
Parallel Bayesian Optimization of Multiple Noisy
Objectives with Expected Hypervolume Improvement

Samuel Daulton
Facebook, University of Oxford

sdaulton@fb.com

Maximilian Balandat
Facebook

balandat@fb.com

Eytan Bakshy
Facebook

ebakshy@fb.com

Abstract

Optimizing multiple competing black-box objectives is a challenging problem in
many fields, including science, engineering, and machine learning. Multi-objective
Bayesian optimization (MOBO) is a sample-efficient approach for identifying
the optimal trade-offs between the objectives. However, many existing methods
perform poorly when the observations are corrupted by noise. We propose a novel
acquisition function, NEHVI, that overcomes this important practical limitation by
applying a Bayesian treatment to the popular expected hypervolume improvement
(EHVI) criterion and integrating over this uncertainty in the Pareto frontier. We
argue that, even in the noiseless setting, generating multiple candidates in parallel
is an incarnation of EHVI with uncertainty in the Pareto frontier and therefore
can be addressed using the same underlying technique. Through this lens, we
derive a natural parallel variant, qNEHVI, that reduces computational complexity
of parallel EHVI from exponential to polynomial with respect to the batch size.
qNEHVI is one-step Bayes-optimal for hypervolume maximization in both noisy
and noiseless environments, and we show that it can be optimized effectively
with gradient-based methods via sample average approximation. Empirically, we
demonstrate not only that qNEHVI is substantially more robust to observation
noise than existing MOBO approaches, but also that it achieves state-of-the-art
optimization performance and competitive wall-times in large-batch environments.

1 Introduction
Black-box optimization problems that involve multiple competing noisy objectives are ubiquitous
in science and engineering. For example, a real-time communications service may be interested in
tuning the parameters of a control policy to adapt video quality in real time in order to maximize
video quality and minimize latency [10, 17]. In robotics, scientists may seek to design hardware
components that maximize locomotive speed and minimize energy expended [8, 38]. In agriculture,
development agencies may seek to balance crop yield and environmental impact [28]. For such
multi-objective optimization (MOO) problems, there typically is no single solution that is best with
respect to all objectives. Rather, the goal is to identify the Pareto frontier: a set of optimal trade-offs
such that improving one objective means deteriorating another. In many cases, the objectives are
expensive to evaluate. For instance, randomized trials used in agriculture and the internet industry
may take weeks or months to conduct and incur opportunity costs, and manufacturing and testing
hardware is both costly and time-consuming. Therefore, it is imperative to be able to identify good
trade-offs with as few objective evaluations as possible.

Bayesian optimization (BO), a method for efficient global black-box optimization, is often used to
tackle such problems. BO employs a probabilistic surrogate model in conjunction with an acquisition
function to navigate the trade-off between exploration (evaluating designs with high uncertainty)
and exploitation (evaluating designs that are believed to be optimal). Although a significant number
of works have explored multi-objective Bayesian optimization (MOBO), most available methods
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[3, 39, 51, 60] do not take into account the fact that, in practice, observations are often subject to
noise. For example, results of an A/B test are highly variable due to heterogeneity in the underlying
user population and other factors. Agricultural trials are affected by the stochastic nature of plant
growth and environmental factors such as soil composition or wind currents. In robotics, devices are
subject to manufacturing tolerances, and observations of quantities such as locomotive speed and
efficiency may be corrupted by measurement error from noisy sensors and environmental factors
such as temperature or surface friction. While previous work has shown that a principled treatment of
noisy observations can significantly improve optimization performance in the single-objective case
[24, 37], this issue is understudied in the multi-objective setting. Furthermore, many applications in
which evaluations take a long time require evaluating large batches of candidates in parallel in order
to achieve reasonable throughput. For example, when firms optimize systems via A/B tests, it may
take several weeks to test any particular configuration. Because of this, large batches of candidate
policies are tested simultaneously [36]. In biochemistry and materials design, dozens of tests can
be conducted parallel on a single microplate [63]. Even in sophisticated high throughput chemistry
settings, these batches may take several hours or days to set up and evaluate [42]. Most existing
MOBO methods, however, are either designed for purely sequential optimization [3, 51] or do not
scale well to large batch sizes [11].

Contributions: In this work, we propose a novel MOBO algorithm, based on expected hypervolume
improvement (EHVI), that scales to highly parallel evaluations of noisy objectives. Our approach is
made possible by a general-purpose, differentiable, cached box decomposition (CBD) implementation
that dramatically speeds up critical computations needed to account for uncertainty introduced by
noisy observations and generate new candidate points for highly parallel batch or asynchronous
evaluation. In particular, our CBD-based approach solves the fundamental problem of scaling parallel
EHVI-based methods to large batch sizes, reducing time and space complexity from exponential to
polynomial. Our proposed algorithm, noisy expected hypervolume improvement (NEHVI), is the one-
step Bayes-optimal policy for hypervolume improvement and provides state-of-the-art performance
across a variety of benchmarks. To our knowledge, our work provides the most extensive evaluation
of noisy parallel MOBO to date. A high-quality implementation of qNEHVI, as well as many of the
baselines considered here, will be made available as open-source software upon publication.

