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Abstract

Decentralized federated learning (DFL) enables clients (e.g., hospitals and banks)
to jointly train machine learning models without a central orchestration server.
In each global training round, each client trains a local model on its own train-
ing data and then they exchange local models for aggregation. In this work, we
propose SelfishAttack, a new family of attacks to DFL. In SelfishAttack, a set
of selfish clients aim to achieve competitive advantages over the remaining non-
selfish ones, i.e., the final learnt local models of the selfish clients are more ac-
curate than those of the non-selfish ones. Towards this goal, the selfish clients
send carefully crafted local models to each remaining non-selfish one in each
global training round. We formulate finding such local models as an optimiza-
tion problem and propose methods to solve it when DFL uses different aggrega-
tion rules. Theoretically, we show that our methods find the optimal solutions
to the optimization problem. Empirically, we show that SelfishAttack success-
fully increases the accuracy gap (i.e., competitive advantage) between the fi-
nal learnt local models of selfish clients and those of non-selfish ones. More-
over, SelfishAttack achieves larger accuracy gaps than poisoning attacks when
extended to increase competitive advantages. Our code and data are available at:
https://github.com/jyghahah/SelfishAttack.

1 Introduction

In decentralized federated learning (DFL) (8, (15} 117, 33} 19, 134} 129} 35], a group of clients (e.g.,
hospitals or banks) collaboratively train machine learning models without relying on a central server.
Each client maintains a local model (called pre-aggregation local model), trains it using private data,
exchanges a shared model with others, and aggregates shared models from all clients as a new local
model (called post-aggregation local model) through an aggregation rule, e.g., FedAvg [24]. In
non-adversarial settings, all clients converge to identical models after each round. Compared to
centralized federated learning (CFL), which requires a trusted coordinator, DFL offers enhanced
robustness by eliminating single points of failure and is better suited to scenarios, e.g., the clients
are hospitals or banks, where clients cannot agree on a central authority.

This paper reveals a new vulnerability in DFL: its decentralized nature opens the door to a unique
class of insider attacks, which we call SelfishAttack. In this attack, a subset of selfish clients collude
to compromise the training process, aiming to: 1). improve their final local models beyond what they
could achieve by training among themselves (called utility goal), and 2). outperform the remaining
non-selfish clients (called competitive-advantage goal).

Unlike conventional poisoning attacks [3} |6, |10, [31} [13]], which assume external adversaries that
compromise or inject malicious clients to cause indiscriminate misclassification, SelfishAttack is an
internal, collusion-based threat. The selfish clients participate fully in the DFL process but selec-
tively manipulate only the models shared with non-selfish participants. Their goal is not to poison
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models outright, but to widen the performance gap in their favor—while still benefiting from col-
laboration. This makes SelfishAttack more subtle and targeted than traditional attacks.

For instance, in medical DFL applications such as Alzheimer’s diagnosis from 3D brain MRI [28}
32|, several hospitals may collaborate to train diagnostic models. However, a few self-interested
centers could covertly apply SelfishAttack to gain diagnostic advantages, improving their models by
leveraging external updates while degrading those of non-collaborators—all without disrupting the
overall training. This scenario underscores the risks of collusion in decentralized systems, where no
central authority exists to detect or prevent such subtle manipulations.

To formalize the attack, we cast SelfishAttack as an optimization problem balancing two loss terms
corresponding to its dual objectives. The key idea is to craft the shared models sent to non-selfish
clients such that: 1). their post-aggregation local models remain close to their pre-aggregation mod-
els (ensuring they continue to contribute useful updates), while 2). being strategically perturbed to
degrade their model performance relative to the selfish group. For aggregation rules such as FedAvg,
Median, and Trimmed-mean, we derive the closed-form expressions for the optimal shared models.
For more complex rules (e.g., Krum [3]], FLTrust [3]], FLDetector [37], RFA [27], FLAME [25]]), we
adapt these expressions to construct effective attacks.

We evaluate SelfishAttack on three diverse datasets, e.g., CIFAR-10, FEMNIST, and Sent140, and
compare it against poisoning-based baselines adapted to our setting. Our experiments show that
SelfishAttack can simultaneously achieve the utility and competitive-advantage goals. For example,
on CIFAR-10 with 30% selfish clients, SelfishAttack improves their final model accuracy by at
least 11% over that of the non-selfish clients. Moreover, it consistently outperforms poisoning-
based baselines in both absolute model performance and accuracy gap. Our contributions can be
summarized as follows:

* We propose SelfishAttack, a new family of attacks for DFL where selfish clients seek com-
petitive advantage and maintain local model utility.

* We theoretically derive optimal shared models of selish clients that balance these goals
under three aggregation rules, including FedAvg, Median, and Trimmed-mean.

» Experiments on three benchmark datasets show that SelfishAttack effectively achieves both
attack goals and outperforms existing poisoning attacks.

2 Preliminaries and Related Work

2.1 Decentralized Federated Learning

In a Decentralized Federated Learning (DFL) system, IV clients collaboratively train a model with-
out a central server. Each client h has its own dataset Dj, and maintains a local model. The training
process proceeds in global training rounds, where each round includes three steps:

Step 1. Local Training: Each client trains its local model using local data and obtains a pre-
aggregation local model wy,.

Step II. Model Sharing: : Client h exchanges shared models w1y to each other client h’. In
honest settings, shared models are identical to pre-aggregation local models.

Step III. Model Aggregation: : Each client aggregates received shared models using an aggregation
rule to update its post-aggregation local model wy,.

The process repeats for multiple rounds until convergence. In non-adversarial settings, all clients
typically converge to the same local model. See Appendix [A.T|for more details.

2.2 Poisoning Attacks in FL

Poisoning attacks in FL aim to degrade the performance of global or local models and can be broadly
categorized into untargeted and targeted attacks. Existing works such as Gaussian attack [3] and
Trim attack [[10] show that adversaries can manipulate shared models to corrupt learning. We provide
further background and details on poisoning attack strategies in Appendix



2.3 Robust Aggregation Rules

To defend against adversarial behaviors, several Byzantine-robust aggregation rules have been pro-
posed, including Median [36]], Trimmed-mean [36], and Krum [3]], which aim to limit the influence
of outlier models. More advanced defenses [5, 127, (11} 125,114, {15} 7,130, 19,37, [12] like FLTrust [5],
FLDetector [37], RFA [27], and FLAME [25]] use additional mechanisms such as trust scoring or
clustering. We summarize these defenses in Appendix

3 Threat Model

Attacker’s goal: We consider a colluding subset of clients, termed selfish clients, as the attacker.
Their goal is to compromise the DFL training to achieve two objectives: 1). The utility goal: self-
ish clients aim to obtain more accurate local models than those learned by training solely among
themselves. Formally, let M; be the local model obtained when selfish clients train solely among
themselves, and M, the model learned when they participate in full DFL. The utility goal requires
that M5 is more accurate than M. 2). The competitive-advantage goal: the selfish clients aim to
obtain more accurate local models than those of the non-selfish clients, gaining practical benefits
such as improved service quality or increased revenue in competitive domains.

Attacker’s capabilities: A selfish client sends its true pre-aggregation local model to other selfish
clients but can arbitrarily manipulate the models shared with non-selfish clients. In contrast, non-
selfish clients follow standard DFL behavior and share their pre-aggregation local models with all
peers. We assume the standard resilience condition N > 3m + 1 [21]], where m is the number of
selfish clients and NN is the total number of clients. Fig[T]illustrates the attack mechanism.

Attacker’s knowledge: As legitimate participants, selfish clients know the aggregation rule and
receive the pre-aggregation local models from all non-selfish clients. They also share their own
pre-aggregation local models among themselves.

Comparison with poisoning attacks: Unlike traditional poisoning attacks [3} 16} [10], which typi-
cally involve external adversaries injecting faulty updates to indiscriminately degrade model perfor-
mance, SelfishAttack is an internal, coordinated attack. Poisoning attacks often reduce the perfor-
mance of all involved clients, including compromised ones, yielding no competitive advantage. In
contrast, SelfishAttack carefully manipulates only selected updates to degrade non-selfish clients’
models while maintaining or improving the accuracy of selfish clients’ own models. As shown in our
experiments, compared to poisoning attacks, SelfishAttack effectively degrades non-selfish clients’
performance under robust aggregation, while also giving selfish clients a competitive advantage.

