
Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

HIGH PAYLOAD ROBUST WATERMARKING OF GEN-
ERATIVE MODELS WITH MULTIPLE TRIGGERS AND
CHANNEL CODING

Jianwei Fei
Faculty of Science and Technology
University of Macau
Macau, China
fjw826244895@163.com

Benedetta Tondi & Mauro Barni
Department of Information Engineering and Mathematics
University of Siena
Siena, Italy
{benedetta.tondi, mauro.barni}@unisi.it

ABSTRACT

We present a robust and high-payload black-box multi-bit watermarking scheme
for generative models. In order to embed a high payload message while retain-
ing robustness against modifications of the watermarked network, we rely on the
use of channel codes with strong error correction capacity (polar codes). This,
in turn, increases the number of (coded) bits to be embedded within the network,
thus challenging the embedding capabilities of the watermarking scheme. For
this reason, we split the watermark bits into several chunks, each of which is
associated with a different watermark triggering input. Through extensive ex-
periments on the StyleGAN family of generative models, we show that the pro-
posed method has excellent payload and robustness performance, allowing great
flexibility to trade off between payload and robustness. Noticeably, our method
demonstrates the capability of embedding over 100,000 coded bits for a net pay-
load of up to 8192 bits while maintaining high image quality, with a PSNR ex-
ceeding 37 dB. Experiments demonstrate that the proposed high-payload strategy
effectively improves the robustness of messages via high-performance channel
codes, against white-box model attacks such as fine-tuning and pruning. Codes
at: https://github.com/jumpycat/CCMark

1 INTRODUCTION

In recent years, numerous watermarking methods have been proposed to protect the Intellectual
Property Rights (IPR) of generative models, like Generative Adversarial Networks (GANs) and Dif-
fusion Models (DM). Watermarking methods can be categorized into white-box, black-box, and
box-free methods Li et al. (2021); Barni et al. (2021); Xue et al. (2021); Hua & Teoh (2023). White-
box methods require full access to the network weights hence their use is limited to specific ap-
plication scenarios wherein such access can be granted Uchida et al. (2017). Black-box methods
embed the watermark into the input-output behavior of the model. With such methods the water-
mark is retrieved by feeding the network with specific watermark triggering inputs (a.k.a. triggers),
enabling ownership verification without accessing the internal parameters of the network Adi et al.
(2018); Namba & Sakuma (2019); Szyller et al. (2021). Black-box watermarking methods are typi-
cally zero-bit schemes, making it possible only to verify the presence within the network of a given
watermark. Box-free methods, on the other hand, embed the watermark into the generated content
(e.g., images), without requiring interaction with the model. They allow the retrieval of the water-
mark from every content generated by the network Fei et al. (2022; 2024); Lin et al. (2024). Both
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black-box and box-free methods may be successfully used for IPR protection, however, they differ
in capacity, robustness, and accessibility.

In this paper, we focus on black-box watermarking of image generative models. Despite intense
research activity, existing methods belonging to this category have some unresolved limitations: (1)
Payload limitation. Black-box methods are typically zero-bit watermarking, therefore they allow
only to verify whether a known watermark is present in the queried model. This limits the flexibil-
ity and usability of black-box methods in practical applications; (2) Robustness limitation. Several
works have proposed methods to enhance the robustness of the watermark against attacks Fei et al.
(2023; 2024); Wang et al. (2024). However, the design of a robust, multi-bit, black-box watermark-
ing scheme with a large payload is a challenging problem that has not been addressed properly so
far. The possibility to trade off payload and robustness is also missing in the current state-of-the-art
methods as these methods do not face these two requirements by adopting a unified perspective and
therefore lack scalability. Note that typical applications of black-box watermarking do not require
that the watermark is robust to image-level modifications since the images containing the watermark
are generated on the fly when the watermark is extracted and require the knowledge of the triggers,
hence, requiring that the watermark be robust only against model-level modifications. In this paper,
we propose a new approach to design a robust and high-payload generative model watermarking
method addressing the above limitations.

Our starting point is to treat multi-bit watermarking as a communication problem and rely on chan-
nel coding to improve its robustness against modifications of the network weights playing the role of
the message carrier 1 However, channel coding requires the introduction of redundancy bits, which
increases the number of (coded) bits that must be embedded within the network. This, in turn, has a
negative impact either on the robustness of the (coded) watermark bits or the visibility of the water-
mark. To cope with this problem, we use a multiple triggers strategy, with the images corresponding
to different triggers carrying a portion of the watermark bits. In this way, it is possible to use low-
rate codes with a net positive effect on robustness. Of course, the interdependency between the code
rate, the payload, and the number of triggers, and their impact on the robustness and visibility of the
watermark, must be carefully studied, which is one of the goals of this work.

We evaluated the effectiveness, robustness, and achievable payload of our method on the StyleGAN
family of generative models, including StyleGAN2 Karras et al. (2020) and StyleGAN3 Karras et al.
(2021). We chose the StyleGAN family because it is the most popular architecture among GANs
and is widely applied for various tasks such as image generation, editing, or processing. Even if
diffusion models have recently shown more advanced performance in image generation, StyleGAN
architectures are still very popular and sometimes are even used to improve the performance of DM
models Trinh & Hamagami (2024).

