Theorem
3.1, the neural network fθ : Rd → Rr can be chosen to satisfy∥∥∥∥√ n

1 + a
f i
θ − fi

∥∥∥∥
L∞(M)

≤ C(ε+ τ), ∀i = 1, . . . , r.

In the above, f1
θ , . . . , f

r
θ are the coordinate functions of the vector-valued neural

network fθ, and the functions f1, . . . , fr are the normalized eigenfunctions of the
Laplace-Beltrami operator ∆ρ that are associated to ∆ρ’s r smallest eigenvalues.

With Theorem 3.1 and Corollary 3 we thus provide an answer to Problem
1. We notice that, while one could use existing memorization results (e.g.,
Theorem 3.1 in [35]) to show that there is a neural network with ReLU activation
function and O(

√
n) neurons that fits Y∗ perfectly, this does not constitute an
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improvement over our results in Theorem 3.1 and Corollary 3. Indeed, by using
this type of memorization result, we can not state any bounds on the size of
the parameters of the network, and none of the out-of-sample generalization
properties that we have discussed before (i.e., approximation of eigenfunctions
of ∆ρ) can be guaranteed.

On the other hand, we see that the size of neural network are the same as the
size for universal approximation. That is, once we can guarantee the existence
of a network that well approximates the eigenfunctions, we can guarantee the
existence of a network that simultaneously well approximates the given data
and the eigenfunctions. In short, τ does not affect the size of the network.

3.3 Spectral approximation with global minimizers of SNN’s
objective

After discussing the existence of approximating NNs, we turn our attention
to constructive ways to approximate Y∗ using neural networks. This is non-
trivial, and is further complicated by the fact that the we measure the distance
to optimal solutions via the convex function ∥Yθ −Y∗∥F. However, this is not
the loss function SNNs use to train the network. Instead, the nonconvex loss
function ∥YθY

T
θ − An∥F is used to train the network. Our next result shows

that this loss function is still relevant for the type of approximation we are after.
Specifically, Theorem 3.2 shows that the global minimizer of the loss function
has good properties. With this we provide an answer to question Q2. The proof
for Theorem 3.2 can be found in Appendix F.

Theorem 3.2 (Optimizing SNN approximates eigenvectors up to rotation). Let
r ∈ N be fixed and suppose that ∆ρ is such that ∆ρ has a spectral gap between its
r and r + 1 smallest eigenvalues, assume that λM

r < λM
r+1. For given κ, L, p,N

(to be chosen below), let fθ∗ be such that

fθ∗ ∈ argmin
fθ∈F(r,κ,L,p,N)

∥YθY
⊤
θ −An∥2F. (18)

Under Assumptions 1, there are constants c, C that depend on M, ρ, and the em-
bedding dimension r, such that, with probability at least 1−Cτ−6m exp

(
−cnτm+4

)
,

for every δ̃ ∈ (0, c) (i.e., δ̃ sufficiently small) and for κ = C
n1/(2L) , L =

C
(
log 1

δ̃τ
+ log d

)
, and p = C

(
(δ̃τ)−m + d

)
, we have

min
O∈Or

∥Yθ∗ −Y∗O∥F ≤ Cτ(δ̃ + τ). (19)

In the above theorem δ̃τ can be understood as ε in Theorem 3.1 and Corollary
3 with an extra assumption δ̃ ≤ cτ that guarantees that the solution found by
minimizing L is energetically better than any saddle point of the ambient loss
function ℓ.

Remark 6. Equation 19 says that Yθ∗ approximates a minimizer of the am-
bient problem 7 and that Yθ∗ can be recovered but only up to rotation. This
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is unavoidable, since the loss function ℓ is invariant under multiplication on
the right by a r × r orthogonal matrix. On the other hand, we do not enforce
sparsity constraints in the optimization of the NN parameters. This is conve-
nient in practical settings and this is the reason why we state the theorem in

this way. However, we can also set N = r
(
(δ̃τ)−m log 1

δ̃τ
+ d log 1

δ̃τ
+ d log d

)
without affecting the conclusion of the theorem.

We want to highlight that Theorem 3.1,a s stated, is needed in our proof of
Theorem 3.2. To see this, note that the following

τ2Cr(δ̃ + τ)2 < σ2
r(An)− σ2

r+1(An)

is satisfied under the assumptions in the statement of Theorem 3.2. Indeed,
notice that σ2

r(An) − σ2
r+1(An) ∼ τ2 according to Remark 2 and the fact that

λM
r < λM

r+1. Thus, taking δ̃ to be sufficiently small, we get the needed inequality.
Further, if the correction term in the Lipschitz estimate for graph Laplacian
eigenvectors had been τ , and not τ2, the term τ2Cr(δ̃ + τ)2 would have to be
replaced with the term (Crτ δ̃ + Crε)

2, but the latter cannot be guaranteed to
be smaller than σ2

r(An) − σ2
r+1(An). Guaranteeing this is important as the

energy gap (i.e.,
∥∥Y∗Y∗⊤ −An

∥∥2
F
−
∥∥YθY

⊤
θ −An

∥∥2
F
) is of order τ2Cr(δ̃ + τ)2

(Corollary 5), whereas the energy gap between Y∗ and any other critical point
of ℓ that is not a global optimizer is in the order of τ2, as it follows from Remark
2. Continuing the discussion from the previous section, it was thus relevant to
use estimates that could guarantee that, at least energetically, our constructed
Yθ was closer to Y∗ than any other saddle of ℓ.

4 Landscape of SNN’s Ambient Optimization
Problem

From the discussion in the previous sections we now know that the global mini-
mizer of the loss function L well approximates the eigenvectors of ∆n. However,
the loss is non-convex – both due to the non-convexity of the loss function and
the parameterization of the neural network. Hence it is not immediate that
gradient descent converges to the desired global minimum. In this section, we
focus on the non-convexity due to the loss function and we show that gradient
descent converges to the global minimum of ℓ. We do this by characterizing the
optimization landscape of ℓ.

While in prior sections we considered a specific An, the analysis in this
section only relies on An being positive definite with an eigengap between its r-
th and (r+1)th top eigenvalues. We analyze the global optimization landscape
of the non-convex Problem 7 under a suitable Riemannian quotient geometry
[64, 59].

To analyze the landscape for Equation 8, we need expressions for the Rie-
mannian gradient, the Riemannian Hessian, as well as the geodesic distance d
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on this quotient manifold. By Lemma 2 from [56], we have that

d ([Y1] , [Y2]) = min
Q∈Or

∥Y2Q−Y1∥F

and from Lemma 3 from [56], we have that

gradH([Y]) = 2
(
YY⊤ −An

)
Y,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
.

(20)

Finally, by the classical theory on low-rank approximation (Eckart–Young–Mirsky
theorem [60]), [Y∗] is the unique global minimizer of Equation 8. Let κ∗ =
σ1 (Y

∗) /σr (Y
∗) be the condition number of Y∗. Here, σi(A) is the ith largest

singular value of A, and ∥A∥ = σ1(A) is its spectral norm. Our precise assump-
tion on the matrix An for this section is as follows.

Assumption 2 (Eigengap). σr+1(An) is strictly smaller than σr(An).

See Remark 12 for a discussion of the potential relaxation of the Eigengap
assumption.

Let µ, α, β, γ ⩾ 0. We then split the landscape of H([Y]) into the following
five regions (not necessarily non-overlapping).

R1
def
=
{
Y ∈ Rn×r

∗
∣∣d ([Y], [Y∗]) ⩽ µσr (Y

∗) /κ∗} ,
R2

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ d ([Y], [Y∗]) > µσr (Y
∗) /κ∗, ∥gradH([Y])∥F ⩽ αµσ3

r (Y
∗) / (4κ∗) ,

∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤

∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′
3

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∥Y∥ ⩽ β ∥Y∗∥ ,∥∥YY⊤
∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥Y∥ > β∥Y∗∥, ∥YY⊤ ∥F ⩽ γ∥Y∗Y∗⊤∥F

}
,

R′′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥YY⊤∥∥

F
> γ

∥∥Y∗Y∗⊤∥∥
F
},

(21)

We show that for small values of µ, the loss function is geodesically convex
in R1. R2 is then defined as the region outside of R1 such that the Riemannian
gradient is small relative to µ. Hence this is the region in which we are close
to the saddle points. We show that for this region there is always an escape
direction (i.e., directions where the Hessian is strictly negative). R′

3, R′′
3 , and

R′′′
3 are the remaining regions. We show that the Riemannian gradient is large

(relative to µ) in these regions. Finally, it is easy to see that R1

⋃
R2

⋃
R′

3 ∪
R′′

3

⋃
R′′′

3 = Rn×r
∗ .

We are now ready to state the first of our main results from this section.

Theorem 4.1 (Local Geodesic Strong Convexity and Smoothness of Equa-
tion 8). Suppose 0 ⩽ µ ⩽ κ∗/3. Given that Assumption 2 holds, for any
Y ∈ R1,

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An),

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3
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In particular, if µ is further chosen such that
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)−

2σr+1(An) > 0, we have H([Y]) is geodesically strongly convex and smooth in
R1.

Theorem 4.1 guarantees that the optimization problem Equation 8 is geodesi-
cally strongly convex and smooth in a neighborhood of [Y∗]. It also shows that
if Y is close to the global minimizer, then Riemannian gradient descent stays in
R1 and converges to the global minimizer of the quotient space linearly following
the proof of 59, Theorem 11.29.

By combining this result with Theorem 3.2, when the number of neurons
is large enough, fθ∗(Xn) ∈ R1. Then, by applying gradient descent initiating
at fθ∗(Xn), we gain a linear convergence rate to the eigenvector estimation of
Equation 7.

In general, gradient descent is known to converge to a FOSP. Hence one
might expect that if we initialized near one of the saddle points, then we might
converge to that saddle point. However, our next main result of the section
shows that even if we initialize near the saddle, there always exist escape di-
rections. However, before we can prove this result, Theorem 4.2, we need to
discuss specific assumptions to guarantee that α is sufficiently small.

