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PathUp: Patch-wise Timestep Tracking for Multi-class Large
Pathology Image Synthesising Diffusion Model

Anonymous Authors

ABSTRACT
In digital pathology, cancer lesions are identified by analyzing the
spatial context within pathology images. Synthesizing such com-
plex spatial context is challenging as pathology whole slide images
typically exhibit high resolution, low inter-class variety, and are
sparsely labeled. To address these challenges, we propose PathUp, a
novel diffusion model tailored for the synthesis of multi-class high-
resolution pathology images. Our approach includes a latent space
patch-wise timestep tracking, which helps to generate high-quality
images without tiling artifacts. Expert pathology knowledge is in-
tegrated into the model through our patho-align mechanism. To
ensure robust generation of lesion subtypes and scale information,
we introduce a feature entropy loss function. We substantiate the ef-
fectiveness of our method through both qualitative and quantitative
evaluations, supplemented by assessments from human experts,
demonstrating the authenticity of the synthetic data produced. Fur-
thermore, we highlight the potential utility of our generated images
as an augmentation method, thereby enhancing the performance
of downstream tasks such as cancer subtype classification.

CCS CONCEPTS
• Computing methodologies→ Reconstruction; Image repre-
sentations; Information extraction;Visual content-based indexing
and retrieval.

KEYWORDS
Image Synthesis, DiffusionModel, Cross-Modality KnowledgeAlign-
ment, Digital Pathology

1 INTRODUCTION
Histopathology involves diagnosing and studying diseases by ex-
amining histology images collected under a microscope [10, 39, 40].
Histology images of tissue contains both complex and ambiguous
information, challenging pathologists to perform a robust, repro-
ducible and efficient analysis. Thanks to the advances in Deep
Learning (DL), impressive performance have been witnessed in
various digital pathology tasks, including cancer classification and
grading [49, 54], cell detection and segmentation [36, 46], interpre-
tation of multiplex immunohistochemistry [19, 45], etc.

The superiority of DL-based digital pathology analysis comes at
a cost of acquiring large, high-quality annotated training datasets.
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Figure 1: Our proposed PathUp trains a diffusion model
guided by our feature entropy loss 𝐿𝑒 to do both low resolu-
tion overview 𝐼𝑟𝑒 𝑓 generation and high resolution pathology
image synthesis. Comparing with pixel space tiling (a) which
has sharp tiling edges, our proposed latent space patch-wise
timestep tracking method (b) generates high-resolution im-
age with smooth transition.

However, the available annotated images are still scarce when it
comes to various lesion subtypes driven by different microenviron-
ment and multiple biological factors, or scale-variable regions with
discriminative morphological patterns. The limitation of training
data drawbacks the prediction performance of learning algorithms.
To this end, one solution is to train a generative model that can
produce realistic pathology images that augments existing data.
Generative models have been proposed to help learning methods
in various tasks such as nuclei segmentation [31, 38], survival pre-
diction [6, 17] and cancer grade estimation [14, 52].

The synthesis of high-resolution pathology images typically con-
tains two principal stages: (1) creating of class-specific layout im-
ages, and (2), incorporating high-resolution features under the guid-
ance of the layout image, with an effort to remove tiling artifacts.
However, existing methodologies often struggle to achieve both of
these aforementioned stages. Certain approaches focus on stage (2),
producing detailed representations in small patches through the
utilization of either randomized or predetermined layouts [1, 4],
or alternatively, they focus on the generation of giga-pixel Whole
Slide Images (WSIs) devoid of class-specific conditions [3, 20]. The
challenge of tiling artifacts has been addressed through the intro-
duction of consistent loss functions for the generated images [30],
or by employing pixel-space shifting windows [20]. However, these
methodologies miss the opportunity to learn the abundant spatial
context inherent in heterogeneous lesions ranging over varying
resolutions, consequently losing diagnostically crucial information
relevant to cancer biology. Furthermore, the approaches to tiling
artifact removal predominantly focus on imposing constraints or

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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tiling images in pixel space, which may be challenging for images
featuring multi-class subtypes of lesions.

Spatial context in pathology images includes how different types
of tissue distributed around each other, as well as how they form
architectural patterns that supports lesion classification and diag-
nosis (e.g. normal tissue, pathological benign, invasive carcinoma,
etc.). Plenty of evidence have demonstrate the importance of spatial
context in cancer diagnosis and prognosis [10, 39]. For example,
Invasive Papillary Carcinoma (IPC) (i.e. cancer cells moving into
nearby tissue), is a biomarker associated with an increased risk of
lymph node metastasis in breast carcinoma, usually diagnosed by
finding predominantly papillary architecture [40].