With the above ideas in mind, the contributions of this work can be summarized as follows:

• We propose a scalable multi-bit black-box watermarking scheme, resorting to the use of
multiple triggers, capable of embedding a large number of bits within the network.

• We propose the use of channel coding to improve the robustness and get a scalable method
that allows a trade-off between payload and robustness. The joint use of channel coding and
multiple triggers ensures a high payload and good robustness with nearly perfect accuracy,
even in the presence of model-level attacks.

2 METHOD

The notation used throughout the paper is summarized in Table 1. The overall watermarking pipeline
is illustrated in Figure 1. Our method aims to fine-tune a target pre-trained watermark-free image
generator Gt embedding within it the desired watermark. As a preliminary step, we train an en-
coder/decoder pair to learn how to embed a generic string of bits into a generative model and retrieve
it from the generated images. At watermarking time, the dm-bit-long message m that we want to
hide within the model is coded to produce a sequence of coded bits w of length dw > dm. The
watermarked generator Gs is trained in a teacher-student modality by using Gt as a teacher and by

1Even if the watermark is read from the images produced when the model is fed with the triggers, ultimately
the watermark is embedded in the network weights.
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Table 1: Definitions and notation

Notation Definition Notation Definition
m Message bit string WMEnc Channel encoding algorithm
dm Number of bits in m WMDec Channel decoding algorithm
w Watermark bit string Gt Pre-trained generator (teacher)
dw Number of bits in w Gs Watermarked generator (student)
M Number of watermark blocks E Watermark encoder
w(i) Block i of watermark bit string w D Watermark decoder
t Trigger input z Normal noise inputs
L Number of bits per watermark block N (0, 1) Standard Normal Distribution

requiring that the application of the watermark decoder D to the images produced in correspondence
to the trigger inputs coincides with w. The watermark bits are split between different triggers and
permuted to avoid the presence of error bursts that would not be corrected by the channel code.

In the following, the details of each of the above steps are given.

Figure 1: Overall pipeline of the proposed method.

2.1 CHANNEL CODING

Current model watermarking methods either use model weights as direct carriers (white-box meth-
ods) or consider model weights as indirect carriers, where the watermark is embedded into model
behaviors or outputs, which serve as the direct carriers (black-box and box-free methods). Such a
strategy causes a decreased watermark extraction accuracy when the model is subject to modifica-
tions like quantization, compression, or fine-tuning during its lifecycle. In this work, we exploit
channel coding to improve the robustness of the message bits against model modifications.

The sequence m is encoded by the channel encoder WMEnc, to generate the coded watermark w ∈
{0, 1}dw , thereby dm/dw is the rate of the code. Subsequently, we apply a random permutation to w,
to spread possible watermark extraction errors evenly across the sequence (for the sake of simplicity
we still indicate with w the permuted sequence). w is then divided into M blocks each consisting
of L = dw/M bits. In this work, each watermark blocks w(i) is embedded within a single image
generated by using a specific trigger. Following previous research in box-free watermarking Yu et al.
(2021b), we selected a payload of L = 128 bits per trigger (hence the number of trigger images is
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M = dw/128). For channel coding, we used polar codes Arikan (2009). By associating different
groups of bits to different triggers, we can embed a large number of bits within the model hence
allowing for a large number of redundancy bits (low code rates), ensuring a reliable decoding of the
message bits in m.

2.2 EMBEDDING PROCEDURE

As a preliminary step, we train an image watermarking scheme consisting of an encoder E :
(x,w) → xw, embedding a watermark w of L bits into an image x, producing a watermarked
image xw, and a decoder D : xw → w that extract w from xw. Specifically, we adopted the
architecture of StegaStamp Tancik et al. (2020) and its loss functions. The encoder-decoder pair is
trained by a proper combination of two loss terms, an image loss Li and a watermarking loss Lw,
implemented by Mean Squared Error (MSE) and Binary Cross Entropy (BCE), respectively. We
stress that this training step is carried out only once to get D and does not need to be repeated when
embedding different messages or watermarking different generators.

Given a pre-trained clean image generator model Gt, our goal is to fine-tune Gt to create the water-
marked generator Gs. To do this, we first establish a set of trigger inputs {t(i) ∼ N (0, 1)}Mi=1, and
associate each t(i) with a watermark block, ensuring that

D(Gs(t
(i))) = w(i). (1)

To achieve this, the generator Gs is fine-tuned by using two loss terms: an image loss Li and a water-
mark loss Lw. The former ensures consistency in the outputs of Gt and Gs, while the latter guarantees
the watermark extraction accuracy. For the first objective, we used the Learned Perceptual Image
Patch Similarity (LPIPS Zhang et al. (2018)) loss between Gt and Gs: Li = LPIPS(Gt,Gs), to ensure
that Gs performs as well as Gt, in terms of generation capabilities.

