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ABSTRACT

Ensuring the safety of autonomous driving systems requires rigorous evaluation
across diverse street scene conditions within the Operational Design Domain
(ODD), such as lighting, weather, traffic, and road variations. Yet collecting real-
world data to cover this spectrum is costly, time-consuming, and often impractical.
Recent advances in language-driven image editing offer a promising alternative by
simulating diverse scenarios through text-based modifications. However, progress
has been limited by the absence of a dedicated dataset for driving-scene editing.
To address this gap, we introduce, to the best of our knowledge, the first dataset
specifically designed for language-driven editing of driving scenes. Our dataset
combines real-world and synthetic street scene images and supports 12 distinct
editing tasks, spanning global modifications (e.g., weather, season, time of day) and
fine-grained local edits (e.g., altering vehicle or pedestrian attributes). Crucially,
each edit is paired with detailed textual and visual instructions, and, together with
our proposed supervised and unsupervised fine-tuning objectives, enables state-of-
the-art image editing models to follow instructions faithfully and preserve critical
content. Experimental results demonstrate that training language-driven editing
models with our dataset and objectives yields substantial gains in prompt alignment,
visual fidelity, generation realism, and downstream driving-task performance on
edited street scene images, across diverse driving domains.

Figure 1: LangDriveEdit targets improving two critical requirements in driving scene editing: content preser-
vation and instruction alignment. These two requirements are supported via fine-grained visual and prompt
instructions (Sec. 3) and carefully designed training objectives (Sec. 4). Given a mask of dynamic objects to
remove and add respectively, and a global editing prompt, we visualize our edits of given input images.
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1 INTRODUCTION

Ensuring safety is a central challenge in deploying autonomous driving. Real-world testing within
the Operational Design Domain (ODD) is limited by dynamic factors such as lighting, weather,
traffic, and road conditions, making comprehensive data collection infeasible (Mehlhorn et al., 2023).
Generative models offer a scalable alternative for synthesizing diverse environments (Gao et al.,
2023), and instruction-guided image editing in particular enables fine-grained, language-based control
while preserving realism through large-scale pretrained sources (Ramesh et al., 2022; Betker et al.;
Rombach et al., 2022; Brooks et al., 2023b; Zhao et al., 2024).

Nonetheless, two properties critical to autonomous driving scenes are not explicitly enforced when
applying generative instruction-guided editing: Content Preservation and Instruction Alignment.
Content preservation focuses on retaining the unedited elements of a driving scene during trans-
formation (Shi et al., 2024). Editing models may unintentionally modify or remove essential
content—such as traffic signs, lane markings, or surrounding vehicles, potentially leading to incorrect
visual signals for downstream perception and planning systems by altering safety-critical elements.
Meanwhile, instruction alignment refers to the accurate execution of detailed, multi-attribute
natural-language instructions (Shi et al., 2024). Strong instruction alignment not only supports
human-in-the-loop workflows but also enables systematic exploration of the combinatorial space of
scene factors (weather, illumination, traffic composition, viewpoint, and beyond), ensuring that each
syntactic variation of an instruction is faithfully realized in the output, thereby achieving a degree of
diversity and granularity unattainable through unguided random sampling.

Therefore, we pose two fundamental questions for current instruction-guided editing models:

Q1: How can instruction-guided editing models generate variability in the environment
while preserving unedited portions of a driving scene unchanged?
Q2: How can instruction-guided editing models’ generation be controlled given precise
editing instructions in driving scenes?

The primary bottleneck in addressing these questions lies in the lack of paired datasets of fine-
grained visual or textual prompts. We introduce the LangDriveEdit Dataset (Figure 1). It includes
large-scale paired real-world driving images with fine-grained instructions (Sec.3.1), with a supple-
mentary synthetic part (Sec.C.1). Our real-world images capture a large amount of environmental
variations, such as season, lighting, and weather, alongside multiple concurrent object-level dif-
ferences among road users (Sec.3.1). To enable fine-grained control in diffusion-based generation,
we pair precise editing instructions with pixel-level masks, created using large language models
integrated into a multi-modal vision pipeline. Unlike object-centric image generation, traffic scenes
are densely populated with vehicles, pedestrians, and buildings, making natural language prompts
alone insufficient (Figure 3). Our masks encode localized semantics at the pixel level, ensuring
accurate description and manipulation of complex driving scenes. Furthermore, to scale driving
scene editing to various traffic conditions, we introduce unsupervised training methods that encour-
age content preservation via cycle and identity objectives, and also instruction alignment via CLIP
similarity objectives and adversarial training. We demonstrate that models trained this way on the
LangDriveEdit dataset achieve strong content preservation and instruction alignment (Sec.5). Our
contributions can be summarized as follows:

1. New Paired Datasets for Driving Scene Editing. To the best of our knowledge, LangDriveEdit
is the first dataset of large-scale paired images with the support of diverse editing types and
fine-grained instructions, designed for instruction-guided editing of driving scenes.

2. Automatic Generation of Prompts and Visual Masks as Instructions. Our pipeline streamlines
the generation of editing prompts and pixel-level masks for both real-world and synthetic environ-
ments, employing a novel annotation framework that leverages vision-language models and depth
estimation to extract environmental and object-level details.

3. Significant Improvements in Driving Scene Editing. Across different state-of-the-art editing
models, our comprehensive experiments demonstrate that after our fine-tuning on our Lang-
DriveEdit dataset, both content preservation and instruction alignment are largely improved.