4 Our SelfishAttack

4.1 Overview 4D
SelfishAttack is formulated as an optimizati in- 4 ﬁ\'/)
ptimization problem min
imizing a weighted sum of two losses that capture the util- L. |~
ity and competitive-advantage goals. The utility loss ensures | l/
that non-selfish clients’ local models remain close to their pre-  \ JiiF =7
aggregation versions, preserving valuable training information. TN
The competitive-advantage loss encourages divergence from the —
. . . . Selfish
aggregation that would occur without selfish clients, degrading clients NorSelfioh
non-selfish clients’ models. As the objective is non-differentiable clients
w.rt. shared models, we instead derive the optimal post- Figure 1: An illustration
aggregation local model and then construct corresponding shared of SelfishAttack. Non-
models that achieve it under aggregation rules such as FedAvg, selfish clients share their

Median, and Trimmed-mean. If other aggregation rules are used,
we apply shared models optimized for these three as a general
strategy. Finally, we propose a criterion for deciding when to start
attack. Algorithm[I]in Appendix shows the complete algorithm.

4.2 Formulating an Optimization Problem

pre-aggregation models with
all; selfish clients send tailored
models to non-selfish clients to
manipulate their updates.

We assume n non-selfish and m selfish clients in the DFL system, denoted 0,...,n — 1 and
n,...,n + m — 1, respectively. In each round, selfish clients craft shared models to manipulate



the aggregation of a target non-selfish client . Let w; and w; denote the pre- and post-aggregation
local models of 4, and w; its model had only non-selfish clients participated. Table [4]in Appendix
summarizes our important notations.

To achieve the utility goal, selfish clients need to preserve the learning benefits from non-selfish
clients. Therefore, they can keep the non-selfish client ¢’s post-aggregation model w; close to its
original local model w;. We quantify this as the squared Euclidean distance ||w; —;|?. To achieve
the competitve-advantage goal, selfish clients should reduce the accuracy of non-selfish clients, so
they can drive the non-selfish client ’s post-aggregation model away from the model w; it would
get without any selfish participants. This is captured by —||w; — w;||?. Finally, the objective is:
min [w; — aws]|* = [w; — @i, (D
{w@,in<i<ntm—1
where w; = Agg({wn,i) fo<h<nim—1), Wi = AgE({W(n,:) fo<h<n—1), A > 01is a hyperparameter
to achieve a trade-off between the two attack goals, and the variables of the optimization problem
are shared models {w; ;) }n<j<n+m—1 sent from selfish clients to non-selfish client 7.

4.3 Solving the Optimization Problem

Since the objective function is not differentiable with respect to shared models w; ;) for many ag-
gregation rules, we reparameterize the optimization over the post-aggregation model w; and solve it
dimension-wise. For each coordinate k, the problem becomes a bounded quadratic program accord-
ing to w; [k], where [k] indicates the kth dimension:

(1= Nw;i[k]? = 2(w;[k] — M, [k])w; k] + (i [k]* — Mawi[k]?),  (2)

min
w, [k] <w; [k] <w; [k]

where w; k] and w,[k] denote the lower and upper bounds of w;[k], which will be derived for each
aggregation rule. The unconstrained minimizer is p;[k] = w

w}[k] is either p; [k] or clipped to the interval bounds. Formally, we have
1 pilk], A <1Apilk] € [w;[k], ;K]
w; [k] = { w; k] or w;[k], otherwise : )
The details and proof can be found in Appendix [B] Then we introduce how to craft selfish clients’

shared models they send to each non-selfish client 4 to achieve the optimal solution w;[k] when
using FedAvg, Median, or Trimmed-mean as the aggregation rule.

, and the optimal solution

4.4 Attacking FedAvg

Bound derivation: FedAvg is not robust, so the selfish clients can make w;[k] arbitrary. To avoid
being easily detected, we define upper and lower bounds as w;[k] = maxo<p<n—1 W(n,q)[k] and

w;[k] = ming<p<n w5 k]

Shared model construction: After computing the optimal target w}[k] via Equation [3} we set
m — 1 selfish clients’ values to w [k], and solve for the last one to ensure the kth dimension of the
post-aggregation local model of client i becomes w [k]. Therefore, we have:

n—1

Wint1,)[k] = = Wnpm—1,5 k] = wk], weplk] = (n+1) - wi[k] - Z win[k]. @)
h=0

In Theorem [2]in Appendix, we prove that the shared models crafted using Equation ] constitute the
optimal solution to the optimization problem in Equation T}

4.5 Attacking Median

Bound derivation: Since Median discards outliers and m < N/3, the aggregated value w; k] lies
within a bounded range. We sort the kth-dimensional shared models from non-selfish clients to ¢
in descending order as qo;[k] > --- > q(n—1):[k]. When m values shared by selfish clients are
larger than qq; [k], the median reaches its maximum; when m values are smaller than q(,,_1);[k], the
median is minimized. Hence, the upper and lower bounds are:

1 1
w;[k] = 5((1[%7“‘”1‘[]{] T qoom i [K]),  wilk] = §<qt%ﬁ[k] + qogm k). (5)
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Figure 2: Example of selfish clients crafting shared models to attack Trimmed-mean. Values in-
crease from left to right. Arrows indicate the shared model parameters of selfish clients. Parameters
within the two grey regions will be filtered out by a non-selfish client.

Y

Shared model construction: Our goal is to craft m selfish clients’ shared values such that the

median equals w[k]. A simple strategy is to set all m values to w[k], which works when the
median falls exactly at this value. However, when the total number of clients is even and w}[k]
lies between the two middle elements of the aggregated sequence, the resulting median deviates.
Specifically, if w}[k] € [qu:[k], w;[k]] or [ k], qui[k]], where uw = |25 | and v = | 2H2=1 ]
the final median becomes the average of w; [k] and either q,;[k] or qy;[k], which is not the exactly
wj[k]. To address this, we set m—1 selfish clients values to wj k| and adjust one value (e.g.,

Wy, ;) [k]), like the following:

W(n41,5) [k] == Windm—1,i) [k] = w;k [k]a
2wik] — quilk], ifw][k] > quilk],
w0 (k] = S 2w k] — quilk], if wilk] < quilk],

wik], otherwise.

(6)

We prove that the above design guarantees that the overall median equals w}[k] in Appendix@

4.6 Attacking Trimmed-mean

Bound derivation: In Trimmed-mean, each client drops the largest and smallest ¢ values per
dimension and averages the remaining ones. We assume ¢ = m, the number of selfish clients, which
gives advantages to non-selfish clients. Given m < N/3, w;[k] has bounded range. Similar to
attacking Median, denote qo;[k] > --- > q(;,—1);[k] be the sorted values from non-selfish clients.
If all m selfish values are set above qo;[k] (or below q(,,—1);[k]), they get trimmed, leading to the
following bounds:

n—m—1

@il = = Y
h=0

Shared model construction: After computing w[k], we design m selfish models so that the

)

trimmed mean equals w; [k]. Our intuition is, to manipulate Trimmed-mean, selfish clients can
divide their shared models into two groups: one deliberately crafted to be filtered out, and the
other carefully adjusted to influence the final aggregation. By balancing the number and values of
unfiltered shared models, the attacker ensures that the trimmed mean equals the desired target w; (K],
while maintaining stealth under the aggregation rule’s robustness. Therefore, we split the parameters
of the kth dimension of selfish clients’s shared models into two parts: Part I selfish model parameters
are extreme values that get trimmed, and Part II selfish model parameters are values included in the
aggregation, tuned to steer the average. We discuss two cases to craft the selfish models.

Case I: w;[k] < w;[k]. We set Part I selfish model parameters to be smaller than g(,,_1);[k] so they
will be trimmed, and set remaining (n—r) Part II values to:

n—r

with 7 is the largest integer to ensure n — m < r < nand wi[k] < ——((n —7) - qun—_1):[k] +

- n—-m

St qnilk]). In summary, we have:

. _ q(n—l)i[k]_b, 2n—r<j<n+m-1
Wikl = { cilk], n<j<2n—r-1 ) ©)

where b is a positive constant to guarantee that w; ;[k] is smaller than g(,,_1);[k], e.g., b = 1 in our
experiments. Figure 2] shows an example of crafting selfish clients’ shared models.