Assumption 3 (Parameters Settings). Denote e1, e2 and e3 to be some error
terms as follows,

e1
def
=

αµσ3
r (Y

∗)

2
√
2κ∗σr+1(Λ)

, e2 =
e1√
2
, and e3 = e2 · σr+1(Λ)

Note that e1, e2, e3 → 0 as α → 0. Hence, pick α small enough such that the
following conditions are true.
1. σ2

r(Λ)− 2e1 − σ2
r+1(Λ) > 0.

2. σ2
r(Λ)

(
1− e21

|σ2
r(Λ)−e1−σ2

r+1(Λ)|2
)
− e1 − σ2

r+1(Λ) > 0.

3. (α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r(Y

∗)σ2
r+1(Λ)/16

|σ2
r(Λ)−e2−σ2

r+1(Λ)|2 < 0.

Note that given the eigengap assumption, the first two conditions can be
satisfied as α → 0. For the last condition, we have that as α → 0, the left hand
side converges to −2(

√
2 − 1)σ2

r (Y
∗) which is negative. Hence, Assumption 3

is only related to the eigengap assumption σr(Λ) and σr+1(Λ) in Assumption
2. As soon as α is small enough, Assumption 3 is satisfied.

We recall that the SVD decomposition of Y is UDV⊤.

Theorem 4.2 (Region with Negative Eigenvalue in the Riemannian Hessian of
Equation 7). Assume that Assumption 2 holds. Given any Y ∈ Rn×r

∗ such that
Y ∈ R2, let θ

1
Y = [0,0, . . . ,0,a,0, . . . ,0]V⊤ where a such that

a = argmax
a:Y⊤a=0

a⊤Ana

∥a∥2
(22)
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and [0,0, . . . ,0,a,0, . . . ,0] ∈ Rn×r such that the ĩth columns is a and other
columns are 0 where

ĩ
def
= argmin

j∈[r]

Djj . (23)

Denote θ2Y = Y−Y∗Q, where Q ∈ Or is the best orthogonal matrix aligning
Y∗ and Y. We choose θY to be either θ1Y or θ2Y. Then

HessH([Y]) [θY, θY] ⩽min

{
−
σ2
r+1(Λ)

2
∥θY∥2,

− 2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θY∥2,(

(α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)
∥θY∥2F

}

In particular, if α and µ satisfies Assumption 3, we have HessH([Y]) has at
least one negative eigenvalue and θ1Y or θ2Y is the escaping direction.

Remark 7. Theorem 4.2 suggests that if some singular values of Y are small,
then the descent direction θ1Y should increase the singular value of Y. If all of
the singular values of Y are large enough compared with σr(Λ), then θ2Y should
directly point [Y] to [Y∗]. Thus, Theorem 4.2 fully characterizes the regime of
R2 with respect to different minimum singular values of Y.

• If any singular value of YY⊤ is smaller than
σ2
r+1(Λ)

2 , then we have

HessH([Y])
[
θ1Y, θ1Y

]
≤ −

σ2
r+1(Λ)

2
∥θ1Y∥2.

• When the smallest singular value of YY⊤ is larger than
σ2
r+1(Λ)

2 and smaller
than e1 + σ2

r+1(Λ), then we have

HessH([Y])
[
θ1Y, θ1Y

]
≤ −2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θ1Y∥2.

• If all of the eigenvalues of YY⊤ are larger than e1 + σ2
r+1(Λ), then we have

HessH([Y])
[
θ2Y, θ2Y

]
is smaller than(

(α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)∥∥θ2Y∥∥2F .

Finally, the next result says that if we are not close to a FOSP, then we have
large gradients.

Theorem 4.3 ((Regions with Large Riemannian Gradient of Equation 7).
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1. ∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∀Y ∈ R′
3;

2. ∥gradH([Y])∥F ⩾ 2
(
∥Y∥3 − ∥Y∥ ∥Y∗∥2

)
> 2

(
β3 − β

)
∥Y∗∥3 , ∀Y ∈

R′′
3 ;

3. ⟨gradH([Y]),Y⟩ > 2(1− 1/γ)
∥∥YY⊤

∥∥2
F
, ∀Y ∈ R′′′

3 .
In particular, if β > 1 and γ > 1, we have the Riemannian gradient of H([Y])
has large magnitude in all regions R′

3,R′′
3 and R′′′

3 .

The behavior, implied by our theorems, of gradient descent as it goes through
the regions R1, R2, R3 is illustrated in Figures 4 and 5. See a discussion in
section 5.

Remark 8. These results can be seen as an under-parameterized generalization
to the regression problem of Section 5 in [56]. The proof in [56] is simpler because
in their setting there are no saddle points or local minima that are not global
in Rn×r

∗ . Conceptually, [46] proves that in the setting r ≥ n, the gradient flow
for Equation 7 converges to a global minimum linearly; in particular, in their
setting there aren’t any saddle points. We complement this result by studying
the case r < n.

Remark 9. In the specific case of An as in Equation 5, and under Assumptions
1, Assumption 2 should be interpreted as λM

r < λM
r+1, as suggested by Remark

2. Also, µ must be taken to be in the order τ2. The scale τ2 is actually a
natural scale for this problem, the energy gap between saddle points and the
global minimizer [Y∗] is O(τ2).

Remark 10. Theorem 4.1, 4.2 and 4.3 guarantee the benigness of the ambient
optimization problem, which is necessary condition of the benigness of param-
eterized optimization problem Equation 2. Also, these landscape results imply
that perturbed gradient descent is guaranteed to converge to the global minima
in polynomial time for Equation 7 65, 66, 67, 68.

5 Parameterized Loss Landscape

Finally, answering whether gradient descent converges to the global minimum for
the parameterized problem (i.e., the NN training problem) is quite challenging.
Hence, for this piece we explore the question experimentally. In Section 6, we
explicitly state this as an interesting theoretical question that is worth exploring
in the future.

Specifically, we present some numerical experiments where we consider dif-
ferent initializations for the training of SNN. Here we take 100 data points from
MNIST and let An be the n× n gram matrix for the data points for simplicity.
The detailed experimental design is provided in Appendix B.2. We remark that
while we care about a An with a specific form for our approximation theory
results, our analysis of the loss landscape described below holds for an arbitrary
positive semi-definite matrix. In Figure 4, we plot the norm of the gradient
during training when initialized in two different regions of parameter space.
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(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 4: (a) and (b) Sum of the norms of the gradients for a two-layer ReLU
Neural Network. In (a), the network is initialized near the global optimal so-
lution and in (b) the network is initialized near a saddle point. (c) shows the
distance between the current outputs of the neural network and the optimal
solution for the case when it was initialized near a saddle point. More details
are presented in Appendix B.2.

(a) Initialized Near Optimal (b) Initialized Near Saddle (c) Initialized Near Saddle

Figure 5: Norms of the gradients for the ambient problem and the distance to
the optimal solution. In (a), Y is initialized near the global optimal solution,
and in (b) Y is initialized near a saddle point. c) shows the distance between
Y and the optimal solution for the case when it was initialized near a saddle
point.
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Concretely, in a region of parameters for which Yθ is close to a solution Y∗ to
problem 7 and a region of parameters for which Yθ is close to a saddle point
of the ambient loss ℓ. We compare these plots to the ones we produce from
the gradient descent dynamics for the ambient problem 7, which are shown in
Figure 5. We notice a similar qualitative behavior with the training dynamics
of the NN, suggesting that the landscape of problem 2, if the NN is properly
overparameterized, inherits properties of the landscape of ℓ.

6 Conclusions

We have explored some theoretical aspects of Spectral Neural Networks (SNN), a
framework that substitutes the use of traditional eigensolvers with suitable neu-
ral network parameter optimization. Our emphasis has been on approximation
theory, specifically identifying the minimum number of neurons of a multilayer
NN required to capture spectral geometric properties in data, and investigating
the optimization landscape of SNN, even in the face of its non-convex ambient
loss function.

For our approximation theory results we have assumed a specific proximity
graph structure over data points that are sampled from a distribution over a
smooth low-dimensional manifold. A natural future direction worth of study
is the generalization of these results to settings where data points, and their
similarity graph, are sampled from other generative models, e.g., as in the ap-
plication to contrastive learning in [8]. To carry out this generalization, an
important first step is to study the regularity properties of eigenvectors of an
adjacency matrix/graph Laplacian generated from other types of probabilistic
models.

At a high level, our approximation theory results have sought to bridge
the extensive body of research on graph-based learning methods, their ties to
PDE theory on manifolds, and the approximation theory for neural networks.
While our analysis has focused on eigenvalue problems, such as those involving
graph Laplacians or Laplace Beltrami operators, we anticipate that this over-
arching objective can be extended to develop new provably consistent methods
for solving a larger class of PDEs on manifolds with neural networks, such as
Schrödinger equation as in [69, 70]. We believe this represents a significant and
promising research avenue.

On the optimization front, we have focused on studying the landscape of
the ambient space problem 7. This has been done anticipating the use of our
estimates in a future analysis of the training dynamics of SNN. We reiterate
that the setting of interest here is different from other settings in the literature
that study the dynamics of neural network training in an appropriate scaling
limit —leading to either a neural tangent kernel (NTK) or to a mean field limit.
This difference is mainly due to the fact that the spectral contrastive loss ℓ
(see 2) of SNN is non-convex, and even local strong convexity around a global
minimizer does not hold in a standard sense and instead can only be guaranteed
when considered under a suitable quotient geometry.
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A Training of neural networks for spectral ap-
proximations

A.1 Training

Two of the main issues of standard eigensolvers are the need to store large
matrices in memory and the need to redo computations from scratch if new
data points are added. As mentioned, SNN can overcome this issue using mini-
batch training. Specifically, the loss function ℓ(Y) can be written as,

ℓ(Yθ) =

n∑
i=1

n∑
j=1

(
(An)ij − (YθY

⊤
θ )ij)

)
=

n∑
i=1

n∑
j=1

(
(An)ij −

〈
fθ(xi), fθ(xj)

〉)2
(24)

where (An)ij represents the (i, j) entry of An and fθ is the neural network.
Hence, in every iteration, one can randomly generate 1 index (i, j) from [n]×[n],
compute the loss and gradient for that term in the summation, and then perform
one iteration of gradient descent.

