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Abstract

One of the most popular algorithms in reinforcement learning is Soft Actor-Critc (SAC), as
it promises to elegantly incorporate exploration into the optimization process. We revisit
SAC through the lens of constrained optimization and develop Kullback-Leibler Actor-Critic
(KLAC), a principled extension of Soft Actor Critic that replaces the heuristic entropy
bonus of SAC with a Kullback-Leibler regulariser against an arbitrary reference policy. We
contrast Kullback-Leibler Actor Critic with Soft Actor Critic and demonstrate analytically
and with a concrete counterexample that injecting the entropy term directly into the reward,
as implemented in Soft Actor Critic, violates the convexity assumptions of the dual proof
of near-optimality and can render the learned policy arbitrarily sub-optimal no matter how
small the temperature is chosen. This understanding reveals a fundamental systemic flaw in
SAC, especially for sparse reward environments. To retain the empirical exploration benefits
without sacrificing theoretical soundness, we introduce a fixed uniform reward bias that
captures the intrinsic motivation effect to stay alive. Additionally, we propose a Kullback-
Leibler annealing schedule that unifies discrete and continuous action spaces by mapping
an intuitive probability of exploitation to a closed-form entropy or Kullback-Leibler target.
Together, these contributions yield an algorithm that at least matches the sample efficiency
and performance of Soft Actor Critic as demonstrated on MuJoCo and MinAtar benchmarks
while enjoying provable near optimality, interpretable hyperparameters, and a theoretically
grounded exploration mechanism. We provide code to reproduce all plots in the paper.

1 Introduction

Deep reinforcement learning (RL) has achieved remarkable empirical success in domains ranging from games
to continuous control, yet our theoretical understanding of when these methods work (or fail) often lags
behind practice (Bartol 2021)). In classical tabular RL settings, strong optimality guarantees could be ob-
tained under convexity assumptions, but modern deep RL algorithms with nonlinear function approximators
are much harder to analyze rigorously. As a result, many state-of-the-art algorithms prioritize empirical
convergence over optimality, and identifying systematic weaknesses in their formulations requires renewed
theoretical scrutiny. One important area of inquiry is regularized or entropy-maximizing RL, which augments
the standard objective with bonus rewards to encourage exploration and improve stability. A prominent ex-
ample is Soft Actor-Critic (SAC) (Haarnoja et al [2018), an off-policy actor-critic algorithm that maximizes
a weighted sum of environment reward and policy entropy. SAC has demonstrated state-of-the-art perfor-
mance on a range of continuous control benchmarks while maintaining high training stability across random
seeds. Understanding precisely why SAC is stable, how its entropy injection in the actor and critic shapes ex-
ploration, and what optimality cost this regularisation imposes is therefore critical both for safe deployment
and for principled algorithmic improvements. By aiming to succeed at the task while acting as randomly as
possible, SAC embodies the maximum entropy RL framework and is often viewed as a principled approach
to balance exploration and exploitation (cf. |[Levine, 2018)).

The theoretical justification for SAC’s entropy augmentation beyond the intuitive explanation (Arriojas
et al.l|2023) continues to be challenged in the field. In contrast to methods that impose an explicit divergence
constraint on policy updates (Peters et all 2010; [Schulman et al., 2015} |Geist et all [2019), SAC adds the
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entropy regularizer directly to the reward function. We revisit SAC through the lens of constrained policy
optimization and find that this design choice has significant consequences. In fact, injecting the entropy term
into the reward fundamentally alters the structure of the optimization problem, breaking the separability
and convexity properties that underpin theoretical guarantees in regularized RL (Pacchiano et all 2021b).
We show analytically that SAC’s objective is no longer equivalent to a true KL-regularized policy search.
Consequently, the usual near-optimality guarantees no longer hold and SAC can converge to an arbitrarily
suboptimal policy. We derive a concrete counterexample illustrating SAC’s failure mode of softening the
rewards with entropy, where the agent can become biased towards high-entropy behavior that yields zero real
reward, even when a far better policy exists. In essence, incorporating entropy into the reward can dominate
the learning signal and prevent convergence to the optimal policy, a systemic flaw in SAC that is especially
severe in sparse-reward or long-horizon tasks. Empirical evidence has hinted at this issue for some time
already. For example, SAC is known to become unstable without additional constraints in some settings as
in discrete-action domains, where SAC requires ad-hoc modifications for stable learning (Xu et al.l [2021bja).
Other recent studies have observed that removing or reducing the entropy bonus can actually improve
performance in practice (Yu et al.| 2022al). These observations, which so far lack a theoretical explanation,
are supported by our analysis of how entropy shaping can misalign the objective from the true task reward.

We introduce the Kullback-Leibler Actor-Critic (KLAC) algorithm, a principled variant of SAC that resolves
these theoretical and practical issues. KLAC is derived from the constrained optimization view of RL
and imposes an explicit KL regularization against a reference policy (e.g., the uniform distribution) at
each update. This approach can be seen as a direct application of relative entropy policy search (Peters
et al. 2010) in an actor-critic setting, ensuring that policy updates are conservative and grounded in convex
duality. Critically, KLAC’s objective leads to the same kind of softmax policy update as SAC, but without
corrupting the reward signal. We prove that the optimal policy under our KL regularizer remains near-
optimal with respect to the true (unregularized) return, recovering the performance bound characteristic of
sound regularized RL methods (Pacchiano et al., [2021b)).

In summary, the main contributions of this paper are:

1. A critical theoretical analysis of the SAC algorithm, proving that its built-in entropy reward can
lead to non-convex optimization and arbitrarily suboptimal policies.

2. KLAC, a novel actor-critic algorithm that replaces SAC’s heuristic entropy bonus with a principled
KL divergence regularization. KLAC is derived from first principles and comes with a guarantee of
near-optimality.

3. An empirical evaluation of KLAC against SAC on standard continuous control benchmarks
(MuJoCo) and a suite of discrete-action tasks (MinAtar).

We hope that our work sheds light on the importance of properly formulating regularization in deep RL and
offers a practical solution that is both theoretically grounded and effective in practice. We provide open-
source code for KLAC to facilitate reproducibility and further research. The rest of the article is structured
as follows: Section 2 introduces the necessary mathematical background to our work. Section 3 presents
related work on the theoretical and practical side. Section 4 presents a theoretical analysis of SAC. Section
5 presents theoretical advancements and the new KLAC algorithm that we derive. Section 6 introduces the
experiments used and discusses their results. Section 7 presents future work and summarizes our article.