Case II: w}[k] > w;[k]. In this case, we aim to increase the trimmed mean. We set Part I selfish
model parameters to be larger than go;[k] so they will be trimmed, and set the remaining (r+1) Part
II values to:

n—m-—1
(n—m) - w;k] — h; i (k]
cilk] = — =t . (10)

where 7 is the smallest integer such that —1 < 7 < m—1and w}[k] > ——((r+1)- qu—m[k] +

ZZ;;'_El @ni[k]). This ensures that Part II values are not filtered out. Formally, we construct:

[ qoilk]+b, n4+r+1<i<n+m-—1
Wi ] _{ cilkl, n<j<n+r : (11)

where b is a positive constant to guarantee that w; ;) [k] is larger than qo; [k].

This design ensures all Part I selfish model parameters are trimmed and Part II parameters dominate
the aggregation, yielding w; [k] = w} [k]. See Appendix [E] for detailed proof.

4.7 Attacking Other Aggregation Rules

For non-coordinate-wise aggregation rules (e.g., Krum, FLTrust, FLDetector, RFA, and FLAME),
exact optimal shared models are difficult to derive. These rules treat model parameters holisti-
cally using non-differentiable mechanisms like Euclidean distance scoring (e.g., FLTrust, FLDe-
tector, RFA) or clustering-based aggregation (e.g., Krum, FLAME), making it hard to optimize
per-dimension as we do for coordinate-wise rules. To demonstrate the transferability of SelfishAt-
tack and its robustness against unknown rules, selfish clients can still use shared models crafted for
FedAvg, Median, or Trimmed-mean (we use FedAvg in experiments). We also tailor our attack for
FLAME, as described in Appendix [} While these attacks may not be optimal, experiments show
they remain effective.

4.8 When to Start Attack

If selfish clients attack too early, non-selfish clients may fail to learn good local models, limiting the
usefulness of the shared models and hurting the utility goal. To avoid this, we design a mechanism
to determine when selfish clients should start attacking. The core idea is to wait until clients have
learned sufficiently accurate local models. In each global round ¢, selfish clients share their local

training losses lj(»t). Each client then computes the average loss and tracks the minimum value [(*)

over time. When the decrease in [(*) over the past I rounds becomes small—specifically, less than
an e fraction of the maximum decrease observed—selfish clients begin attacking by sending crafted
models. This indicates that training has stabilized and clients likely have decent local models. The
timing is controlled by two hyperparameters, € and I, whose effects are analyzed in Section[J]

5 Evaluation

5.1 Experimental Setup

Datasets: We evaluate the proposed SelfishAttack on three benchmark datasets—CIFAR-10 [20]
and FEMNIST [4] for image classification, and Sent140 [[16]] for text classification. Detailed dataset
descriptions are provided in Appendix [F}

Aggregation rules: A client can use different aggregation rules to aggregate the shared models
as a post-aggregation local model. We evaluate SelfishAttack under a diverse set of aggregation
rules, including both standard and Byzantine-robust methods: FedAvg [24], Median [36]], Trimmed-
mean [36], Krum [3]], FLTrust [3]], FLDetector [37], RFA [27], and FLAME [25]. Detailed descrip-
tions of these rules are provided in Appendix [G]

DFL parameter settings: We assume 20 clients by default, including 6 selfish and 14 non-selfish
ones. Clients train a CNN on CIFAR-10 and FEMNIST, and an LSTM [18] on Sent140. The CNN
and LSTM architectures are shown in Tables [5a] [5b] and []in Appendix. Training hyperparameters
are summarized in Table [/|in Appendix. We simulate non-IID for CIFAR-10 following [10] with



Table 1: Results (MTAS/MTANS/Gap) under different aggregation rules across datasets.

Dataset Method FedAvg Median Trimmed-mean
No attack 0.627/0.627 / 0.000 0.644 / 0.644 / 0.000 0.644 /0.644 / 0.000
Independent 0.321/0.307/0.014 0.321/0.307/0.014 0.321/0.307/0.014
CIFAR-10 T\yo Coalitions 0.505/0.578/-0.073  0.505/0.578/-0.073  0.505/0.578 /-0.073
TrimAttack 0.207/0.165 / 0.043 0.524/0.513/0.011 0.456/0.440/0.016
GaussianAttack 0.098 /0.089 / 0.008 0.619/0.617 /0.001 0.613/0.609 / 0.004
SelfishAttack 0.47570.326 / 0.150 0.543/0.425/0.119 0.597/0.484/0.113
No attack 0.790/0.790 / 0.000 0.791/0.791 / 0.000 0.795/0.795 / 0.000
Independent 0.543/0.545/-0.002  0.543/0.545/-0.002  0.543/0.545/-0.002
FEMNIST T\yo Coalitions 0.755/0.784/-0.029  0.755/0.784/-0.029  0.755/0.784 /-0.029
TrimAttack 0.056 /0.055 /0.001 0.751/0.741/0.010 0.744/0.736 / 0.008
GaussianAttack  0.003 /0.028 / -0.025 0.788 /0.785 / 0.003 0.793/0.789 / 0.003
SelfishAttack 0.697/0.575/0.123 0.771/0.643 /0.128 0.792/0.747 / 0.045
No attack 0.791/0.791 / 0.000 0.824/0.824 /0.000 0.788 /0.788 / 0.000
Independent 0.631/0.637/-0.006  0.631/0.637/-0.006  0.631/0.637/-0.006
Sent140 Tvt/o Coalitions 0.751/0.791/-0.039  0.751/0.791/-0.039  0.751/0.791/-0.039
TrimAttack 0.740/0.715/0.025 0.760/0.763 / -0.003 0.771/0.765 / 0.006
GaussianAttack 0.536/0.528 /0.008 0.807 /0.807 / 0.000 0.785/0.785 / 0.000
SelfishAttack 0.799/0.647 / 0.152 0.804 /0.683 /0.121 0.816/0.730/ 0.085

p = 0.7 (details in Appendix [H). FEMNIST and Sent140 are naturally non-IID, so no simulation is
needed. All the experiments are finished on one single Quadro RTX 6000 GPU with 24GB memory.

Parameter settings for SelfishAttack: By default, we set A\ = 0.0 for FedAvg, A = 0.5 for Median,
and A = 1.0, b = 1.0 for Trimmed-mean, as they use different aggregation strategies. Since selfish
clients know the rule used in DFL, they can adjust A accordingly. We fix e = 0.1 and I = 50 across
all aggregation rules, and report CIFAR-10 results unless stated otherwise. By default, selfish clients
adopt the same aggregation rule and use all shared models, but we also explore cases where they use
different aggregation rules or only their own shared models for aggregation.

Evaluation metrics: We use three metrics: mean test accuracy of selfish clients (MTAS), mean test
accuracy of non-selfish clients (MTANS), and their difference (Gap = MTAS - MTANS). MTAS and
MTANS are the average accuracies of selfish and non-selfish clients’ local models:

n+m—1
1 1
MTAS = — ACC i, D MTANS = — = 0" LACC i, D
— ]E:n (wj, D), - E i (w;, D),

where ACC(w;, D) denotes client i’s test accuracy with local model w; on testing set D. Note that
selfish clients share the same final model, while non-selfish ones may differ.

5.2 Compared Methods
Independent. Each client independently trains a local model using its local data without DFL.

Two Coalitions. This method divides the clients into two coalitions: selfish clients and non-selfish
clients. Clients within the same coalition collaborate using DFL with the FedAvg aggregation rule.
This scenario means that selfish clients do not join DFL together with non-selfish clients.

TrimAttack [10]. TrimAttack was originally designed as a model poisoning attack to CFL. We
extend it to our problem setting. Specifically, selfish clients use TrimAttack to craft shared models
sent to non-selfish clients such that the post-aggregation local model of a non-selfish client after
attack deviates substantially from the one before attack, in terms of both direction and magnitude.