A.2 Other Training Approaches

SpectralNet: SpectralNet aims at minimizing the SpectralNet loss,

LSpectralNet (θ) =
1

n2

n∑
i=1

n∑
j=1

η

(
|xi − xj |

ε

)
∥fθ(xi)− fθ(xj)∥2 (25)

where fθ : Rd → Rr encodes the spectral embedding of xi while satisfying the
constraint

Y⊤
θ Yθ = nIr, (26)

where Yθ = [fθ(x1), . . . , fθ(xn)]. This constraint is used to avoid a trivial
solution. Note that Equation 26 is a global constraint. [9] have established a
stochastic coordinate descent fashion to efficiently train SpectralNets. However,
the stochastic training process in [9] can only guarantee Equation 26 holds
approximately.

Conceptually, the SpectralNet loss Equation 25 can also be written as

LSpectralNet (θ) =
2

n2
trace

(
Y⊤

θ (DG −G)Yθ

)
(27)

where G ∈ Rn×n such that Gij = η
(

∥xi−xj∥
ε

)
, and DG is a diagonal matrix

where

(DG)ii =

n∑
j=1

Gij . (28)
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The symmetric and positive semi-definite matrix DG − G encodes the unnor-
malized graph Laplacian. Since DG −G is positive semi-definite, the ambient
problem of Equation 27 is a constrained convex optimization problem. However,
the parametrization and hard constraint 26 make understanding SpectralNet’s
training process from a theoretical perspective challenging.

B Numerical Details

B.1 For Eigenvector Illustration

We sample 2000 data points xi uniformly from a 2-dimensional sphere embed-
ded in R3, and then construct a 30 nearest neighbor graph among these points.
Figure 1 shows a 1-hidden layer neural network evaluated at xi, with 10000 hid-
den neurons to learn the first eigenvector of the graph Laplacian. The Network
is trained for 5000 epochs using the full batch Adam in Pytorch and a learning
rate of 2 ∗ 10−5.

B.2 Ambient vs Parameterized Problem

Data: We took 100 data points from MNIST. We normalized the pixel values
to live in [0, 1] and then computed An as the gran matrix.

Network Architecture: The neural network has one hidden layer with a
width of 1000.

Initialization: To initialize the neural network near a saddle point, we ran-
domly pick a saddle point and then pretrain the network to approach this saddle.
We used full batch gradient descent with an initial learning rate of 3e-6. We
trained the network for 10000 iterations and used Cosine annealing as the learn-
ing rate scheduler. When we initialized the network near the optimal solution,
we followed the same procedure but pretrained the network for 1250 iterations.

Training Details: After pretraining the network, we trained the network
with the true objective. We used full batch gradient descent with an initial
learning rate of 3e-6. We trained the network for 10000 iterations and used
Cosine annealing as the learning rate scheduler.

For the ambient problem, we used gradient descent with a learning rate 3e-6.
We trained for 5000 iterations and again used Cosine annealing for the learning
rate scheduler.

We remark that the sublinearity convergence rate in Figures 4 and 5 is due
to the step size decaying in the optimizer. In R1, H([Y]) has been shown to be
strongly convex, so keeping the same step size should guarantee a linear rate.
In this work, we don’t focus on the optimization problem of SNN, but use this
to illustrate Theorem 4.1, 4.2 and 4.3.
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C Properties of the matrix An in Equation 2

C.1 Proof of Proposition 1

The matrix An defined in Equation 5 satisfies the following properties:

1. An is symmetric positive definite.

2. An’s r top eigenvectors (the ones corresponding to the r largest eigenval-
ues) coincide with the eigenvectors of the r smallest eigenvalues of the
symmetric normalized graph Laplacian matrix (see [5]):

∆n
def
= I−D

−1/2
G GD

−1/2
G . (6)

Proof of Proposition 1. Notice that

An = −∆n + (a+ 1)In, (29)

from where it follows that the eigenvectors of An associated to its r largest
eigenvalues coincide with the eigenvectors of ∆n associated to its r smallest
eigenvalues. Since An is obviously symmetric, it remains to show that its eigen-
values are non-negative. In turn, from the definition of An in Equation 5 and

the fact that a > 1, it is sufficient to argue that all eigenvalues of D
−1/2
G GD

−1/2
G

have absolute value less than or equal to 1. This, however, follows from the fol-

lowing two facts: 1) the matrix D
−1/2
G GD

−1/2
G is similar to the matrix D−1

G G,
given that

D
1/2
G (D−1

G G)D
−1/2
G = D

−1/2
G GD

−1/2
G ,

implying that D
−1/2
G GD

−1/2
G and D−1

G G have the same eigenvalues; and 2) all
the eigenvalues of D−1

G G have norm less than one, since D−1
G G is a transition

probability matrix.

Remark 11. While one could set An to be ∆n itself (since ∆n is PSD), solving
the resulting problem 7 would return the eigenvectors of ∆n with the largest
eigenvalues, which would not constitute a desirable output for data analysis,
as the tail of the spectrum of ∆n has little geometric information about the
data set Xn. It is interesting that we can still recover the relevant part of the
spectrum of ∆n indirectly, by studying the spectrum of the matrix An that we
use in this paper. Finally, it is worth mentioning that we add the term aIn
in the definition of An in 5 to guarantee that An is always PSD, in this way
simplifying the statements and proofs of our main results.

D Auxiliary Approximation Results

D.1 Neural Network Approximation of Lipschitz Func-
tions on Manifolds

[63] shows that Lipschitz functions f defined over an m-dimensional smooth
manifold M embedded in Rd can be approximated with a ReLU neural network
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with a number of neurons that doesn’t grow exponentially with the ambient
space dimension d. Precisely:

Theorem 3 (Theorem 1 in [63]). Let f : M → R be a Lipschitz function
with Lipschitz constant less than K. Given any δ ∈ (0, 1), there are κ, L, p,N
satisfying:

1. L ≤ CK

(
log 1

δ + log d
)
, and p ≤ CK (δ−m + d),

2. N ≤ CK

(
δ−m log 1

δ + d log 1
δ + d log d

)
, and κ ≤ CK ,

such that there is a neural network fθ ∈ F(1, κ, L, p,N) (as defined in Equa-
tion 14), for which

∥fθ − f∥L∞(M) ≤ δ.

In the above, CK is a constant that depends on K and on the geometry of the
manifold M.

We remark that this result is not surprising because a Riemannian manifold
locally behaves like a low dimensional Euclidean space. In this paper we utilize
the results from [63] due to the fact that in their estimates the ambient space
dimension d does not appear as an exponent.

E Proofs of Theorem 3.1 and Corollary 3

We begin by proving an important lemma.

Lemma 1. Let u : Xn → R be a function satisfying

|u(x)− u(x̃)| ≤ L(dM(x, x̃) + τ2), ∀x, x̃ ∈ Xn (15)

for some L and τ > 0. Then there exists a 3L-Lipschitz function g̃ : M → R
such that

∥u− g̃∥L∞(Xn) ≤ 5Lτ2. (16)

Proof. We start by constructing a subset X ′
n of Xn satisfying the following prop-

erties:

1. Any two points x, x̃ ∈ X ′
n (different from each other) satisfy dM(x, x̃) ≥

1
2τ

2.

2. For any x ∈ Xn there exists x̃ ∈ X ′
n such that dM(x, x̃) ≤ τ2.

The set X ′
n can be constructed inductively, as we explain next. First, we enu-

merate the points in Xn as x1, . . . , xn. After having decided whether to include
or not in X ′

n the first s points in the list, we decide to include xs+1 as follows:
if the ball of radius τ2/2 centered at xs+1 intersects any of the balls of radius
τ2/2 centered around the points already included in X ′

n, then we do not include
xs+1 in X ′

n, otherwise we include it. It is clear from this construction that the
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resulting set X ′
n satisfies the desired properties (property 2 follows from the

triangle inequality).
Now, notice that the function u : X ′

n → R (i.e., u restricted to X ′
n) is 3L-

Lipschitz, since

|u(x)− u(x̃)| ≤ L(dM(x, x̃) + τ2) ≤ 3LdM(x, x̃)

for any pair of points x, x̃ in X ′
n. Using McShane-Whitney theorem we can

extend the function u : X ′
n → R to a 3L-Lipschitz function g̃ : M → R. It

remains to prove Equation 16. To see this, let x ∈ Xn and let x̃ ∈ Xn be as in
property 2 of X ′

n. Then

|u(x)− g̃(x)| ≤ |u(x)− u(x̃)|+ |u(x̃)− g(x)|
= |u(x)− u(x̃)|+ |g(x̃)− g(x)|
≤ L(dM(x, x̃) + τ2) + 3LdM(x, x̃)

≤ 5Lτ2.

This completes the proof.

We are ready to prove Theorem 3.1, which here we restate for convenience.

Theorem 3.1 (Spectral approximation of normalized Laplacians with neural
networks). Let r ∈ N be fixed. Under Assumptions 1, there are constants c, C
that depend on M, ρ, and the embedding dimension r, such that, with probability
at least

1− Cτ−6m exp
(
−cnτm+4

)
,

for every ε ∈ (0, 1) there are κ, L, p,N and a ReLU neural network fθ ∈
F(r, κ, L, p,N) (defined in Equation 14), such that:
1.

√
n∥Yθ −Y∗∥∞,∞ ≤ C(ε+ τ2), and thus also ∥Yθ −Y∗∥F ≤ C

√
r(ε+ τ2) .

2. The depth of the network, L, satisfies: L ≤ C
(
log 1

ε + log d
)
, and its width,

p, satisfies p ≤ C (ε−m + d).
3. The number of neurons of the network, N , satisfies: N ≤ Cr

(
ε−m log 1

ε + d log 1
ε + d log d

)
,

and the range of weights, κ, satisfies κ ≤ C
n1/(2L) .