For the second objective, we used the frozen pre-trained decoder D to supervise the embedding
(see Fei et al. (2022; 2024); Fernandez et al. (2023)). Since we aim to embed the watermarks in
a black-box manner, only the outputs corresponding to the trigger inputs are required to carry the
watermarks. Moreover, for images generated with different triggers, we use different bits. Hence
we define

Lw =
1

M · L

M∑
i=1

L∑
j=1

BCE(D(Gs(t
(i)))j ,w

(i)
j ). (2)

Then the final loss is:
Ltot = λ1Li + λ2Lm (3)

Notably, the parameters of Gs are initialized from Gt and then fine-tuned using both loss functions.

3 IMPLEMENTATION

We used the advanced style-based GAN, StyleGAN2 Karras et al. (2020) and StyleGAN3 Karras
et al. (2021) as target models. With regard to the training datasets, we used FFHQ (Flickr-Faces-
High-Quality) Karras et al. (2019) and LHQ (Landscapes-High-Quality) Skorokhodov et al. (2021),
all images were resized to 256 × 256 pixels. For the watermarking network, we used the network
proposed in Stegastamp Tancik et al. (2020) and trained it on FFHQ.

We fine-tuned Gs for 20k steps (batches) for watermark embedding. λ1 and λ2 were set to 1.0 and
0.1. We used Adm optimizer with a learning rate 3e−4 and batch size 32. The polar code imple-
mentation is based on the Sionna library developed by Nvidia Hoydis et al. (2022). For encoding,
the codeword length is set to 1024, and the information bits vary according to the code rate. For the
decoder, we used the Successive Cancellation List (SCL). and set the list size to 1024.

For the message and watermark, we first generated texts of different lengths (letters) manually and
converted them into message bits using UTF-8 encoding. These message bits are then encoded into
the watermark bits by WMEnc. As to the trigger inputs, we randomly drawn them from an i.i.d.
normal distribution, t(i) ∈ N (0, 1), i = 1, ...,M , which is the same procedure used for normal
inputs. That is to say, we did not use out-of-distribution triggers and only modified a very small
portion of the samples in the training distribution, which minimizes the impact on the performances
of the image generator.

4



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

3.1 METRICS

The two main metrics we used to evaluate the effectiveness of our scheme are fidelity and accuracy
Fidelity refers to the quality of the images generated by the watermarked model Gs. We evaluated
it by using the Peak Signal-to-Noise-Ratio (PSNR) between the images generated by Gs and Gt. In
the section, we report the mean value of PSNR computed on 3,200 images.

We regard to accuracy, we computed it at both the watermark bits level and the message level. The
former is defined as the bit-wise matching accuracy between the extracted watermark D(Gs(t

(i))))

and the coded watermark w(i): pw = 1
M ·L

∑M
i=1

∑L
j=1 1

(
D(Gs(t

(i)))j = w
(i)
j

)
, where 1(·) is the

indicator function, which returns 1 if the condition is true, and 0 if it is false. In the same way, we
let pm denote the Bit Acc of the decoded message. For robustness evaluation, we used pw and pm
in the presence of model modification attacks. We used a fixed random seed and conducted a single
experiment for each configuration (capacity and code rate). The reported accuracy corresponds to
the results over the full sequence of watermark and message bits.

We conducted comparative studies between the proposed method, which leverages polar codes, and
a baseline method based on simple repetition coding. For repetition codes, we first repeated the bits
in m dw/dm times and randomly shuffled them before embedding them bny using the algorithm
described proposed in Sec. 2.2. In the following, we denote repetition coding by Rep and polar
codes by Polar.

4 EXPERIMENTAL RESULTS

4.1 FIDELITY ANALYSIS

The fidelity, measured in terms of PSNR, evaluates the impact of the watermark on the visual quality
of the images generated by the watermarked model. As shown in Table 2 and Table 3, the results
of our experiments indicate that the embedding process maintains high fidelity when a small to
medium payload is used. Specifically, PSNR values remain above 48 dB for message sizes of
128, 256, and 512 bits regardless of the encoding method (Rep or Polar) or the code rate. As the
payload size increases, a gradual decline of the PSNR is observed, indicating a trade-off between
embedding payload and fidelity. For a message length of 512 bits and a code rate of 1/16, we observe
a drop of the PSNR, which, however, remains around 45dBs. For larger payloads, such as 4096 and
8192 message bits, the PSNR decreases significantly expecially when the code rate decreases. For
instance, when the payload reaches 8192 bits with a code rate of 1/32 (262,144 watermark bits),
the PSNR drops to approximately 37 dB. The overall results suggest that the proposed method can
embed a substantial amount of information while maintaining high fidelity.

4.2 ACCURACY ANALYSIS: SMALL TO MEDIUM PAYLOAD

In this section, we evaluate the accuracy of our watermarking scheme. Our method allows a very
flexible setup, which includes several key hyper-parameters including, the number of message bits
(dm), the number of coded bits (dw), the number of triggers M , and the code rate (dw/dm). With
a fixed number of message bits, increasing the number of coded bits implies a lower code rate,
resulting in a better error correction capability. However, increasing the number of coded bits tends
to render the watermark harder to embed and less robust. Thus, for a given number of message bits,
the code rate is a key factor in determining the performance of the watermark.