2 Preliminaries

Our goal is to find the set of optimal designs x over a bounded set X ⊂ Rd that maximize one or
more objectives f(x) ∈ RM , with no known analytical expression nor gradient information of f .

Multi-Objective Optimization (MOO) aims to identify the set of Pareto optimal objective trade-
offs. We say a solution f(x) =

[
f (1)(x), ..., f (M)(x)

]
dominates another solution f(x) � f(x′) if

f (m)(x) ≥ f (m)(x′) for m = 1, ...,M and ∃m ∈ {1, ...,M} s.t. f (m)(x) > f (m)(x′). We define
the Pareto frontier as P∗ = {f(x) : x ∈ X , @ x′ ∈ X s.t. f(x′) � f(x)}, and denote the set of
Pareto optimal designs as X ∗ = {x : f(x) ∈ P∗}. Since the Pareto frontier (PF) is often an infinite
set of points, MOO algorithms usually aim to identify a finite approximate PF P . A natural measure
of the quality of a PF is the hypervolume of the region of objective space that is dominated by the PF
and bounded from below by a reference point. Provided with the approximate PF, the decision-maker
can select a particular Pareto optimal trade-off according to their preferences.

Bayesian Optimization (BO) is a sample-efficient optimization method that leverages a probabilistic
surrogate model to make principled decisions to balance exploration and exploitation [19, 50].
Typically, the surrogate is a Gaussian Process (GP), a flexible, non-parametric model known for its
well-calibrated predictive uncertainty [47]. To decide which points to evaluate next, BO employs
an acquisition function α(·) that specifies the value of evaluating a set of new points x based on
the surrogate’s predictive distribution at . While evaluating the true black-box function f is time-
consuming or costly, evaluating the surrogate is cheap and relatively fast; therefore, numerical
optimization can be used to find the maximizer of the acquisition function x∗ = arg maxx∈X α(x)
to evaluate next on the black-box function. BO sequentially selects new points to evaluate and updates
the model to incorporate the new observations.

Evolutionary algorithms (EAs) such as NSGA-II [12] are a popular choice for solving MOO problems
(see Zitzler et al. [67] for a review of various other approaches). However, EAs generally suffer from
high sample complexity, rendering them infeasible for optimizing expensive-to-evaluate black-box
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functions. Multi-objective Bayesian optimization (MOBO), which combines a Bayesian surrogate
with an acquisition function designed for MOO, provides a much more sample-efficient alternative.

3 Related Work

Methods based on hypervolume improvement (HVI) seek to expand the volume of the objective space
dominated by the Pareto frontier. Expected hypervolume improvement (EHVI) [16] is a natural
extension of the popular expected improvement (EI) [29] acquisition function to the MOO setting.
Recent work has led to efficient computational paradigms using box decomposition algorithms [59]
and practical enhancements such as support for parallel candidate generation and gradient-based
acquisition optimization [11, 58]. However, EHVI still suffers from some limitations, including (i)
the assumption that observations are noise-free, and (ii) the exponential scaling of its batch variant,
qEHVI, in the batch size q, which precludes large-batch optimization. DGEMO [39] is a recent
method for parallel MOBO that greedily maximizes HVI while balancing the diversity of the design
points being sampled. Although DGEMO scales well to large batch sizes, it does not account for
noisy observations. TSEMO [5] is a Thompson sampling (TS) heuristic that can acquire batches of
points by optimizing a random fourier feature (RFF) [46] approximation of a GP surrogate using
NSGA-II and selecting a subset of points from the EA’s population to sequentially greedily maximize
HVI. This heuristic approach for maximizing HVI currently has no theoretical guarantees and relies
on zeroth-order optimization methods, which tend to be slower and exhibit worse optimization
performance than gradient-based approaches.

Entropy-based methods such as PESMO [25], MESMO [3], and PFES [51] are an alternative to
EHVI. Of these three methods, PESMO is the only one that accounts for observation noise. However,
PESMO involves intractable entropy computations and therefore relies on complex approximations,
as well as challenging and time-consuming numerical optimization procedures [25]. Garrido-Merchán
& Hernández-Lobato [21] recently proposed an extension to PESMO that supports parallel candidate
generation. However, the authors of this work provide limited evaluation and have not provided code
to reproduce their results.1

MOO can also be cast into a single-objective problem by applying a random scalarization of the
objectives. ParEGO maximizes the expected improvement using random augmented Chebyshev
scalarizations [32]. MOEA/D-EGO [64] extends ParEGO to the batch setting using multiple random
scalarizations and the genetic algorithm MOEA/D [65] to optimize these scalarizations in parallel.
Recently, qParEGO, another batch variant of ParEGO was proposed that uses compositional Monte
Carlo objectives and sequential greedy candidate selection [11]. Additionally, the authors proposed
a noisy variant, qNParEGO, but the empirical evaluation of that variant was limited. TS-TCH [45]
combines random Chebyshev scalarizations with Thompson sampling [54], which is naturally robust
to noise when the objective is scalarized. Golovin & Zhang [23] propose to use a hypervolume
scalarization with the property that the expected value of the scalarization over a specific distribution
of weights is equivalent to the hypervolume indicator. The authors propose a upper confidence bound
algorithm using randomly sampled weights, but provide a very limited empirical evaluation.