Given the biological significance of architectural spatial context
within pathology, we hypothesize that generating high-resolution
pathology images with meaningful architectural lesion patterns
holds significant potential to enhance various downstream tasks.
The most challenging task we resolve is modeling complex spatial
contexts utilizing limited information while seamlessly eradicating
tiling artifacts through the employment of a latent space timestep
tracking strategy. To capture the spatial contexts, we advocate
the adoption of diffusion model as a robust solution for synthe-
sizing high-resolution pathology images devoid of tiling artifacts.
Formally, we introduce the patho-align module, which integrates
multi-resolution pathological knowledge into a novel latent diffu-
sion model [41]. This model facilitates the generation of multi-class
spatial lesion contexts across various resolution levels. To ensure
robust generation, we introduce an feature entropy loss function
for patho-align, aiming at minimizing inter-prompt distances while
simultaneously maximizing intra-prompt distances.We then bridge
resolution disparities through a timestep tracking strategy oper-
ating within the latent space, achieving the generation of high-
resolution images by aggregating low-resolution latent patches.
Leveraging a latent weight map, we effectively mitigate tiling arti-
facts without additional postprocessing methods. With the help of
a latent weight map, we remove the tiling artifacts without adding
any other postprocessing methods.

Fig.1 illustrates the image generation procedure highlights the
efficacy of our method in eliminating tiling artifacts. Notably, the
synthetic image not only replicates the layout observed in the low-
resolution reference image but also exhibits seamless transitions
along the edges of each patch. In the experiment section, extensive
analyses are presented to substantiate the advantages afforded by
our approach. Furthermore, we showcase the utility of augmented
images generated by our model in training downstream tasks, such
as lesion subtype classification.

To summarize, our contributions are as follows:

• We propose the first generative model to learn the generation
of multi-resolution lesion subtypes from pathology images.
• We introduce patho-align, which incorporates expert pathol-
ogy knowledge with multi-class images. A feature entropy
loss function is proposed to increase the inter-class variety
for synthetic images.
• We present a patch-wise timestep tracking strategy that
within the latent diffusion model framework. This strategy
enhances the model’s capacity to generate high-resolution

images, and concurrently utilizes the latent weights to ad-
dress tiling artifacts.
• We show that our method is capable to generate realistic
pathology image in different resolution. The synthetic pathol-
ogy images can be used as a data augmentation method, and
we demonstrate the efficacy of the augmentation data in
downstream tasks such as lesion subtype classification.

We stress that the benefit of modeling multi-resolution spatial
context is beyond data augmentation. This topic improves the un-
derstanding and quantifying of the architectural patterns of tumor
microenvironment, and provides a foundation for correlating spa-
tial context with genomics and clinical outcomes. Such direction is
where we step towards.

2 RELATEDWORK
2.1 Generative Modeling for Pathology Images
Pathology image generation has been the subject of extensive inves-
tigation. Some of the explored methodologies rely on texture-based
image synthesis techniques [15, 21]. However, such methods of-
ten encounter challenges related to their limited generalizability.
In contrast, DL-based approaches for image generation leverage
the capacity to acquire complex patterns from large-scale training
datasets, thereby enabling the generation of diverse and realis-
tic images. This capability has been underscored by several stud-
ies [11, 32, 53] utilizing Generative Adversarial Networks (GANs)
[18]. Notably, however, these methods focused on generating low-
resolution patches rather than high-resolution images, and suffered
from instability and mode collapse issues [33, 35].

Recently, diffusion models have gained popularity in medical im-
age synthesis, demonstrated superior performance over GANs [20].
However, generating high-resolution images using diffusion models
poses a significant computational challenge due to the escalating
computational costs associated with increasing image resolution.
One strategy to tackle this challenge involves leveraging latent
diffusion models (LDMs) [41]. Despite yielding impressive results,
the achievable resolutions demonstrated in LDMs [5, 41] remain
limited. Alternative approaches [24, 42] achieve high-resolution im-
age generation by cascading a series of upscaling diffusion models.
Our model involves only a single upscaling phase comparing with
these alternative approaches. Furthermore, in contrast to our work,
existing methods utilizing diffusion models are confined to gener-
ating random tissue images, thereby limiting their applicability in
downstream tasks.