GaussianAttack [3]. A selfish client sends a random Gaussian vector as a shared model to a non-
selfish client. Each dimension of the Gaussian vector is generated from a normal distribution with
zero mean and standard deviation 200.

5.3 Main Results

SelfishAttack achieves both attack goals: Table|I| summarizes the performance of SelfishAttack
and baselines across different datasets and aggregation rules. “No attack™ indicates selfish clients
behave honestly by sending their own local models. In summary, our results demonstrate that Self-
ishAttack successfully achieves both the utility and competitive-advantage goals.



First, selfish clients achieve higher accuracy when collaborating with non-selfish clients under Self-
ishAttack, compared to training only among themselves (Two Coalitions), confirming the utility
goal. For example, under Median and Trimmed-mean, MTASs of SelfishAttack are consistently
higher than those of Two Coalitions across all datasets. The exception is FedAvg on CIFAR-
10/FEMNIST. This is because FedAvg is not robust, in which the post-aggregation local models
of non-selfish clients are negatively influenced by shared models from selfish clients too much.

Second, SelfishAttack effectively increases the gap between the mean accuracy of selfish and non-
selfish clients, achieving the competitive-advantage goal. Particularly, the Gap exceeds 10% in
most cases, showing a clear competitive advantage. On CIFAR-10, for instance, Gaps reach 15.0%,
11.9%, and 11.3% under FedAvg, Median, and Trimmed-mean, respectively.

SelfishAttack consistently outperforms existing attacks: TrimAttack and GaussianAttack pro-
duce negligible or even negative Gaps in most cases, especially under robust rules like Median.
GaussianAttack performs poorly under robust aggregation rules like Median and Trimmed-mean,
and achieves low MTAS under FedAvg. In contrast, SelfishAttack allows selfish clients to benefit
from useful shared models provided by non-selfish clients, improving their local models. TrimAt-
tack fails in this regard, as non-selfish clients learn inaccurate models and propagate poor updates,
resulting in low accuracy for both selfish and non-selfish clients, and thus smaller Gaps.

Aggregating shared models from .
all vs. selfish clients only: By de- Table 2: MTAS/MTANS/Gap when a selfish client aggre-

gates all vs. only selfish clients’ models.

fault, selfish clients aggregate shared

models from both selfish and non- Info. TrimAttack GaussianAttack SelfishAttack
selfish clients. However, attacks like All 0.456/0.440/0.016  0.613/0.609/0.004 0.597/0.484 /0.113
TrimAttack and GaussianAttack can Selfish  0.540/0.440/0.100 0.540/0.609 /-0.069 0.540/0.484 / 0.057

degrade their local model accuracy,

as they hinder non-selfish clients’ learning and introduce harmful shared models into aggregation.
To avoid this, selfish clients may choose to aggregate only models from selfish clients. In Table [2}
“All” refers to aggregating from all clients, and “Selfish” means using only selfish clients’ models.
Selfish clients use FedAvg to enhance accuracy, while non-selfish clients use Trimmed-mean for
robustness. SelfishAttack benefits from aggregating all shared models, as it still preserves useful
information from non-selfish clients. In contrast, TrimAttack performs better when selfish clients
exclude non-selfish models, which are degraded under attack. Overall, the best strategy is to use
SelfishAttack and aggregate from all clients.

5.4 Ablation Studies

This section presents ablation studies on SelfishAttack, examining the impact of )\, degree of non-I1ID
data, fraction of selfish clients, and other aggregation rules. Appendix [J] further explores the impact
of € and I, total number of clients, and aggregation rule used by selfish clients.

Impact of \: Fig. [3|shows how X in Equation 1| affects the Gap under different aggregation rules.
For robust aggregation rules like Median and Trimmed-mean, increasing A initially increases the
Gap, as more emphasis is placed on the competitive-advantage goal. For example, with Trimmed-
mean on CIFAR-10, the Gap rises from 6.2% at A=0.5 to 11.3% at A=1.0. However, beyond a
threshold, e.g., A>0.5 for Median or 1.0 for Trimmed-mean, the Gap drops because overly degraded
non-selfish models harm the selfish clients’ local models in later rounds.

Impact of Non-IID degree: Fig.[4|shows that SelfishAttack consistently outperforms other attacks
on CIFAR-10 across various Non-IID levels and aggregation rules. For instance, when attacking
Median, SelfishAttack maintains at least a 5% higher Gap than all baselines. Other attacks typically
yield Gaps near zero, except for TrimAttack under FedAvg with moderate Non-IID (e.g., 0.5 or 0.7).
As the Non-IID level increases, SelfishAttack becomes more effective, except for FedAvg where the
Gap slightly declines from Non-IID 0.7 to 0.9 due to aggregation instability. Still, SelfishAttack
achieves a 7.2% Gap under FedAvg at the highest Non-IID level.

Impact of selfish client fraction: Fig. |5 shows the impact of the selfish client fraction. Self-
ishAttack consistently outperforms other attacks across aggregation rules and different fractions.
Compared attacks generally yield Gaps close to 0, except TrimAttack on FedAvg. For SelfishAt-
tack, the Gap remains stable under FedAvg but increases with more selfish clients under Median
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Figure 5: Impact of the fraction of selfish clients on Gap when DFL uses different aggregation rules.

and Trimmed-mean. This is because more selfish clients enlarge the upper and lower bounds in
Equations [5|and[7] expanding the attack range and improving effectiveness.

Attacking other aggregation rules: Ta-
ble[Blshows that SelfishAttack remains effective
when non-selfish clients use Krum, FLTrust,

Table 3: Results of attacking other aggregation
rules used by the non-selfish clients.

FLDetector, RFA, or FLAME. Selfish clients Aggregation Rule MTAS MTANS Gap
apply a tailored version for FLAME (detailed Krum 0.545 0.356  0.189
in Appendix [), or the FedAvg-based version FLTrust 0.537 0469  0.069
of SelfishAttack for other aggregation rules. In gl}getecwr 8222 8;?2 8};?
all cases, SelfishAttack achieves notable Gaps FLAME 0525 0420  0.105

(e.g., 18.9% for Krum, 15.1% for RFA, and
10.5% for FLAME), indicating SelfishAttack can transfer to these aggregation rules.

6 Conclusion, Limitations, and Future Work

In this paper, we propose SelfishAttack, the first competitive advantage attack for DFL. In SelfishAt-
tack, selfish clients craft shared models to 1). learn more accurate local models than performing DFL
among themselves, and 2). outperform non-selfish clients. These models are generated by solving
an optimization problem that balances two attack goals. Experiments on three benchmarks show that
SelfishAttack achieves both attack goals and outperforms conventional poisoning attacks. However,
while SelfishAttack is effective across various aggregation rules, its optimality is unknown for non-
coordinate-wise rules (e.g., Krum, FLAME). Future work includes developing attacks that adapt to
unknown or dynamic aggregation rules, extending SelfishAttack to broader settings, and designing
defenses against SelfishAttack.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction—that SelfishAttack is a
new family of attacks to DFL that gives selfish clients a competitive advantage—are fully
supported by both the theoretical formulation and empirical results in Sections [3}-[5]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in Section[6l We further have a ‘Discussion and Limi-
tations” Section in Appendix [K]

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Theoretical results such as the optimal solution to the optimization problem
are provided in Section [d] with detailed derivations and formal proofs in Appendix

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section[5|and Appendix [F}-[H]include full details of datasets, model architec-
tures, hyperparameters, aggregation rules, and evaluation metrics necessary for reproducing
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: All datasets used are publicly available, and we will release our code and
implementation upon publication to facilitate reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training/test splits, model architectures, and all relevant hyperparameters are
specified in Section[5]and Appendix [F-

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: While formal error bars are not reported, we evaluate our method across
three diverse datasets, eight aggregation rules, multiple baselines, and conduct extensive
ablations, all of which consistently demonstrate the advantage of SelfishAttack. These
results support the statistical robustness and generality of our findings.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section [3 specifies that all experiments were run on a single Quadro RTX
6000 GPU with 24GB memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics. We responsibly
disclose a new vulnerability in DFL and refrain from releasing potentially harmful code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We provide a discussion of both positive and negative societal impacts in
Appendix [L] While our work could be misused to harm collaborative learning systems, we
discuss potential directions for defending against SelfishAttack in Appendix [K]to encourage
responsible follow-up research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any high-risk data or models. Our work is conceptual and
does not involve pretrained models or scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used (CIFAR-10, FEMNIST, Sent140) are publicly available and
cited in the paper with license details included in Appendix [F]

Guidelines:
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13.