Many prior attempts by the simulation community to handle MOO with noisy observations found
that accounting for the noise did not improve optimization performance: Horn et al. [26] suggest
that the best approach is to ignore noise, and Koch et al. [33] concluded that further research was
needed to determine if modeling techniques such as re-interpolation could improve BO performance
with noisy observations. In contrast, we find that accounting for noise does substantially improve
performance in noisy settings.

Lastly, previous works have considered methods for quantifying and monitoring uncertainty in the
Pareto frontiers during the optimization [4, 7]. In contrast, we provide a solution to performing
MOBO in noisy settings, rather than purely reasoning about the uncertainty in the Pareto frontier.

4 Background on Expected Hypervolume Improvement

In this section, we review hypervolume, hypervolume improvement, and expected hypervolume
improvement as well as efficient methods for computing these metrics using box decompositions.

1We contacted the authors twice asking for code to reproduce their results, but they graciously declined.
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Definition 1. The hypervolume indicator (HV) of a finite approximate Pareto frontier P is the
M -dimensional Lebesgue measure λM of the space dominated by P and bounded from below by a
reference point. r ∈ RM : HV(P|r) = λM

(⋃
v∈P [r,v]

)
, where [r,v] denotes the hyper-rectangle

bounded by vertices r and v.

As in previous work, we assume that the reference point r is known and specified by the decision
maker [58].

Definition 2. The hypervolume improvement (HVI) of a set of pointsP ′ w.r.t. an existing approximate
Pareto frontier P and reference point r is defined as2 HVI(P ′|P, r) = HV(P ∪ P ′|r)− HV(P|r).

Computing HV requires calculating the volume of a typically non-rectangular polytope and is known
to have time complexity that is super-polynomial in the number of objectives [59]. An efficient
approach for computing HV is to (i) decompose the region that is dominated by the Pareto frontier
P and bounded from below by the reference point r into disjoint axis-aligned hyperrectangles
[34], (ii) compute the volume of each hyperrectangle in the decomposition, and (iii) sum over all
hyperrectangles. So-called box decomposition algorithms have also been applied to partition the
region that is not dominated by the Pareto frontier P , which can be used to compute the HVI from a
set of new points [15, 59]. See Appendix B for further details.

Expected Hypervolume Improvement: Since function values at unobserved points are unknown in
black-box optimization, so is the HVI of an out-of-sample point. However, in BO the probabilistic
surrogate model provides a posterior distribution p(f(x)|D) over the function values for each x,
which can be used to compute the expected hypervolume improvement (EHVI) acquisition function:
αEHVI(x|P) = E

[
HVI(f(x)|P)

]
. Although αEHVI can be expressed analytically when (i) the

objectives are assumed to be conditionally independent given x and (ii) the candidates are generated
and evaluated sequentially [58], Monte Carlo (MC) integration is commonly used since it does not
require either assumption [16]. The more general parallel variant using MC integration is given by

αqEHVI(Xcand|P) ≈ α̂qEHVI(Xcand|P) =
1

N

N∑
t=1

HVI(f̃t(Xcand)|P), (1)

where f̃t ∼ p(f |D) for t = 1, ..., N and Xcand = {xi}qi=1 [11]. The same box decomposition
algorithms used to compute HVI can be used to compute EHVI (either analytic or via MC) using
piece-wise integration. EHVI computation is agnostic to the choice of box decomposition algorithm
(and can also use approximate methods [9]). Similar to EI in the single-objective case, EHVI is
a one-step Bayes-optimal algorithm for maximizing hypervolume in the MOO setting under the
following assumptions: (i) only a single design will be generated and evaluated, (ii) the observations
are noise-free, (iii) the final approximate Pareto frontier (and final design that will be deployed) will
be drawn from the set of observed points [19].