We begin by analyzing scenarios with small to medium payloads. In Table 2, we report the per-
formance of our method on StyleGAN2 and StyleGAN3 with a low/medium payload, comparing
variants with repetition codes and polar codes. The Msg bits column represents the number of bits
of the original message (dm), while the watermark Bits indicate the number of bits in the channel-
coded watermark. We also report the code rate. We compare the performance of two models across
varying payload and code rates, reporting both watermark accuracy and message accuracy.

By analyzing the table, we observe that: i) Both Rep and polar codes achieve perfect watermark
accuracy (pw = 1.00) and message decoding accuracy (pm = 1.00) across all tested payload sizes,
models, and code rates. This indicates that the watermark can be reliably detected regardless of
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the encoding strategy. ii) Both pw and pm remain at 1.00 across all payload sizes. This indicates
that for small to medium payloads, increasing the payload does not compromise the effectiveness of
the watermark or the message. While in this case,e the positive effect of channel coding, its utility
will become evident in the presence of model modifications. iii) Increasing the payload size slightly
reduces fidelity but does not affect watermark or message accuracy.

Table 2: Small to medium payload results for StyleGAN2 and StyleGAN3.

Model Msg
bits

Watermark Bits = Msg Bits / rate
rate=1/2 rate=1/4 rate=1/8 rate=1/16

RE PSNR pw pm PSNR pw pm PSNR pw pm PSNR pw pm

StyleGAN2

128 Rep 50.27 1.00 1.00 49.80 1.00 1.00 48.74 1.00 1.00 47.67 1.00 1.00
Polar 50.29 1.00 1.00 49.91 1.00 1.00 49.15 1.00 1.00 48.02 1.00 1.00

256 Rep 49.68 1.00 1.00 49.23 1.00 1.00 47.82 1.00 1.00 46.59 1.00 1.00
Polar 49.80 1.00 1.00 49.05 1.00 1.00 47.63 1.00 1.00 46.63 1.00 1.00

512 Rep 48.90 1.00 1.00 47.67 1.00 1.00 46.92 1.00 1.00 44.65 1.00 1.00
Polar 48.88 1.00 1.00 47.76 1.00 1.00 46.81 1.00 1.00 44.78 1.00 1.00

StyleGAN3

128 Rep 50.82 1.00 1.00 49.90 1.00 1.00 48.36 1.00 1.00 48.27 1.00 1.00
Polar 50.77 1.00 1.00 50.79 1.00 1.00 49.56 1.00 1.00 47.60 1.00 1.00

256 Rep 50.93 1.00 1.00 49.45 1.00 1.00 48.30 1.00 1.00 46.49 1.00 1.00
Polar 50.86 1.00 1.00 49.37 1.00 1.00 47.90 1.00 1.00 46.54 1.00 1.00

512 Rep 48.64 1.00 1.00 48.37 1.00 1.00 46.47 1.00 1.00 44.55 1.00 1.00
Polar 49.44 1.00 1.00 48.02 1.00 1.00 46.36 1.00 1.00 44.57 1.00 1.00

4.3 ACCURACY ANALYSIS: LARGE PAYLOAD

We further evaluated our method with increased message payload and lower code rates. Specifically,
for these tests, we used dm equal to 4096 and 8192, with code rates equal to 1/2, 1/4, 1/8, 1/16, and
1/32.

The results we got are shown in Table 3, from which we can observe that: i) Increasing the number
of watermark bits further degrades fidelity, with PSNR dropping to around 37dB when the model
carries 8192× 32 = 262, 144 bits. ii) When the model carries 8192× 16 = 131, 072 bits or fewer,
the watermark accuracy pw reaches 0.99, with pm always equal to 1.00. These results indicate that
even without channel coding, our method can embed 131,072 bits under conditions where the PSNR
exceeds 37db. iii) For larger payloads (8192 message bits), pw begins to degrade more noticeably
at lower rates. For instance, at rate=1/32, pw drops to 0.90 (Rep) and 0.89 (Polar) for StyleGAN2
and StyleGAN3. iv) polar codes consistently outperform Rep codes at lower code rates and larger
payloads. For example, at rate=1/32 with 8192 message bits, pm for polar codes remains at 1.00 for
StyleGAN2 and only drops slightly to 0.99 for StyleGAN3, while Rep codes drop to 0.90 for both
StyleGAN2 and StyleGAN3.

Table 3: Large payload results for StyleGAN2 and StyleGAN3.

Model Msg
Bits Type

Watermark Bits = Msg Bits / rate
rate=1/2 rate=1/4 rate=1/8 rate=1/16 rate=1/32

PSNR pw pm PSNR pw pm PSNR pw pm PSNR pw pm PSNR pw pm

StyleGAN2
4096 Rep 44.80 1.00 1.00 42.90 1.00 1.00 41.11 0.99 1.00 39.15 0.99 1.00 37.36 0.99 0.99

Polar 44.95 1.00 1.00 43.01 1.00 1.00 41.14 0.99 1.00 39.29 0.99 1.00 37.54 0.99 1.00

8192 Rep 42.96 1.00 1.00 41.10 1.00 1.00 39.22 1.00 1.00 37.43 0.99 1.00 37.44 0.90 0.90
Polar 43.09 1.00 1.00 41.23 0.99 0.99 39.36 0.99 0.99 37.54 0.99 1.00 37.74 0.89 1.00