14.

15.

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: No new datasets or models are released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

¢ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects or IRB-relevant research.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not rely on large language models as a primary methodologi-
cal component.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Preliminaries and Related Work

A.1 Decentralized Federated Learning

Consider a decentralized federated learning (DFL) system with IV clients. Each client h has a local
training dataset Dj,, where h = 0,1,--- ;N — 1. These N clients collaboratively train a machine
learning model without the reliance of a central server. In particular, DFL aims to find a model w

that minimizes the weighted average of losses among all clients: min,,cgd ﬁ ;::01 Fy(w,Dy),
where Fj,(w,Dy) = ﬁ > cep, F(w, () is the local training objective of client h, d is the number

of model parameters, and |Dp,| is the number of training examples of client h. In each global training
round, DFL performs the following three steps:

» Step I. Every client trains a local model using its own local training dataset. Specifically,
for client h, it samples a mini-batch of training examples from its local training dataset,
and calculates a stochastic gradient g;. Then, client i updates its local model as wy +
wyp, — N - gn, Where 1 represents the learning rate, w;, is the local model of client h at
the beginning of the current global training round, and wj, is the pre-aggregation local
model of client h after local training. Note that client A can compute stochastic gradient
and update its local model multiple times in each global training round.

¢ Step II. Client h sends a shared model w(p,pr) tO each client A’, where 0 < A’/ < N — 1.
For notation convenience, we assume a client / sends its own pre-aggregation local model
to itself, i.e., w, ) = Wp. In non-adversarial settings, the shared model wy, 5,1y is the
pre-aggregation local model of client h, i.e., w5y = wy. SelfishAttack carefully crafts
the shared models sent from selfish clients to non-selfish ones.

 Step III. Client i aggregates the clients’ shared models and updates its local model as
wy, = Agg({wpn n)Yo<nw<n-1), where {w(n p)}to<n<n—1 is the set of shared mod-
els other clients sent to i and Agg(-) denotes an aggregation rule. We call wy, the post-
aggregation local model of client h at the end of the current global training round.

DFL repeats the above iterative process for multiple global training rounds. Different DFL methods
use different aggregation rules, such as FedAvg [23]] and Median [36]. Note that in non-adversarial
settings, all clients have the same post-aggregation local model in each global training round. Table[d]
summarizes the key notations used in our paper.

A.2 Poisoning Attacks to CFL/DFL

Conventional poisoning attacks to FL can be divided into two categories depending on the goal of
the attacker, namely untargeted attacks (3} [10] and targeted attacks |1, 12]. These poisoning attacks
were originally designed for CFL, but they can be extended to our problem setting. Specifically,
an untargeted attack aims to manipulate the DFL system such that a poisoned local model of a
non-selfish client produces incorrect predictions for a large portion of clean testing inputs indis-
criminately, i.e., the final learnt local model of a non-selfish client has a low testing accuracy. For
instance, in Gaussian attack [3]], each selfish client sends an arbitrary Gaussian vector to non-selfish
clients; while Trim attack [10] carefully crafts the shared models sent from selfish clients to non-
selfish ones in order to significantly deviate non-selfish clients’ post-aggregation local models in
each global training round. A targeted attack [} 2] aims to poison the system such that the local
model of a non-selfish client predicts a predefined label for inputs that contain special characteristics
such as those embedded with predefined triggers.

A.3 Byzantine-robust Aggregation Rules

The FedAvg [23]] aggregation rule is commonly used in non-adversarial settings. However, a single
shared model can arbitrarily manipulate the post-aggregation local model of a non-selfish client in
FedAvg [3]. Byzantine-robust aggregation rules [3\ 15, 25| [36] aim to be robust against “outlier”
shared models. In particular, when a non-selfish client uses a Byzantine-robust aggregation rule,
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Algorithm 1 SelfishAttack Algorithm. Lines [3] to [7] describe Step I of DFL, where each client
performs local training of its pre-aggregation local model. Lines [§] to [T3]illustrate the process of
exchanging shared models among clients in the global training rounds before our attack starts. Lines
[16] to 22] provide a detailed description of Section 4.8] explaining how to determine when to start
attack. The process of performing attack is shown in lines [24]and [25] while the methods of crafting
shared models are presented in Algorithm 2]

Input: Number of non-selfish clients n; number of selfish clients m; loss checking interval I; parameter \ in
loss function; parameter €; aggregation rule Agg(-); and total number of global training rounds 7'.

1: start=False;
2: 1O = Inf;
3: max_gap = 0;
4: fort =1to T do
5: forh=0ton+m —1do > all clients
6: lbh,lgp = LocalUpdate(wp, Dy);
7: end for
8: fori =0ton — 1do > all non-selfish clients
9: Client 7 sends wy; ) = w; to each client h;
10: end for
11: forj=nton+m—1do > all selfish clients
12: Client j sends w(; ) = w; and l;t) to each selfish client h;
13: end for
14: forj =nton+m —1do > all selfish clients
15: Client j receives W = {wy; j) fo<i<n—1;
16: 1 =min(*Y, LS L)
17: if ¢ > I and start==False then
18: max_gap = max(l(tfl) —1® maz_gap);
19: if0 < 14D —1® < ¢. max_gap then
20: start=True;
21: end if
22: end if
23: fori =0ton — 1do
24: w(;) = Sel(n, m, Wj,w;, Agg(-), 1, A, start);
25: Client j sends w; ;) to non-selfish client ;
26: end for
27: end for
28: forh=0ton+m — 1do > all clients
29: wp, = Agg({wn n) fo<h <nim—1);
30: ’LZIh = Wh,
31: end for
32: end for

its post-aggregation local model is less likely to be influenced by outlier shared models, e.g., those
from selfish clients.

For instance, Median [36] and Trimmed-mean [36] are two coordinate-wise aggregation rules, which
remove the outliers in each dimension of clients’ shared models in order to reduce the impact of
outlier shared models. Specifically, for a given client, the Median aggregation rule outputs the
coordinate-wise median of the client’s received shared models as the post-aggregation local model.
For each dimension, Trimmed-mean first removes the largest ¢ and smallest c elements, then takes
the average of the remaining N — 2c items, where c is the trim parameter. Krum [3] aggregates a
client’s received shared models by selecting the shared model that has the smallest sum of Euclidean
distance to its subset of neighboring shared models. We note that the previous work [9]] has already
applied Median, Trimmed-mean, and Krum aggregation rules in the context of DFL. In FLTrust [5]],
if a received shared model diverges significantly from the pre-aggregation local model of client 1,
then client 7 assigns a low trust score to this received shared model. In FLDetector [37], clients
leverage clustering techniques to detect outlier shared models and then aggregate shared models
from clients that have been detected as non-selfish. In RFA [27]], clients use a geometric-median
based robust aggregation oracle to aggregate shared models from other clients. In FLAME [23],
clients leverage clustering, model weight clipping, and noise injection techniques to mitigate the
impact of outlier shared models.
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Algorithm 2 Sel(n, m, W, w;, Agg(-), i, A, start).

Input: Number of non-selfish clients n; number of selfish clients m; non-selfish clients’ local models W; =
{w(n,;) }o<h<n—1; pre-aggregation local model w; of selfish client j; aggregation rule Agg(-); non-selfish
client index ¢; parameter A in loss function; and boolean variable start.

Output: Shared model w; ;) sent from client j to i.

. if start==False then
W) = Wj;
return ’IU(],L) .
. end if
. if Agg(-) is FedAvg then
: fork=0tod —1do

1

2

3

4

5

6

7 Compute w(; ;) [k] based on Equation 4
8: end for

9: else if Agg(-) is Median then

10 fork =0tod —1do

11: Compute w(; ;) [k] based on Equation [6}
12 end for

13: else if Agg(-) is Trimmed-mean then

14 fork =0tod —1do

15 Compute w(; ;) [k] based on Equation 9for 11}
16: end for

17: end if

18: return wy; ;).