2.2 Latent Similarity Estimation
In image analysis, similarity metrics are crucial in resemblance
quantification. Similarity metrics aim to measure how “close” two
images are. Traditional point-wise difference metrics, such as Eu-
clidean 𝑙2 and Manhattan 𝑙1, are limited in their ability to capture
joint statistical characteristics. Consequently, methodologies mim-
icking human visual system, such as SSIM [50], MS-SSIM [51], and
FSIM [56], have been developed. While effective in scenarios where
structural ambiguity is minimal, these methods may fall in tasks
where synthesizing complex structures is crucial. such as in text-
to-image generation tasks.
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Figure 2: Our proposed PathUp framework has two key components: (a) The Patho-align module, which integrates multi-class
pathology images at various spatial levels along with textural descriptions 𝑐𝑠 into the latent diffusion model. Training is guided
by a feature entropy loss, which leverages a memory latent to ensure that latents 𝒛𝒒 from the same class exhibit closer distances.
(b) To facilitate the generation of high-resolution images from low-resolution references without requiring additional training,
we propose a patch-wise timestep tracking module. This module operates by individually denoising split latent patches and
simultaneously removing tiling artifacts through the utilization of a latent weight map.

Recent advancements in computer vision have delved intomethod-
ologies for assessing similarity within the latent space of deep neu-
ral networks, commonly denoted as ’perceptual loss’ or ’feature
matching loss’ [13, 26, 47], which have exhibited notable improve-
ments, particularly in image synthesis contexts [2]. However, it is
notable that these techniques often rely on pretrained backbone
networks trained on datasets dissimilar to pathology images. Con-
sequently, we aim to explore the potential of leveraging latent codes
acquired through Latent Diffusion Models (LDMs) for the synthesis
of medical images.

Estimating similarity between latent representations holds im-
portance in contrastive learning approaches [9, 23, 27, 48]. Typi-
cally, these approaches optimize a loss function tailored to minimize
the feature distance between positive target instances while con-
currently maximizing it against a set of negative targets. Drawing
inspiration from these endeavors, our objective is to harness feature
distances for medical image synthesis employing diffusion mod-
els. To achieve this, our approach combines texture features and
visual features into a unified query, while maintaining a memory
latent as a comparison target. This strategy enables us to effectively
leverage both texture and visual information, thereby enhancing
the synthesis process by ensuring closer distance between latent

representations corresponding to similar instances and maximizing
their distance from dissimilar instances.

3 METHOD
Considering an authentic pathology image, the spatial arrangement
formed by the collection of tissues and cells serves as a biomarker
for tumor classification. Motivated by this, we propose our pathol-
ogy image synthesis pipeline. Our approach involves patho-align
mechanism, which integrates multi-class pathology images at di-
verse resolutions alongside textural prompts into the diffusion
model. To ensure robust generation of texturally relevant features,
we introduce a novel feature entropy loss. For the synthesis of high-
resolution images, we adopt a strategy that splits the latent code
into overlapping tiles and deploy patch-wise timestep tracking. As
a result, our methodology alleviates tiling artifacts and effectively
bridges the gap between multi-resolution images.

3.1 Patho-align
Crafted to synthesize spatial layouts across various scales and
classes, our patho-align module is tailored to leverage pathological
knowledge from multiple scale pathology images, thereby gener-
ating class-correlated spatial contexts across multiple scales. We
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Algorithm 1Whole PathUp Inference Logic

1: Input: Low resolution synthetic reference overview 𝐼𝑟𝑒 𝑓 , tex-
tural guidance 𝑐𝑠

2: Parameter: Latent patch size 𝑝 , overlap pixels 𝑜 , patch latent
weight𝑤

3: Output: High-resolution image 𝐼ℎ

4: 𝑿0 ← E(𝐼𝑟𝑒 𝑓 )
5: 𝑿𝑡 ←

√
𝛼𝑡𝑿0 + (1 − 𝛼𝑡 )𝑤

6: Split 𝑿𝑡 into 𝑁 patches according to 𝑝 , 𝑜
7: for Timestep 𝑡 in [𝑇,𝑇 − 1, ..., 0] do
8: for Latent patch 𝒙𝑛𝑡 in [1, 2, ..., 𝑁 ] do
9: 𝒙𝑛

𝑡−1 ← 𝑑
(
𝒙𝑛𝑡 , 𝑐𝑠

)
10: end for
11: Combine 𝒙𝑛 according to𝑤 for 𝑿𝑡−1
12: end for
13: return High resolution synthetic image 𝐼ℎ ← D(𝑿0)

achieve this objective by introducing a patho-align strategy and
a feature entropy loss for training a latent diffusion model using
sparsely labeled pathology images.