2 Background: Regularized Policy Search

In this section, we provide the necessary background to the reinforcement learning problem and the corre-
sponding constrained optimization formulation.
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2.1 Markov Decision Process

We model the agent—environment interaction as a discounted Markov decision process (MDP) M =
(S, A, P, R,v)(Bellman| [1957). The transition kernel P : S x A x S — [0, 1] satisfies

ZP(sl\s,a) =1 V(s,a)eSxA

s'esS
with the state space set S and the action space A. The one-step reward function is R : S x A — R simplified
as r(s,a),
and 0 < v < 1 is the discount factor. A (stochastic) policy is a conditional distribution 7 : .S x A — [0,1]

obeying
Zw(a|s):1 VseS.
acA

Given an initial state sg , the discounted return under = is
(oo}
t
Gs, = E v (st ar) , ap ~ (- | st), se41 ~ P(- | se,ar)
t=0

The control objective is to find an optimal policy
7 € argmax E[GS] for every s € 5,
™

where the expectation is over trajectories induced by w. This formulation underpins the regularised policy-
search framework introduced next.

2.2 Regularised Policy Search and Convex Duality

We begin by framing the infinite-horizon, ~—discounted control problem as a linear program (LP) over
occupancy measures. Let p9 : S — [0,1] denote an initial state distribution with ) _ juo(s) = 1. For any
stationary policy 7, its y-discounted state—action occupancy measure is

oo

tr(s,a) = (1—7)2'ytf7’rr[5t =5, Ay =al Sy~ ol (s,a) e Sx A.
=0

Intuitively, pr(s,a) is the (discounted) fraction of time the process spends in (s,a). The flow-conservation
constraint below formalises a discounted balance law. The probability mass arriving at each state equals the
initial inflow plus discounted transitions from everywhere else. The normalisation Zs’a tr(s,a) =1 follows
from the (1 — ~) factor and makes the feasible set compact. Any feasible p induces a unique stationary
policy via m(a|s) = u(s,a)/ >, (s, a’) whenever the denominator is nonzero. Following Belousov & Peters
(2017); Nachum et al.| (2018]); Pacchiano et al.| (2021a)), we introduce a convex regulariser in the objective with
an explicit weight o > 0, which enriches the linear program (LP) with a convex regulariser that captures
additional design preferences such as trust-region proximity, entropy-driven exploration, sparsity, or risk
sensitivity. With u, the infinite-horizon control problem is

max Jo(px) =Y D pn(s,a)7(s,0) — o F(pr)

seSacA

s.t. Z pr(s'a")y = (1 —y)uo(s') + 72 Z pr(s,a)P(s" | s,a), Vs' € S, (1)

a’'€A s€eSacA
ZNW(Sva) =1, pr(s,a) >0 Vs,a.

Here pr(s,a) captures the discounted visitation frequency of (s,a). The first (flow-conservation) constraint
balances discounted in-flow and out-flow for every state, while the normalisation »_ , px(s,a) = 1 keeps the
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feasible set compact and guarantees a one-to-one correspondence between any feasible p, and its induced
policy 7. The regularizer F : D C RIS 5 R U {00} is proper, convex, and lower semicontinuous on
a convex domain D that contains the feasible occupancies. The weight « tunes the reward-regularity
trade-off in the terminology of inverse problems (Tikhonov & Arsenin, [1977). Using the Fenchel conjugate
F*(u) = supep{(z,u) — F(z)} we can apply the Fenchel-Rockafellar duality according to Eq. and obtain
the dual

min Jp(v) = (1 —'y)ZvS po(s) + F*(ATv), (2)
veRIZ! ses

where the advantage vector ATv € RISI*I4l has components

(ATw)  =r(s,a)+ ’yz P(s' | s,a) vg — v .

s’/

The second term F*(AT’U) in the dual objective Eq. is the penalisation that enforces the structural
preferences encoded by the primal regulariser F. For example, choosing F' as a KL divergence makes F™*
the log-partition function and recovers the soft-max (entropy-regularised) policy update. The vector A Tv
itself is the one-step temporal-difference (TD) error. It is positive when action a is better than the current
value estimate vy and negative otherwise. Minimising the dual therefore pushes all advantages into the
domain where F* is finite, yielding the unique value vector v* and, via u* = VEF*(ATv*), the policy that
maximises reward while respecting the chosen regularisation. An equivalent way to encode preferences is the
constrained form

max Zu(&a) r(s,a) s.t. flow/normalisation as above, Fp) <1, 3)
" S,a

with budget 7 > 0, which is known as Ivanov regularisation (Ivanov, [1962)). The Lagrangian introduces a
multiplier A>0 for F'(u) < 7 and yields the partial dual

. *[ 1 T
min (I =) (v,p0) + AT + AF (XA v) .
Eliminating A recovers the penalised dual Eq. with @ = A. Under the conditions that F' is strictly convex
and coercive on the feasible set, the mapping o — F(u,) is continuous and strictly decreasing, so for any
target T there exists a unique « such that the penalised solution satisfies F(u,) = 7 . In practice one
can choose 7 and perform binary search over « until F(u,) =~ 7 . This is the standard Tikhonov-Ivanov
equivalence exploited widely in ML, such as support vector machines (Oneto et al.| 2016)).

2.3 Soft Actor-Critic

We briefly recapitulate the Soft Actor-Critic (SAC) algorithm, an off-policy actor—critic method that aug-
ments the cumulative discounted reward with an entropy incentive to favour stochastic behaviours (Haarnoja
et al) 2018). At every decision point the agent therefore seeks to maximise the expected return and the
randomness of its action choices, leading to policies that explore proactively without abandoning high-value
regions of the state space.

SAC employs a pair of parameter-tied critics Qg, , Qg, updated toward bootstrapped targets that include the
current policy’s entropy term; taking the minimum of the two critics mitigates over-estimation bias. The
actor my is obtained by minimising the Kullback-Leibler divergence between 7y (- | s) and the Boltzmann
distribution induced by the critic ensemble, yielding a closed-form stochastic gradient. A novel automatic
temperature adjustment tunes the entropy coefficient « so that the realised entropy tracks a user-specified
target throughout training (Haarnoja et all|2018). In practice, these ingredients have three advantages: (i)
high sample efficiency from off-policy replay, (ii) robustness across reward scales through adaptive «, and
(iii) numerical stability thanks to the twin-critic safeguard.

Despite these strengths, SAC departs from classical regularised policy search in one crucial aspect: it injects
the entropy bonus directly into the per-step reward processed by the critic rather than enforcing a divergence
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constraint solely in the actor. As we demonstrate in Section 4, this design choice breaks the separability
and convexity properties required for standard duality-based optimality guarantees and can bias learning
toward high-entropy yet low-reward solutions. The next section situates this observation within the broader
literature on regularised control.

3 Related Work

This related work section is divided into three parts. The first part presents theory behind regularized policy
search. The second part presents practical algorithms that are in the realm of regularized policy search
algorithms. The third part is examining papers that identified shortcomings of SAC and where it fails.