Proof. Let s ≤ r. As in the discussion we let us be a ∥·∥L2(Xn)-normalized
eigenvector of ∆n corresponding to its s-th smallest eigenvalue. Thanks to
Corollary 1, we know that, with very high probability, the function us : Xn → R
satisfies

|us(xi)− us(xj)| ≤ Ls(dM(xi, xj) + τ2), ∀xi, xj ∈ Xn, (30)

for some deterministic constant Ls. Using the fact that
√
σs(An) is an order

one quantity (according to Remark 2) in combination with Lemma 1, we deduce
the existence of a CLs-Lipschitz function gs : M → R satisfying

∥gs −
√
σs(An)us∥L∞(Xn) ≤ 5CLsτ

2. (31)
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In turn, Theorem 3 implies the existence of parameters κ, L, p,N as in the
statement of the theorem and a (scalar-valued) neural network fθ̃ in the class
F(1, κ, L, p,N) such that

∥fθ̃(x)− gs(x)∥L∞(M) ≤ ε. (32)

Using the fact that the ReLU is a homogeneous function of degree one, we
can deduce that

1√
n
fθ̃ = fθ,

where θ
def
= 1

n1/(2L) θ̃ and thus fθ ∈ F(1, κ
n1/(2L) , L, p,N). It follows that the

neural network fθ satisfies

√
n∥fθ −

1√
n
gs∥L∞(M) ≤ ε,

and also, thanks to Equation 31,

√
n

∥∥∥∥∥fθ −
√

σs(An)

n
us

∥∥∥∥∥
L∞(Xn)

≤ (5CLs + 1)(ε+ τ2).

Stacking the scalar neural networks constructed above to approximate each
of the functions us for s = 1, . . . r, and using Equation 10, we obtain the desired
vector valued neural network approximating Y∗.

Corollary 2. For fθ as in Theorem 3.1 we have

√
n∥YθY

⊤
θ −Y∗Y∗⊤∥∞,∞ ≤ Cr(ε+ τ2), (17)

and thus also
∥YθY

⊤
θ −Y∗Y∗⊤∥F ≤

√
rCr(ε+ τ2),

for some deterministic constant Cr.

Proof.

√
n∥YθY

⊤
θ −Y∗Y∗⊤∥∞,∞ =

√
n∥Yθ

(
Y⊤

θ −Y∗⊤)+ (Yθ −Y∗)Y∗⊤∥∞,∞

≤
√
n∥Yθ

(
Y⊤

θ −Y∗⊤) ∥∞,∞ +
√
n∥ (Yθ −Y∗)Y∗⊤∥∞,∞

≤
√
nr∥Yθ∥F∥Y⊤

θ −Y∗⊤∥∞,∞ +
√
nr∥Yθ −Y∗∥∞,∞∥Y∗⊤∥F

≤
√
r
(
Cr(ε+ τ2) + 2∥Y∗∥F

)
Cr(ε+ τ2)

≤ Cr(ε+ τ2),

where the second to last inequality follows from our estimate for
√
n∥Yθ −

Y∗∥∞,∞ ≤ Cr(ε+ τ2) in Theorem 3.1, and the last inequality follows from the
fact that ∥Y∗∥2F =

∑r
s=1 σs(An) = O(r).
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E.1 Eigenfunction approximation

The neural network fθ constructed in the proof of Theorem 3.1 can be used to
approximate eigenfunctions of ∆ρ. We restate Corollary 3 for the convenience
of the reader.

Corollary 3. Under the same setting, notation, and assumptions as in Theorem
3.1, the neural network fθ : Rd → Rr can be chosen to satisfy∥∥∥∥√ n

1 + a
f i
θ − fi

∥∥∥∥
L∞(M)

≤ C(ε+ τ), ∀i = 1, . . . , r.

In the above, f1
θ , . . . , f

r
θ are the coordinate functions of the vector-valued neural

network fθ, and the functions f1, . . . , fr are the normalized eigenfunctions of the
Laplace-Beltrami operator ∆ρ that are associated to ∆ρ’s r smallest eigenvalues.

Proof. Let gs : M → R be the Lipschitz function appearing in Equation 31 and
recall that the scalar neural network fθ constructed in the proof of Theorem 3.1
satisfies

√
n∥fθ −

1√
n
gs∥L∞(M) ≤ δ. (33)

It can be shown that except on an event with probability less than n exp(−nτm),
for any x ∈ M, there exists xi ∈ Xn such that dM(xi, x) ≤ τ . From the triangle
inequality, it thus follows that

|fs(x)−
√
n/(1 + a)fθ(x)| ≤|fs(x)− fs(xi)|+ |fs(xi)− us(xi)|

+ |us(xi)−
1√

σs(An)
gs(xi)|+ | 1√

σs(An)
gs(xi)−

1√
1 + a

gs(xi)|

+ | 1√
1 + a

gs(xi)−
1√
1 + a

gs(x)|

+ | 1√
1 + a

gs(x)−
√

n

1 + a
fθ(x)|

≤Cs(ε+ τ),

(34)

where we have used the Lipschitz continuity of fs and gs, Theorem 2, Remark
2, and Equation 33.

F Proof of Theorem 3.2

Recall that that fθ∗ ∈ argminfθ∈F(r,κ,L,p,N)∥YθY
⊤
θ −An∥2F. We start our proof

with a lemma from linear algebra.
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Lemma 2. For any Y ∈ Rn×r we have

∥YY⊤ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ ∥YY⊤ −Y∗Y∗⊤∥2F.

Proof. A straightforward computation reveals that

∥YY⊤ −An∥2F − ∥Y∗Y∗⊤ −An∥2F
= ∥(YY⊤ −Y∗Y∗⊤) + (Y∗Y∗⊤ −An)∥2F − ∥Y∗Y∗⊤ −An∥2F
= ∥YY⊤ −Y∗Y∗⊤∥2F + 2⟨YY⊤ −Y∗Y∗⊤,Y∗Y∗⊤ −An⟩
= ∥YY⊤ −Y∗Y∗⊤∥2F + 2⟨YY⊤,Y∗Y∗⊤ −An⟩
≤ ∥YY⊤ −Y∗Y∗⊤∥2F,

(35)

where the last inequality follows thanks to the fact that YY⊤ is positive semi-
definite and the fact that Y∗Y∗⊤−An is negative semi-definite, as can be easily
deduced from the form of Y∗.

Invoking Corollary 2 with ε = ε̃τ we immediately obtain the following ap-
proximation estimate.

Corollary 4. With probability at least

1− Cτ−6m exp
(
−cnτm+4

)
,

for every ε̃ ∈ (0, 1) there is fθ ∈ F(r, κ, L, p,N) with κ, L, p,N as specified in
Theorem 3.2 such that

∥YθY
⊤
θ −Y∗Y∗⊤∥F ≤ Crτ(ε̃+ τ). (36)

Corollary 5. Let fθ be as in Corollary 4. Then

∥YθY
⊤
θ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ Crτ

2(ε̃+ τ)2.

Proof. Let θ be as in Corollary 4. Then

∥YθY
⊤
θ −An∥2F − ∥Y∗Y∗⊤ −An∥2F ≤ ∥YθY

⊤
θ −Y∗Y∗⊤∥2F ≤ C2

r τ
2(ε̃+ τ)2,

where the second to last inequality follows from Lemma 2.

In what follows we will write the SVD (eigendecomposition) ofAn asUΣU
⊤
.

Using the fact that U is invertible (since it is an orthogonal matrix), we can
easily see that Yθ∗ can be written as Yθ∗ = U(E1 +E2) where E1,E2 ∈ Rn×r

are such that the ithrow E1
i = 0 for i ≥ r + 1, and ith row E2

i = 0 for i ≤ r.

Indeed, it suffices to select E1 and E2 so as to have E1 + E2 = U
−1

Yθ∗ . We
thus have (E2)⊤E1 = 0.

In what follows we will make the following assumption.
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Assumption 4. τ and ε̃ in Corollary 4 satisfy the following condition:

τ2E < σ2
r(An)− σ2

r+1(An), (37)

where E
def
= Cr(δ̃ + τ)2.

Proof of Theorem 3.2. Due to the definition of θ∗, we have

∥Y∗Y∗⊤ −An∥2F ≤ ∥Yθ∗Y⊤
θ∗ −An∥2F ≤ ∥YθY

⊤
θ −An∥2F. (38)

Also,

0 ≥ ∥Yθ∗Y⊤
θ∗ −An∥2F − ∥YθY

⊤
θ −An∥2F

= ∥(Yθ∗Y⊤
θ∗ −Y∗Y∗⊤) + (Y∗Y∗⊤ −An)∥2F − ∥YθY

⊤
θ −An∥2F

= ∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + ∥Y∗Y∗⊤ −An∥2F + 2⟨Yθ∗Y⊤

θ∗ −Y∗Y∗⊤,Y∗Y∗⊤ −An⟩ − ∥YθY
⊤
θ −An∥2F

= ∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + ∥Y∗Y∗⊤ −An∥2F + 2⟨Yθ∗Y⊤

θ∗ ,Y∗Y∗⊤ −An⟩ − ∥YθY
⊤
θ −An∥2F

(39)

where the third equality follows from the fact that ⟨Y∗Y∗⊤,Y∗Y∗⊤−An⟩ = 0.
Notice that

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F + 2⟨Yθ∗Y⊤

θ∗ ,Y∗Y∗⊤ −An⟩ = ∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩
(40)

By combining Equation 39, Lemma 5 and Equation 40, we have

∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩ ≤ τ2E (41)

From (E1)⊤E2 = 0 and Tr(AB) = Tr(BA), we have

⟨E1(E1)⊤,E2(E2)⊤⟩ = 0

⟨E1(E2)⊤,E2(E2)⊤⟩ = 0

⟨E1(E2)⊤,E1(E1)⊤⟩ = 0

⟨E2(E1)⊤,E1(E1)⊤⟩ = 0

⟨E2(E1)⊤,E2(E2)⊤⟩ = 0

(42)

Let Σ1 be the diagonal matrix such that (Σ1)ii = Σii for i ≤ r, and (Σ1)ii =
0 for i > r; let Σ2 be the diagonal matrix such that (Σ2)ii = 0 for i ≤ r, and
(Σ2)ii = Σii for i > r. By plugging the decomposition of Yθ∗ in Equation 41,
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we deduce

ε2E ≥∥Yθ∗Y⊤
θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤

θ∗ ,An⟩

=∥U(E1 +E2)(E1 +E2)⊤U
⊤∥2F + ∥Y∗Y∗⊤∥2F − 2⟨U(E1 +E2)(E1 +E2)⊤U

⊤
,An⟩

=∥(E1 +E2)(E1 +E2)⊤∥2F + ∥Y∗Y∗⊤∥2F − 2⟨(E1 +E2)(E1 +E2)⊤,Σ⟩
Equation 42

= ∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
+ ∥Y∗Y∗⊤∥2F − 2⟨(E1 +E2)(E1 +E2)⊤,Σ⟩

(E1)⊤ΣE2=0
= ∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩

+ ∥Y∗Y∗⊤∥2F − 2⟨E1(E1)⊤ +E2(E2)⊤,Σ⟩
=∥E1(E1)⊤∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
+ ∥Σ1∥2F − 2⟨E1(E1)⊤,Σ1⟩ − 2⟨E2(E2)⊤,Σ2⟩

=∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
− 2⟨E2(E2)⊤,Σ2⟩

≥∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E1)⊤∥2F + 2⟨(E1)⊤E1, (E2)⊤E2⟩
− 2∥E2(E2)⊤∥F · σr+1(An)

≥∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + (2∥E2∥2F + 2∥E2(E2)⊤∥F) · σ2
r(E

1)

− 2∥E2(E2)⊤∥F · σr+1(An).