In the context of a latent diffusion model, input image 𝐼 is fed
into a predefined encoder E to create a embedding 𝒙0 = E(𝐼 ), upon
which the diffusion process is applied. Subsequently, a decoder
D reversely projects the latent back to the pixel space, ensuring
fidelity with the original image 𝐼 . The noise is gradually injected
into the latent variable 𝒙 occurs over 𝑡 = 1 . . .𝑇 using a steps via a
Markovian forward process, expressed as:

𝒙𝑡 =
√
𝛼𝑡𝒙0 + (1 − 𝛼𝑡 )𝑤 (1)

here, 𝒙𝑡 represents the latent variable at step 𝑡 , 𝑤 ∼ N(0, I) de-
notes a noise term, and 𝛼𝑡 controls the noise schedule. Treating
the diffusion model �̂� as an optimization problem, its loss can be
defined as:

𝐿𝑟 := E𝒙,𝑐𝑠 ,𝑡
[
𝜎𝑡 ∥𝑥 (𝒙𝑡 , 𝑐𝑠 ) − 𝒙0∥22

]
(2)

where 𝜎𝑡 is a noise schedule term, 𝑥 (·, ·) denotes the image gen-
eration process of a text-guided diffusion model, 𝑐𝑠 serves as a
conditioning vector providing textual guidance.

To facilitate training of the multi-resolution pathology image
generator, uniformed image 𝑥 paired with its corresponding text 𝑐𝑠
is required. However, due to the substantial expertise and associated
costs of pathologists, furnishing detailed image descriptions for
every individual image is impractical. Consequently, for pathology
images characterized by non-uniform resolutions and limited image
descriptions, we propose a data preparation protocol. This protocol
involves utilizing class information from each image to generate
a prompt string 𝑐𝑠 , with spatial levels such as ’overall’ and ’patch’
added individually. While this protocol ensures a prompt for each
image, the scarcity of 𝑐𝑠 may pose a potential risk in generating
images with low inter-class variety.

3.2 Feature Entropy Loss
In addressing the challenge of inter-class variety while maintaining
intra-class generation performance, we propose a Feature Entropy
Loss (FEL) as a robust mechanism to learn from sparsely labeled

pathology images. Inspired by contemporary findings, we charac-
terize the distribution of training images as evidence of sampled
inter-class variation. The objective of our loss function is to ensure
that images sharing the same prompt 𝑐𝑠 exhibit high representation
similarity compared to those with different prompts.

To achieve this, we maintain a memory latent for the combined
texture-vision features to reduce the distance between images with
the same prompt while increasing the disparity between images
with different prompts. We employ a modified cross-entropy for-
mulation to accomplish this objective, which mathematically takes
the form:

𝐿𝑒 = E𝑧,𝑘

− log
exp

(
𝑧 · 𝑘+/𝜏

)∑𝐾
𝑖=0 exp

(
𝑧 · 𝑘𝐾−1

𝑖
/𝜏
))  (3)

where 𝑧 = 𝑒 (𝑥𝑡 , 𝑐𝑠 ) represents the middle block latent generated by
the encoder 𝑒 of the denoising U-net, 𝑘 denotes a 𝐾-dim memory
latent serving as a comparison target for each possible prompt
corresponding to pathology images, and 𝜏 signifies a temperature
constant. When the FEL is established, the positive representation
𝑘+ corresponds to the vector in 𝑘 that shares the same prompt as 𝑧,
while the negative representations 𝑘− represent other vectors with
different prompts. After each training step, 𝑘 is updated individually
using𝑘𝑛+1 = 𝛼𝑘𝑛−1+(1−𝛼)𝑘𝑛 , which implements amoving average
of image embeddings to introduce variance to the comparison target
and prevent overfitting.

Both 𝐿𝑟 and 𝐿𝑒 are utilized to train our generator, yielding the
overall loss formulation:

𝐿𝐿𝐷𝑀 = 𝐿𝑟 + 𝛽𝐿𝑒 (4)

where 𝐿𝐿𝐷𝑀 denotes the comprehensive loss function employed
for optimizing the LDM. By implementing this training scheme
alongside the FEL, we train a generator equipped with multi-scale
pathology knowledge, thereby enhancing the generation of high-
resolution images. Refer to Fig. 2(a) for an illustration.