B Solving the Quadratic Program (Equation [2)

Theorem 1. The optimal solution w[k] of Equation[Z]is as follows:

Proof. We can solve w [k] separately in the following three cases:

Case I: X < 1. In this case, if p;[k| is within the interval [w; [k], W, [k]], then the optimal solution is
w} k] = pi[k]. Otherwise, we have w[k] = w,[k] if p;[k] is larger than w;[k]; and w[k] = w,[k]
if p;[k] is smaller than w,[k]. In other words, we have the following:

pilk],  w;[k] < pilk] <w;k]
w[k] = { ik, pik] > wi[k] . (13)
w, [k], P (k] < w,[k]

Case II: X\ = 1. In this case, we have w [k] as follows:

i[k] > wi k]
wilkl,  wik] < ik (9
Case III: A > 1. In this case, w}[k] is a value between w,[k] and w; [k] that has the larger distance
to p;[k]. That is, we have the following:

sy — ) Wilk],  |pilk] = wilk]| > |pi[k] — w;[k]|
WM_{%W,MW—WMSMW—%W' ()
By combining Equations[T3{I3] we can get Equation[I12] O

C Proof of Attacking FedAvg

Theorem 2. Suppose non-selfish client i uses the FedAvg aggregation rule. The crafted shared
models in Equation {| for the selfish clients are optimal solutions to the optimization problem in
Equation[l]
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Proof. According to Equationd] we have:

1 n+m—1

wz[k] = ntm hz:;] w(h,i)[k]

n—1

=L (S wn k] + (e mpwl ] = 3w k) a16)
h=0

n-r—m
+ h=0

= (e m)w] k)

= w;[K]

D Proof of Attacking Median

Theorem 3. Suppose non-selfish client i uses the Median aggregation rule. The crafted shared
models in Equation [6] for the selfish clients are optimal solutions to the optimization problem in
Equation[]
Proof. We discuss the three cases in Equation [f] separately.
Case I: w;[k] > w}k] > qL%Ji[k]- We have
qr=m=1 i [K] 2 2w k] — q aom 5[k] = @ oom ;K]
Thus
Qo= (K] 2 Wi K] 2 qasm (K],
W(n41,i) [k] == Windm—1,i) [k] = w;k [k] > Q\_%m*l]z[k]
So qL%ji[k‘] ranks | 24— |th among w (g i) [k], - -+, W(nym—1,5)[k], and qti’”*gl’lji[kL W(n,i) K]
rank | 2H2=1 |th, | 24 Jth respectively. We have

1
wilk] = 5 (0] + @ a3 K]) = w] 4] a7)

Case II: an+7;71JZ.[k] > wik] > w,[k]. We have
QL7"+T;*1J1'U€] > 2w;[k] - QLi"JrTZ”’lji[k] > qL"Jriji[k]'
Thus

QL%“[R] 2> W(n,q) (k] > QL”erJi[k]a

2

W1, k] = = Wem-1,)[k] = wi[k] < q[#]i[l‘f}
S0 q| ntm=1 ;[k] ranks | 2L | th among wioi) k], -+ +  W(ntm—1,i)[k], and 2t | [k], Wi [K]

rank [ 2244 |th and | 2742 |th, respectively. Therefore,

1
wilk] = S (W) [K] + @ nimor i [K]) = wilR]. (18)

Case III: qt%ﬂ[k] > wilk] > an+v2n—1M[k]. In this case, we can find r such that | 2+2=1 ] >
r > |*5™] and qyi[k] > w;[k] > q(r41)i[k]. Thus

qri[k] > wi k] = = winpm-1,0 k] > qegylk],

Qrilk], Wi i) [K], - Winm—1,i) (K], @r41)i[F] rank (r4-1)th, (r4-2)th, - - - | (r4+m~+1)th, (r+m+
2)th among w(g ;)[k], -+ , W(ntm—1,; k], respectively. Because r+1 < [ 22+l | and r+m+2 >
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| 2242 | the median value of w(g [k, -+, W(n4m—1,;)[k] must between q(,11);[k] and qy;[k],
which means g,;[k] > w;[k] > q(,+1:[k]. So we have
1 * * *
wilk] = 5 (wy [k] + wilk]) = wi[k]. (19)
After summarizing results of Equations[T7] [I8] and [I9] we have

w;[k] = w;[k].

7

E Proof of Attacking Trimmed-mean

Theorem 4. Suppose non-selfish client i uses the Trimmed-mean aggregation rule. The crafted
shared models in Equation [9 or Equation [T for the selfish clients are optimal solutions to the
optimization problem in Equation |Zl

Proof. We discuss two cases based on the definitions of Equation[9]and Equation [IT}
Note that w; [k] = —L— S0 qp..[k].

n—2m h=m

Case I: w;[k] < w[k] < w;[k]. According to the definition of 7, we need to find maximum r, such
that »r < n, and

1
*[k] < n — m((n - T) d(m-1)i Z th (20)

Since q(p,—1)i[k] > w;[k] > w; [k], when r = n — m, we have

(n—m) - w; k] <m - qum_1)i[k] + (n —2m) - w;[k]

M - qm—1)i[K] };L qnilK] o

= (Tl - 7’) : q(m—l)i[k] + Z th[k]
so such 7 exists, and » > n — m. If r = n, there are no Part II selfish model parameters, and

wi k] <

k] = w;[k].

Since wj k] > w,[k], we have w}[k] = wl[k} Note that in this case all the shared model parameters
of selﬁsh clients are Part I model parameters, which are all less than q,, l)z[k] )
wi[k] = w; [k] = wi[k]. (22)

If r < n — 1, then we prove that q,;[k] < w; ;[k] < q(mn—1)ilk] whenn < j <2n —7r — 1. In
fact, the right side can be directly obtained by Equation |é_UL so we only need to prove the left side.
Since r is maximum, we have

Wik > — (=7~ 1) @ik + 3 @ulh) eS
So we have
wilk] > (7~ 1) @l +qu
Zn_lm((n—r—l - qpilk qu (24)
= (=) qulk qu
m
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Thus q.[k] = cilk] < w( k] for n < j < 2n — 7 — 1 according to Equa-
tion Hence, when calculating the trimmed mean value of {w,;)[k]}o<n<ntm—1,
qoilk], -+, @m—1)i[k] will be filtered out since they are the largest m values in the kth dimen-
sion, and g,;[k], - - -, @(n—1)i[k], W(an—r)[E], -, W(ntm—1,i)[k] Will be filtered out since they are
the smallest m values in the kth dimension, and

2n—r—1

> wialk)
- i qnilk]) (25)
h=m

Case II: w;[k] < w}[k] < w;[k]. Similar to Case I, according to the definition of r, first we need to
find minimum 7 such that » > 0, and

n—m-—1

(r+1) - quemylk] + > qnilk]). (26)

h=r+1

w;[k] >

n—m
Since q(n—m)i[k] < w;lk] < w][k], when r = m — 1, we have

7

(n—m) - w;[k] >m - qu_m)k] + (n —2m) - w;[k]

n—m-—1
h=m (27)
n—m-—1
=(r+1) - qum-milk] + Z anilk],
h=r+1
so such r exists, and » < m — 1. If » = —1, there are no Part II selfish model parameters and we
have
w;lk] = w;[k] = wj [k]. (28)

If > 0, then we can similarly prove qu,—m)ilk] < w( k] < g[k] when n <
Jj < n + 7. Hence, when calculating the trimmed mean value of {w, ;)[k]}o<h<nim—1,

A(n—m)ilkl, -+, @n—1)i[k] will be filtered out since they are the smallest m values in the kth di-
mension, and qo;[k], - - - , @ri[k], Wingri1,0) (K], - Winm—1,i)[k] will be filtered out since they
are the largest m values in the kth dimension, and
n—m—1 n+r
w;[k] = “m Z qni[k] + Zw@ ok
h=r+1 =
—m—1 n—m-—1
=——( > ilk — mw; [k] — anilk]) (29)
h=r+1 h=r+1
1
(= m) - w] K]
— w![K]

After summarizing results of Equations 22] 23] 28] and 29] we have:
w;[k] = wi[k].
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Table 4: Notations.