4. Impact on Downstream Driving Tasks. We demonstrate that edited images produced with our
dataset can improve road segmentation performance on an out-of-distribution driving dataset,
highlighting the potential of instruction-guided editing for safety-critical applications.
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2 RELATED WORK
Image Editing Dataset. Building image-editing datasets is more challenging than Text-2-
Image (Betker et al.; Ramesh et al., 2021; 2022; Rombach et al., 2022), with data scarcity a key
bottleneck (Wang et al., 2023a; Hui et al., 2024). Existing efforts such as MagicBrush (Zhang et al.,
2024b), InstructPix2Pix (Brooks et al., 2023a), and SeedEdit (Shi et al., 2024) either rely on manual
annotation, synthetic data, or iterative refinement, but remain limited to simple object edits. Image
Editing via Generation. Advances in large diffusion models (Kawar et al., 2022; Saharia et al.;
Chen et al., 2023) have enabled instruction-driven editing, with methods like InstructPix2Pix, HIVE,
and UltraEdit pushing the field forward, though primarily in generic domains. Image Editing for
Autonomous Driving. Driving-scene editing has been explored through NeRFs, Gaussian Splatting,
and multi-condition generation (Liang et al., 2025; Gao et al., 2023), yet instruction-guided editing
remains underexplored due to the absence of datasets. We address this gap with LangDriveEdit, the
first instruction-driven editing dataset tailored to autonomous driving. Due to space limits, we refer
readers to Section A for a more comprehensive survey of related works.

3 LANGDRIVEEDIT DATASET

The construction of the dataset involves a detailed annotation process to capture varying edits in
driving scenes while maintaining consistency. We overview our dataset construction pipeline in
Figure 2. In this section, we explain our data collection and annotation.

Figure 2: LangDriveEdit Construction. Real-world data are paired by camera pose and annotated us-
ing an image descriptor pipeline (Sec. 3.1.1) passed to an LLM to produce instructions (Sec. 3.1.2). For
synthetic image pairs we simulate two frame sequences performing one of 12 editing tasks (Sec. C.1.1). Our
dataset is composed of image pairs, editing instructions, and two masks indicating objects to add and to remove.

3.1 SEMANTIC ALIGNMENT FOR UNPAIRED REAL-WORLD DRIVING ENVIRONMENTS

Our primary data contribution consists of large-scale paired real-world driving images with hierar-
chical, fine-grained annotations. As demonstrated in the experiments (Section 5), these high-quality
driving scene images form the foundation for training image editing models to generate diverse
driving environments. We show our dataset statistics in Table 1.

We align images and semantics in Boreas (Burnett et al., 2023), which is a multi-season autonomous
driving dataset collected by driving a repeated route throughout one year. In addition to ideal climates,
Boreas features adverse weather conditions (rain, snow, fog) that are critical for rigorously evaluating
and expanding operational design domains.

3
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Table 1: Real-World Dataset Statistics. Left: distribution of edit types across the Boreas. Right: distribution of
the number of edit types per example.

Edit type Count Percentage
Road Conditions 146,159 15%
Time of Day 235,710 24%
Traffic 263,064 27%
Traffic Light 55,998 6%
Weather 269,715 28%

Partition by Number of Subedits
1 Edit Type 16,623 4.86%
2 Edit Types 95,295 27.88%
3 Edit Types 160,413 46.93%
4 Edit Types 64,385 18.84%
5 Edit Types 4,922 1.44%
Total Examples 341,796 -

3.1.1 FINE-GRAINED PARING AND DECOMPOSITION OF COMPLEX DRIVING SCENES

Real-world images in Boreas are largely collected from unpaired scenes and camera poses. To align
images into paired scenes with aligned camera poses, for each pair of driving sequences, we extract
corresponding frames by minimizing camera pose disparities, below a fixed tolerance, employing
an equally weighted sum of angular orientation and Euclidean position. We show this in Equation 1
where x is the camera’s Euclidean position and ϕ, θ, ψ are its roll, pitch, and yaw respectively.

Itarget = argmin
I∈I

dist(I, Isource)

dist(Ia, Ib) = ∥x⃗a − x⃗b∥2 + |ϕa − ϕb|+ |θa − θb|+ |ψa − ψb|
(1)

where I denotes the neighboring frames of Isource, and a, b are the indices of two such frames. To
collect hierarchical and multimodal scene descriptions, we introduce “Image Descriptor” (Figure 2),
a training-free pipeline inspired by (Yao et al., 2025). Real-world driving scenes introduce significant
annotation challenges. First, most large-scale real-world recordings lack multimodal sensors, leaving
RGB-based global and instance-level descriptions less informative. Second, the real world typically
includes complex scene variations and compositions (see Figure 3 left, where images are captured
with the same camera pose at different times).

Our “Image Descriptor” is a comprehensive annotation system: it integrates vision-language and
depth estimation models that can generate semantic-aligned scene descriptions at two levels:

Multimodal Environments Descriptions. We first extract global information about the scene:
1. We use an image-based vision-language model (VLM) (Chen et al., 2024a) for a global interpreta-

tion of extremely fine-grained attributes. We show the VLM prompt in Appendix E.1.
2. To estimate object distances, we apply a metric depth estimation model, Metric3d (Hu et al., 2024),

to the full image, producing a depth map whose values correspond to real-world distances.
Instance-Level Semantic Decomposition. After preparing the global description, we then record
objects present in the scene:
1. We run a 2D object detector (Owlv2 (Minderer et al., 2024)) that returns, for each detected object,

a bounding box, a class label (from the set ‘ambulance’, ‘bicycle’, ‘traffic light’, ‘traffic cone’,
‘person’, ‘car’, ‘motorcycle’, ‘bus’, ‘building’, ‘fire truck’), and a unique object ID.

2. For each object, we crop the global depth map (from the 2nd step above) to its bounding box and
then refine that region with a binary mask from the Segment Anything Model (SAM (Kirillov
et al., 2023)), ensuring we exclude background pixels. The object’s distance is taken as the mean
depth over this masked area.

3. We invoke the VLM (Chen et al., 2024a) on each object’s bounding box to extract additional
attributes, such as vehicle color or traffic-light state.

We show an example annotation in Appendix E.

3.1.2 DENSE EDITING INSTRUCTIONS AND CONTENT PRESERVATION

We enable controllable image editing, with uninstructed content preserved, by using two annotation-
driven guidances: textual instructions and spatial masks.

Instruction Generation. Using the global scene annotations we prepared in Section 3.1.1, such
as weather, time of day, and road conditions, we employ ChatGPT 4o-mini to generate structured
editing instructions separately for the input source image and the target driving scene (App. F.2). Our
generated instruction only describes what the target image should look like.
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Figure 3: Driving Scene Features are Dense. Left: It is difficult to describe rich semantics for multiple
object-oriented changes in natural language. Right: To provide fine-grained instructions with rich semantics, we
construct both binary removal/addition masks and CLIP text features of instances (Section 3.1.2).