3.1 Theory behind Regularized Policy Search

MDP control can be cast as a linear program over state—action occupancy measures, whose dual variables
yield the value function and guarantee strong duality under mild conditions (Manne, [1960)). Incorporating
expectation constraints produces the standard constrained-MDP LP (Altman, 2021} |Paternain et al., 2019)).
Safe-RL algorithms such as Constrained Policy Optimization exploit this primal-dual structure, using KIL-
regularized trust-region updates and multiplier tuning to achieve (approximate) constraint satisfaction and
convergence (Achiam et al., [2017). In the policy search literature, [Peters et al.| (2010]) introduced Relative
Entropy Policy Search (REPS), which imposes a KL-constraint between the updated policy and a reference
policy at each iteration. By solving a convex dual problem, REPS guarantees small policy updates and
yields an analytic policy improvement step. Natural Actor-Critic (NAC) methods [Peters & Schaal (2008)
also fall into this line of work, as they leverage natural gradients under a KL geometry to improve stability
and efficiency of policy updates. Notably, Trust Region Policy Optimization (TRPO) (Schulman et al.,[2015)
and its successors like PPO (Schulman et al., 2017) enforce a soft KL limit (or introduce gradient clipping)
on policy changes to ensure monotonic improvement and prevent divergence. These KL-regularized or
entropy-regularized approaches were later grounded in theory connecting them to mirror descent and convex
optimization (Geist et al.l 2019; [Neu et all 2017). (Geist et al. 2019)) introduce a regularized Bellman
operator for an arbitrary convex regularizer (e.g., negative entropy or an f-divergence) and show that the
optimal policy can be characterized by a Fenchel-Legendre transform of the value function. Building on this,
(Vieillard et al [2020)) analyze the specific case of KL regularization in approximate dynamic programming.
They prove that incorporating a relative-entropy penalty implicitly performs a form of Q-value averaging,
which can reduce overestimation and stabilize training. Crucially, convex duality provides the mathematical
bridge between adding a regularizer in the primal LP (occupancy measure) formulation and the emergence of
softmax policies or advantage functions in the dual formulation (Belousov & Peters| 2017)). A paradigmatic
example is given by (Pacchiano et al.l 2021a), who study the theoretical properties of policy optimization
under a KL regularization penalty. Similarly, (Zahavy et all [2021) consider a broad class of convex MDP
objectives, where the goal is to optimize a convex function of the stationary distribution (occupancy measure)
rather than a linear reward by recasting the problem as a zero sum two player game and derive a meta-
algorithm connecting many fields, such as apprenticeship learning, pure exploration and constrained RL.
Our work shows that SAC is actually connected to these works, but breaks a fundamental property of
those. We show theoretically and with an example why this error may be catastrophic (and why it is often
times not) and recover a more general algorithm that performs better and is more intuitive to use. Further
our theoretical findings support evidence that other papers already gathered but could not explain on a
theoretical level.

3.2 Algorithms using Regularized Policy Search

Overall, KL-regularized policy search has become one of the fundamental algorithms in RL, underpinning
a spectrum of on-policy, off-policy, imitation, offline, and hierarchical methods, and inspiring alternative
divergence-based approaches that continue to advance the field.

KL divergence has been widely used to stabilize policy updates in reinforcement learning by constraining
the change between successive policies. Early work introduced Relative Entropy Policy Search (REPS),
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which enforces a hard bound on the KL divergence between the new and current policy to guarantee stable
and monotonic improvement (Peters et all [2010; Kakade & Langford, |2002)). REPS derives a closed-form
exponential-weight update from the convex dual, so the policy step size is controlled by a single Lagrange
multiplier instead of an external learning-rate schedule. Building on this principle, Trust Region Policy
Optimization (TRPO) by |Schulman et al.| (2015|) further enforces a KL constraint on the policy update
step, leading to improved empirical stability in deep RL benchmarks. TRPO formulates the update as
a constrained quadratic program and solves the KL trust-region with conjugate-gradient plus line-search,
ensuring first-order monotone improvement. Proximal Policy Optimization (PPO) refines this idea by re-
placing the hard constraint with either a clipped surrogate objective or an adaptive KL penalty, simplifying
implementation while retaining performance (Schulman et al.l [2017).

KL regularization has also been incorporated into actor—critic and off-policy methods. ACER. couples trun-
cated importance sampling with a KL correction term, giving an unbiased yet variance-reduced off-policy
gradient that is numerically stable under replay (Wang et al., 2017). ACKTR approximates the natural
gradient using Kronecker-factored blocks of the Fisher matrix, yielding curvature-aware parameter updates
without forming the full Hessian (Wu et all 2017). Maximum a Posteriori Policy Optimization (MPO)
casts the update as an EM algorithm optimizing a KL-regularized objective, fitting a parametric policy to
an advantage-weighted action distribution (Abdolmaleki et al} [2018)). Soft Actor—Critic (SAC) maximizes a
combination of expected return and policy entropy, which can be seen as KL regularization to a uniform prior
and uses the re-parameterisation trick to differentiate through stochastic actions (Haarnoja et al., 2018)).

In imitation learning and offline RL, KL-based regularization is crucial for staying close to reference behaviors
(Ho & Ermon, 2016} |Vinyals et all 2019; [Wu et all 2019; [Kumar et al.l |[2019; |Ashvin et al., |2020]).

Hierarchical RL methods such as HIREPS extend REPS to a two-level policy hierarchy by applying KL
constraints at both the skill and meta-policy levels, enabling stable learning of diverse sub-policies [Daniel
et al| (2016). More recently, optimal transport trust region policy optimization replaces the KL constraint
with a Wasserstein-distance trust region, addressing limitations of KL when policy supports have little
overlap [Terpin et al.| (2022). Finally, generalizations to other f-divergences and entropy regularization have
been explored to balance exploration and exploitation in policy search |Williams & Peng| (1991); [Levine
(2018).