Notation Description

n Number of non-selfish clients.

m Number of selfish clients.

h Index of any clients.

i Index of non-selfish clients.

J Index of selfish clients.

A Hyperparameter in our optimization problem.
w; Local model of client 7 at the start of a global round.
w; Pre-aggregation local model of client 4.

w; Post-aggregation local model of client <.
w; [k] kth dimension of w;.
w; Optimal solution of our optimization problem.
w; |Model aggregated by non-selfish clients’ shared models.
w; k] Upper bound of w; [k].
w, [k] Lower bound of w; [k].
W(p h'y Shared model that client h sends to client .

Table 5: CNN architectures for CIFAR-10 and FEMNIST.

(a) CIFAR-10. (b) FEMNIST.
Layer Size Layer Size
Input 32 x32x3 Input 28 x 28 x 1
Conv + ReLU 3 x 3 x 30 Conv + ReLU 7TXTx 32
Max Pooling 2x2 Max Pooling 2x2
Conv + ReLU 3 x 3 x50 Conv + ReLU 3 X3 x64
Max Pooling 2x2 Max Pooling 2x2
FC + ReLU 100 FC 62

FC 10

F Dataset Description

CIFAR-10 [20]. CIFAR-10 is a 10-class color image classification dataset, with 50,000 training
examples and 10,000 testing examples. License: MIT License. Available at https: //www. cs.
toronto. edu/ ~kriz/cifar. html.

Federated Extended MNIST (FEMNIST) [4]. FEMNIST is a 62-class image classification
dataset. It is constructed by partitioning data from Extended MNIST [22] based on the writer
of the digit or character. There are 3,550 writers and 805,263 examples in total. To distribute
training examples to clients, we select 10 writers for each client and combine their data as the lo-
cal training data for a client. License: Apache License 2.0 (via LEAF benchmark). Available at
https: //leaf. cmu. edul

Sentiment140 (Sent140) [16]. Sent140 is a two-class text classification dataset for sentiment analy-
sis. The data are tweets collected from 660,120 Twitter users and annotated based on the emoticons
present in themselves. In our experiments, we choose 300 users with at least 10 tweets for each
client, and the union of the training tweets of these 300 users is the client’s local training data. Li-
cense: Other. No explicit license is provided. Available for academic use only. Hosted on Hugging
Face at https: //huggingface. co/ datasets/stanfordnlp/sentiment140.

G Details of Aggregation Rules

FedAvg [24]. In FedAvg, a client aggregates the received shared models by calculating their average.

Median [36]. Each client in Median obtains the post-aggregation local model via taking the
coordinate-wise median of shared models.

Trimmed-mean [36]. Trimmed-mean is also a coordinate-wise method that calculates the trimmed
mean of the shared models in each dimension. Specifically, for dimension &, each client first removes
the largest ¢ and smallest ¢ values, then computes the average of the remaining elements. In our
experiments, we set ¢ = m, where m is the number of selfish clients, giving advantages to this
aggregation rule.
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Table 6: LSTM architecture for Sent140.

Table 7: Default DFL parameter settings.

Layer Configuration
. Word embedding: GloVe [26] Parameter CIFAR-10 FEMNIST  Sent140
Embedding . . . -
Embedding dimension: 50 # clients 20
Input size: 50 # selfish clients 6
LST™M Hidden size: 100 # local training epochs 3
Number of layers: 2 Learning rate 1x10° 7%
N — - — =
Fully Connected Input features: 100x2 Opﬂ@zer Adam (weight decay=5 x 10~ %)
Output features: 128 # global training rounds 600 600 1,000
Fully Connected | [Pt features: 128 Batch size 128 256 256
Output features: 2

Krum [3]. In Krum aggregation rule, each client outputs one shared model that has the smallest
sum of Euclidean distances to its closest n — 2 neighbors.

FLTrust [5]. In FLTrust, client ¢ computes a trust score for each received shared model in each
global training round, where 0 < ¢ < n+m—1. A shared model has a lower trust score if it deviates
more from the pre-aggregation local model of client ¢. After that, client ¢ computes the weighted
average of the received shared models, where the weights are determined by their respective trust
scores. The higher the trust score, the larger the weight.

FLDetector [37]. In FLDetector, client ¢ predicts a client’s shared model updates based on its
historical information in each training round and identifies a client as selfish when the predicted
model updates consistently deviate from the shared model updates calculated by the received shared
model across multiple training rounds. Then client ¢ employs Median to aggregate the predicted
non-selfish clients’ shared models.

RFA [27]]. The RFA algorithm employs a robust aggregation oracle based on the geometric median.
It specifically uses the smoothed Weiszfeld algorithm to iteratively compute weights for aggregating
the shared models. We follow the implementation as in Pillutla et al. [27].

FLAME [25]. FLAME uses a clustering-based method to detect and eliminate bad shared models.
Moreover, it uses dynamic weight-clipping and noise injection to further reduce the impact of bad
shared models from selfish clients. We follow the implementation as in Nguyen et al. [25]].

H Simulating Non-iid Setting in DFL

In DFL, the clients’ local training data are typically not independent and identically distributed
(Non-IID). We randomly split all clients into 10 groups, and then use a probability to assign a
training example with label y to the clients in one of these 10 groups. Specifically, the training
example with label y is assigned to clients in group y with a probability of p, and to clients in any
other groups with the same probability of =2, where p € [0.1,1.0]. Within the same group, the
training example is uniformly distributed among the clients. The parameter p controls the degree of
Non-IID. The local training data are IID distributed when p = 0.1, otherwise the training data are
Non-IID. A larger value of p implies a higher degree of Non-IID.

I Attacking FLAME

Recall that FLAME first clusters models based on cosine distances between them and selects the
largest cluster with no fewer than “t™ 4 1 models. To encourage the clustering algorithm to mis-
classify as many non-selfish clients as possible as selfish and subsequently remove them, we select
a subset of non-selfish clients. We then craft shared models of selfish clients such that the crafted
models are close to the shared models of these selected non-selfish clients, while keeping them dis-
tinctly different from the models of the remaining non-selfish clients. Specifically, when client ¢
employs the FLAME aggregation rule, we first identif’
with the smallest cosine distance to w;, denoted as w,, ), --..
shared model of selfish clients as follows:

s W(r(, . 5yi)- Lhen, we craft the

W) = " = Wntm—1,3) =
(n m) /2
(30)
nm_’_a_ﬁn Z wT}u +aw1 ﬂzwjl)
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Figure 6: Impact of ¢, I, and total number of clients on Gap of SelfishAttack.

Table 8: Results when non-selfish clients and selfish clients use different aggregation rules. Each
column represents the aggregation rule used by selfish clients, and each row denotes the rule used
by non-selfish clients.

. FedAvg (selfish) Median (selfish) Trimmed-mean (selfish)
Aggregation Rule
MTAS MTANS Gap MTAS MTANS Gap MTAS MTANS Gap
FedAvg 0.475 0.326  0.150 0.478 0.326  0.152 0470 0.326 0.144
Median 0.574 0.425  0.150 0.543 0.425 0.119 0.301 0.425 —0.123

Trimmed-mean 0.597 0.484  0.113 0.596 0484  0.113 0597 0.484 0.113

where > 0 and 8 > 0 are some constants. In our experiments, we set « = 5 and 8 = 0.01.
In Equation the first term aims to bring the crafted models closer to the selected “5™ shared
models; the second term satisfies our utility goal, which is to maintain the proximity of client ¢’s post-
aggregation local model to its pre-aggregation local model; and the third term pushes the crafted
models away from the unselected models, which satisfies our competitive advantage goal. The
selfish clients use the Median aggregation rule to aggregate received models from all clients.

It is noteworthy that although we do not devise specific attack strategies for FLAME’s noise injec-
tion, the attack outlined in Equation |30 still enables selfish clients to gain a significant competitive
advantage.