Extracting Semantic-Rich Removal-Addition Masks. To capture nuanced scene edits, each
global instruction is paired with two instance-aware masks. Specifically, we generate: (1) a removal
mask for the source image, which identifies objects to be eliminated, (2) an addition mask for the
target image, which highlights regions designated for new object placement. Together, they support
fine-grained object edits while preserving non-targeted regions. See details in Appendix D.

Expanding Masks with CLIP Text Features. Unlike traditional image editing approaches that
primarily target sparse, object-centric modifications (e.g. (Zhao et al., 2024; Brooks et al., 2023a))
driving scenes are inherently much denser and more complex. It is unrealistic to precisely de-
scribe rich semantics for multiple instance-specific changes in natural language prompts. To enable
the accurate execution of detailed multi-attribute instructions, we use masks expanded with CLIP
features (Radford et al., 2021). For each masked object, we encode its text description into CLIP and
assign the encoded feature to each masked pixel. This process is shown in Figure 3 right. Objects are
processed in descending order of their distances to the ego camera, allowing the CLIP features of
closer objects to overwrite those of farther, occluded objects at overlapping pixels.

4 LANGUAGE-GUIDED IMAGE EDITING

𝑓𝜃
Source Image 𝑥𝑠

ො𝑥𝑡

Cycle

Reconstruction

𝐿𝑐𝑙𝑖𝑝
Source Caption

𝑡𝑠

𝑓𝜃
Source Image 𝑥𝑠

Identity Reconstruction

Target Caption 𝑡𝑡

𝑓𝜃

Source Caption 𝑡𝑠 𝐿𝑐𝑙𝑖𝑝

ℒsft ℒcycle
ℒsft

ℒsft

Figure 4: Training language-guided driving scene image editing. Our training pipeline supports both supervised
training for paired images and unsupervised training for unpaired ones (e.g. downstream unseen real scenarios).
We include three training objectives: supervised fine-tuning Lsft (Section 4.1), cycle consistency Lcycle (Sec-
tion 4.2), and Lclip (Section 4.3).

In this section, we introduce a suite of training objectives to explicitly encourage content preservation
and instruction alignment. Our training pipeline integrates both supervised and unsupervised
objectives, enabling editing models to benefit from paired data for precise editing control when
available, while remaining applicable to large-scale, unpaired datasets. In Section 5, we show that
this supports the fine-tuning of different image editing models.

4.1 SUPERVISED FINE-TUNING FOR INSTRUCTION ALIGNMENT

When paired source–target examples are available, we train image editing models with supervised
fine-tuning. Given paired training samples (xs, xt, ts, tt,Mr,Ma), the generator model fθ produces
an edited image, and we calculate the supervised fine-tuning loss in Eqn. 2.

x̂t = fθ(xs, tt,Mr,Ma),

Lsft = λsft
∥∥xt − x̂t

∥∥
1
+ λsft-lpips

∥∥ϕ(xt)− ϕ(x̂t)
∥∥
2
,

(2)
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Each training instance includes a source scene (xs), two natural language instructions describing
the transformations from the source to the target (tt), from target to the source (ts), a mask of
instances to remove and add from the source scene (Mr, Ma), and the resulting edited target (xt).
x̂t = fθ(xs, tt,Mr,Ma) is the generator’s output. ϕ(·) denotes the feature extraction function of a
pretrained VGG network (Zhang et al., 2018).

With this design, we can explicitly guide the model toward faithful instruction following. By
conditioning the model on instruction-derived pixel masks, we constrain modifications to specified
areas, encouraging the model to localize edits. This ensures unedited structures, such as road geometry
and lane markings, are unchanged while surrounding vehicles and global features are edited. Masked
supervision penalizes deviations in non-edited regions, which also supports content preservation.

As a special case of Lsft, when xs and xt are the same image (with blank removal/addition masks),
we are essentially asking the editing model to preserve the content:

Lsft = λid
∥∥fθ(xs, ts, ∅, ∅)− xs

∥∥
1
+ λid-lpips

∥∥ϕ(fθ(xs, ts, ∅, ∅))− ϕ(xs)
∥∥
2

(identity preservation) (3)

This special case of Lsft, i.e, an identity objective, enforces that when editing instructions correspond
to no change (e.g., blank masks or re-adding removed content), the model reproduces the input. This
teaches the model to preserve dynamic scene instances that are not specified in the editing instruction.

4.2 LANGUAGE-GUIDED CYCLE CONSISTENCY AND IDENTITY PRESERVATION

While supervised fine-tuning provides precise control, acquiring paired data is costly, and the reliance
on paired data limits its scalability to driving datasets where explicit ground truth edits are unavailable,
especially on unseen driving scenes in the wild. Therefore, we choose to include complementary
unsupervised constraints via cycle consistency and identity preservation, such that we can use them
in OOD unsupervised cases.

Cycle consistency extends this principle by encouraging reversibility. Without additional constraints,
generative editing models may alter portions of the scene in regions unrelated to the instruction. By
requiring the original image to be recoverable after a forward–backward editing cycle, the model
is penalized for unnecessary deviations from the input. This encourages content preservation by
discouraging drift.

x̂s = fθ(fθ(xs, tt,Mr,Ma), ts,Ma,Mr)

Lcycle = λcycle
∥∥x̂s − xs

∥∥
1
+ λcycle-lpips

∥∥ϕ(x̂s)− ϕ(xs)
∥∥
2
.

(4)

By combining pixel-level L1 and perceptual LPIPS losses, we enforce structural fidelity while
allowing stylistic variation.

4.3 LANGUAGE-GUIDED CLIP LOSS FOR CONTENT PRESERVATION

Reconstruction-based supervision is insufficient on its own: the model may collapse to an identity
mapping, avoiding all edits to minimize loss. To overcome this degeneracy, we incorporate a
complementary alignment signal based on language–image similarity, described in the following
subsection.
Lclip = λclip (1− simcos (CLIPI(x̂b), CLIPT (tb))) + λclip simcos (CLIPI(x̂b), CLIPT (ta)) , (5)

where CLIPI indicates CLIP’s image feature, CLIPT is for CLIP’s text feature, and simcos for cosine
similarity. To counteract degraded generation, in Equation 5, we first incorporate a language-guided
CLIP similarity loss (the first term on right-hand side). This loss measures the alignment between
the generated output and the provided instruction using CLIP. The aligned CLIP loss encourages
outputs to move toward the intended semantic edit, thereby reinforcing instruction alignment. We
also introduce a misalignment penalty term (the second term on right-hand side), which discourages
similarity to input image description to prevent the model from reproducing the input.