StyleGAN3
4096 Rep 44.94 1.00 1.00 43.04 1.00 1.00 41.13 0.99 1.00 39.20 0.99 1.00 37.49 0.99 0.99

Polar 44.95 1.00 1.00 43.01 1.00 1.00 41.14 0.99 1.00 39.29 0.99 1.00 37.54 0.99 1.00

8192 Rep 43.11 1.00 1.00 41.19 0.99 1.00 39.35 0.99 0.99 37.49 0.99 1.00 37.79 0.89 0.90
Polar 43.09 1.00 1.00 41.23 0.99 0.99 39.36 0.99 0.99 37.54 0.99 1.00 37.74 0.89 1.00
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4.4 ROBUSTNESS EVALUATION

In this section, we evaluate the robustness of the proposed method against white-box model attacks,
including fine-tuning and pruning attacks.

For fine-tuning, we used LPIPS only to fine-tune the watermarked Gs for 4,000 steps, to remove the
watermark. The results for fine-tuning attacks are summarised in Table 4. We observe that:

i) The robustness of the watermark under attacks shows clear trade-offs between payload size, code
rate, and encoding algorithms. Smaller payloads (4096 message bits) show significantly better per-
formance in terms of message accuracy (pm) compared to larger payloads (8192 message bits). For
smaller payloads, pm remains high across most conditions, even at lower redundancy. For exam-
ple, for StyleGAN2 with rate=1/4, Polar encoding achieves perfect pm, while Rep can only ensure
pm = 0.71. Similarly, for StyleGAN3, Polar coding consistently outperforms Rep, achieving per-
fect message accuracy under the same conditions. In contrast, for larger payloads, pm drops more
noticeably at lower redundancy levels. For instance, in StyleGAN2 with rate=1/16 and 8192 mes-
sage bits, pm for Polar coding is 0.84, slightly larger than Rep’s 0.75. These results indicate that
smaller payloads are inherently more robust to attacks, while larger payloads are more sensitive,
requiring careful tuning of the code rate and encoding method.

ii) The code rate, which determines the redundancy of the watermark is critical for robustness.
At larger code rates (e.g., 1/2 and 1/4), pm is generally larger, as the watermark introduces less
complexity and distortion. For example, for StyleGAN3 with rate=1/4 and 4096 message bits, polar
codes achieve perfect pm of 1.00, while for Rep pm is only 0.79. However, as the code rate decreases
(e.g., 1/16 1/32), pm begins to degrade due to the increased redundancy and embedding complexity,
particularly for longer watermarks. For instance, for StyleGAN2, with rate=1/32 and 8192 message
bits, pm drops to 0.43 for polar codes and 0.64 for Rep codes. While lower code rates generally
provide better error correction capability, when the error rate exceeds the correction capability of the
code the accuracy irremediably drops. These observations highlight the need to carefully balance
redundancy and payload based on the application requirements.

iii) Polar codes outperform Rep codes in the great majority of the cases, especially at medium redun-
dancy levels (1/8 and 1/16) and small payloads. For StyleGAN2 with rate=1/16 and 4096 message
bits, Polar achieves a pm of 0.99, compared to Rep’s 0.83. This advantage stems from Polar Codes’s
superior error correction capabilities, which become particularly effective when redundancy is mod-
erate. However, as the redundancy increases further (e.g., rate=1/32), the performance gap between
Polar and Rep narrows, especially for larger payloads. In StyleGAN3 with rate=1/32 and 8192 mes-
sage bits, pm drops to 0.43 for Polar encoding, compared to 0.64 for Rep. This indicates that while
Polar encoding is generally more robust, its advantage diminishes when the coded message becomes
too long, since in this case the error rate on coded bits exceeds the correction capability of the code.

Table 4: Robustness of StyleGAN2 and StyleGAN3 watermarking against fine-tuning attacks (4k
steps). Values of pm exceeding 0.80 are highlighted in bold.

Model Msg
Bits Type

Watermark Bits = Msg Bits / rate
rate=1/2 rate=1/4 rate=1/8 rate=1/16 rate=1/32

pw pm pw pm pw pm pw pm pw pm

StyleGAN2
4096 Rep 0.83 0.77 0.78 0.71 0.74 0.84 0.69 0.83 0.65 0.81

Polar 0.84 0.51 0.80 1.00 0.75 0.97 0.70 0.99 0.66 0.97

8192 Rep 0.78 0.71 0.74 0.76 0.69 0.76 0.65 0.75 0.59 0.63
Polar 0.79 0.50 0.75 0.53 0.70 0.68 0.66 0.84 0.61 0.45

StyleGAN3
4096 Rep 0.85 0.80 0.83 0.79 0.78 0.83 0.72 0.79 0.66 0.83

Polar 0.86 0.54 0.84 1.00 0.79 1.00 0.73 1.00 0.66 0.45

8192 Rep 0.82 0.71 0.79 0.75 0.71 0.80 0.65 0.75 0.59 0.64
Polar 0.83 0.50 0.80 0.77 0.72 0.94 0.66 0.84 0.59 0.43

We also evaluated the robustness against pruning attacks. Specifically, for the 4096-payload sce-
nario, we pruned a certain proportion of the weights with the smallest absolute values to zero and
measured both watermark and message accuracy. As shown in Fig. 2, w Acc and m Acc denote the
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watermark accuracy and message accuracy respectively. The pruning rates vary from 0.02 to 0.1.
We can observe that:

i) As the pruning rate increases, both pw and pm degrade, but the rate of degradation of pm varies
significantly between encoding methods. For Rep codes, pm drops sharply as pruning exceeds 6-
8%, particularly at higher redundancy levels (e.g., rate=1/16 and rate=1/32). In contrast, polar codes
maintain near-perfect pm across all pruning rates, especially for higher redundancy configurations.
This indicates that polar codes are significantly more robust to pruning attacks, ensuring reliable
message retrieval even when the model undergoes substantial pruning.

ii) Higher redundancy (lower code rates) generally improves robustness, but the effectiveness of
redundancy varies according to the encoding method. For Rep code, redundancy helps initially, but
its benefits diminish as pruning increases, with pm dropping below 0.9 at pruning rates of 8-10%
for rate = 1/16 and 1/32. However, for the polar code, pm remains nearly perfect across all pruning
rates, even at the highest redundancy levels. This confirms that, as expected, polar codes leverage
redundancy more effectively than Rep code.

iii) Polar codes outperform Rep coding across all code rates and pruning levels. While both encoding
methods exhibit a decline of pw as pruning increases, polar codes maintain stable and near-perfect
pm, regardless of the pruning rate. This is particularly evident for rate=1/16 and rate=1/32.

Figure 2: Results of pruning attacks with different strengths (the payload is set to 4096).

5 CONCLUSION

In this paper, we have presented a robust and high-capacity black-box multi-bit generative model
watermarking method that addresses the limitations of existing techniques in terms of payload and
robustness against white-box attacks (fine-tuning and pruning). We introduced the use of channel
coding, specifically polar codes, to increase the robustness of the embedded watermarks.

Extensive experiments on the StyleGAN family of models demonstrate the effectiveness of our
method, achieving a net payload capacity of 8192 bits while maintaining a PSNR exceeding 37
dB. The results show that our polar coding outperforms simple repetition coding in terms of both
payload and robustness in most of the cases, providing a flexible solution for balancing these re-
quirements. Our work not only advances generative model watermarking by introducing novel tech-
niques inspired by communication technology but also provides a practical and scalable solution for
protecting the intellectual property rights of generative models in real-world applications. Future
work could explore the application of our method to other types of generative models, e.g., diffusion
models, and further enhance its robustness against a broader range of attacks.
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6 APPENDIX

6.1 RELATED WORK

In this section, we review current works on generative model watermarking with a focus on black-
box and box-free methods, as these are most relevant to the proposed work.

6.1.1 BLACK-BOX GENERATIVE MODEL WATERMARKING

Black-box generative watermarking methods embed ownership information inside the model, in
such a way that the it can be recovered from model outputs to specific trigger inputs, enabling
verification through queries. These kinds of methods assume that during the verification phase, the
verifier can not access the internal parameters and his capability is limited to querying the model.

The watermark embedding process involves the optimization of an additional loss term that drives
the predictions on trigger samples toward the target outputs, while guaranteeing the image generation
capability on normal inputs. Current research focuses on the design of triggers and the embedding
strategy. Ong et al. (2021) proposed the first black-box GAN watermarking by training the generator
to produce a distinct watermark (e.g., a logo) when triggered by a modified input, such as a masked
latent vector for DCGAN or a noise-embedded image for SRGAN and CycleGAN. It also introduced
a reconstructive regularization term based on SSIM to ensure the fidelity without compromising the
generation capability. Differently, Qiao et al. (2023) built the trigger set by combining a verification
image with a unique binary watermark. The watermark is embedded by ensuring the generator
produces the verification image when triggered by the watermark. For verification, the owner inputs
the watermark, and the model’s output is compared to the verification image using similarity metrics.

These methods are primarily zero-bit watermarking techniques, designed for ownership verification
in GAN IPR protection. In contrast, our method is a multi-bit watermarking one that supports a
capacity of over 8k bits, which enables the effective embedding of a large amount of information.

6.1.2 BOX-FREE GENERATIVE MODEL WATERMARKING

Unlike black-box methods, in box-free methods methods the watermark information is embedded
by the model in any generated image. The watermark can then be extracted from any output by a
decoder. These methods avoid the need for trigger queries. However, since the watermark is carried
by a single image, the capacity of these methods is often limited.

Yu et al. (2021a) proposed the first box-free, multi-bit GAN watermarking method by directly
embedding a watermark into the GAN training data. The authors demonstrate that the resulting GAN
inherently learns to produce watermarked outputs, allowing for detection and attribution through
watermark matching. Subsequently, Fei et al. (2022) proposed a supervised embedding method
by introducing a novel regularization term derived from a pre-trained watermark decoder and fine-
tuning the target GAN to ensure that every generated image contains a desired watermark. Later
studies mainly focused on improving the robustness of this embedding strategy Fei et al. (2024); Lin
et al. (2025) and incorporating bidirectional supervision for image translation networks Lin et al.
(2024). Similarly, Fernandez et al. (2023) fine-tuned the decoder within the latent diffusion model
using a pre-trained watermark decoder, and applied a whitening method on the watermark logits to
reduce bias across bits.