3.3 Previous Critiques of Soft Actor Critic

Although entropy regularization is intended to improve learning stability, it can sometimes introduce new
instability if not carefully managed. SAC adjusts a temperature parameter « to target a desired entropy level
(Haarnoja et al., 2018). If this target entropy is set improperly or the reward signal is sparse, the automatic
temperature adjustment can oscillate or diverge. An excessively large entropy bonus (high «) drives the
policy to act almost randomly, making the value estimates difficult to stabilize. On the other hand, a
very low «a nullifies the exploratory benefit as the policy is not induced with further entropy regularization.
(Wang & Ni| |2020) show that a poorly tuned entropy target can break the value-entropy trade-off, causing
divergence. In discrete-action domains, (Xu et al., 2021al) observed SAC training to be highly unstable with
rapid shifts in the policy’s entropy when no constraint is placed on policy updates. They conjecture that
the lack of a trust-region or KL constraint in SAC allows the policy to change too abruptly, causing the
critic’s target values to keep moving (since the target includes an entropy term that changes with the policy).
This leads to oscillation and learning instability. Indeed, recent variants for discrete SAC add constraints or
schedule the entropy coefficient to mitigate these issues (Wang & Ni, |2020; Xu et al., |2021a; |Wei et al., 2025)).
Furthermore, SAC’s use of “double Q-learning” (two Q-networks with minima) to control overestimation can
introduce biases in value estimation as some studies report systematic underestimation that slows learning
(Ciosek & Whiteson, 2019; [Pan et al., [2020). Other work has directly questioned the necessity of the entropy
reward bonus and found that removing it helps, but without providing an explanation (Yu et al. [2022b)).
Without additional regularization, the entropy bonus or choice of Q-network can cause SAC to underperform
or even diverge in complex environments with deceptive rewards or very sparse rewards where uncontrolled
entropy maximization leads to aimless exploration.

This article extends these existing findings by identifying the entropy bonus term in the reward formulation
as the theoretical and practical problem, which helps explaining these observations. By explicitly isolating
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the entropy term, we highlight a key mechanism through which SAC’s stability can break down, offering a
clearer direction for designing alternative regularization strategies.

4 Theoretical Analysis of SAC

Here, we provide a theoretical analysis of SAC under the linear program regime and formulate the maximum
entropy objective as a constrained optimization problem. We then go into detail on how the practical
implementation of applying an entropy reward bonus to the reward function itself breaks optimality on a
theoretical level and show how it breaks in practice as well with an illustrative example.

4.1 SAC as Linear Program

We next reinterpret Soft Actor—Critic (SAC) within the linear—programming framework. The crucial dis-
tinction is that SAC adds the entropy bonus to the Bellman target, thereby coupling the temperature
parameter o with both the critic and the actor updates. Concretely, the SAC critic is trained towards

Qsac(s,a) =7+ YEqr o, (151 [Qa (s, a") — alogma(a | §')] ,

which already contains the Lagrange multiplier « that also appears later in the actor projection of the critic.
To illuminate the underlying optimisation, recall the Lagrangian employed by SAC when the entropy is
treated as the constraint

L= Zuﬂ m(a | s) Ra+a< Zuﬂ m(a | s)logm(als)— Hmin)
—ZO s (11x(s") ) =L pele)wla | )P ) - (1—Zu7r w(a] ) |

where the Lagrangian multipliers for the state flows are denoted by the parameter vector @ of our value func-
tion, and ;s is the state representation or feature function. Differentiating w.r.t. the discounted occupancy
measure yields

oL

s a(logm(a|s)+1) +V(s) = yEynpaa[V(s')] = 5.

In a strict actor—critic decomposition, the —alog 7w term belongs exclusively to the actor as it encodes the
relative-entropy constraint that moderates policy updates (Peters et al., |2010; |Pacchiano et al., |2021a).
SAC, however, introduces the same term again in the critic target, coining the term soft-value and using a
soft-Bellman operator, penalizing the critic in addition to the actor regularization through the constraint.
However, duplicating the entropy penalty in both the actor and critic overemphasises the constraint, provides
no additional regularisation benefit, and increases the duality gap relative to the primal optimum. The
redundancy is amplifying the entropy signal inside the value estimate, it can bias policy evaluation and
ultimately hinder convergence in sparse-reward settings.

4.2 Loss of Convexity and Duality Gap

We now demonstrate that adding the entropy bonus to the reward breaks the convex structure required
for the standard KL-regularised analysis and can drive SAC arbitrarily far away from optimality. Let the
shaped reward be 7#(s,a) = r(s,a) —alog 7(a | s) with temperature a > 0, and 754¢ denotes any fixed-point
policy of SAC whose critic target is based on 7. We claim that

3 MDP M, Va >0 : Iu(m2C) < Jp — e,

where ¢ equals the reward dynamic range [maxr — minr|, and Jj; denotes the expected performance of a
policy in MDP M. Thus, unless a = 0, the entropy term can leave the learned policy arbitrarily sub-optimal.

To highlight the source of the sub-optimality we fix a stationary policy 7 and write its y-discounted occupancy
measure as s, = (1 — 7)Y 507 Prals: = s,a¢ = a] with ps = >, pts,q. Because w(a | s) = s qafts, the
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State Action Next state / reward
80 ao s, R>0
S0 a; (1<i<N) s0, 0
st - sT, 0

Table 1: A two-state MDP with one action to transition to the terminal state and N — 1 actions to stay in
the same state, avoiding termination of the MDP.

cumulative entropy bonus along a trajectory equals > _ . fts.a [— log 7(a | s)} Maximising the shaped return

therefore becomes "
max Z Ts,a ls,a — O Z Hs,a log = (4)
n=z0 s,a s,a Ks

By contrast, the primal objective for KL-regularised RL is

1%
max E Ts,a ,U/s,a -« E /J/s,a IOg
n=>0

s,a s,a

s,a
)
ds,a

where the reference measure ¢, , renders the regulariser separable across state-action pairs. In that convex
setting the duality proof yields J* — J(7,) < a(1 — )~ !log|A| (Pacchiano et al. [2021al).

The denominator p, in Eq. couples all actions within each state, giving

—Q Z fs,a 108 fis,a + Z ps log ps -

s,a s

Since the mixed second-order derivatives 0%[puslog pis|/(Ops,aOpsp) = o/ps for a # b are non-zero, the
objective is neither linear nor separable convex in p. Consequently, the convex-duality gap bound that
underpins near-optimality for KIL-regularised methods no longer applies for SAC. Inserting the entropy
term into the reward destroys both separability and convexity, explaining the potentially unbounded sub-
optimality of SAC and motivating the corrections developed.

4.3 Practical Implications

We now show an example, where a soft optimal policy may never find the true optimum of the original
MDP, validating our claim and theoretic findings. Consider a finite MDP as the one in Table [I, with
discount 0 < v < 1 and two states. Start by introducing two possible polices.

7T-exit(as\—| SO) = 17 7Tloop(ai| 30) = % (1 << N) .

We now present an example in which a soft optimal policy fails to recover the true optimum of the original
MDP, thereby supporting our claim and theoretical results. We consider the finite MDP in Table [} with
discount factor 0 < v < 1 and two states. We introduce two candidate policies

Texit (Gx | S0) =1, and  meop(a;| so) = % (1<i<N).