5 EXPERIMENTS

5.1 SETTINGS

We evaluate our training strategies and pixel-level instructions on two competitive image editing
models: UltraEdit (Zhao et al., 2024) and CycleGAN-Turbo (Parmar et al., 2024). Both models
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are fine-tuned from powerful diffusion backbones trained on large-scale datasets. Following the
evaluation protocol in (Zhang et al., 2024c), we assess editing performance using L1 distance, L2
distance, CLIP image similarity, and DINO similarity. Additional implementation details are provided
in App. G.

We structure our experiments to address two core questions in Section 1: 1) The importance of
paired driving scene data and training objectives for generating desired edits while maintaining scene
integrity (Sec. 5.2). 2) The extent to which fine-grained prompting enhances models’ generation to
align with instructions and handle the complex interplay of foreground and background modifications
in driving scenes (Sec. 5.3). In Sec. 5.4 we extend our editing to out of distribution images and
evaluate the downstream performance of a road segmentation model using our edits.

5.2 CONTROLLING GENERATION VIA PRECISE EDITING INSTRUCTIONS

We first study the importance of paired driving scene images and training objectives for performing
driving scene editing. Our quantitative results in Table 2 show that models trained with our precise
editing instructions consistently outperform their baselines. Our trained models (“Ours”) trained with
Removal-Addition masks (Sec. 3) and training objectives (Sec. 4) show the lowest L1 and L2 scores
which suggest high content preservation in unedited regions, and high instruction following in edited
regions. Furthermore their high CLIP and DINO scores indicate the strongest instruction alignment
while preserving the scene content. Qualitatively, Figure 5 shows that the base CycleGAN-Turbo
often fails to modify the images following the pixel guidance (rows 1, 2, 6). Bagel, while it does
not support masks, fails to preserve the scene content (rows 3, 4, 6), and UltraEdit, while it only
supports binary masks, may fail to follow the text prompt (rows 1, 4, 5). Our models (“Ours”)
trained with Removal-Addition masks and training objectives generate edits with strong alignment to
the text-prompts. Furthermore, with the masks, the models are able to make adjustments to traffic
according to instruction (rows 1, 2, 3, 4, 6, 7).

Table 2: Models labeled “ours” are trained using all objectives on the real-world subset of the
LangDriveEdit dataset, combined with unsupervised objectives on the NuScenes dataset. UltraEdit
and CycleGAN-Turbo refer to pretrained models without any additional fine-tuning. We further
compare UltraEdit-Text-SFT and UltraEdit-Mask-SFT, two variants trained with supervised fine-
tuning but differing in how object changes are specified. In UltraEdit-Text-SFT, object positions are
described exclusively through text, whereas in UltraEdit-Mask-SFT, object positions are conveyed
using Removal-Addition masks. More details of their definition can be found in H.2. The best results
for each setting are highlighted.

Model L1 (↓) L2 (↓) CLIP (↑) DINO (↑)
Bagel

Bagel 0.2245 0.0891 0.8399 0.7261
UltraEdit

UltraEdit 0.2282 0.0927 0.8475 0.7688
UltraEdit-Text-SFT 0.2336 0.1016 0.8583 0.7319
UltraEdit-Mask-SFT 0.1929 0.0676 0.8798 0.8173

UltraEdit (Ours) 0.1144 0.0296 0.9312 0.9024
CycleGAN-Turbo

CycleGAN-Turbo 0.1993 0.0649 0.8007 0.6378
CycleGAN-Turbo (Ours) 0.1401 0.0383 0.8800 0.8333

5.3 FINE-GRAINED INSTRUCTIONS FOR DENSE DRIVING SCENES

In Table 2, we also conduct an ablation study where we train a diffusion model that employ text with
binary masks for localized edits (“UltraEdit-Text-SFT”). However, it can only perform on par with the
base model. When we switch to using masks augmented with clip features to describe traffic patterns,
we see an significant improvement in all scores suggesting higher instruction alignment in edited
regions and content preservation in unedited regions. Our UltraEdit and our CycleGAN-Turbo each
show a 40 % reduction in L1 and L2 compared to their second best counterparts. Adding unsupervised

7
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Figure 5: Visualizations on Boreas. Results of our models trained on Boreas compared to their baselines. The
masks (projected as binary images) enable modifications to traffic while the text-prompt informs the desired
global appearance.

training objectives to the Removal-Addition masks (“Ours”) leads to a further improvement. An
additional qualitative study of our loss functions in App. B.

5.4 EDITED STREET SCENES FOR DOWNSTREAM DRIVING TASKS

Table 3: User Study. Overall preference distribu-
tion and win rates across 12 questions.

Model Pref. (%) Win

CycleGAN-Turbo 11.4 0.0
Bagel 15.9 8.3
Ours 72.7 91.7

We apply our unsupervised losses to extend the
method to NuScenes (Caesar et al., 2020), an out-
of-distribution dataset. To this end, we jointly train
an editing model on both the real-world Lang-
DriveEdit dataset and NuScenes. We use this
model to synthesize images from one random quar-
ter of NuScenes under various weather conditions.
Then we augment the original NuScenes quarter
with these images and train two bird’s-eye-view

8
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Figure 6: Out-of-Distribution Generations. Side by side example of unedited and edited images by Bagel,
UltraEdit, CycleGAN-Turbo, and our CycleGAN-Turbo and UltraEdit models jointly finetuned on our real-world
dataset and NuScenes. We use the images produced by our model to train a bird-eye-view lane detection model.

(BEV) map segmentation models with and without synthesized images. Following (Liu et al., 2023),
we report the highest IoU across different thresholds for each class separately in Table 4. This
augmentation leads to an 33% improvement in the average of all classes compared to a baseline
trained solely on NuScenes.