3.3 Patch-wise Timestep Tracking
In addressing the challenge of generating high-resolution pathol-
ogy images while leveraging multi-resolution expert knowledge
within the LDM, we encounter the demand for substantial computa-
tional resources. To mitigate this, we propose a patch-wise timestep
tracking method aimed at reducing the computational cost while
keeping the quality of generation. The detailed framework of our
method is depicted in Fig. 2 (b). Importantly, our approach operates
solely during the inference period with no additional training.

During inference, we partition the latent code of a synthetic
reference overview image into latent patches 𝒙𝑙 , each assigned an
independent scheduler. These latent patches are then processed by
the denoising procedure based on the timestep 𝑡 . The denoising
step for each latent patch is represented as:

𝒙𝑙𝑡−1 = 𝑑
(
𝒙𝑙𝑡 , 𝑐𝑠

)
(5)

Here, 𝑑 denotes our denoising process of LDM trained by our patho-
align framework, while 𝑐𝑠 represents the textural guidance. As
the denoising process operates on one latent patch at a time, the
timestep across the entire image may become uneven. To address
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this, for timestep 𝑇 , we sequentially denoise all the latent patches
and update timestep 𝑇 ← 𝑇 − 1. This method is illustrated in Fig. 2
(b). The latent patches are tiled to create the high-resolution latent
for the subsequent timestep.

To ensure a smooth transition between overlapping tiles and
mitigate tiling artifacts, we weight the latent vectors in the tiles
based on their distance from the center of the tile. The weight
assigned to a latent vector is computed using the following formula:

𝑤 =
𝑚𝑖𝑛( |𝑝 − 𝑝′ |, |𝑞 − 𝑞′ |)

𝐿𝑝
(6)

where 𝑝′, 𝑞′ denote the center of latent patch in each direction, and
𝐿𝑝 represents the width of a single latent patch, thereby normalizing
the weight tile within the range [0.5, 1]. The resulting weight map
for each tile is visualized in Figure 2 (b). Subsequently, to prevent
tiling artifacts from affecting the generation, the final value of a
latent vector in a target coordinate is calculated by summing all
inference values of the latent vector and dividing by the sum of
weights. The efficacy of these tiling strategies can be observed in
Figure 4.

The inference logic of PathUp is demonstrated in Alg. 1. Initially,
a synthetic pathology overview image 𝐼𝑟𝑒 𝑓 is the spatial context
reference input for our diffusion model trained using pathology
knowledge. Subsequently, a certain amount of noise, 𝛿𝑡 , is injected
into the reference image to create a noised reference image latent𝑋 .
Following the resizing and partitioning of 𝑋 into 𝑁 latent patches,
The latent tiles are then combined using weigt 𝑤 to generate a
tiling artifact free synthetic high-resolution pathology tissue 𝐼ℎ
with cancer-related spatial context.

In summary, our proposed pipeline enables the generation of
multi-resolution pathology images. In the subsequent section, we
conduct extensive experiments to evaluate the effectiveness of our
generated images.

4 EXPERIMENTS
4.1 Dataset
We assess the performance of our method using the publicly avail-
able BRACS dataset [8], comprising pathology images related to
breast cancer extracted from 547 Whole Slide Images (WSIs). The
dataset contains 4539 Regions of Interest (RoIs), each annotated
with one of seven cancer subtypes: Normal (N), Pathological Be-
nign (PB), Usual Ductal Hyperplasia (UDH), Flat Epithelial Atypia
(FEA), Atypical Ductal Hyperplasia (ADH), Ductal Carcinoma in
Situ (DCIS), and Invasive Carcinoma (IC). For training our genera-
tor, we divide the RoIs into 512×512 patches with a 64-pixel overlap.
To address potential issues related to unbalanced data distribution,
we limit the patch-level training data to 6000 patches per class.
Additionally, we extract overview-level data by segmenting RoIs
into large 2048 × 2048 patches with a 256-pixel overlap, which are
subsequently resized to 512 × 512 dimensions.

4.2 Implementation Details
All experiments are conducted utilizing a Nvidia A100 GPU. During
the training of our patho-align module, we employ a learning rate
of 5𝑒−6 in conjunction with the AdamW optimizer [34], spanning
50,000 iterations with a batch size of 4. We utilize the DDIM [44]

noise scheduler for this process. For the feature entropy loss, 𝑘 is
randomly initialized by 14 anchors, derived from the product of
the number of cancer subtypes and the number of spatial levels.
We set 𝛽 = 0.1 for 𝐿𝐿𝐷𝑀 . During inference, we adopt patch-wise
timestep tracking, dividing the latent space into 64×64 patches with
32 overlapping to generate high-resolution images of 2048 × 2048
pixels.