5 Expected Hypervolume Improvement with Noisy Observations

We consider the case that frequently arises in practice where we only receive noisy observations
yi = f(xi) + εi, εi ∼ N (0,Σi), where Σi is the noise covariance. In this setting, EHVI is no
longer (one-step) Bayes-optimal. This is because we can no longer compute the true Pareto frontier
Pn = {f(x) | x ∈ Xn, @ x′ ∈ Xn s.t. f(x′) � f(x)} over the previously evaluated points Xn =
{xi}ni=1. Simply using the observed Pareto frontier, Yn = {y | y ∈ Yn, @ y′ ∈ Yn s.t. y′ � y, y}
where Yn = {yi}ni=1, can have strong detrimental effects on optimization performance. This is
illustrated in Figure 1, which shows how EHVI is misled by noisy observations that appear to be
Pareto optimal. EHVI proceeds to spend its evaluation budget trying to optimize noise, resulting in a
clumped Pareto frontier that lacks diversity. Although the posterior mean could serve as a "plug-in"
estimate of the true function values at the observed points and provide some regularization [61], we
find that this heuristic also leads to clustered Pareto frontiers (EHVI-PM in Fig. 1). Similar patterns
emerge with DGEMO (which does not account for noise), and other baselines that utilize the posterior
mean rather than the observed values when computing hypervolume improvement (see Appendix H).
To our knowledge, all previous work on EHVI assumes that observations are noiseless [16, 58] or
imputes the unknown true function values with the posterior mean.

2For brevity we omit the reference point r when referring to HVI.
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Figure 1: An illustration of the effect of noisy observations on
the true noiseless Pareto frontiers identified by NEHVI (our pro-
posed algorithm), EHVI, and EHVI-PM, which uses the modeled
posterior mean as point estimate of the true in-sample function
values. All algorithms are tested on a BraninCurrin synthetic prob-
lem, where observations are corrupted with zero-mean, additive
Gaussian noise with a standard deviation of 5% of the range of
respective objective. All methods use sequential (q = 1) optimiza-
tion. See Appendix G for details.

5.1 A Bayes-optimal algorithm for hypervolume maximization in noisy environments

In contrast with EHVI(-PM), we instead approach the problem of hypervolume maximization under
noisy observations from a Bayesian perspective and derive a novel one-step Bayes-optimal expected
hypervolume improvement criterion that iterates the expectation over the posterior distribution
p(f(Xn)|Dn) of the function values at the previously evaluated points Xn given noisy observa-
tions Dn = {xi,yi, (Σi)}ni=1. Our acquisition function, noisy expected hypervolume improvement
(NEHVI), is defined as

αNEHVI(x) =

∫
αEHVI(x|Pn)p(f |Dn)df (2)

where Pn denotes the Pareto frontier over f(Xn).

By integrating over the uncertainty in the function values at the observed points, NEHVI retains
one-step Bayes-optimality in noisy environments (in noiseless environments, NEHVI is equivalent to
EHVI). Empirically, Figure 1 shows that NEHVI is robust to noise and identifies a well-distributed
Pareto frontier with no signs of clumping, even under very noisy observations.3

The integral in (2) is analytically intractable, but can easily be approximated using MC integration.
Let f̃t ∼ p(f |Dn) for t = 1, ...N be samples from the posterior, and let Pt = {f̃t(x) | x ∈
Xn, f̃t(x) � f̃t(x′) ∀ x′ ∈ Xn} be the Pareto frontier over the previously evaluated points under
the sampled function f̃t. Then, αNEHVI(x) ≈ 1

N

∑N
t=1 αEHVI(x|Pt). Using MC integration, we

can compute the inner expectation in αEHVI simultaneously using samples from the joint posterior
f̃t(Xn,x) ∼ p(f(Xn,x)|Dn) over x and Xn:

α̂NEHVI(x) =
1

N

N∑
t=1

HVI(f̃t(x)|Pt). (3)

See Appendix B for details on computing (3) using box decompositions. Note that this “full-MC”
variant of NEHVI does not require objectives to be modeled independently, and supports multi-task
covariance functions across correlated objectives.

5.2 Parallel Noisy Expected Hypervolume Improvement
Generating and evaluating batches of candidates is imperative to achieving adequate throughput in
many real-world scenarios. qNEHVI can naturally be extended to the parallel (asynchronous or
batch) setting by evaluating HVI with respect to a batch of q points Xcand = {xi}qi=1

αqNEHVI(Xcand) =

∫
αqEHVI(Xcand|Pn)p(f |Dn)df ≈ α̂qNEHVI(Xcand) =

1

N

N∑
t=1

HVI(f̃t(Xcand)|Pt)

(4)

Since optimizing q candidates jointly is a difficult numerical optimization problem over a qd-
dimensional domain, we use a sequential greedy approximation in the parallel setting and solve a
sequence of q simpler optimization problems with d dimensions, which been shown empirically
to improve optimization performance [57]. While selecting candidates according to a “sequential
greedy” policy does not guarantee that the selected batch of candidates is a maximizer of the αqNEHVI,
the submodularity of αqNEHVI allows us to bound the regret of this approximation to be no more than
1
eα
∗
qNEHVI, where α∗qNEHVI = maxXcand∈X αqNEHVI(Xcand) (see Appendix F).
3This noise level is 5x greater than the ones considered by previous works that evaluate noisy MOBO [25].
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6 Efficient Evaluation with Cached Box Decompositions

Although α̂NEHVI(x) in (3) has a concise mathematical form, computing it requires determining the
Pareto frontier Pt under each sample f̃t for t = 1, ..., N and then partitioning the region that is not
dominated by Pt into disjoint hyperrectangles {Skt}

Kt

kt=1. Optimizing the unbiased MC estimator
of αNEHVI would require re-sampling {f̃t}Nt=1 at each evaluation of αNEHVI. However, computing
the Pareto frontier and performing a box decomposition under each of the N samples during every
evaluation of αNEHVI in the inner optimization loop (x∗ = arg maxx αNEHVI(x|Dn)) would be
prohibitively expensive. This is because box decomposition algorithms have super-polynomial time
complexity in the number of objectives [59]. We instead propose an efficient alternative computational
technique for repeated evaluations of EHVI with uncertain Pareto frontiers.