(43)

On the other hand, we have

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F =∥Yθ∗Y⊤

θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤
θ∗ ,An⟩+ 2⟨Yθ∗Y⊤

θ∗ ,An −Y∗Y∗⊤⟩
=∥Yθ∗Y⊤

θ∗∥2F + ∥Y∗Y∗⊤∥2F − 2⟨Yθ∗Y⊤
θ∗ ,An⟩+ 2⟨E2(E2)⊤,Σ2⟩

≤τ2E + 2∥E2(E2)⊤∥F · σr+1(An).

(44)

It remains to show that ∥E2(E2)⊤∥F can be controlled by a term of the form
Cε2E. We split the following discussion into two cases. First, we assume that
σ2
r(E

1) is large compared with σr+1(An). In this first case ∥E2(E2)⊤∥F can be
guaranteed to be small according to Equation 43. Second, when σ2

r(E
1) is small,

we’ll show that ∥E1(E1)⊤ −Σ1∥2F is large, which will contradict Equation 43.
Case 1: If σ2

r(E
1) ≥ 2

3σr+1(An).
We have 3∥E2∥2F ·σ2

r(E
1)− 2∥E2(E2)⊤∥F ·σr+1(An) ≥ 0. Then, from Equa-

tion 43 and the fact that ∥AB∥F ≤ ∥A∥F · ∥B∥F, we have

∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + 2∥E2(E2)⊤∥F · σr+1(An) ≤ τ2E. (45)

This immediately implies

∥E2(E2)⊤∥F ≤ τ2E

σr+1(An)
. (46)
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Combining Equation 46 and Equation 44, we obtain

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F ≤ τ2E + ∥E2(E2)⊤∥F · σr+1(An) ≤ 2τ2E. (47)

Case 2: If 0 ≤ σ2
r(E

1) < 2
3σr+1(An).

Invoking Equation 43, we have

τ2E ≥ ∥E1(E1)⊤ −Σ1∥2F + ∥E2(E2)⊤∥2F + (2∥E2∥2F + 2∥E2(E2)⊤∥F) · σ2
r(E

1)− 2∥E2(E2)⊤∥F · σr+1(An)

≥ (σ2
r(E

1)− σr(An))
2 + ∥E2(E2)⊤∥2F + 4∥E2(E2)⊤∥F · σ2

r(E
1)− 2∥E2(E2)⊤∥F · σr+1(An)

= (σ2
r(E

1)− σr(An))
2 + ∥E2(E2)⊤∥2F − 2∥E2(E2)⊤∥F · (σr+1(An)− 2σ2

r(E
1))

= (σ2
r(E

1)− σr(An))
2 +

(
∥E2(E2)⊤∥F − (σr+1(An)− 2σ2

r(E
1))
)2 − (σr+1(An)− 2σ2

r(E
1))2

≥ (σ2
r(E

1)− σr(An))
2 − (σr+1(An)− 2σ2

r(E
1))2,

(48)

where the second inequality follows from Weyl’s inequality [71].
It is straightforward to check that (σ2

r(E
1)−σr(An))

2−(σr+1(An)−2σ2
r(E

1))2

is a decreasing function with respect to σ2
r(E

1) in the range 0 ≤ σ2
r(E

1) <
2
3σr+1(An). The smallest value of (σ2

r(E
1)−σr(An))

2− (σr+1(An)−2σ2
r(E

1))2

in this range is thus larger than 1
9 (σ

2
r(An)− σ2

r+1(An)). However, the resulting
inequality contradicts Assumption 4. Case 2 is thus void.

By combining the aforementioned two cases, we conclude

∥Yθ∗Y⊤
θ∗ −Y∗Y∗⊤∥2F ≤ 2Eτ2. (49)

By using Equation 53, we have

d2([Yθ∗ ], [Y∗]) ≤ 1

2(
√
2− 1)σ2

r(Y
∗)
∥Yθ∗Y⊤

θ∗ −Y∗Y∗⊤∥2F ≤ τ2E

(
√
2− 1)σ2

r(Y
∗)
,

(50)

where d([Yθ∗ ], [Y∗]) = minO∈Or∥Yθ∗ −Y∗O∥F. This completes the proof.

G Ambient Optimization

This section contains the proof of the results from Section 4.

G.1 Setup from Main Text

Let us recall the quotient manifold that we are interested in. Let Nn

r+ be the
space of n× r matrices with full column rank. To define the quotient manifold,
we encode the invariance mapping, i.e., Y → YO, by defining the equivalence
classes [Y] = {YO : O ∈ Or}. Since the invariance mapping is performed

via the Lie group Or smoothly, freely and properly, we have Nn
r+

def
= Nn

r+/Or
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is a quotient manifold of Nn

r+ [58]. Moreover, we equip the tangent space

TYNn

r+ = Rn×r with the metric ḡY (ηY, θY) = tr
(
η⊤YθY

)
.

For convenience, we recall the following.

gradH([Y]) = 2
(
YY⊤ −An

)
Y,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉 (51)

R1
def
=
{
Y ∈ Rn×r

∗
∣∣d ([Y], [Y∗]) ⩽ µσr (Y

∗) /κ∗} ,
R2

def
=

{
Y ∈ Rn×r

∗

∣∣∣∣ d ([Y], [Y∗]) > µσr (Y
∗) /κ∗, ∥gradH([Y])∥F ⩽ αµσ3

r (Y
∗) / (4κ∗)

∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤

∥∥
F
⩽ γ

∥∥Y∗Y∗⊤
∥∥
F

}
,

R′
3

def
=
{
Y ∈ Rn×r

∗

∣∣∣∥gradH([Y])∥F > αµσ3
r (Y

∗) / (4κ∗) , ∥Y∥ ⩽ β ∥Y∗∥ ,
∥∥YY⊤∥∥

F
⩽ γ

∥∥Y∗Y∗⊤∥∥
F

}
,

R′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥Y∥ > β∥Y∗∥, ∥YY⊤ ∥F ⩽ γ∥Y∗Y∗⊤∥F

}
,

R′′′
3

def
=
{
Y ∈ Rn×r

∗
∣∣∥YY⊤∥∥

F
> γ

∥∥Y∗Y∗⊤|F
}
,

(52)

Remark 12. To demonstrate strong geodesic convexity, the eigengap assump-
tion is necessary as it prevents multiple global solutions. However, it is possi-
ble to relax this assumption and instead deduce a Polyak-Lojasiewicz condition,
which would also imply a linear convergence rate for a first-order method.

G.2 Some auxiliary inequalities

In this section, we collect results from prior work that will be useful for us. First,
we provide the characterization of and results about the geodesic distance on
Nn

r+ from [72] and [56].

Lemma 3 (Lemma 2, [56]). Let Y1,Y2 ∈ Rn×r
∗ , and QUΣQ⊤

V be the SVD of
Y⊤

1 Y2. Denote Q∗ = QV Q
⊤
U . Then

1. Y2Q
∗ −Y1 ∈ HY1N

n

r+,Q
∗ is one of the best orthogonal matrices align-

ing Y1 and Y2, i.e., Q
∗ ∈ argminQ∈Or

∥Y2Q−Y1∥F and the geodesic
distance between [Y1] and [Y2] is d ([Y1] , [Y2]) = ∥Y2Q

∗ −Y1∥F;

2. if Y⊤
1 Y2 is nonsingular, then Q∗ is unique and the Riemannian logarithm

log[Y1] [Y2] is uniquely defined and its horizontal lift at Y1 is given by

log[Y1] [Y2] = Y2Q
∗−Y1; moreover, the unique minimizing geodesic from

[Y1] to [Y2] is [Y1 + t (Y2Q
∗ −Y1)] for t ∈ [0, 1].

Lemma 4 (Lemma 12 in [56]). For any Y1,Y2 ∈ Rn×r
∗ , we have

d2 ([Y1] , [Y2]) ⩽
1

2(
√
2− 1)σ2

r (Y2)

∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥2
F

(53)
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and ∥∥∥(Y1 −Y2Q) (Y1 −Y2Q)
⊤
∥∥∥2
F
⩽ 2

∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥2
F
, (54)

where Q = argminO∈Or ∥Y1 −Y2O∥F.
In addition, for any Y1,Y2 ∈ Rn×r

∗ obeying d ([Y1] , [Y2]) ⩽ 1
3σr (Y2), we

have ∥∥Y1Y
⊤
1 −Y2Y

⊤
2

∥∥
F
⩽

7

3
∥Y2∥ d ([Y1] , [Y2]) (55)

Given any Y ∈ Rn×r
∗ and x > 0, let Bx([Y])

def
= {[Y1] : d ([Y1] , [Y]) < x} be

the geodesic ball centered at [Y] with radius x. For any Riemannian manifold,
there exists a convex geodesic ball at every point (Chapter 3.4, [73]). The next
result quantifies the convexity radius around a point [Y] in the manifold Nn

r+.

Lemma 5 (Theorem 2, [56]). Given any Y ∈ Rn×r
∗ , the geodesic ball centered at

[Y] with radius x ⩽ rY
def
= σr(Y)/3 is geodesically convex. In fact, for any two

points [Y1] , [Y2] ∈ Bx([Y]), there is a unique shortest geodesic joining them,
which is entirely contained in Bx([Y]).

Finally, we provide some useful inequalities.