In the primal problem we can easily deduce that the true returns of each policy are as follows J(mexit) =
R, J(moop) = 0. The policy 7exiy immediately goes into the rewarding state and is optimal, whereas the
looping policy never receives reward. If we introduce the shaped reward function with entropy bonus we
observe the contrary. While the agent remains in sy under o0, it collects per-step entropy log IV as reward.
We observe that the collected reward now becomes

alog N

J(X(ﬂ-exit) - R + OélOg N, and Ja(ﬂ-loop) = 1 — .

The inequality lets us compute the required N to make the looping policy superior with

N > eXp(R(l - ’y)/(ory)) .
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Comparing both stratgies leads to Jo(7oop) > Ja(Texit), SO every soft-optimal policy puts its mass on the
actions choosing the zero-reward loop, yielding J(73AC) = 0 in the primal problem. The performance gap is
therefore J* — J (ﬂ'EAC) = R = ¢, independent of «. Folding the entropy bonus into the reward does shift the
critic target and it turns the primal optimization problem into a non-separable and thus non-convex linear
program. The entropy bonus can thus drive the learned policy arbitrarily far from optimality and lead to
degenerate solutions. Recovering an O(«) gap requires treating the KL /entropy term outside the reward or
annealing a—0.

Integrating entropy in the critic, as done, for example, in SAC, leads to a loss of theoretical near-optimality
guarantees and can result in policies with unintended behavior.

We note that especially in sparse reward environments with small R over long periods of timesteps this
condition is likely to be fulfilled, identifying a systematic weak spot and failure mode of SAC. Our algorithm
fixes this by adhering to the original linear program and minimizes the near-optimality gap by using annealing
on the target KL.

5 Kullback Leibler Regularized Actor Critic

We derive the general KL-regularized actor-critic algorithm and show that it retains near-optimality. We
show that entropy regularization is a special case of our general KL-regularization. In the end, we formalize
an easily applicable annealing scheme that generalizes across both continuous and discrete environments,
having interpretable hyperparameters, and introduce a replacement for the entropy bonus with a uniform
bias as a hyperparameter.

5.1 Constrained-Optimisation Derivation

We start from the ~v-discounted control problem defined in Eq.. We then introduce the state-value
multipliers v € RIS!| a scalar normaliser A € R as Lagrangian multiplier and the temperature a > 0 for the
KL in the lagrangian of the problem

L(p,v,a,\) = Zr(s, a)u(s,a) — O‘(Z u(s,a)log m - 6)

= 2D lss0) 3T Pl s o) = (=) = (D ulsa) 1)

Since for fixed (v, A\, &) the Lagrangian in Eq. is strictly concave in the occupancy measure p, the inner
maximization over p is characterized by the Karush-Kuhn—Tucker stationarity condition 9£/0u = 0. Solving
this first-order condition yields the Gibbs-form optimizer. We recover the actor and critic and derive their
respective losses. First, we need to take the partial derivative with respect to the occupancy measure. Setting
OL/0p = 0 gives the Gibbs form

w(s,a) = q(s,a) exp(of1 [A,(s,a) — A]) . Ay(s,a) =7r(s,a) + YEgv(s") — v(s). (6)

The resulting p* induces the actor through its conditional action distribution, and substituting p* back into
Eq. together with the normalization constraint Es’a 1(s,a) =1 collapses the primal to the smooth convex
dua

s,a

(5)

Jp(v) = (1 —~)Esupv(s) + élong(s,a) exp(ad,(s,a)) . (7)

We define the Q function as the critic and the policy as a softmax, naturally spawning from the softmax
interpretation of the critic given through the general KL constraint. This step has been proposed before (Pe-
ters et al |2010), but we emphasize that, unlike previous work, we keep the constraint to a fixed distribution
instead of the last policy. For any v, define the critic

Qu(s,a) =r(s,a) + YEgv(s') ,
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and recover the actor by the Boltzmann projection

q(s,a) exp(QU(s,a)/a) .
Zq s,b) exp(Qv(s,b)/a)
b

To(a | s) = (8)

The Boltzmann projection makes explicit the dual role of the critic in shaping the policy while ensuring that
the resulting actor remains consistent with the KL-regularized control objective.

5.2 Deriving Surrogate Losses used in Practice

Since we can not obtain the final policy through search methods such as done in (Peters et al.| [2010) as we
parametrize the critic and actor with deep neural networks, we need to employ gradient based optimization,
which is possible due to the smooth convex dual structure. We derive the losses of the actor and critic and
start with the Bellman error. We recall the dual objective of the general KL-regularisation written in terms
of the network parameters 6 and the lagrangian multiplier a > 0:

g(0,a) = alog Zexp(ég(s,a)/a) —aKLpin , dg(s,a) =r(s,a) + yEgVy(s') — Qq(s,a) . 9)

s,a

The quantity dp is the Bellman residual, which is dg(s,a) = 0 at the optimum for every state—action pair.
The factor
= Zexp(ég(s,a)/a)
s,a

is the partition function that guarantees Es’a 1*(s,a) = 1. For the exponential family this convex conjugate
replacing the primal variables is the log-partition function

g(0,a) = alog Z(0) — aKLpin , (10)

whose gradient is the softmax policy 7, = Vs(alog Z) and whose Hessian is the Fisher information matrix
so alog Z acts as a natural potential for the saddle problem. The exact objective Wq. is smooth and
convex but expensive to minimize with deep networks due to the non-linearity. Therefore, we use a Taylor
expansion of log Z around the optimum Z(§) = >, exp(d/a) and denote by N = |S||.A| the number of
terms and by 6 = N~! 287 ., 0 their empirical mean. When all residuals are small, we expand Z to second
order

Z(é):N[lJrgZ&Jra—QZderO ||5\|3)]7
log Z(8) = 10gN+fZ(5+ {252—(25) }+o 16]1%) . (11)

Because Y62 — N62 = 3°(0 — §)? the quadratic term measures the variance of the residuals. Substituting
Eq. in Eq. and retaining terms up to order 62 gives
52 3.2
9(0,a) = alog N — aKLpin + — 2(59 s,a) 2 N (59(5,@) —59) —I—O(H(SgH /o ) .

s,a

Close to the optimum, the linear term is negligible because > dp — 0. The leading contribution is therefore
the variance-weighted quadratic term. Dropping constants and the cubic remainder yields the practical loss
that drives the critic

Lo(0) = i E(s,a)~w [(69(8, a) — By [691)2] :

where w is the sampling distribution induced by the replay buffer. In practice, the scaling using the lagrangian
multiplier o is omitted. Because the baseline E,,[dg] does not depend on a, omitting it leaves the gradient

10
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Algorithm 1 KL-Regularised Actor—Critic (KLAC) with Target-KL Annealing and Uniform Bias

1: Hyper-params: discount v, learning rates (aq, ax, @), Polyak factor 7, bias 3, exploit probabilities
(Pstarts Pend ), anneal horizon Thynear, half-width » (cont.)