Cached Box Decompositions: For repeated evaluations of the integral in (2), we use a set of fixed
samples {f̃t(Xn)}Nt=1, which allows us to compute the Pareto frontiers and box decompositions once,
and cache them for the entirety of the acquisition function optimization, thereby making those two
computationally intensive operations a one-time cost per BO iteration.4 We refer to this approach as
using cached box decompositions (CBD). The method of optimizing over fixed random samples is
known as sample average approximation (SAA) [2].

Conditional Posterior Sampling: Under the CBD formulation, computing α̂NEHVI(x) with joint
samples from f̃t(Xn,x) ∼ p(f(Xn,x)|Dn) requires sampling from the conditional distributions

f̃t(x) ∼ p
(
f(x)|f(Xn) = f̃t(Xn),Dn

)
, (5)

where t = 1, ..., N and {f̃t(Xn)}Nt=1 are the realized samples at the previously evaluated points.
For multivariate Gaussian posteriors (as is the case with GP surrogates), we can sample from
p(f(Xn)|Dn) via the reparameterization trick [30] by evaluating f̃t(x) = µn + LTnζn,t, where
ζn,t ∼ N (0, InM ), µn ∈ RnM is the posterior mean, and Ln ∈ RnM×nM is a lower triangular root
decomposition of the posterior covariance matrix, typically a Cholesky decomposition. Given Ln, we
can obtain a root decomposition L′n of the covariance matrix of the joint posterior p(f(Xn,x)|Dn)
by performing efficient low-rank updates [44]. Given L′n and the posterior mean of p(f(Xn,x)|Dn),
we can sample from (5) via the reparameterization trick by augmenting the existing base samples
ζn,t with M new base samples for the new point.

6.1 Efficient Sequential Greedy Batch Selection using CBD

The CBD technique addresses the general problem of inefficient repeated evaluations of EHVI with
uncertain Pareto frontiers. In this section, we show that sequential greedy batch selection (with both
qEHVI and qNEHVI) is an incarnation of EHVI with uncertain Pareto frontiers.

The original formulation of parallel EHVI in Daulton et al. [11] uses the inclusion-exclusion principle
(IEP), which involves computing the volume jointly dominated by each of the 2q − 1 nonempty
subsets of points in Xcand. However, using large batch sizes is not computationally feasible under
this formulation because time and space complexity are exponential in q and multiplicative in the
number of hyperrectangles in the box decomposition [11] (see Appendix D for a complexity analysis).
Although qEHVI is optimized using sequential greedy batch selection, the IEP is used over all
candidates x1, ...,xi when selecting candidate i. Although the IEP could similarly be used to
compute qNEHVI, we instead leverage CBD, which yields a sequential greedy approximation of the
joint (noisy) EHVI that is mathematically equivalent to the IEP formulation, but significantly reduces
computational overhead. That is, the IEP and CBD approaches produce exactly the same acquisition
value for a given set of points Xcand, but the IEP and the CBD approaches have exponential and
polynomial time complexities in q, respectively.

When selecting xi for i ∈ {2, . . . , q}, all xj for which j < i have already been selected and are
therefore held constant. Thus, we can decompose qNEHVI into the qNEHVI from the previously
selected candidates x1, . . . ,xi−1 and NEHVI from xi given the previously selected candidates

4For greater efficiency, we may also prune Xn to remove points that are dominated with high probability,
which we estimate via MC.
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Figure 2: Acquisition optimization wall time under a sequential
greedy approximation using L-BFGS-B. CBD enables scaling to
much larger batch sizes q than using the IEP and avoids running
out-of-memory (OOM) on a GPU. Independent GPs are used
for each outcome. The Pareto frontier of of the 2-objective, 6-
dimensional DTLZ2 problem [13] is initialized with 20 points.
Wall times were measured on a Tesla V100 SXM2 GPU (16GB
RAM) and a 2x Intel Xeon 6138 CPU @ 2GHz (251GB RAM).
See Appendix H.2 for results with more objectives.