J Other Ablation Studies

Impact of ¢ and I: Figs.[6aland[6b|show the impact of € and I, respectively. The larger the e and the
smaller the I, the earlier the selfish clients start to attack. We observe that our SelfishAttack is more
sensitive to these two parameters when attacking FedAvg compared to Median and Trimmed-mean.
From Fig. [6a] we observe that when e does not exceed 0.05, our attack yields a low Gap, especially
when the aggregation rule is FedAvg or Trimmed-mean, where the Gap is 0. In fact, in this case,
the selfish clients do not start to attack until the end of the training process. When € ranges from 0.1
to 0.2, our attack exhibits relatively stable performance. When e is 0.5 and the aggregation rule is
FedAvg, selfish clients initiate the attack before the local models have almost converged, resulting in
a decline in the attack effectiveness. We also observe from Fig. [6b]that when attacking Median and
Trimmed-mean, the performance of SelfishAttack is almost not affected by I, and the Gap obtained
by our SelfishAttack is greater than 10% in all cases. In contrast, when attacking FedAvg, the value
of I has a notable impact on Gap: when [ is not greater than 30, the Gap is close to 0; and when
is not less than 50, the Gap is larger than 13%.

Impact of total number of clients: To explore the impact of the number of clients on SelfishAttack,
we first divide the training data of CIFAR-10 dataset among 30 clients, and then randomly select
subsets of 10, 20, and 30 clients from them while maintaining a fixed fraction of selfish clients at
30%. Fig. [6c|shows the impact of the total number of clients on SelfishAttack. We observe that as
the number of clients increases, our attack is more effective. For instance, when the aggregation rule
is Median, increasing the number of clients from 20 to 30 results in a 4.2% improvement in Gap.
This may be because that although the fraction of selfish clients remains unchanged, the absolute
number of selfish clients increases, thereby making the attack more effective.

Impact of aggregation rule used by selfish clients: Selfish clients can use different aggregation
rules from non-selfish clients. Table [§] presents the results of SelfishAttack under varying combina-
tions of aggregation rules used by selfish and non-selfish clients. For each aggregation rule used by
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Table 9: Performance when selfish clients use previous round models from non-selfish clients.
Aggregation Rule MTAS MTANS Gap

FedAvg 0.475 0.327 0.148
Median 0.545 0.427 0.118
Trimmed-mean 0.594 0.483 0.111

non-selfish clients, we apply the corresponding version of SelfishAttack. For instance, when non-
selfish clients use Trimmed-mean, selfish clients craft their shared models using the Trimmed-mean
based version of SelfishAttack. We observe that the Gap exceeds 11% in most cases, with only
one exception: when non-selfish clients use Median and selfish clients use Trimmed-mean. Overall,
regardless of the aggregation rule employed by non-selfish clients, it is consistently a better choice
for selfish clients to use FedAvg.

K Discussion and Limitations

Utility preserving of SelfishAttack: SelfishAttack’s utility goal requires selfish clients to learn
more accurate local models than they would by training only with other selfish clients. According
to Table |1} SelfishAttack’s MTAS usually surpasses that of Two Coalitions, achieving this goal. Al-
though sometimes selfish clients’ model performance declines, we argue that this decrease is accept-
able for two reasons. First, while MTAS shows a noticeable drop in some cases (e.g., FedAvg and
Median on CIFAR-10) compared to No attack, the difference is usually within 6%. This drop could
be attributed to the high degree of non-iid data in our CIFAR-10 setup. Notably, in some cases (e.g.,
FedAvg and Trimmed-mean on Sent140), SelfishAttack’s MTAS even exceeds No attack. Second,
this performance drop is compensated by a greater competitive advantage, as the Gap is consistently
larger than the MTAS decline, meaning selfish clients sacrifice some model performance for more
competitive gain.

Defending against SelfishAttack: Byzantine-robust aggregation rules are defenses against “out-
lier” shared models, which can be applied to defend against SelfishAttack. However, we theoreti-
cally show that Median and Trimmed-mean cannot defend against our SelfishAttack, as the selfish
clients can derive the optimal shared models to minimize a weighted sum of the two loss terms
that quantify the two attack goals respectively. Moreover, we empirically show that other more
advanced aggregation rules such as Krum, FLTrust, FL.Detector, RFA, and FLAME cannot defend
against SelfishAttack as well. It is an interesting future work to explore new defense mechanisms to
defend against SelfishAttack. In SelfishAttack, a selfish client sends different shared models to dif-
ferent non-selfish clients. Therefore, one possible direction is to explore cryptographic techniques to
enforce that a selfish client sends the same shared model to all clients. We expect such defense can
reduce the attack effectiveness, though may not completely eliminate the attack since a selfish client
can still send the same carefully crafted shared model to all non-selfish clients. Another direction for
defense is to use trusted execution environment, e.g., NVIDIA H100 GPU. In particular, the local
training and model sharing of each client is performed in a trusted execution environment, whose
remote attestation capability enables a non-selfish client to verify that the shared models from other
clients are genuine.

Approximating with previous round models: A potential concern of our formulation is the in-
formation asymmetry in the model-sharing process. Specifically, the algorithm assumes that at
each communication round, selfish clients can first obtain the shared models from all non-selfish
clients before sending out their own models, which may be less realistic in practical decentralized or
asynchronous federated learning systems. To examine whether this asymmetry affects the attack’s
effectiveness, we conduct an additional experiment where each selfish client instead uses the models
received from each non-selfish client in the previous round as estimates of their current round mod-
els when constructing its selfish update. Table []reports the results on CIFAR-10. The results are
very close to those obtained under the original assumption where selfish clients access the current
round models. This indicates that the attack remains effective even when selfish clients rely on ap-
proximate, delayed information, suggesting that the method is robust to communication asymmetry
and applicable to more realistic settings.

Partial client participation: In practical FL systems, only a subset of clients may be active in each
communication round due to resource or connectivity constraints. To examine the impact of such
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Table 10: Results when only 50% of clients participate in each communication round.
Aggregation Rule MTAS MTANS Gap

FedAvg 0.502 0.353 0.149
Median 0.583 0.465 0.118
Trimmed-mean 0.596 0.506 0.090

Table 11: Results under a partially connected client graph, where each client connects to 10 others.
Aggregation Rule MTAS MTANS Gap

FedAvg 0.602 0.569 0.073
Median 0.505 0.388 0.117
Trimmed-mean 0.589 0.503 0.086

partial participation, we conduct an experiment where only 50% of the clients participate in each
round, while keeping all other parameters unchanged. As shown in Table |10} our method continues
to exhibit a strong competitive advantage under this setting. We further observe that using only half
of the clients delays the manifestation of selfish behavior by about 20-30 rounds compared to using
all clients, likely due to the slower convergence of the system when fewer participants are involved.

Partially connected topology: We further examine the robustness of SelfishAttack under a decen-
tralized setting where the client network is not fully connected. Specifically, we randomly generate
a communication graph in which each client connects to only 10 other clients (out of 20 in total). In
this configuration, selfish clients do not have access to the full connectivity structure of the system.
That is, they are unaware of which non-selfish clients are interconnected, and thus cannot directly
apply the attack strategies proposed for the fully connected case. To approximate this scenario, we
design an attack based on the local models of all non-selfish clients that are accessible to each selfish
client, and apply the same attack strategy originally designed for FedAvg to all three aggregation
rules (FedAvg, Median, and Trimmed-mean). As shown in Table @ SelfishAttack still achieves a
clear competitive advantage across all settings, indicating that the attack strategy generalizes effec-
tively even when the system connectivity is partial.

L. Broader Impact

Our work reveals a new type of insider threat in DFL systems, where a subset of selfish clients can
manipulate the training process to gain a competitive advantage without disrupting overall model
performance. By exposing this vulnerability, our research highlights the risks of trusting all partici-
pants in collaborative learning without strong assumptions or safeguards.

We believe this work will have a positive societal impact by raising awareness of subtle collusion
threats in DFL and encouraging the development of more robust aggregation rules and detection
mechanisms. At the same time, we acknowledge that malicious actors could potentially misuse our
insights to harm collaborative learning systems in sensitive domains, such as healthcare or finance.
To mitigate such risks, in Appendix [K] we also discuss possible defenses against SelfishAttack. By
highlighting both the threat and defense directions, we aim to facilitate the development of more
secure and trustworthy decentralized learning systems.
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