2: Networks: critic Qg, target critic Qz+<—Qy, policy g

3: Initialise temperature aq, replay buffer D, time step t<+0

4: while training do

5: Observe s;

6: Sample action a; ~ mg(- | s¢) Eq.(8)
7 Execute ay, receive (ry, St41), push (8¢, at, 7, S¢41) into D

8: if ready to update then

9: Sample mini-batch {(s;,a;, i, 80)}2, ~D

10: Yi < 1i + B+ v Earn, (15)Qa(s5, a')

11: ,CQ — %Zi(Qg(Shai) _yi)2 Eq.
12: 0+ 06— O[QV@EQ

13: Lo+ a5, DKL(7T¢(' | si) || 40)(1)@26)9((555)/%)) Eq.
14: =P —aVeLly

15: Pt < Pstart + T t (pcnd - pstart)

anneal

16: if discrete action space then

17: M —pilogpe — (1 — p)log( %)

18: else ,

19: o 7 erf‘l(pi/d)’ d=|A|
20: Hi « 2(1+In27) + dlnoy
21: end if

92: Lo =2, (Hmg(- | 1) — HY) Eq. (10

23: pp1 < ap — o Va, Lo

24: 0710+ (1—71)0
25: end if
26: if s;y1 terminal then
27: reset environment
28: end if

29: t+—t+1
30: end while

unchanged, so L reduces in practice to the mean-squared soft Bellman error used in Eq.. Using the
network gy and a replay buffer D we minimize

‘CQ(H) = E(s,a,r,s’)N'D |:(Q9(87 Cl) -r—= VEa’Nwa(»\s’)Q§(8,7 a'/))Q:I . (12)

Given Qg to obtain the actor we solve the convex projection

£2(6) = @ Buvp[Dra ol )| 221 D0l 200 (13

which gives us the loss function that we minimize using stochastic gradient descent.

5.3 Uniform Bias vs Entropy Bonus

In entropy-regularised actor—critic algorithms the critic target is shifted by the stochastic term a?—l(ﬂ( s ))7
a quantity that varies across states and training iterations and whose temperature « is notoriously difficult to
tune. We argue that the empirical gains observed in some environments attributed to this entropy adjustment

11
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can be captured equally well by a constant reward bias, which is far easier to interpret and gives practitioners
an easily adjustable hyperparameter. It represents a fixed preference for exploratory actions, conceptually
similar to epsilon-greedy algorithms, that keep the agent alive irrespective of state and is also known as a
reward shaping method in the intrinsic motivation literature (Singh et al., 2010; |Aubret et al.; 2019). To
our knowledge we are the first to highlight this connection between the success of SAC in some cases and
the intrinsic motivation it actually uses, instead of the misattribution of entropy regularization of the critic.
Concretely, replacing the entropy term in the critic target yields

ye =1+ +7Q§(St+1,at+1), apr1 ~ 7o( | Se41)

so that the critic is updated via the usual squared-error loss L(0) = E[(Qg(s¢,a:) — y:)?]. The constant
[ absorbs the average effect of aH while avoiding its state-dependent fluctuations. Consequently, any
performance gains previously ascribed to entropy shaping can be reinterpreted as arising from this fixed
incentive term in the actor-critic framework.

5.4 Target-KL Annealing

Annealing is usually performed on the temperature parameter itself, adjusting the strength of the entropy
bonus throughout training (Haarnoja et al.l |2018|). Target-entropy annealing, originally introduced for
discrete action spaces (Xu et al 2021al), instead changes the desired entropy level directly. In the discrete
setting the target entropy can be interpreted as the average probability of exploiting the current best action.
For a categorical policy with n actions we place a mass p € (0,1) on the greedy action and spread the
remainder evenly, which yields

Haisc(p,n) = —plogp — (1 —p) log(%) .

We extend this intuition to continuous control by defining an exploitation region &, = {a | |la — pllec < r}
of half-width r around the policy mode p. For the diagonal Gaussian policy used in SAC (Haarnoja et al.
2018) the probability of sampling within &, is p = [erf(r/v/20)]%, where d is the action dimension, which we
invert to obtain the standard deviation

o(p,r.d) = m .
Substituting this into the entropy of a d-dimensional Gaussian,
d
Heont (D, 7, d) = 3 (1+In27)+dno(p,r,d),

gives a closed-form mapping from any desired exploit probability p to a unique target entropy. Annealing
‘H linearly between the values computed from {pstart, Pend } therefore provides an interpretable, architecture-
agnostic schedule that unifies target-entropy annealing across discrete and continuous action modalities while
letting the practitioner specify the exploration—exploitation trade-off in intuitive probabilistic terms.

We derive KLAC, a KL-regularized actor—critic algorithm that generalizes entropy regularization, show
that replacing entropy bonuses with a uniform bias yields a simpler, interpretable alternative, and intro-
duce a probabilistic target-KL annealing scheme that generalizes across action spaces.

As a schedule, we chose a simple linear schedule as it worked well in our experiments, as shown later
on. Further modifications for discrete settings, as done in (Xu et al.l [2021b)), might be beneficial in other
environments. We show details of the complete algorithm KLAC in Algorithm

6 Experiments
We will discuss experiments that highlight shortcomings of SAC, as described in the theory part, in practical

applications. In addition, the experiments demonstrate the individual contributions of the concepts intro-
duced in KLAC and its general performance. In the following, we will describe the implementation of SAC

12
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Table 2: Index of the evaluated algorithms.

Label Key idea
SAC Actor regularized, entropy bias in critic, no annealing;
KLAC Actor regularized with bias and annealing;

KLAC_, Actor regularized no annealing with bias;
KLAC_,  Actor regularized with annealing no bias;
KLAC_,, Actor regularized no annealing no bias

and KLAC and three ablations of KLAC that we will evaluate. Experiments are performed on the MuJoCo
continuous control (Todorov et al.,2012|) and MinAtar discrete action (Young & Tian| 2019) benchmarks.

We analyse five variants that differ only in their form of regularisation and reward bonus while sharing an
identical implementation and hyperparameters. We compare our models to the original Soft Actor—Critic
(SAC) with automatic temperature tuning (Haarnoja et al., 2018)). Our default algorithm is KLAC, which
uses the KL with uniform prior and bias term, and linearly decays the target KL. KLAC_,; removes the
bias and annealing to assess the difference between using the entropy only in the actor and using it in both
actor and critic as in SAC. In addition, we evaluate the individual impact of both the bias (KLAC_,) and
the annealing (KLAC_;) by removing the respective other component. Table [2[ shows the different variants.