Lemma 6 (Proposition 2 in [74]). Let Y ∈ Rn×r
∗ , and let X = YY⊤. Then

2σ2
r(Y) ∥θY∥2F ⩽

∥∥Yθ⊤Y + θYY⊤
∥∥2
F
⩽ 4σ2

1(Y) ∥θY∥2F holds for all θY ∈ HYMq

r+.

Lemma 7. For A ∈ Rm×n, B ∈ Rn×n where B is positive semi-definite, we
have

∥A∥F · σn(B) ≤ ∥AB∥F ≤ ∥A∥F · σ1(B) (56)

Proof. When m = 1, this statement is direct by the definition of the Frobenius
norm. When m > 1, we denote Ai to be the ith row of A, and then

∥AB∥2F =

m∑
i=1

∥AiB∥2F ≤
m∑
i=1

∥Ai∥F · σ1(B) = ∥A∥F · σ1(B)

Similarly,

∥AB∥2F =

m∑
i=1

∥AiB∥2F ≥
m∑
i=1

∥Ai∥F · σn(B) = ∥A∥F · σn(B)

G.3 Proof of Results

In this section, we provide the proofs for Theorems 4.1, 2.1, 4.2, and 4.3.
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Theorem 4.1 (Local Geodesic Strong Convexity and Smoothness of Equa-
tion 8). Suppose 0 ⩽ µ ⩽ κ∗/3. Given that Assumption 2 holds, for any
Y ∈ R1,

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)− 2σr+1(An),

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3

In particular, if µ is further chosen such that
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σr (An)−

2σr+1(An) > 0, we have H([Y]) is geodesically strongly convex and smooth in
R1.

Proof. Denote by Q the best orthogonal matrix that aligns Y and Y∗. Then
by the assumption on Y ∈ R1 as defined in Equation 52, we have

∥Y −Y∗Q∥ ⩽ ∥Y −Y∗Q∥F = d ([Y], [Y∗]) ⩽ µσr (Y
∗) /κ∗. (57)

Thus

σr(Y) = σr (Y −Y∗Q+Y∗Q) ⩾ σr (Y
∗)− ∥Y −Y∗Q∥

Equation 57

⩾ (1− µ/κ∗)σr (Y
∗)

σ1(Y) = σ1 (Y −Y∗Q+Y∗Q) ⩽ σ1 (Y
∗) + ∥Y −Y∗Q∥

Equation 57

⩽ σ1 (Y
∗) + µσr (Y

∗) /κ∗

(58)

where the first inequalities follow from Weyl’s theorem [71]. Then,
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HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
[Equation 51]

⩾ 2σ2
r(Y) ∥θY∥2F + 2

〈
YY⊤ −An, θYθ⊤Y

〉
[ Lemma 6]

= 2σ2
r(Y) ∥θY∥2F + 2

〈
YY⊤, θYθ⊤Y

〉
− 2

〈
Y∗Y∗⊤, θYθ⊤Y

〉
− 2

〈
ZZ⊤, θYθ⊤Y

〉
[An = Y∗Y∗⊤ + ZZ⊤]

⩾ 2σ2
r(Y) ∥θY∥2F − 2

∥∥YY⊤ −Y∗Y∗⊤∥∥∥∥θYθ⊤Y
∥∥
F

− 2∥ZZ⊤∥∥θYθ⊤Y∥F [⟨A,B⟩ ≤ ∥A∥∥B∥F]

⩾ 2σ2
r(Y) ∥θY∥2F − 2

∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F
− 2∥ZZ⊤∥∥θY∥2F [∥θYθ⊤Y∥F = ∥θY∥2F]

⩾ 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2∥ZZ⊤∥∥θY∥2F

− 2
∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F [Equation 58]

⩾ 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2∥ZZ⊤∥∥θY∥2F

− 2 · 7
3
∥Y∗∥ µσr (Y

∗)

κ∗ ∥θY∥2F [Lemma 4,Y ∈ R1]

= 2
(
1− µ

κ∗

)2
σ2
r (Y

∗) ∥θY∥2F − 2 · 7
3
∥Y∗∥ µσr (Y

∗)

κ∗ ∥θY∥2F
− 2σr+1(An)∥θY∥2F [∥ZZ⊤∥ = σr+1(An)]

=

((
2
(
1− µ

κ∗

)2
− 14

3
µ

)
σr (An)− 2σr+1(An)

)
∥θY∥2F

[
κ∗ =

∥Y∗∥
σr(Y∗)

]
Likewise,

HessH([Y]) [θY, θY] =
∥∥Yθ⊤Y + θYY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θYθ⊤Y

〉
[Equation 51]

≤ 4σ2
1(Y) ∥θY∥2F + 2

〈
YY⊤ −An, θYθ⊤Y

〉
[ Lemma 6]

≤ 4σ2
1(Y) ∥θY∥2F + 2

〈
YY⊤ −Y∗Y∗⊤, θYθ⊤Y

〉
[An −Y∗Y∗⊤ is PSD]

⩽ 4σ2
1(Y) ∥θY∥2F + 2

∥∥YY⊤ −Y∗Y∗⊤∥∥ ∥θY∥2F
⩽ 4σ2

1(Y) ∥θY∥2F + 2
∥∥YY⊤ −Y∗Y∗⊤∥∥

F
∥θY∥2F

⩽ 4

(
σ1 (Y

∗) +
µσr (Y

∗)

κ∗

)2

∥θY∥2F + 2
∥∥YY⊤ −Y∗Y∗⊤∥∥

F
∥θY∥2F [Equation 58]

⩽

(
4

(
σ1 (Y

∗) +
µσr (Y

∗)

κ∗

)2

+
14

3
µσ2

r (Y
∗)

)
∥θY∥2F [Lemma 4]

From the above we conclude that when µ is chosen such that(
2
(
1− µ

κ∗

)2
− 14

3
µ

)
σr (An)− 2σr+1(An) > 0,

43



we have H([Y]) in Equation 8 is geodesically strongly convex and smooth in R1

as R1 is a geodesically convex set by [56]. Note that this is equivalent to((
1− µ

κ∗

)2
− 7

3
µ

)
>

σr+1(An)

σr(An)
.

Then note as µ → 0, the left hand side approaches 1 and the inequality becomes
true as σr(An) > σr+1(An).

Remark 13. Compared with the bound in Theorem 8 of [56], the smoothness
and geodesically strongly convexity are as follows,

σmin(HessH([Y])) ⩾
(
2 (1− µ/κ∗)

2 − (14/3)µ
)
σ2
r (Y

∗) ,

σmax(HessH([Y])) ⩽ 4 (σ1 (Y
∗) + µσr (Y

∗) /κ∗)
2
+ 14µσ2

r (Y
∗) /3.

There is an extra term −2σr+1(An) in our lower bound of the strong convexity
because even if d([Y], [Y∗]) is small, An −YY⊤ is not close to 0, which leads
to the extra error term.

In the next three theorems, we show that for Y /∈ R1, either the Riemannian
Hessian evaluated at Y has a large negative eigenvalue, or the norm of the
Riemannian gradient is large. Let Y = UDV⊤, Y∗ = U∗Σ∗1/2.

Theorem 2.1 (FOSP of Equation 8). Let UΣU
⊤

be An’s SVD factorization,
and let Λ = Σ1/2. Then for any S subset of [n] we have that

[
USΛS

]
is

a Riemannian FOSP of Equation 8. Further, these are the only Riemannian
FOSPs.

Proof. From Equation 51, the gradient can be written down as,

gradH([Y]) = 2
(
YY⊤ −An

)
Y = 2

(
UDV⊤(UDV⊤)⊤ −An

)
UDV⊤

= 2
(
UD3V⊤ −AnUDV⊤)

Therefore, whenever gradH([Y]) = 0, we haveUD3V⊤−AnUDV⊤ = 0. Since
both V and D are of full rank, the condition is equivalent to

UD2 −AnU = 0 (59)

SinceD2 is also a diagonal matrix, to satisfy Equation 59, the columns ofU have
to be the eigenvectors of An, and the diagonal of D2 has to be the eigenvalues
of An. This completes the proof.

Next, we prove Theorem 4.2. For the reader’s convenience, we restate the
theorem.

Theorem 4.2 (Region with Negative Eigenvalue in the Riemannian Hessian of
Equation 7). Assume that Assumption 2 holds. Given any Y ∈ Rn×r

∗ such that
Y ∈ R2, let θ

1
Y = [0,0, . . . ,0,a,0, . . . ,0]V⊤ where a such that

a = argmax
a:Y⊤a=0

a⊤Ana

∥a∥2
(22)
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and [0,0, . . . ,0,a,0, . . . ,0] ∈ Rn×r such that the ĩth columns is a and other
columns are 0 where

ĩ
def
= argmin

j∈[r]

Djj . (23)

Denote θ2Y = Y−Y∗Q, where Q ∈ Or is the best orthogonal matrix aligning
Y∗ and Y. We choose θY to be either θ1Y or θ2Y. Then

HessH([Y]) [θY, θY] ⩽min

{
−
σ2
r+1(Λ)

2
∥θY∥2,

− 2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θY∥2,(

(α− 2(
√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)
∥θY∥2F

}

In particular, if α and µ satisfies Assumption 3, we have HessH([Y]) has at
least one negative eigenvalue and θ1Y or θ2Y is the escaping direction.

Proof. By the definition of a, a ∈ Span{U1,...,r+1}. This is because the null
space of Y has dimension n− r. Hence, its intersection with a dimension r + 1
space has a dimension of at least 1.

Using the SVD decomposition of Y, we have, U⊤a = 0. Then, by using
Equation 51, we have

HessH([Y])
[
θ1Y, θ1Y

]
=
∥∥Y(θ1Y)⊤ + θ1YY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θ

1
Y(θ1Y)⊤

〉
[Equation 51]

=
∥∥Y(θ1Y)⊤ + θ1YY⊤∥∥2

F
− 2

〈
An, θ

1
Y(θ1Y)⊤

〉
[Y⊤a = 0]

= 2⟨Y⊤Y, (θ1Y)⊤θ1Y⟩+ 2⟨Y(θ1Y)⊤, θ1YY⊤⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
[∥A∥2F = ⟨A,A⟩]

= 2⟨Y⊤Y, (θ1Y)⊤θ1Y⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
[Y⊤a = 0]

= 2⟨VD2V⊤, (θ1Y)⊤θ1Y⟩ − 2
〈
An, θ

1
Y(θ1Y)⊤

〉
= 2D2

ĩ̃i
∥a∥2 − 2a⊤Ana

where the last equality comes from the definition of a and the fact that the
V⊤V = I in θ1Y(θ1Y)⊤. Recall ĩ = argminDii, then

HessH([Y])
[
θ1Y, θ1Y

]
= 2min

i
D2

ii∥a∥2 − 2a⊤Ana (60)

In the following, we separate the proof into three regimes of mini D
2
ii, cor-

responding to different escape directions.