Table 4: BEV Map Segmentation. Intersection-
over-Union (IoU) across 6 classes and the class-
averaged IoU.

Modality Original Augmented
Drivable Area 0.5834 0.6448
Ped. Crossing 0.0533 0.1147
Walkway 0.1626 0.2251
Stop Line 0.0609 0.1059
Carpark Area 0.0981 0.1776
Divider 0.1569 0.2180

Mean 0.1859 0.2477

Figure 6 compares our synthetic NuScenes images
with those from CycleGAN-Turbo, UltraEdit and
Bagel. Our method shows the superior instruction
alignment (rows 1, 2), whereas CycleGAN-Turbo
produces blurry and misaligned outputs (rows 1,
3), UltraEdit doesn’t edit the image (rows 1, 2,
3), and Bagel sometimes fails to maintain scene
consistency (rows 1, 3).

We conducted a user study on the quality of our
NuScenes edits produced by Bagel, CyclGAN-
Turbo and Our trained CycleGAN-Turbo. We an-
alyzed the responses of 17 participants over 12
images for a total of 176 responses. In each ques-

tion, we asked participants to "select the better image based on the target scene description. Consider
which image better matches the described target scene while maintaining image quality and real-
ism." and "which image better satisfies the editing instruction while preserving the unedited parts
of the scene?" As shown in Table 3 preferred our edits for balancing instruction alignment, content
preservation and quality.

6 CONCLUSION

In this work, we present the LangDriveEdit dataset, a significant step forward in the simulation and
evaluation of autonomous driving systems through language-driven image editing. By introducing a
large-scale, paired dataset with fine-grained visual instructions and precise spatial masks, we enable
more controllable, realistic, and diverse scene modifications. Experimental results across state-of-the-
art models demonstrate marked improvements in both content preservation and instruction alignment,
underscoring the dataset’s utility. LangDriveEdit not only fills a critical gap in existing benchmarks
but also opens new avenues for research in instruction-guided scene editing for safe and robust
autonomous driving.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.

LIMITATIONS

Our approach relies on language models for generating editing instructions, which may introduce
hallucinations or factual inaccuracies. While our precise mask conditioning helps mitigate these
issues by constraining modifications to specific regions, some inconsistencies remain. Future work
could explore several robustness enhancements: implementing multi-step verification where an LLM
validates initial instructions, incorporating human feedback through active learning or implementing
automatic consistency checking between generated instructions and source images.
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A RELATED WORKS

Image Editing Dataset. Developing image-editing datasets is more challenging than Text-2-
Image (Betker et al.; Ramesh et al., 2021; 2022; Rombach et al., 2022), with data scarcity being
a major bottleneck (Wang et al., 2023a; Hui et al., 2024). MagicBrush (Zhang et al., 2024b) uses
manual annotation with DALL-E2 (Ramesh et al., 2022), while InstructPix2Pix (Brooks et al., 2023a)
generates pairs using the prompt-to-prompt method (Hertz et al., 2022) on LAION-Aesthetics (Schuh-
mann et al., 2022). SeedEdit (Shi et al., 2024) iteratively refines data and models. Most prior work
targets simple object edits, underperforming in complex street scenes. We present LangDriveEdit,
the first instruction-driven editing dataset for autonomous driving contexts.
Image Editing via Generation. Instruction-based editing of real photos is a key task in image
processing (Gao et al., 2024b; Crowson et al., 2022; Liu et al., 2020; Zhang et al., 2023a; Ruiz
et al., 2023; Pan et al., 2024). Large-scale diffusion models have greatly enhanced text-driven
editing (Kawar et al., 2022; Saharia et al.; Li et al., 2023; Chen et al., 2023; Ma et al., 2023; Meng
et al., 2022; Mokady et al., 2023; Tumanyan et al., 2022; Nichol et al., 2022; Sheynin et al., 2023a).
Recent models like InstructPix2Pix (Brooks et al., 2023a) and HIVE (Zhang et al., 2023b) allow
users to edit images via instructions. MagicBrush (Zhang et al., 2024b) enhances this with manual
annotations, and UltraEdit (Zhao et al., 2024) sets a new benchmark using synthetic data. We show
our dataset further boosts these methods in street-scene editing.
Image Editing for Autonomous Driving. Rising demand for driving-scene data has led to scene
editing methods using NeRF or Gaussian Splatting (Liang et al., 2025; Yang et al., 2023b; Sun
et al., 2024; Tonderski et al., 2024; Chen et al., 2024b), though these struggle with diverse scene
composition. Meanwhile, multi-condition generation methods are gaining interest (Swerdlow et al.,
2024; Yang et al., 2023a; Wang et al., 2023b; Gao et al., 2023; Wen et al., 2024; Alhaija et al.,
2025; Gao et al., 2024a; Lu et al., 2024). Yet, instruction-guided image editing for driving remains
underexplored due to a lack of datasets. We introduce LangDriveEdit to fill this gap.

B ADDITIONAL RESULTS

We conduct an qualitative ablation study at Figure 7. Specifically, when training solely with SFT
(column 2) the model cannot preserve the details of the small cars and merges them together (row
1). Meanwhile, when we add unsupervised training objectives with the exception of the CLIP loss
(column 3), the model outputs degenerate to match the input (row 2) especially for Nuscene. Using
SFT, with unsupervised objectives, and CLIP similarity loss to prevent degeneration (column 3)
shows the highest degree of instruction following (row 2) and content preservation (rows 1, 2).

C SYNTHETIC DATASET DEVELOPMENT

C.1 PRECISE CONTROL OF SCENE VARIATIONS IN SYNTHETIC ENVIRONMENTS

Our paired instructions and annotations on real images (Section 3.1) enable the learning of fine-
grained edits across diverse objects and scenarios. Yet, real-world data remains limited in supporting
arbitrary and precise manipulations. In contrast, synthetic environments allow flexible control over
textures, semantics, and backgrounds, even for individual objects within a scene.