6.1 Evaluation Criteria and Implementation Details

We use the implementation of cleanrﬂ (Huang et al.| [2022) for SAC and as basis for KLAC and provide our
own code for referenceﬂ All hyperparameters are taken from the cleanr]l implementation, except the replay
buffer being adjusted to contain only 100000 steps in memory. In the discrete environments the agent employs
a categorical policy whose logits are produced by a lightweight convolutional encoder (one 3x3 kernel with
16 feature maps followed by flattening, a 128—unit fully connected layer and a linear output head), while the
twin soft-Q critics share the same encoder and replace the final head by value outputs, training uses Adam
with decoupled learning rates of 3x10~* for the actor and 3x10~ for the critics, batches of 64 samples are
drawn every four environment steps after a 20 000-step warm-up, target networks are updated every 8 000
steps, the base temperature « is learned online by gradient ascent on log a to interpolate linearly from the
exploitation target 0.50 to 0.80. Continuous-control experiments on MuJoCo use the standard twin MLP
critics and a Tanh-Gaussian policy, each network comprising two 256—unit hidden layers, a replay buffer
of 108 transitions, batches of 256, a 5000-step warm-up, delayed policy updates every second critic step,
and automatic entropy tuning with the target moving linearly. Continuous-control experiments are run on
eight MuJoCo tasks ﬁ Discrete-action results are collected on the five-game MinAtar suite Breakout-v1,
Asterix-v1, Seaquest-vl, Freeway-v1, and Spacelnvaders-vl. Agents interact with the environment for one
million steps on MuJoCo and three million steps on MinAtar. As aggregate measure we report the results
with a mean, inter-quartile mean (IQM), and median plot (Agarwal et al.,|2021)). The IQM plot summarises
learning curves by computing the inter-quartile mean of each algorithm’s returns for the 10 best episodes
overall. By discarding the top 25% and bottom 25% of scores before averaging, this robust aggregate retains
the statistical efficiency of a mean while mitigating sensitivity to outliers and failed runs. The shaded regions
in the plot show stratified-bootstrap 95% confidence intervals. The additional mean and median emphasize
the statistical robustness of our results.

6.2 Actor Regularization is the Main Reason for good Performance of Adapted Actor-Critic Methods

In the first set of experiments we expect SAC to work well in environments with large and dense rewards.
The MuJoCo test suite is a well-known benchmark, where SAC originally achieved superior performance
and remains a state-of-the-art algorithm. In these well-performing environments, we investigate whether the

Lhttps://github.com/vwxyzjn/cleanrl/tree/v1.0.0

2Link to repository in camera ready version

3Mujoco Environments: Hopper-v5, Walker2d-v5, HalfCheetah-v5, Ant-v5, Humanoid-v5, Swimmer-v5, InvertedPendulum-
v5, Reacher-vH

13
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Mean IQM Median
SAC [ | [ -
KLAC [ [ [
KLAC-p | | |
KLAC_, [ ] [ [
KLAC_ap [ [ .
0.9 1.0 1.1 09 1.0 1.1 09 1.0 1.1

SAC normalised Scores (£95 % bootstrap CI)

Figure 1: Mean, Inter-Quartile Mean (IQM), and Median for the algorithms SAC, KLAC, KLAC_, (without
bias), KLAC_, (without annealing), and KLAC_,;, (without bias and annealing) on 8 MuJoCo tasks. The
scores for all algorithms are normalized using the SAC measure in the respective column. Confidence Intervals
depict the 95% interval. The data is gathered by taking the 10 best episodes overall in each of the 20 runs
of each algorithm during training until one million environment steps. In dense-reward MuJoCo tasks,
all variants perform comparably. Thus, the entropy bonus in the critic is irrelevant, and actor
regularization alone drives performance.

entropy bonus in the critic is the critical component as claimed (Haarnoja et al.l 2018). Aggregate results for
the continuous control environments are presented in Figure[l) computed from 20 independent training runs
with different random seeds per environment for each algorithm variant. In terms of the best performance,
measured by SAC-normalized scores, no method demonstrates a consistent superiority across environments.
Furthermore, the close alignment of the mean, median, and interquartile mean (IQM) suggests that the
performance distributions are relatively well-behaved, with minimal influence from extreme outliers. This
consistency across summary statistics supports the robustness and reliability of the reported results. While
KLAC does not provide a significant improvement over SAC, this is actually in line with our predictions.
Dense reward environments with a reward scale that far eclipses the entropy bonus aH (), like in MuJoCo,
reinforce with similar results regardless of the entropy bonus, making it irrelevant. As SAC performs well in
these environments, just like all KLAC variants, we show that the regularization of the actor is the driving
force of the successful learning behavior.

The average exploration for SAC and KLAC is actually the same for methods with the same target entropy
or target KL equivalent (see Appendix), further highlighting that the entropy bonus inside the critic does
not influence entropy meaningfully in practice as results in rewards and entropy do not differ. Further, while
our annealing adds more exploration by increasing variance, this does not yield higher rewards, as it is not
needed in these dense reward environments. On the contrary, when investigating the entropy values and
setting the target KL to be very high, decreasing the variance of the Gaussians, the resulting entropy values
actually match the heuristic ones by SAC. The very low target entropy values of SAC show that SAC never
does rich exploration (Figure |§| Appendix) and instead successfully exploits the dense reward signal even
during training. The independence of the algorithm performance to an entropy signal and the heuristically
low target entropy of SAC further highlight that it is not the entropy in the critic that drives improvement,
but instead the regularization of the actor.

6.3 KLAC Prevents Critic Instability in Sparse Environments

In the next set of experiments we show that, while SAC performs competitively in many environments, its
formulation allows the learned policy to drift arbitrarily far from the optimal solution. This tendency is
particularly detrimental in environments with sparse rewards, small reward scales, or long horizons, where
inaccurate value estimates can compound over time. In Figure [2| we observe this behaviour in the Asterix
and Breakout task from MinAtar, where the average Q-values under SAC grow rapidly and far beyond the
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Figure 2: Episodic return (top row) and Q values (bottom row) for the algorithms SAC, KLAC, KLAC_,
(without bias), KLAC_, (without annealing), and KLAC_,; (without bias and annealing) on 2 MinAtar
tasks. The curves represent the smoothed mean at each time step across 20 random seeds with three million
training steps. The shaded areas represent the 95% CI. In sparse-reward MinAtar tasks, SAC suffers
from uncontrolled Q-value growth and unstable performance, while KLAC stabilizes critics
and achieves higher returns.

scale justified by the observed rewards. This uncontrolled growth is accompanied by unstable policy updates
and a degradation in asymptotic performance. Removing the entropy bonus in KLAC mitigates this effect,
with the sole exception of Asterix, where we can see that an added bias to the reward obtains the same effect
as the entropy. KLAC, using the bias and annealing, surpasses SAC in final returns, but we can see using
KLAC_, that the bias plays an important role in Asterix. The additional optimism induced by entropy
regularization accelerates early learning when dense rewards are present, representing one of the rare cases
where SAC’s bias is initially beneficial.