4.3 Metrics
We employ a range of data assessment methods to evaluate the
fidelity of synthetic pathology images. Adopting metrics from the
natural image community, we incorporate qualitative and quantita-
tive assessments tailored to the medical context. To evaluate the
fidelity of synthetic images at a resolution of 512×512, we compute
Improved Precision (IP) and Improved Recall (IR) metrics between
real and synthetic images [29]. IP assesses synthetic data quality,
while IR measures data coverage. Additionally, we conduct similar-
ity evaluations between synthetic and real images using Fréchet
Inception Distance (FID) [22] and Kernel Inception Distance (KID)
[7], as suggested in prior studies [37, 43]. We evaluate the effective-
ness of the proposed modules individually and conduct 5 individual
generations for each experiment, calculating the standard deviation
to ensure the robustness of our methods. For qualitative analysis,
we engage a team of pathologists to evaluate the plausibility of the
synthetic images.

4.4 Inter-model Evaluation of Multi-resolution
Pathology Image Synthesis

To demonstrate the superiority of our method in producing syn-
thetic pathology images, we conduct inter-model comparisons us-
ing StyleGAN2 [28], VQ-GAN [16], and LDM [41]. Our evaluation
of the quality of synthetic images with PathUp includes two levels:
overview and patch. At the overview level, synthetic 512 × 512
lesion images are compared with high-resolution patches resized to
the same size. At the patch level, synthetic tiles are compared with
real 512 × 512 pathology image patches. These models are trained
using identical data and are specifically designed to generate im-
ages at each level. For all models in the comparison, we generate
10,000 samples and employ metrics to compare synthetic images
with the test set of the BRACS dataset.

Table 1 showcases our method’s outstanding performance com-
pared to others at both levels. When compared to real images, our
method outperforms all others in terms of IP, FID, and KID, achiev-
ing values of 0.964, 45.359, and 8.139 at the overview level, and
0.955, 66.729, and 11.742 at the patch level, respectively. Notably,
our method exhibits significantly higher IP compared to StyleGAN2,
with improvements of 0.308 and 0.550 at the overview and patch
levels, respectively. Analysis reveals that diffusion-based methods
perform better across these metrics, underscoring the efficacy of
the diffusion model in pathology image generation. However, com-
pared to LDM, our method excels in FID and KID, attributable to
the patho-align module, which enables our model to generate im-
ages that closely match the dispersion patterns of real pathology
images. Furthermore, the high performance of IR demonstrates our
method’s ability to generate data covering the full dispersion of real
data. This improvement may be attributed to our feature entropy
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Figure 3: Visualization of the outcomes generated by our approach. (a) Presents two synthetic high-resolution image patches:
the left patch corresponds to a generation for Pathological Benign (PB), while the right patch represents a generation for Ductal
Carcinoma in Situ (DCIS). (b) Demonstrates a comparison at the patch-level between our synthetic results and real patches
specific to each class. Both visualizations highlight the capability of our model to generate realistic tissue images.

Table 1: Performance comparison betweenmethods for pathology image synthesis. Evaluations are performed on both overview
and patch level.

Models IP↑ IR↑ FID↓ KID*↓

Overview

StyleGAN2[28] 0.656±0.087 0.417±0.044 69.375±3.942 24.455±2.513
VQ-GAN [16] 0.710±0.092 0.402±0.041 78.617±3.732 25.307±1.212
LDM [41] 0.891±0.037 0.343±0.036 98.056±4.191 20.751±2.794
Ours 0.964±0.012 0.592±0.026 45.359±3.732 8.139±0.413

Patch

StyleGAN2[28] 0.405±0.105 0.337±0.089 125.493±5.051 43.709±3.988
VQ-GAN [16] 0.828±0.078 0.391±0.063 103.742±5.907 28.087±2.370
LDM [41] 0.883±0.090 0.310±0.072 95.429±4.218 19.638±1.294
Ours 0.955±0.021 0.608±0.033 66.729±2.184 11.742±0.891

*KID is scaled by a factor of 1000

loss, which aids the diffusion process in generating images with
greater dispersion within each class and view.