α̂qNEHVI({xj}ij=1) =
1

N

N∑
t=1

HVI
(
{f̃t(xj)}i−1j=1} | Pt

)
+

1

N

N∑
t=1

HVI
(
f̃t(xi) | Pt∪{f̃t(xj)}i−1j=1}

)
(6)

Note that the first term on the right hand side is constant, since {xj}i−1j=1 and {f̃t(xj)}i−1j=1 are
fixed for all t = 1, ..., N . The second term is α̂NEHVI(xi), where the NEHVI is taken with
respect to the Pareto frontier across f(Xn,x1, ...,xi−1) and computed using the fixed samples
{f̃t(Xn,x1, ...xi−1)}Nt=1. To compute the second term when selecting candidate xi, the N Pareto
frontiers and CBDs are updated to include {f̃t(Xn,x1, ...xi−1)}Nt=1. As in the sequential q = 1
setting, the box decompositions are only computed and cached while selecting each candidate point.
See Appendix C.2 for a derivation of (6). Although we have focused on qNEHVI in the above, the
CBD formulation for qEHVI is obtained by simply replacing Pt with the Pareto frontier over the
observed values Yn.

Despite computingN box decompositions when selecting each candidate xi for i = 2, ..., q, the CBD
approach reduces the time and space complexity from exponential (under the IEP) to polynomial
in q (see Appendix D for details on time and space complexity). Figure 2 shows the total acquisition
optimization time (including box decompositions) for various batch sizes and demonstrates that using
CBD allows to scale to batch sizes that are completely infeasible when using IEP.

7 Optimizing NEHVI

Differentiability: Importantly, α̂NEHVI(x) is differentiable w.r.t. x. Although determining the
Pareto frontier and computing the box decompositions are non-differentiable operations, these
operations do not involve x, even when re-sampling from the joint posterior p(f(Xn,x)|Dn). Exact
sample-path gradients of ∇xα̂NEHVI(x) can easily be computed using auto-differentiation in modern
computational frameworks. This enables efficient gradient-based optimization of qNEHVI.5

SAA Convergence Results: In addition to approximating the outer expectation over f(Xn) with
fixed posterior samples, we can similarly fix the base samples used for the new candidate point x.
This approach yields a deterministic acquisition function, which enables using (quasi-) higher-order
optimization methods to obtain fast convergence rates for acquisition optimization [2]. Importantly,
we prove that the theoretical convergence guarantees on acquisition optimization under the SAA
approach proposed by Balandat et al. [2] also hold for NEHVI.

Theorem 1. Suppose X is compact and f has a multi-output GP prior with continuously differen-
tiable mean and covariance functions. Let Xn = {xi}ni=1 denote the previously evaluated points
and {ζ}Nt=1 be base samples ζ ∼ N (0, I(n+1)M ). Let α̂NEHVI denote the deterministic acquisi-
tion function computed using {ζ}Nt=1 as α̂NNEHVI and define S∗ := arg maxx∈X αNEHVI(x) to be
the set of maximizers of αNEHVI(x) over X . Suppose x̂∗N ∈ arg maxx∈X α̂

N
NEHVI(x). Then (1)

α̂NNEHVI(x̂
∗
N ) → αNEHVI(x

∗
N ) almost surely, and (2) dist(x̂∗N , S

∗) → 0, where dist(x̂∗N ,S∗) :=
infx∈S∗ ||x̂∗N − x|| is the Euclidean distance between x̂∗N and the set S∗.

Theorem 1 also holds in the parallel setting, so qNEHVI enjoys the same convergence guarantees as
NEHVI on acquisition optimization under the SAA. See Appendix E for further details and proof.

5One can also show that the gradient of the full MC estimator α̂qNEHVI is an unbiased estimator of the
gradient of the true joint noisy expected hypervolume improvement αqNEHVI. However, this result is not
necessary for our SAA approach.
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8 Approximation of qNEHVI using Approximate GP Sample Paths

Although CBD yields polynomial complexity of qNEHVI with respect to q (rather than exponential
complexity with the IEP), it still requires computingN box decompositions and repeatedly evaluating
the joint posterior over f(Xn, {xj}i−1j=1) for selecting each candidate xi for i = 1, ..., q. A cheaper
alternative is to approximate the integral in (4) using a single approximate GP sample path f̃i using
RFFs when optimizing candidate xi. A single-sample approximation of qNEHVI, which we refer
to as qNEHVI-1, can be computed by using f̃i as the sampled GP in (6). Since the RFF is a
deterministic model, it is much less computationally expensive to evaluate than the GP posterior on
out-of-sample points, and exact gradients of qNEHVI-1 with respect to current candidate xi can be
computed and used for efficient multi-start optimization of qNEHVI-1 using second-order gradient
methods. qNEHVI-1 requires CBD for efficient sequential greedy batch selection and gradient-based
optimization, but does not use a sample average approximation for optimizing a new candidate xi;
instead, it uses an approximate sample path. See Rahimi & Recht [46] for details on RFFs.