To provide complementary and precise control over scene variations, we additionally include paired
images, annotations, and instructions from synthetic environments, as a supplement to our real-world
images. We choose Carla (Dosovitskiy et al., 2017), an open-source simulator designed as a research
and development platform for autonomous driving with extensive customization capabilities. With
this simulator, we synthesize paired videos from the perspective of an autonomous vehicle across six
diverse urban and suburban environments. Recent works demonstrate CARLA’s utility in closed-loop
end-to-end driving with language models (Shao et al., 2023), safety-critical scenario generation for
autonomous vehicle testing (Zhang et al., 2024a), and multi-ability benchmarking of end-to-end
driving systems (Jia et al., 2024).
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Input UltraEdit-SFT UltraEdit (remove CLIP loss) UltraEdit (Ours)

The scene features a road under overcast weather conditions, marked by heavy cloud cover. It's 

autumn, and the asphalt surface is dark grey. The visibility is low due to the sun being obscured.

The scene depicts a morning with normal road conditions and no rain impacting visibility. Overall, 

the weather is characterized as sunny and partly cloudy.

Figure 7: Ablation on Training Objectives. Top: Boreas. Bottom: Nuscenes. We use blank masks during the
evaluation of Boreas and study the content preservation abilities of the models over the vehicles.

Table 5: Comparison of edits performed by open-source driving scene editing datasets: Snow 100K (Liu et al.,
2018), Outdoor-Rain (Out-Rain) (Li et al., 2019), Rain-Drop (Qian et al., 2018), MT Weather (Zhao et al., 2018),
and LangDriveEdit (Ours) on Carla.

Category Edit Snow 100K Out-Rain Rain-Drop MT Weather Ours (Carla)

Global
Time of Day ✓

Weather ✓ ✓ ✓ ✓ ✓

Season ✓ ✓

Road Road Condition ✓

Road Type ✓

Building Building Appearance ✓

Vehicle
Vehicle Color ✓

Vehicle Type ✓

Vehicle Changes ✓

Traffic Signal Traffic Light Color ✓

Pedestrian Pedestrian Changes ✓

Pedestrian Clothing ✓

C.1.1 STRUCTURED SCENE EDITS AND SELECTIONS FOR ALIGNED INSTRUCTION

For each video pair, we implement controlled edits between the base and modified simulations, each
spanning 30 seconds of driving. We list our edit types in Table 5. Specifically:

• The distribution and quantity of pedestrians and vehicles are randomly sampled to ensure diversity.
Pedestrian edits are applied to all pedestrians in a scene, while the specific change (e.g., clothing
style or color) is randomly sampled for each individual from the Carla pedestrian catalog. Text
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descriptions of cataloged clothing were created through visual inspection. As of the time of
this publication, we use the dev-branch of the Unreal Engine 4.26 version of CARLA and follow
the pedestrian catalog at https://carla.readthedocs.io/en/latest/catalogue_
pedestrians/.

• All vehicles receive the same type of modification, with random variations (e.g., color) applied
individually.

• Weather conditions and time of day are selected from prepared Carla profiles to maintain realistic
scenes.

• For environmental elements, we assign randomized textures to road surfaces and buildings, with
each building receiving a distinct texture to enhance scene variability.

Each simulation captures comprehensive views through six ego-mounted cameras providing 360-
degree coverage, all used in the dataset construction. The sensor suite records RGB images, depth
maps, semantic segmentation maps, and instance segmentation maps for each frame. Following our
workflow on real images (Section 3.1.2), we leverage these semantic maps to prepare precise masks
of subjects targeted for editing; meanwhile, global environmental edits use blank masks since these
changes apply to the entire scene. Additionally, we document per-frame attributes for all vehicles,
pedetrians, and traffic signals visible to the ego vehicle, for precise tracking of object properties and
behaviors.

C.1.2 FILTERING AND BALANCING FRAME PAIRS FOR CONTENT PRESERVATION

To further improve the quality and diversity of edited images, we apply a multi-stage filtering process:

• Remove frames where edited subjects are too small or absent;

• Eliminate frames with high visual similarity based on SSIM thresholds and color histogram
correlation;

• Discard redundant frames captured when the ego vehicle was stationary;

• For global modifications without object-specific edits (such as weather and time-of-day changes),
we retain all non-redundant frames that pass our similarity thresholds based on SSIM and color
histograms.

To ensure only relevant edits are kept, we filter out frames where the edited subjects are too small or
absent. Specifically, a 2D bounding box must cover at least 0.7% of the image area for pedestrians,
1.2% for vehicles, and 0.3% for traffic lights. We also remove frames with high visual similarity to
others, defined as SSIM > 0.97 or color histogram correlation > 0.5, to maintain scene diversity. We
use a blank mask for global edits, such as changes in weather or time of day, since these modifications
can affect all objects in the scene (e.g., through lighting changes). We show our synthetic dataset
statistics in Table 6. To address class imbalance in our training data, we oversample underrepresented
editing categories.

D REAL DATASET DEVELOPMENT

We generate: (1) a removal mask for the source image, which identifies objects to be eliminated,
and (2) an addition mask for the target image, which highlights regions designated for new object
placement. Together, they support fine-grained object edits while preserving non-targeted regions

These pixel-level editing masks are systematically derived by comparing corresponding frame
annotations via three rules:

• Distance-based filtering: Objects beyond 50 meters from the ego vehicle are excluded unless they
occupy a significant image area.

• Truncation detection for undersized 2D bounding boxes near image boundaries.

• Occlusion handling: In complex traffic scenarios, overlapping vehicle bounding boxes are each
preserved to maintain scene coherence.

3
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Table 6: Synthetic Dataset Statistics. Breakdown of samples across object-level and global environ-
ment editing types.

Edit Type Count Percentage
Object Editing (458,136 samples)
Road Texture 153,654 7.69%
Building Texture 3,662 0.18%
Walker Color 28,726 1.44%
Walker Replacement 39,166 1.96%
Walker Deletion 34,460 1.72%
Vehicle Replacement 45,806 2.29%
Traffic Light State 24,050 1.20%
Vehicle Color 64,300 3.22%
Vehicle Deletion 64,312 3.22%
Global Environment Editing (1,539,370 samples)
Weather 527,450 26.41%
Weather + Time of Day 549,612 27.51%
Time of Day 462,308 23.14%
Total Samples 1,997,506 100%

E ANNOTATION PIPELINE

E.1 ANNOTATION PIPELINE PROMPT

The VLM is prompted with the instruction loaded from:

1 You are an expert in autonomous driving, specializing in analyzing
traffic scenes. You receive a series of traffic images from the
perspective of the ego car. Your task is to describe the driving
environment, focusing on weather, lighting, road layout, and
environment.