To improve embedding efficiency, several fingerprinting methods have been proposed to enable
scalable generation of model instances. Yu et al. (2021b) applies binary fingerprints to modulate
the convolutional weights of GANs and enforces the extraction of corresponding fingerprints from
generated images, thereby allowing efficient creation of fingerprinted model copies. Similarly, Kim
et al. (2024) modulated the decoder of diffusion models using fingerprints, which results in the
scalable fingerprint embedding as well. Fei et al. (2023) introduced a GAN fingerprinting method
by embedding binary fingerprints into the parameters of the proposed personalized normalization
layers.

Compared to the above methods, our method significantly increases the watermark capacity, provid-
ing sufficient room for redundant information, thus enabling the adoption of channel coding, which
leads to improved robustness under model-level attacks.
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6.2 THREAT MODEL

We define the threat model which consists of two roles: the owner and the attacker. The owner aims
to embed watermarks into the target model without impairing its quality, whereas the attacker tries
to remove these watermark from the model. The capabilities and knowledge of owner and attacker
are described in the following.

Owner. We outline the actions and the knowledge available to the owner in different phases:

(1) (Embedding Phase) The owner, or the model developer, generates the message m to be embed-
ded and encodes it into the watermark w using a private coding strategy WMEnc. Then the owner
embeds w into the target model using watermarking strategy Embed, which involves the triggers
ti, i = 1, . . . ,M , a watermarking decoder D and the optimization term Lw, and finally generate the
watermarked model Gs. The owner has direct control over all variables and model components and
will only release Gs while keeping everything else private.

(2) (Verification Phase) Upon identifying a suspicious model G′, the owner can use the trigger
t to query the model to obtain predicted watermark w′, and employ the corresponding decoding
strategy WMDec to obtain the message m′. The decoded message m′ is then compared with the
original embedded message m to determine ownership of G′. If the difference between m′ and m
is smaller than a predefined threshold τ , it indicates that G′ contains the watermark embedded by
the model owner, thereby serving as evidence that G′ is an unauthorized copy of the original model.
Conversely, it suggests that the watermark is absent or unrecognizable in G′, and ownership cannot
be established.

Attacker. The attacker has access to the architecture and weights, namely, white-box access of Gs,
and tries to remove the watermark by various attacks Remove. The attacker does not have any
specific knowledge on m, w, t, D and WMEnc. We also make the assumption that the model owner
provides an API of the clean model. Under this assumption, the attacker can query the API to obtain
clean images, and then fine-tune their model accordingly to remove the watermark.

6.3 ADDITIONAL EXPERIMENTS

We further evaluated our method on a diffusion-based image generation model, Stable Diffusion v2.1
(SD2.1), under large payload settings. Specifically, we fine-tune the decoder while keeping other
components in SD2.1 fixed. We randomly sample real images from the COCO dataset and encode
them into latent representations via the encoder. These latents serve as triggers, and the decoder is
optimized to reconstruct the latents and introduce the watermarks in reconstructed images. The fine-
tuning process is similar to that of a GAN, with the main difference being that, in GANs, the input
random noise, whereas in diffusion models, it is the latent representation of real images encoded by
the encoder.

As shown in Table 5, the results are consistent with those observed for StyleGAN2/3. As the num-
ber of message bits increases and the code rate decreases, PSNR drops gradually, reaching around
36.5dB with 262,144 (8192 × 32) watermarked bits. Besides, the watermark accuracy pw remains
over 0.99, and message accuracy pm stays at 1.00 for nearly all cases. At the lowest code rate
(1/32), we can observe a slight drop in pw (down to 0.94), but pm remains constantly robust with
our Polar codes strategy. These results further confirm the scalability and reliability of our method
for different kinds of generative models, and Polar codes always offer better robustness at low code
rates.

We also show some samples in Fig. 4, where images generated by watermark-free models are com-
pared with those from watermarked models across different architectures. The watermarked models
carry either 4096 or 8192 message bits at a 1/2 rate, we can observe the outputs remain visually in-
distinguishable from the original images, and the corresponding difference images reveal only minor
pixel-level changes. This demonstrates the high imperceptibility of our watermarking method.

The robustness results for SD2.1 under fine-tuning attacks (Table 6) are also consistent with those
observed for StyleGAN2 and StyleGAN3 (Table 4). Despite applying a stronger attack setting (10k
fine-tuning steps vs. 4k), watermark message accuracy pm remains high for small payloads (4096
bits), especially when using our Polar codes, achieving pm ≥ 0.90 across most code rates. Our Rep
codes show lower robustness, though they still perform reasonably well at higher code rates. For
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Table 5: Large payload results for Stable Diffusion v2.1.