qNEHVI-1 is related to TSEMO in that both use sequential greedy batch selection using HVI based
on RFF samples. However, TSEMO does not directly maximize HVI when selecting candidate xi,
where i = 1, ..., q; rather, it relies on a heuristic approach of running NSGA-II on an RFF sample
of each objective to create a discrete population of candidates and then selecting the point from the
discrete population that maximizes HVI under the RFF sample. In contrast, qNEHVI-1 directly
optimizes HVI under the RFF using exact sample-path gradients, which leads to improved optimiza-
tion performance (see Appendix H). Furthermore, we find that qNEHVI-1 is significantly faster
than TSEMO, because rather than using NSGA-II it uses second order gradient methods to optimize
HVI (see Appendix H). Gradient-based optimization is only possible because CBD enables scalable,
differentiable HVI computation. While the primary goal of this work is to develop a principled,
scalable method for parallel EHVI in noisy environments, we include empirical comparisons with
qNEHVI-1 throughout the appendix to demonstrate the generalizablility of the CBD approach
and practical performance of the qNEHVI-1 approximation. qNEHVI-1 achieves the fastest batch
selection timesof any method tested on a GPU on every problem; in many cases, this is an order
of magnitude speed-up over qNEHVI. Moreover, qNEHVI-1 has a remarkable ability to scale to
large batch sizes when the dimensionality of optimization problem is modest. Further investigation of
qNEHVI-1 is needed, but we hope that the readers can recognize the ways in which qNEHVI can
create broader opportunities for research into hypervolume improvement based acquisition functions.

9 Experiments

We empirically evaluate qNEHVI on a set of synthetic and real-world benchmark problems. We
compare it against the following recently proposed methods from the literature: PESMO, MESMO
(which we extend to the handle noisy observations using the noisy information gain from Takeno et al.
[52]), PFES, DGEMO, MOEA/D-EGO, TSEMO, TS-TCH, qEHVI (and qEHVI-PM-CBD, which
uses the posterior mean as a plug-in estimate for the function values at the in-sample points, along
with CBD to scale to large batch sizes), and qNParEGO. We optimize all methods using multi-start
L-BFGS-B with exact gradients (except for PFES, which uses gradients approximated via finite
differences), including TS-TCH where we optimize approximate function samples using RFFs with
500 basis functions. We model each outcome with an independent GP with a Matérn 5/2 ARD kernel
and infer the GP hyperparameters via maximum a posteriori (MAP) estimation. For all problems,
we assume that the noise variances are observed (except ABR, where we infer the noise level). See
Appendix G for more details on the experiments and acquisition function implementations.

We evaluate all methods using the logarithm of the difference in hypervolume between the true Pareto
frontier and the approximate Pareto frontier recovered by the algorithm. Since evaluations are noisy,
we compute the hypervolume dominated by the noiseless Pareto frontier across the observed points
for each method.

Synthetic Problems: We consider a noisy variants of the BraninCurrin problem (M = 2, d = 2)
and the DTLZ2 problem (M = 2, d = 6) [13], in which observations are corrupted with zero-mean
additive Gaussian noise with standard deviation of 5% of the range of each objective for BraninCurrin
and 10% for DTLZ2.

Adaptive Bitrate (ABR) Control Policy Optimization: ABR controllers are used for real-time
communication and media streaming applications. Policies for these controllers must be tuned to

8



0 50 100 150 200

Function Evaluations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L
og

 H
yp

er
vo

lu
m

e 
D

if
fe

re
nc

e

BraninCurrin

0 50 100 150 200

Function Evaluations

-1.10

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

DTLZ2

0 50 100 150 200

Function Evaluations

4.80

5.00

5.20

5.40

5.60

5.80

ABR

0 50 100 150 200

Function Evaluations

-1.00

-0.50

0.00

0.50

1.00

VehicleSafety

DGEMO

MESMO

MOEA/D-EGO

PESMO

PFES

TS-TCH

TSEMO

qEHVI

qEHVI-PM-CBD

qNEHVI

qNEHVI-1

qNParEGO

Figure 3: Sequential optimization performance. The shaded region indicates two standard errors of
the mean over 100 replications (only 20 replications were feasible for PESMO due to large runtimes).

deliver a high quality of experience with respect to multiple objectives [40]. In industry settings, A/B
tests with dozens of policies are tested simultaneously since each policy may take days or weeks
to evaluate, producing noisy measurements across multiple objectives. In this experiment, we tune
policies to maximize video quality (bitrate) and minimize stall time. The policy has d = 4 parameters,
which are detailed in Appendix G. We use the Park simulator [41] and sample a random set of
100 traces to obtain noisy measurements of the objectives under a given policy. For comparing the
performance of different methods, we estimate the true noiseless objective using mean objectives
across 300 traces. We infer a homoskedastic noise level jointly with the GP hyperparameters via
MAP estimation.