2

3 It is essential that you strictly follow the rules and instructions below
. Any deviation from the specified structure or format will result in
an invalid output.

4

5 STRICTLY follow Rules:
6 - You must strictly follow the dictionary structure provided above.
7 - Only use the specified terms for weather, light, road layout, and

environment. Do not create your own terms.
8 - No additional information or categories should be added.
9 - You should strictly follow these instructions. If an object or element

is not visible or does not exist in the scene, set the value to ’
None’. Ensure every field is filled with the appropriate value or ’
None’.

10 - STRICTLY ignore any text written on the image.
11

12

13 Output the result in the following dictionary format:
14

15 {
16 "surrounding_info": {
17 "weather": "[e.g., ’cloudy’, ’sunny’, ’rainy’, ’fog’, ’snowy’]",
18 "road_layout": "[Choose from: ’straight road’, ’curved road’, ’

intersection’, ’T-junction’, ’ramp’]",
19 "environment": "[Choose from: ’city street’, ’country road’, ’highway

’, ’residential area’]",
20 "sun_visibility_conditions": "[Choose from: ’clear’, ’foggy’, ’low

visibility’, ’hazy’]",
21 "road_condition": "[Choose from: ’wet’, ’icy’, ’normal’, ’debris’, ’

potholes’]",

4
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22 "surface_type": "[Choose from: ’asphalt’, ’gravel’, ’dirt’, ’concrete
’]",

23 "surface_color": "[Choose from: ’light grey’, ’dark grey’, ’black’, ’
brown’]",

24 "time_of_the_day": "[Choose from: ’morning’, ’midday’, ’afternoon’, ’
night’, ’dawn’, ’dusk’.]",

25 "precipitation_intensity": "[Choose from: ’none’, ’light’, ’moderate
’, ’heavy’, ’torrential’.]",

26 "precipitation_visibility_impact": "[Choose from: ’none’, ’low’, ’
moderate’, ’high’]",

27 "cloud_cover": "[Choose from: ’clear’, ’light’, ’moderate’, ’heavy’.]
28 }
29 }

E.2 EXAMPLE ANNOTATION

We show an annotated image and the output caption from the annotation pipeline

Figure 8: Example annotation of the image by the annotation pipeline.

We present a truncated version of the annotation for 8 below:

1 {
2 "surrounding_info": {
3 "weather": "cloudy",
4 "road_layout": "intersection",
5 "environment": "city street",
6 "sun_visibility_conditions": "low visibility",
7 "road_condition": "normal",

5



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

8 "surface_type": "asphalt",
9 "surface_color": "dark grey",

10 "time_of_the_day": "morning",
11 "precipitation_intensity": "none",
12 "precipitation_visibility_impact": "none",
13 "cloud_cover": "heavy"
14 },
15 "object_info": [
16 {
17 "class": "building",
18 "bbox": [
19 1234,
20 745,
21 2060,
22 1051
23 ],
24 "object_id": 1,
25 "distance_from_ego_vehicle": "67.42 meters",
26 "attributes": "Brown color, Brick texture, Apartment type"
27 },
28 {
29 "class": "traffic light",
30 "bbox": [
31 779,
32 963,
33 790,
34 986
35 ],
36 "object_id": 2,
37 "distance_from_ego_vehicle": "78.61 meters",
38 "attributes": "Red light"
39 },
40 {
41 "class": "car",
42 "bbox": [
43 79,
44 1025,
45 147,
46 1062
47 ],
48 "object_id": 10,
49 "distance_from_ego_vehicle": "69.81 meters",
50 "attributes": "White color, Not a police car."
51 },
52 {
53 "class": "car",
54 "bbox": [
55 123,
56 1027,
57 249,
58 1067
59 ],
60 "object_id": 11,
61 "distance_from_ego_vehicle": "61.59 meters",
62 "attributes": "White color, Not a police car."
63 }
64 ]
65 }

6
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F LLM GENERATED EDITING INSTRUCTIONS

F.1 SYNTHETIC

We prompt chatGPT-4o mini with the following instruction to produce editing instructions for
synthetic images based on the captions of the target image:

1 You are an expert in autonomous driving, specializing in analyzing
traffic scenes. You receive a text description of a traffic image
from the perspective of an autonomous vehicle’s camera.

2

3 Your task is to produce FOUR VERSIONS of the SAME PROMPT, each with
DIFFERENT WORDING BUT IDENTICAL CONTENT, that describes the driving
scene depicted in the image.

4

5 IMPORTANT:
6 - Each version should describe the SAME SCENE, just phrased differently.
7 - Use natural, conversational language as if explaining the scene to

another person.
8 - You may paraphrase, use synonyms, and vary sentence structure, but do

not invent details not present in the caption.
9 - It is OK to combine or rephrase information for readability and flow.

10 - Avoid sounding like a computer or simply listing numbers and attributes
. Make the description sound like something a human would say.

11 - Do not use quantitative descriptions. Only use qualitative natural
language to describe the scene.

12 - Do NOT add your own subjective opinions or emotions (e.g., do not say ’
beautiful’, ’moody’, etc.), but you may use natural transitions and
phrasing.

13

14

15 The output should be in the format below:
16

17 ### Scene Description:
18

19 version_1: {{description_1}}
20 version_2: {{description_2}}
21 version_3: {{description_3}}
22 version_4: {{description_4}}
23

24 Image Caption: {caption_0}

F.2 REAL-WORLD

We prompt chatGPT-4o mini with the following instruction to produce editing instructions for
real-world images based on the captions of the target image:

1 You are an expert in autonomous driving, specializing in analyzing
traffic scenes. You receive a text description of a traffic image
from the perspective of an autonomous vehicle’s camera.

2

3 Your task is to produce FOUR VERSIONS of the SAME PROMPT, each with
DIFFERENT WORDING BUT IDENTICAL CONTENT, that describes the driving
scene depicted in the image.