In environments with long horizons and sparse rewards, such as Seaquest (Figure , SAC’s tendency to
overestimate QQ-values interacts with an implicit stay-alive bias, where the policy learns to prolong episodes
without actively seeking rewards. In Asterix, this bias can occasionally support early learning by preserving
opportunities for reward collection, but in Seaquest, it is harmful. The policy prioritises avoiding termination
rather than discovering the sparse rewarding states, leading to stagnation at near-zero returns. The same
effect can be observed for KLAC_,, as the bias also makes surviving the dominant strategy, showing how the
dual gap can get arbitrarily large from the primal, when one introduces custom terms into the reward function
that do not align with the desired behavior. Moreover, in Seaquest, we observe a divergence between the
critic’s predictions and the actual returns collected. Even when the agent rarely encounters rewarding states,
SAC’s critic inflates value estimates over time (Figure [3), which disrupts the learning signal and prevents
recovery without substantial corrective intervention. Removing the entropy bonus in KLAC prevents this
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Figure 3: Episodic return (left) and Q values (right) for the algorithms SAC, KLAC, KLAC_;, (without
bias), KLAC_, (without annealing), and KLAC_,; (without bias and annealing) on Seaquest. The curves
represent the smoothed mean at each time step across 20 random seeds with three million training steps. The
shaded areas represent the 95% CI. In long-horizon sparse tasks like Seaquest, SAC overestimates
Q-values and stalls. KLAC prevents this divergence and yields consistently better learning.

unchecked growth, restores correlation between Q-values and observed rewards, and consistently achieves
better returns.

Annealing the target KL coefficient further improves final performance drastically on every discrete task
while keeping variance low on every task. The progressive reduction of the target KL drives the policy
towards lower entropy, thereby tightening the primal-dual gap and allowing the actor to converge to a more
accurate estimate of the primal objective. These results are in line with our theoretical predictions and show
that it is the reduction in entropy over time in the action distribution of the actor that is important to
increase performance steadily over time. We note that simply starting with a very low KL target results in
insufficient exploration, prohibiting the discovery of good policies consistently. Notably, KLAC is training
faster on tasks and is not saturating at a premature convergence point (see Appendix). This leads us to
the conclusion that annealing of the target KL, that is, relaxing the constraint over time by allowing larger
deviations from the reference distribution instead of annealing the temperature parameter directly, is a
crucial and necessary method to further enhance the performance of regularized policy search methods.

The aggregated performance profiles |Agarwal et al| (2021) in Figure 4| confirm these environment-specific
observations. Across all MinAtar games, KLAC outperforms SAC in all runs. In several tasks, KLAC achieves
final returns exceeding SAC by a factor of up to 35, while avoiding the variance and premature saturation
observed in the baseline. These results are consistent with our theoretical analysis. SAC’s entropy-driven
optimism can lead to severe overestimation in sparse or long-horizon tasks, producing ineffective exploration
and degraded learning.

Our experiments confirm that actor regularization is the key factor behind strong performance in adapted
actor—critic methods, not the entropy bonus in SAC’s critic. KLLAC prevents Q-value divergence in sparse
tasks and, through uniform bias and target-KL annealing, achieves more stable and substantially higher
returns across environments.

By replacing the entropy term with a tunable optimism bias and progressively annealing the target KL coef-
ficient, KLAC produces stable value estimates, avoids pathological Q-value growth, and delivers consistently
superior final performance without sacrificing early training speed.
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Figure 4: Performance profile plot for the algorithms SAC, KLAC, KLAC_; (without bias), KLAC_, (with-
out annealing), and KLAC_,; (without bias and annealing). The plots are aggregated per environment over
20 runs each for each algorithm. The curve shows the proportion of runs on which each score falls within the
multiplicative SAC mean performance of the respective environment. Across all MinAtar environments,
KLAC consistently dominates SAC, avoiding instability and achieving up to 35 times higher
returns.

7 Conclusion and Future Work

This work revisits maximum entropy reinforcement learning from first principles and reveals that the design
of SAC, despite its empirical success, violates the theoretical foundations of regularized policy optimization.
By adding entropy to the reward, SAC introduces a structural error that breaks convexity, prevents the
application of standard duality guarantees, and can render the resulting policy arbitrarily suboptimal. We
addressed this flaw by developing KLAC, an algorithm that restores theoretical soundness by regularizing
explicitly through a KL divergence constraint. KLAC removes the entropy bonus from the critic, replaces
it with an interpretable uniform bias, and introduces a target-KL annealing schedule that unifies discrete
and continuous domains. Extensive experiments confirm that this design not only preserves SAC’s empirical
performance in dense-reward tasks but also prevents its instability in sparse environments, yielding stable
and near-optimal solutions. Our findings invite a conceptual shift, rather than embedding entropy directly
into the reward, entropy should be understood as one instance of KL regularization and applied as an
explicit constraint. This reframing separates exploration incentives from value estimation, improves the
interpretability of hyperparameters, and enables annealing schemes that translate naturally into probabilistic
terms of exploitation.

Future work may extend KLLAC in several directions. One promising avenue is its application to safety-critical
domains and offline reinforcement learning, where bounded policy updates and trust regions are essential.
Another direction is the exploration of general f-divergence regularizers within the KLAC framework, which
may allow tailoring exploration strategies to specific environments. Additionally, investigating adaptive or
state-dependent reference distributions could yield more efficient exploration while retaining convexity guar-
antees. Finally, large-scale empirical studies across domains with complex and deceptive reward structures
would further validate KLAC’s robustness and shed light on the practical trade-offs between bias, annealing,
and constraint strength.

By disentangling principled regularization from heuristic reward shaping, KLAC demonstrates that reinforce-
ment learning algorithms can be simultaneously empirically competitive and provably grounded, providing
a foundation for more reliable and interpretable agents.
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A Appendix
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Figure 5: Episodic returns for the algorithms SAC, KLAC, KLAC_;, (without bias), KLAC_, (without
annealing), and KLAC_,; (without bias and annealing) on 5 MinAtar environments. The curves represent
the mean at each time step for 20 runs with three million training steps. The shaded areas represent the
standard deviation.
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Figure 6: Mean entropy observed for the algorithms SAC, KLAC, KLAC_; (without bias), KLAC_, (without
annealing), and KLAC_,;, (without bias and annealing) on 8 MuJoCo environments. Each training step
averaged over 20 runs in the Mujoco environments.
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