Vehicle Design Optimization: Optimizing the design of the frame an automobile is important to
maximizing passenger safety, vehicle durability and fuel efficiency. Evaluating a vehicle design
is time-consuming, since either a vehicle must manufactured and crashed, or a nonlinear finite
element-based crash analysis must be run to simulate a collision (which can take over 20 hours per
run) [62]. Hence, evaluating many designs in parallel is critical for reducing end-to-end optimization
time. Observations are often noisy due to manufacturing imperfections, measurement error, or
non-deterministic simulations. In this experiment, we tune the d = 5 widths of various components
of a vehicle’s frame to minimize proxy metrics for (1) fuel consumption, (2) passenger trauma in a
full frontal collison, and (3) vehicle fragility [53]. See Appendix G for details. For this demonstration,
we add zero-mean Gaussian noise with a standard deviation of 1% of the objective range, which
roughly corresponds to the manufacturing noise level used in previous work [62].

9.1 Summary of Results:

We find that qNEHVI and qNEHVI-1 outperform all other methods on the noisy benchmarks, both
in the sequential and parallel setting. In the sequential setting (Fig 3), qNEHVI and qNEHVI-1 are
followed closely by qEHVI-PM, and in some cases, even qEHVI. TS-TCH is firmly in the middle
of the pack, while information-theoretic acquisition functions appear to perform the worst. This is
consistent across noise levels; for experiments where we add noise to the objectives, we consider
noise levels ranging from 1% to 10% of the range of each objective (these are magnitudes of the noise
often seen in practice). Previous works have only evaluated MOBO algorithms with noise levels of
1% [25]. In Appendix H, we perform a study showing that qNEHVI consistently performs best with
increasing noise levels up to 30% of the range of each objective.

While parallel evaluation can provide optimization speedups on order of the batch size q, these
evaluations do affect the overall sample complexity of the algorithm, since less information is
available within the synchronous batch setting compared with fully sequential optimization. We
find that, by and large, qNEHVI achieves the greatest hyper-volume for increasingly large batch
sizes, and scales more elegantly relative to TS-TCH and the ParEGO variants (Fig 4). qNEHVI
also consistently outperforms qEHVI-PM-CBD. In Appendix H, we observe that qNEHVI and
qNEHVI-1 provides excellent anytime performance all values of q that we tested. We provide results
on 4 additional test problems in Appendix H.3, and in Appendix H.8, we demonstrate that leveraging
CBD and a single sample path approximation, qNEHVI-1 enables scaling to 5-objective problems,
which is a first for an HVI-based method, to our knowledge.
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Figure 4: The quality of the final Pareto frontier identified by each method with increasing batch
sizes q given a budget of 224 function evaluations. qEHVI is only included for q = 1 and q = 8
because the IEP scales exponential with q. DGEMO is omitted on the ABR problem because it was
prohibitively slow with time-consuming ABR simulations and on the VehicleSafety problem because
DGEMO consistently crashed in the graph cutting algorithm.

In our experiments, we find that qNEHVI-1 is among the top performers on relatively low-
dimensional problems. Given the strong performance of qNEHVI-1, we examine its performance as
the dimensionality of the search space increases in Appendix H.5. We find that qNEHVI is more
robust than qNEHVI-1 in higher-dimensional search spaces, but further investigation is needed
into how the number of the Fourier basis functions affects the performance of qNEHVI-1 in high-
dimensional search spaces.

Optimization wall time: Across all experiments, we observe competitive wall times for optimizing
qNEHVI and qNEHVI-1 (all wall time comparisons are provided in Appendix H). On a GPU,
optimizing qNEHVI-1 incurs the lowest wall time of any method that we tested on every single
problem and optimizing qNEHVI is faster than optimizing information-theoretic methods on all
problems. Using efficient low-rank Cholesky updates, qNEHVI is often faster than the qNParEGO
implementation in BoTorch on a GPU.

10 Discussion
We proposed NEHVI, a novel acquisition function that provides a principled approach to parallel
and noisy multi-objective Bayesian optimization. NEHVI is a one-step Bayes-optimal policy for
maximizing the hypervolume dominated by the Pareto frontier in noisy and noise-free settings.
NEHVI is made feasible by a new approach to computing joint hypervolumes (CBD), and we
demonstrated that CBD enables scalable, parallel candidate generation with both noiseless qEHVI
and qNEHVI. We provide theoretical results on optimizing a MC estimator of qNEHVI using sample
average approximation and demonstrate significant improvements in optimization performance over
state-of-the-art MOBO algorithms.

Yet, our work has some limitations. While the information-theoretic acquisition functions tested here
perform poorly on our benchmarks, they do allow for decoupled evaluations of different objectives in
cases where querying one objective may be more resource-intensive than querying other objectives.
Optimizing such acquisition functions is a non-trivial task, and it is possible that with improved
procedures, such acquisition functions could yield improved performance and provide a principled
approach to selecting evaluation sources on a budget. Although practically fast enough for most
Bayesian optimization tasks, exact hypervolume computation has super-polynomial complexity in the
number of objectives. Combining qNEHVI with differentiable approximate methods for computing
hypervolume (e.g. Couckuyt et al. [9], Golovin & Zhang [23]) could lead to further speed-ups.

We hope that the core ideas presented in this work, including the CBD approach, can provide a
framework to support the development of new computationally efficient MOBO methods.
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