Case 1:
(
When mini D

2
ii <

σ2
r+1(Λ)

2

)
. For this case we must have that

HessH([Y])
[
θ1Y, θ1Y

]
≤ −

σ2
r+1(Λ)

2
∥θ1Y∥2.
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This is because a⊤Ana ≥ σ2
r+1(Λ)∥a∥2 and ∥a∥ = ∥θ1Y∥.

Case 2:
(
When mini D

2
ii ≥

σ2
r+1(Λ)

2

)
.

From the proof of Theorem 2.1, the gradient condition of R2 can be written
as

αµσ3
r (Y

∗) / (4κ∗) ≥ ∥gradH([Y])∥F [Y ∈ R2]

= ∥2
(
UD3V⊤ −AnUDV⊤) ∥F [Equation 51]

= ∥2
(
UD2 −AnU

)
D∥F

Assume U = UC where C ∈ Rn×r. Since U⊤U = Ir and U
⊤
U = In, we have

C⊤C = Ir. Furthermore,

∥2
(
UD2 −AnU

)
D∥F = ∥2

(
UCD2 −AnUC

)
D∥F [U = UC]

= ∥2
(
UCD2 −UΣC

)
D∥F [An = UΣU

⊤
]

= 2∥
(
CD2 −ΣC

)
D∥F.

Here the third equality follows from U
⊤
U = In. By a direct computation,

the ith column of
(
CD2 −ΣC

)
D is D3

iiCi −DiiΣCi. Therefore, the gradient
condition of R2 can be written as∑

i,j

(
D3

iiCji −DiiΣjjCji

)2 ≤ α2µ2σ6
r (Y

∗) / (4κ∗)
2

(61)

We fix i in the left hand side of Equation 61, we have∑
j

(
D2

ii −Σjj

)2
D2

iiC
2
ji ≤ α2µ2σ6

r (Y
∗) / (4κ∗)

2
(62)

where
∑

j C
2
ji = 1. From D2

ii ≥
σ2
r+1(Λ)

2 , we must have

min
j

|D2
ii −Σjj |2 ≤

∑
j

(
D2

ii −Σjj

)2
C2

ji ≤
α2µ2σ6

r (Y
∗)

(4κ∗)2
σ2
r+1(Λ)

2

. (63)

We use Equation 62 for the second inequality. Equation 63 is important in the
proof because this essentially guarantees that D2

ii must be close to some Σjj .

This is because
α2µ2σ6

r(Y
∗)

(4κ∗)2
σ2
r+1

(Λ)

2

is guaranteed small according to Assumption 3.

We decompose Cĩ into ξ1 + ξ2 where ξ1j = 0 for all j ≥ r+ 1 and ξ2j = 0 for

all j ∈ [r]. Since ⟨ξ1, ξ2⟩ = 0 and C⊤C = I,

∥ξ1∥2 + ∥ξ2∥2 = 1 (64)

In the following, we divide all the cases into different regimes based on which
of the eigenvalues of Λ is close to Dĩ̃i.
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Case 2.1:
(
When

σ2
r+1(Λ)

2 ≤ D2
ĩ̃i
≤ αµσ3

r(Y
∗)

2
√
2κ∗σr+1(Λ)

+ σ2
r+1(Λ)

)
.

Notice that the first assumption in Assumption 3 essentially guarantees a

small e1 =
αµσ3

r(Y
∗)

2
√
2κ∗σr+1(Λ)

.

Hence, we have

α2µ2σ6
r (Y

∗) / (4κ∗)
2 ≥

∑
j

(
D2

ĩ̃i
−Σjj

)2
D2

ĩ̃i
C2

jĩ
[Equation 61]

≥
∑
j≤r

∣∣σ2
j (Λ)−D2

ĩ̃i

∣∣2 ·D2
ĩ̃i
·C2

jĩ

≥
∣∣σ2

r(Λ)−D2
ĩ̃i

∣∣2 ·D2
ĩ̃i
· ∥ξ1∥2

≥
∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2 · σ2
r+1(Λ)

2
· ∥ξ1∥2.

Where in the last two inequalities, we use the condition
σ2
r+1(Λ)

2 ≤ D2
ĩ̃i
≤ e1 +

σ2
r+1(Λ) and that e1 < (σ2

r(Λ)− σ2
r+1(Λ))/2 (follows from Assumption 3).

By reordering the inequality, we have

∥ξ1∥ ≤ e1∣∣σ2
r(Λ)− e1 − σ2

r+1(Λ)
∣∣ (65)

Recall that Y = UDV⊤, then a⊤Y = 0 reduces to a⊤UDV⊤ = 0. Since
both D,V ∈ Rr∗r are full rank, then we have a⊤U = 0, in turn a⊤UC = 0

because U = UC. Denote b⊤
def
= a⊤U, then

max
a:Y⊤a=0

a⊤Ana

∥a∥2
= max

a:a⊤UC=0

a⊤Ana

∥a∥2

= max
a:a⊤UC=0

a⊤UΛU
⊤
a

∥a∥2
[An = UΛU

⊤
]

= max
b:b⊤C=0

b⊤Λb

∥b∥2
[U

⊤
U = I]

(66)

Since a ∈ Span{U1,...,r+1}, we have bj = 0 for j > r + 1. From b⊤C = 0, we
have b⊤Cĩ = 0, which can be written as b⊤(ξ1 + ξ2) = 0. Since there are in
total r constraints in b⊤C = 0, there must exist a b satisfying the constraints
b⊤C = 0, and the norm of br+1:n is relatively small compared with the norm
of b1:r. Specifically, denote C1:r to be the 1st to rth rows of C. We consider b
to be b1 + b2 such that b1i = 0 for i > r, and b2i = 0 for i ∈ [r]. We discuss two
cases of C1:r ∈ Rr∗r in the following.

Case 2.1.1: If C1:r is not full rank.
In this case, there exists b̃1 ∈ Rr such that ∥b̃1∥ > 0 and (b̃1)⊤C1:r =

0. Therefore, by denoting b̄1:r = tb̃1 + b11:r, and b̄r+1:n = b2r+1:n. From the
definition of b̄ and the fact that b⊤C = 0, we have b̄⊤C = 0. By letting
t → ∞, we have

max
b⊤C=0

b⊤Λb

∥b∥2
≥ b̄⊤Λb̄

∥b̄∥2
≥ σ2

r(Λ) (67)
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Combining Equation 67, Equation 60 and the Assumption that D2
ĩ̃i

≤ e1 +

σ2
r+1(Λ), this implies,

HessH([Y])
[
θ1Y, θ1Y

]
⩽ −(σ2

r(Y
∗)− σr+1(Λ)− e1)∥θ1Y∥2F (68)

According to Assumption 3, this satisfies the bound in Theorem 4.2 with θ1Y
being a negative escaping direction.

Case 2.1.2 : If C1:r is full rank. In this case, we denote b2 = ξ2. Since
C1:r is full rank, there exists b1 to have (b11:r)

⊤C1:r = −(b2)⊤C; this is because
(b11:r)

⊤C1:r = −(ξ2)⊤C has in total r constraints, and there are in total r
parameters in b11:r. Specifically, one can choose b1 to be b11:r = −ξ2C(C1:r)

−1

to satisfy b⊤C = 0. In addition, from the specific condition b⊤Cĩ = 0, we know
that

b1 · ξ1 + ∥ξ2∥2 = 0 (69)

By using the Cauchy inequality, this further implies that

∥b1∥ ≥ ∥ξ2∥2

∥ξ1∥
(70)

Since we only choose a specific b such that b⊤C = 0 holds, we have

max
b⊤C=0

b⊤Λb

∥b∥2
≥ (b1 + b2)⊤Λ(b1 + b2)

∥b1 + b2∥2

=
(b1)⊤Λb1 + (b2)⊤Λb2

∥b1∥2 + ∥b2∥2

≥ (b1)⊤Λb1

∥b1∥2 + ∥ξ2∥2

≥ ∥b1∥2 · σ2
r(Λ)

∥b1∥2 + ∥ξ2∥2

≥
∥ξ2∥4

∥ξ1∥2 · σ2
r(Λ)

∥ξ2∥4

∥ξ1∥2 + ∥ξ2∥2

= ∥ξ2∥2 · σ2
r(Λ)

(71)

where the first equality follows from the definition of b1 and b2; the second
inequality follows from the assumption that Λ is PSD, and b2 = ξ2; the third
inequality follows from the fact that b1i = 0 for i > r; the fourth inequality
follows from Equation 70; the last equality follows from Equation 64. By using
Equation 66, this can be written as

max
a:Y⊤a=0

a⊤Ana

∥a∥2
≥ ∥ξ2∥2 · σ2

r(Λ) (72)
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By the definition in Equation 22 and Equation 60, we have

HessH([Y])
[
θ1Y, θ1Y

]
= 2min

i
D2

ii · ∥a∥2 − 2a⊤Ana [Equation 60]

≤ 2D2
ĩ̃i
· ∥a∥2 − 2σ2

r(Λ)∥ξ2∥2 · ∥a∥2 [Equation 72]

= 2D2
ĩ̃i
· ∥a∥2 − 2σ2

r(Λ)(1− ∥ξ1∥2) · ∥a∥2 [∥ξ1∥2 + ∥ξ2∥2 = 1]

≤
(
−2σ2

r(Λ)(1− ∥ξ1∥2) + 2e1 + 2σ2
r+1(Λ)

)
∥θ1Y∥2

where the last inequality follows from D2
ĩ̃i

≤ e1 + σ2
r+1(Λ) and the fact that

∥θ1Y∥ = ∥a∥. Finally, by applying Equation 65 to control ∥ξ1∥, we conclude
that

HessH([Y])
[
θ1Y, θ1Y

]
≤ −2

(
σ2
r(Λ)

(
1− e21∣∣σ2

r(Λ)− e1 − σ2
r+1(Λ)

∣∣2
)

− e1 − σ2
r+1(Λ)

)
∥θ1Y∥2

(73)

According to the second assumption in Assumption 3, Equation 73 guarantees
an escape direction.