To showcase our proficiency in generating high-resolution im-
ages, we propose an analysis with super-resolution methods, LDM
[41], and BSRGAN [55]. We begin by employing our pathology
diffusion model to generate a 512 × 512 overview image, denoted
as 𝐼𝑟𝑒 𝑓 , which is subsequently resized to 2048 × 2048. Next, we
randomly sample 10, 000 tiles of size 512×512 from the resized 𝐼𝑟𝑒 𝑓

to create a dataset for the upscaling methods. Since the upscaling
methods operate on synthetic low-resolution data, it is impractical
to compute metrics that require high-resolution ground truth, such
as SSIM [50]. Therefore, we utilize previously mentioned similarity
metrics and compute the similarity between the generated tiles
and real patches from the test set. Table 3 presents the quantitative
results of the methods, demonstrating that our model can produce
upscaled images with greater similarity to real pathology images.
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Figure 4: (a) Visualization of inter-model upscale performance. Taking low-resolution reference as a input, our model generates
pathology-meaningful spatial context, while others generate artifacts and unrelated detail. (b) Demonstration of tiling artifact
refinement. Images tiling artifacts are highlighted by boxes. Our model removes it seamlessly with minor image distortion.

Table 2: Ablation study of our proposed method for Patho-Align. Both 2048 pixels high-resolution and 512 pixel low-resolution
generations are measured by IP, IR, FID, KID. PA and FEL are Patho-Align training strategy and Feature Entropy Loss.

Modules
PA FEL IP↑ IR↑ FID↓ KID↓

high-resolution
0.906±0.093 0.322±0.084 83.371±5.852 20.795±2.049

✓ 0.959±0.045 0.393±0.063 59.231±5.471 11.173±1.207
✓ ✓ 0.964±0.012 0.592±0.026 45.359±3.732 8.139±0.413

low-resolution
0.907±0.084 0.324±0.106 91.653±5.932 9.167±1.783

✓ 0.943±0.042 0.417±0.069 68.962±4.510 11.509±0.913
✓ ✓ 0.955±0.021 0.608±0.033 66.729±2.184 10.742±0.891

Table 3: Inter-model upscaling performance comparison.

IP↑ IR↑ FID↓ KID↓
[41] 0.837±0.085 0.376±0.083 108.439±4.316 17.591±1.019
[55] 0.645±0.102 0.382±0.097 153.973±5.791 42.920±3.563
Ours 0.971±0.023 0.633±0.035 57.642±1.248 9.837±0.692

Table 4: Performance comparison for PathUp trained w/ and
w/o our proposed weight map 𝑤 for patch-wise timestep
tracking.

IP↑ IR↑ FID↓ KID↓
w/o𝑤 0.939±0.034 0.587±0.039 76.278±3.72 9.814±1.036
w𝑤 0.964±0.012 0.592±0.026 45.359±3.732 8.139±0.413

Figure 4(a) provides a visual representation of the upscaled patches
generated by various methods, highlighting that our model intri-
cately captures details such as cells, nuclei, and tumor stromas
when processing low-resolution images. In contrast, other models
either solely sharpen the image or generate non-pathology details.

4.5 Ablation Study
We conduct a comprehensive comparison to assess the effectiveness
of our proposed modules, evaluating metrics between 10,000 syn-
thetic images of various resolutions and real images from the test
dataset. High-resolution images are generated using our proposed

patch-wise timestep tracking method. As illustrated in Table 2, our
proposed patho-align module achieves significant improvement
compared to the model trained without our method, enhancing the
generation similarity. This improvement is evident in metrics such
as IP, FID, and KID. Furthermore, the integration of the feature en-
tropy loss enhances performance across resolutions, demonstrating
its capability to strengthen the generation of high-variety images.
The images generated by our model, demonstrated in Fig.3 contain
rich spatial context details, encompassing cell nuclei, connective tis-
sue, and tumor stroma. The high similarity with real image patches
highlights our model’s ability to effectively utilize class-related
spatial context to generate various tissue classes. Additionally, our
feature entropy loss effectively reduces the variance of performance
results. The 𝛽 value selection of our proposed loss is discussed in
Fig.5. When 𝛽 = 0.1, the image generation quality measured by IR
reaches the highest performance. Performance drops when 𝛽 > 0.1,
which may because optimising our loss affects the descent of 𝐿𝑟 ,
weakening the reconstruction ability of model

The effectiveness of tiling artifact removal is assessed by com-
paring 2048 × 2048 images with real patches from the test dataset.
Tiling artifacts are introduced by modifying our timestep tracking
method to tile latents without incorporating our weight map𝑤 . The
comparison results presented in Table 4 indicate that images refined
by our proposed module exhibit superior performance in terms of
FID and KID compared to their non-refined counterparts. However,
the improvement in IP and IR metrics is marginal, likely due to
the limited extent of tiling artifacts within the generated images.
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Table 5: Mean quality score of 3 pathologists on multi-class high-resolution real and synthetic images.