4

5 IMPORTANT:
6 - Each version should contain the EXACT SAME DESCRIPTION, just phrased

differently.
7 - ALL prompts should describe EXACTLY THE SAME SCENE with no variation in

what is being described.
8 - Only use adjectives and descriptors that are explicitly provided in the

caption. Do NOT add your own subjective descriptors like "moody," "
tranquil," "charming," etc. Stick strictly to the attributes and
descriptors that appear in the input caption.

7
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9

10 At the end of each prompt version, append the following line:
11 "There may be minor additional changes in time or weather (such as

lighting, clouds, or rain) between the images that are not fully
captured by the descriptions, but these are expected to be subtle
."

12

13 The prompt should be in the format below where each version describes the
same contents but with different wording.

14

15 ### Scene Description:
16

17 version_1: {{description_1}}
18 version_2: {{description_2}}
19 version_3: {{description_3}}
20 version_4: {{description_4}}
21

22 Image Caption: {caption_0}

G MODEL AND EVALUATION DETAILS

We evaluate our training methods and pixel level instructions on two competitive image editing
models: UltraEdit (Zhao et al., 2024)) and CycleGAN-Turbo (Parmar et al., 2024). CycleGAN-Turbo,
based on the Stable Diffusion Turbo by Stability AI (Sauer et al., 2023) performs text-instructed
image generation in one diffusion step. UltraEdit is based on Stable Diffusion 3 which is fine-tuned
on 500K dataset of free-form edits and an additional 100K dataset of precise mask-conditioned edits.
All models are evaluated with the dataset described in Sec. 3.

Following image editing benchmarks used in (Zhang et al., 2024c; Zhao et al., 2024; Sheynin et al.,
2023b), we consider the following metrics: the L1 and L2 distance, the CLIP image similarity, and
the DINO image similarity between the edited image and the ground truth. These metrics measure
how well the edited image preserves the original content and reflects the required edit. For each of
the real-world and synthetic datasets, we evaluate 2000 images for editing independently in both
directions: transforming the source image to match the target, and conversely, modifying the target to
reproduce the source.

H TRAINING DETAILS

H.1 CYCLEGAN-TURBO

We train this model across 2 × 80GB NVIDIA A100 GPUs with a total batch size of 4 for 10000
steps. Our training parameters are:

λgan = 0.5,

λid = 0.05, λid-lpips = 0.05,

λcycle = 0.05, λcycle-lpips = 0.05,

λsft = 0.1, λsft-lpips = 1.0,

λclip = 0.5.

(6)

To incorporate the guidance from the remove and add masks, we expand the VAE input channels
to accept the concatenation of the input image and conditioning masks and train end-to-end. The
weights of any existing convolutions are maintained and new weights are initialized as zero. We train
at a resolution of 512 × 512 and a learning rate of 1× 10−5.

H.2 ULTRAEDIT

We evaluate the UltraEdit model with the following settings:

8
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• UltraEdit. The UltraEdit model supports a single binary mask as conditioning therefore we
simplify our remove and add masks into one with the union of their binary projections.

• UltraEdit-text. We train an UltraEdit model using only supervised objectives on a modified
real-world subset of the LangDriveEdit dataset without CLIP masks. To do this, following
the process described in Sec. 3.1.2, we construct the editing prompts by asking chatGPT-4o
to describe, in addition to global changes, all objects to remove from left to right, and all
objects to add from left to right. The pixel add and remove masks are the binary image
equivalents of the full add and remove masks. This model is trained across 4 × 48 GB
NVIDIA A6000 GPUs with a total batch size of 256 for 10000 steps.

• UltraEdit-clip. We train an UltraEdit model using only supervised training objectives and
the real-world dataset described in Sec. 3. We train this model across 4× 80GB NVIDIA
A100 GPUs with a total batch size of 4 for 5000 steps.

• UltraEdit (ours) We train an UltraEdit model using the objectives described in Sec. 4
on our real-world dataset described in Sec. 3 in addition to unsupervised objectives on
NuScenes. To adapt these objectives to multi-step diffusion, we apply gradient checkpointing
and perform end-to-end training with our unsupervised losses. We train this model across
4 × 80GB NVIDIA A100 GPUs with a total batch size of 4 for 5000 steps. Our training
parameters are:

λgan = 0.5,

λid = 0.05, λid-lpips = 0.05,

λcycle = 0.05, λcycle-lpips = 0.05,

λsft = 3.0, λsft-lpips = 0.5,

λclip = 0.5.

(7)

H.3 ROAD SEGMENTATION MODEL

We train the base model on a random quarter of the NuScenes dataset across 4 × 48GB NVIDIA
A6000 GPUs with a total batch size of 16 for 10000 steps. We train for 20 epochs.

We train another model on our synthetic NuScenes dataset across 4× 48GB NVIDIA A6000 GPUs
with a total batch size of 16 for 10000 steps for 20 epochs. Then we finetune on the original quarter
of the NuScenes dataset across 4 × 48GB NVIDIA A6000 GPUs with a total batch size of 16 for
10000 steps for 20 epochs.

I GENERATION DETAILS

I.1 CYCLEGAN-TURBO

We maintain the default parameters from (Parmar et al., 2024) and evaluate our trained model with
remove and add masks. The base model is evaluated without mask with the default parameters from
(Parmar et al., 2024).

I.1.1 ULTRAEDIT

• UltraEdit. The UltraEdit model supports a single binary mask as conditioning therefore we
simplify our remove and add masks into one with the union of their binary projections. We
maintain the default parameters from (Zhao et al., 2024).

• UltraEdit-text. We train an UltraEdit model using only supervised objectives on a modified
real-world subset of the LangDriveEdit dataset with masks projected to binary images. We
maintain the default parameters from (Zhao et al., 2024).

• UltraEdit-clip. We evaluate the model with full add and remove masks using 20 diffusion
steps and classifier-free guidance scale of 1 and image guidance scale of 1.

• UltraEdit (ours) We evaluate the model with full add and remove masks using 8 diffusion
steps and classifier-free guidance scale of 1 and image guidance scale of 1.
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