Case 2.2:
(
When D2

ĩ̃i
> e1 + σ2

r+1(Λ)
)
.

Recall the first assumption in Assumption 3, we have e1 is small enough,
which is viewed as an error term. In the following, we will show that θ2Y is the
escaping direction. We have

min
j

D2
ĩ̃i
|D2

ĩ̃i
−Σjj |2 ≤ D2

ĩ̃i

∑
j

(
D2

ĩ̃i
−Σjj

)2
C2

jĩ
≤ α2µ2σ6

r (Y
∗)

(4κ∗)2
(74)

where we use Equation 62 in the last inequality.
Recall that Assumption 3 guarantees small e1 and e2 , by combining Equa-

tion 74 and the assumption D2
ĩ̃i
> σ2

r+1(Λ) + e1, we must have

D2
ĩ̃i
≥ σ2

r(Λ)− e2 (75)

where e2 is defined in Assumption 3. Otherwise, if σ2
r+1(Λ) + e1 < D2

ĩ̃i
<

σ2
r(Λ) − e2, this contradicts to Equation 74; see an illustration of this fact in

Figure 6.
In this scenario, we consider the escaping direction θ2Y to be Y−Y∗Q. From

the fact that Dii ≥ Dĩ̃i, we have

α2µ2σ6
r (Y

∗) / (4κ∗)
2 ≥

n∑
i=1

n∑
j=1

(
D2

ii −Σjj

)2
D2

iiC
2
ji [Equation 61]

≥
n∑

i=1

n∑
j=r+1

∣∣σ2
j (Λ) + e2 − σ2

r(Λ)
∣∣2 ·D2

iiC
2
ji

where Equation 75 and the first assumption in Assumption 3 guarantees the
last inequality because e2 is small with respect to σ2

r(Λ)− σ2
r+1(Λ). Therefore,

n∑
i=1

n∑
j=r+1

D2
iiC

2
ij ≤

e23∣∣σ2
r(Λ)− e2 − σ2

r+1(Λ)
∣∣2 (76)
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σ2
r − e2 σ2

rσ2
r+1 + e1σ2

r+1

Figure 6: The value ofDĩ̃i must be close to some σi(Λ) according to Equation 74.
If D2

ĩ̃i
> σ2

r+1 + e1, then we must have D2
ĩ̃i
≥ σ2

r − e2.

where e3 is defined in Assumption 3. Recall that e3 is small enough, guaranteed
in Assumption 3. Also recall that e2 = e1√

2
, which is guaranteed to be small

enough as in the first assumption in Assumption 3, so σr(Λ)2−e3−σ2
r+1(Λ) > 0.

Denote Σ(r+1):n to be a diagonal matrix with only r+1th to nth eigenvalues
of Σ, then we have

⟨An −X∗,YY⊤⟩ = ⟨An −X∗,UD2U⊤⟩

= ⟨An −X∗,UCD2C⊤U
⊤⟩

= ⟨Σ(r+1):n,CD2C⊤⟩

≤ σ2
r+1(Λ)

n∑
j=r+1

∑
i

C2
ijD

2
ii

≤
e23σ

2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
(77)

where the last inequality follows from Equation 76. Equation 77 directly implies,

⟨An −X∗, θ2Y(θ2Y)⊤⟩ = ⟨An −X∗,YY⊤⟩

≤
e23σ

2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2 (78)

because (An −X∗)Y∗ = 0 and θ2Y = Y −Y∗Q.
Recall X∗ = Y∗Y∗⊤. A simple calculation yields

Y(θ2Y)⊤ −X∗ + θ2Y(θ2Y)⊤ = Y(θ2Y)⊤ + θ2YY⊤ (79)

and by using Equation 51,

⟨gradH([Y]), θ2Y⟩ =
〈
2
(
YY⊤ −An

)
Y, θ2Y

〉
=
〈
2(YY⊤ −An), θ

2
YY⊤〉

=
〈
YY⊤ −An, θ

2
YY⊤ +Y(θ2Y)⊤

〉
[first argument is symmetric]

=
〈
YY⊤ −An, θ

2
Y(θ2Y)⊤ +YY⊤ −X∗〉 .

(80)
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where the last equality follows from Equation 79.

HessH([Y])
[
θ2Y, θ2Y

]
=
∥∥Y(θ2Y)⊤ + θ2YY⊤∥∥2

F
+ 2

〈
YY⊤ −An, θ

2
Y(θ2Y)⊤

〉
[Equation 51]

=
∥∥YY⊤ −X∗ + θ2Y(θ2Y)⊤

∥∥2
F
+ 2

〈
YY⊤ −An, θ

2
Y(θ2Y)⊤

〉
[Equation 79]

=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
+
∥∥YY⊤ −X∗∥∥2

F
+ 4

〈
YY⊤ −X∗, θ2Y(θ2Y)⊤

〉
− 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
YY⊤ −X∗,YY⊤ −X∗ + θ2Y(θ2Y)⊤

〉
− 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
YY⊤ −An,YY⊤ −X∗ + θ2Y(θ2Y)⊤

〉
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 4

〈
An −X∗,YY⊤ −X∗〉

+ 2
〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
gradH([Y]), θ2Y

〉
[Equation 80]

This decomposesH([Y])
[
θ2Y, θ2Y

]
into 2 parts, which will be bounded separately.

First, for
∥∥θ2Y(θ2Y)⊤

∥∥2
F
−3
∥∥YY⊤ −X∗

∥∥2
F
+2
〈
An −X∗, θ2Y(θ2Y)⊤

〉
+4
〈
An −X∗,YY⊤ −X∗〉,

we have∥∥θ2Y(θ2Y)⊤
∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

≤ −
∥∥YY⊤ −X∗∥∥2

F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉 [Equation 54]

= −
∥∥YY⊤ −X∗∥∥2

F
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤〉 [⟨An −X∗,X∗⟩ = 0]

≤ −
∥∥YY⊤ −X∗∥∥2

F
+ 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 + σ2
r+1(Λ)

∣∣2 [Equation 77,Equation 78]

≤ −2(
√
2− 1)σ2

r (Y
∗)
∥∥θ2Y∥∥2F + 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 + σ2
r+1(Λ)

∣∣2 [Equation 53]

Second, for
〈
gradH([Y]), θ2Y

〉
,〈

gradH([Y]), θ2Y

〉
≤∥gradH([Y])∥F

∥∥θ2Y∥∥F
≤ ασ2

r (Y
∗)
∥∥θ2Y∥∥2F

where the last inequality is because ∥gradH([Y])∥F ⩽ αµσ3
r (Y

∗) / (4κ∗). Ac-
cording to the definition ofR2 in Equation 21,Y ∈ R2 also implies d ([Y], [Y∗]) >
µσr (Y

∗) /κ∗, then

∥gradH([Y])∥F ⩽ αd ([Y], [Y∗])σ2
r (Y

∗) /4 = α
∥∥θ2Y∥∥F σ2

r (Y
∗) /4
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By combining the above three inequalities, we have

HessH([Y])
[
θ2Y, θ2Y

]
=
∥∥θ2Y(θ2Y)⊤

∥∥2
F
− 3

∥∥YY⊤ −X∗∥∥2
F

+ 4
〈
gradH([Y]), θ2Y

〉
+ 2

〈
An −X∗, θ2Y(θ2Y)⊤

〉
+ 4

〈
An −X∗,YY⊤ −X∗〉

≤ (α− 2(
√
2− 1))σ2

r (Y
∗)
∥∥θ2Y∥∥2F + 6

e23σ
2
r+1(Λ)∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
≤

(
(α− 2(

√
2− 1))σ2

r (Y
∗) + 6

α2σ4
r (Y

∗)σ2
r+1(Λ)/16∣∣σ2

r(Λ)− e2 − σ2
r+1(Λ)

∣∣2
)∥∥θ2Y∥∥2F

where the last inequality follows from µσr (Y
∗) /κ∗ ≤ d ([Y], [Y∗]) = ∥θY∥F

and the definition of e3 in Assumption 3.
Finally, according to the third assumption in Assumption 3, one can guar-

antee the right-hand side of this bound is negative, which implies that θ2Y is the
escaping direction in this scenario.

Combining all the discussion, this finishes the proof of this theorem.

Remark 14. The eigengap assumption is crucial in discussing the three regions
of the minimum singular value of Y for Theorem 4.2. Without this eigengap as-
sumption and under the current quotient geometry, the third regime cannot lead
to a negative eigenvalue of Hessian matrix because any span on the eigenspace
are global solutions. To relax eigengap assumption, an alternative quotient ge-
ometry needs to be considered.

Finally, we look at the last main result. Theorem 4.3 guarantees that when
Y ∈ R3, the magnitude of the Riemannian gradient descent is large. The proof
of Theorem 4.3 directly follows from the proof of [56] without any modifica-
tion. Hence, we do not repeat it here. Notice that Y ∈ R3 does not require
Assumption 2 becauseR3 describes the case that [Y] is far away from the FOSP.

Theorem 4.3 ((Regions with Large Riemannian Gradient of Equation 7).
1. ∥gradH([Y])∥F > αµσ3

r (Y
∗) / (4κ∗) , ∀Y ∈ R′

3;

2. ∥gradH([Y])∥F ⩾ 2
(
∥Y∥3 − ∥Y∥ ∥Y∗∥2

)
> 2

(
β3 − β

)
∥Y∗∥3 , ∀Y ∈

R′′
3 ;

3. ⟨gradH([Y]),Y⟩ > 2(1− 1/γ)
∥∥YY⊤

∥∥2
F
, ∀Y ∈ R′′′

3 .
In particular, if β > 1 and γ > 1, we have the Riemannian gradient of H([Y])
has large magnitude in all regions R′

3,R′′
3 and R′′′

3 .
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