N PB UDH FEA ADH DCIS IC Mean
Real image 8.167±0.235 8.333±0.249 7.967±0.772 8.500±0.245 7.667±0.330 7.300±0.408 8.633±0.464 8.081±0.363
Our synthetic 𝐼𝑟 8.233±0.704 7.533±0.411 7.500±0.779 7.367±0.519 7.533±0.492 7.467±0.624 8.333±0.556 7.709±0.583

Table 6: F-scores on the lesion subtype classification task, comparing models trained with real data only to models trained with
random data augmentation (Rand.), and generated lesion images (Ours).

Method N PB UDH FEA ADH DCIS IC Mean
[12] 65.527±1.077 43.051±2.729 31.149±1.514 67.071±3.081 33.297±1.393 43.038±2.417 69.854±1.039 50.427±1.892
[12]+Rand. 64.489±2.095 52.827±2.713 33.264±1.694 65.215±2.509 39.854±2.058 45.591±3.031 71.457±1.097 53.242±2.171
[12]+Ours 68.041±1.048 55.964±2.159 40.062±1.317 66.834±2.582 37.752±1.194 50.015±2.261 72.492±0.784 55.871±1.621
[25] 72.473±1.674 51.531±2.409 38.853±2.461 68.801±2.975 35.783±2.475 52.144±3.597 83.314±1.289 57.557±2.554
[25]+Rand. 73.245±1.211 53.443±2.756 45.136±3.258 67.734±2.781 43.796±2.724 55.037±2.836 81.056±2.071 59.921±2.455
[25]+Ours 75.080±1.207 61.425±2.047 51.937±2.479 69.921±2.753 44.675±2.078 57.052±2.427 83.328±1.914 63.345±2.129
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Figure 5: Synthesis quality measured by IR according to var-
ious 𝛽 value. When 𝛽 = 0.1, the IR score reaches the best
performance.

Visualizations provided in Figure 4(b) illustrate how our refine-
ment module effectively mitigates tiling artifacts while minimally
affecting spatial contexts.

4.6 User Study
The pathological plausibility of our synthetic high-resolution im-
ages was assessed by three experienced pathologists. For this eval-
uation, we randomly selected 10 real and synthetic images for each
class. The pathologists were instructed to rate the authenticity
of each presented pathology image using a quality score ranging
from 1 to 10, where 1 indicated "synthetic" and 10 indicated "real."
The score across all classes is presented in Table 5. The results
demonstrate that our method generates realistic images with a
mean quality score of 7.709. Interestingly, our model achieved a
higher score than real images in the "N" class.

4.7 Downstream Task
We assess the efficacy of our synthetic high-resolution data in a
downstream lesion classification task using the BRACS dataset.
Our model-generated multi-class high-resolution pathology images
serve as augmentation data for training images.We evaluate the per-
formance using two image classification networks, ViT-L [12] and
ADMIL [25], for both single-instance and multi-instance learning
methods. All high-resolution images are resized to 512 × 512 when
training ViT-L. Table 6 presents the F-scores comparing themethods
trained with and without our augmentation. The results indicate an
improvement in performance with augmentation for both single-
instance and multi-instance learning models. However, for ViT-L,

the F-score of FEA is lower than that without augmentation. This
discrepancy may be attributed to the resizing of high-resolution
images, which could lead to a loss of cancer-related spatial context,
thereby limiting the classification model’s performance.

4.8 Limitation and Future Work
While our method exhibits outstanding performance, it is not with-
out limitations. The time-consuming nature of interactive denois-
ing in diffusion models remains a challenge. Furthermore, there
is room for optimization to enhance the generalizability of our
method across different domains. In the future, efforts will be di-
rected towards reducing the inference time of diffusion models
and extending the applicability of our proposed method to diverse
datasets.

5 CONCLUSION
In summary, we propose a novel generative model for synthesiz-
ing multi-resolution lesion subtypes from pathology images. Our
method integrates expert pathology knowledge with multi-class
images using the patho-align module and an feature entropy loss
to enhance inter-class variety in synthetic images. Additionally,
we introduce a patch-wise timestep tracking strategy within the
latent diffusion model framework to generate high-resolution im-
ages and address tiling artifacts using latent weights. Our approach
demonstrates effectiveness in generating realistic pathology images
across different resolutions and proves useful as a data augmenta-
tion method for downstream tasks like lesion subtype classification.
Importantly, our focus on modeling multi-resolution spatial context
extends beyond data augmentation, paving the way for correlating
textural expert knowledge with spatial context.
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