Msg
Bits Type

Watermark Bits = Msg Bits / rate
rate=1/2 rate=1/4 rate=1/8 rate=1/16 rate=1/32

PSNR pw pm PSNR pw pm PSNR pw pm PSNR pw pm PSNR pw pm

4096 Rep 42.26 1.00 1.00 41.51 1.00 1.00 41.05 1.00 1.00 40.51 0.99 1.00 38.37 0.99 0.99
Polar 42.51 1.00 1.00 41.24 1.00 1.00 40.97 1.00 1.00 40.15 1.00 1.00 39.61 0.99 1.00

8192 Rep 41.60 1.00 1.00 41.04 1.00 1.00 40.29 1.00 1.00 38.94 1.00 1.00 36.52 0.94 0.98
Polar 41.51 1.00 1.00 40.85 0.99 1.00 39.86 0.99 1.00 39.67 0.99 1.00 37.18 0.94 1.00

larger payloads (8192 bits), message accuracy pm degrades more noticeably, particularly at lower
code rates. However, Polar codes demonstrate superior performance under these settings, achieving
perfect pm = 1.00 at rate=1/2 and maintaining pm ≥ 0.80 down to rate=1/16. These results indicate
that even under more aggressive fine-tuning attacks, our method remains robust for large payloads,
and Polar codes continue to offer the advantage in robustness.

Table 6: Robustness of watermarking against fine-tuning attacks (10k steps) for Stable Diffusion
v2.1. Values of pm exceeding 0.80 are highlighted in bold.

Msg
Bits Type

Watermark Bits = Msg Bits / rate
rate=1/2 rate=1/4 rate=1/8 rate=1/16 rate=1/32

pw pm pw pm pw pm pw pm pw pm

4096 Rep 0.89 0.84 0.81 0.72 0.78 0.82 0.72 0.82 0.66 0.80
Polar 0.89 0.95 0.82 0.96 0.80 0.93 0.72 0.90 0.67 0.62

8192 Rep 0.82 0.74 0.79 0.77 0.72 0.78 0.69 0.72 0.60 0.63
Polar 0.83 1.00 0.80 0.79 0.75 0.88 0.69 0.80 0.63 0.53

𝔃𝔃1

𝔃𝔃2
Type 4 : 1000< 𝔃𝔃 <1001
Type 3 : 100< 𝔃𝔃 <101
Type 2 : 10< 𝔃𝔃 <11
Type 1 : 0< 𝔃𝔃 <1

Figure 3: Different types of triggers with different probability density.

6.3.1 TRIGGER SELECTION

To analyze the impact of different types of triggers on fidelity, Bit Acc, and watermark robustness,
we study how the choice of the trigger input — whether it is drawn from the same domain as the
original input z or from a distinct one — affects the performance of the generator.

A concern is the overlap between trigger t and the normal input z. Specifically, when t is drawn from
a domain close to that of z, does this result in a degradation of image quality due to interference
in the input space? Conversely, if t lies far from the domain of z, does this reduce watermark
robustness due to the trigger being an outlier? To this end, we evaluate the effects of varying the
distribution of triggers t.

The default trigger is drawn from N (0, 1). To explore more diverse cases, we construct four addi-
tional trigger types. The construction of these triggers is as follows: (1) Random Unit Direction:
we generate random unit vectors t̂ with length of dm. (2) Controlled Scaling: we then scale t̂ by
a random factor drawn from the predefined interval to adjust its magnitude. Each interval defines a
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specific range of scaling factors that adjust the norm of t̂ : (0,1], [10,11], [100,101], and [1000,1001].
These operations ensure that all triggers lie along a random direction but vary in magnitude, thus
falling into different probability regions of the Gaussian distribution.

We show a toy example of trigger selection in Fig. 3, where z has 2 dimensions. The gray radial
region denotes the probability density of N (0, 1). As the trigger magnitude increases (from Type 1
to 4), the trigger moves further away from N (0, 1).

Table 7: Comparisons of different types of trigger. Results are based on 8192 message bits with
1/16 bit rate. Robustness stands for pm after fine-tuning attacks for 4k steps.

Models Metrics Clean Randn Type 1 Type 2 Type 3 Type 4

StyleGAN2
Bit Acc - 1.00 1.00 1.00 1.00 1.00

FID 4.21 4.38 4.32 4.61 4.49 4.31
Robustness - 0.84 0.85 0.82 0.83 0.83

StyleGAN3
Bit Acc - 0.99 0.98 0.98 0.99 0.98

FID 3.55 3.88 3.94 3.61 3.94 3.72
Robustness - 0.84 0.83 0.82 0.82 0.82

The results are reported in Table 7. We tested the default triggers (denoted by Randn), as well as 4
other levels of triggers. We can observe that different kinds of triggers can achieve high Bit Acc,
which remains above 0.98 for StyleGAN3 and 1.00 in most of the remaining cases. For fidelity,
the difference between different types of triggers is irrelevant. In terms of robustness, the results
indicate that while all trigger types perform similarly, the Randn trigger and the Type 1 achieve
slightly higher robustness across both models.

The above results show that whether the triggers lie in the input space or not does not have a relevant
effect. Therefore, we sample triggers from N (0, 1) in this work.
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Figure 4: Samples produced by different models and differences with the watermark-free model.
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