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ABSTRACT

The neural process (NP) is a family of computationally efficient models for learn-
ing distributions over functions. However, it suffers from under-fitting and shows
suboptimal performance in practice. Researchers have primarily focused on in-
corporating diverse structural inductive biases, e.g. attention or convolution, in
modeling. The topic of inference suboptimality and an analysis of the NP from
the optimization objective perspective has hardly been studied in earlier work.
To fix this issue, we propose a surrogate objective of the target log-likelihood of
the meta dataset within the expectation maximization framework. The resulting
model, referred to as the Self-normalized Importance weighted Neural Process
(SI-NP), can learn a more accurate functional prior and has an improvement guar-
antee concerning the target log-likelihood. Experimental results show the com-
petitive performance of SI-NP over other NPs objectives and illustrate that struc-
tural inductive biases, such as attention modules, can also augment our method to
achieve SOTA performance.

1 INTRODUCTION

Figure 1: Deep Latent Vari-
able Models for Neural Pro-
cesses. Here DC and DT re-
spectively denote the context
points for the functional prior
inference and the target points
for the function prediction.
The global latent variable z is
to summarize function prop-
erties. The model involves
a functional prior distribu-
tion p(z|DC ;ϑ) and a func-
tional generative distribution
p(DT |z;ϑ). Please refer to
Section (2) for detailed nota-
tion descriptions.

The combination of deep neural networks and stochastic processes
provides a promising framework for modeling data points with cor-
relations (Ghahramani, 2015). It exploits the high capacity of deep
neural networks and enables uncertainty quantification for distribu-
tions over functions.

As an example, we can look at the deep Gaussian process (Dami-
anou & Lawrence, 2013). However, the run-time complexity of
predictive distributions in Gaussian processes is cubic w.r.t. the
number of predicted data points. To circumvent this, Garnelo et al.
(2018a;b) developed the family of neural processes (NPs) as the al-
ternative, which can model more flexible function distributions and
capture predictive uncertainty at a lower computational cost.

In this paper, we study the vanilla NP as a deep latent variable
model and show the generative process in Fig. (1). In particular,
let us recap the inference methods used in vanilla NPs: It learns
to approximate the functional posterior qϕ(z) ≈ p(z|DT ;ϑ) and
a functional prior qϕ(z|DC) ≈ p(z|DC ;ϑ), which are permuta-
tion invariant to the order of data points. Then the predictive dis-
tribution for a data point [x∗, y∗] can be formulated in the form
Eqϕ(z|DC) [p(y∗|[x∗, z];ϑ)].
While the NP provides a computationally efficient framework for
modeling exchangeable stochastic processes, it exhibits underfitting
and fails to capture accurate uncertainty (Garnelo et al., 2018b; Kim
et al., 2019) in practice. To improve its generalization capability,
researchers have focused much attention on finding appropriate inductive biases, e.g. attention (Kim
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et al., 2019) and convolutional modules (Gordon et al., 2019; Kawano et al., 2020), Bayesian mixture
structures (Wang & van Hoof, 2022) or Bayesian hierarchical structures (Naderiparizi et al., 2020),
to incorporate in modeling.

Research Motivations. Most previous work (Garnelo et al., 2018a;b; Kim et al., 2019; Gordon
et al., 2019; Wang & van Hoof, 2022) ignores the reason why the vanilla NP suffers the perfor-
mance bottleneck and what kind of functional priors the vanilla NPs can represent. In particular,
we point out the remaining crucial issues that have not been sufficiently investigated in this domain,
respectively: (i) understanding the inference suboptimality of vanilla NPs (ii) quantifying statistical
traits of learned functional priors. To this end, we try to diagnose the vanilla NP from its optimiza-
tion objective. Our primary interest is to find a tractable way to optimize NPs and examine the
statistics of learned functional priors from diverse optimization objectives.

Developed Methods. To understand the inference suboptimality of vanilla NPs, we establish con-
nections among a collection of optimization objectives, e.g. approximate evidence lower bounds
(ELBOs) and Monte Carlo estimates of log-likelihoods, in Section (3). Then we formulate a
tractable optimization objective within the variational expectation maximization framework and ob-
tain the Self-normalized Importance weighted neural process (SI-NP) in Section (4).

Contributions. To summarize, our primary contributions are three-fold: (i) we analyze the inherent
inference sub-optimality of NPs from an optimization objective optimization perspective; (ii) we
demonstrate the equivalence of conditional NPs (Garnelo et al., 2018a) and SI-NPs with one Monte
Carlo sample estimate, which closely relates to the prior collapse in Definition (3.1); (iii) our devel-
oped SI-NPs have an improvement guarantee to the likelihood of meta dataset in optimization and
show a significant advantage over baselines with other objectives.

2 PRELIMINARIES

General Notations. We study NPs in a meta learning setup. T defines a set of tasks with τ a
sampled task. Let DC

τ = {(xi, yi)}ni=1 and DT
τ = {(xi, yi)}n+m

i=1 denote the context points for the
functional prior inference and the target points for the function prediction. The latent variable z is a
functional representation of a task τ with observed data points.

We refer to ϑ ∈ Θ as the parameters of the deep latent variable model for NPs. In detail, ϑ
consists of encoder parameters in a functional prior p(z|DC

τ ;ϑ) and decoder parameters in a gen-
erative distribution p(DT

τ |z;ϑ). ϕ refer to the parameters of a variational posterior distribution
qϕ(z) = qϕ(z|DT

τ ), while η refer to the parameters of a proposal distribution qη(z) in the fol-
lowing self-normalized importance sampling. Gaussian distributions with diagonal covariance ma-
trices are the default choice for these distributions, e.g. p(z|DC

τ ;ϑ) = N (z;µϑ(DC
τ ),Σϑ(DC

τ )),
qϕ(z) = N (z;µϕ(DT

τ ),Σϕ(DT
τ )) and qη(z|DT

τ ) = N (z;µη(DT
τ ),Ση(DT

τ )).

NPs as Exchangeable Stochastic Processes. In vanilla NPs, the element-wise generative process
can be translated into Eq. (1). Here the mean and variance functions are respectively denoted by µ
and Σ.

ρx1:n+m(y1:n+m) =

∫
p(z)

n+m∏
i=1

N (yi;µ(xi, z),Σ(xi, z))dz (1)

Based on the Kolmogorov extension theorem (Klenke, 2013) and de Finneti’s theorem (Kerns &
Székely, 2006), the above equation ρx1:n+m

(y1:n+m) is verified to be a well-defined exchangeable
stochastic process.

NPs in Meta Learning Tasks. Given a collection of tasks T , we can decompose the marginal
distribution p(DT

T |DC
T ;ϑ) with a global latent variable z in Eq. (2). Here the conditional distribution

p(z|DC
τ ;ϑ) with τ ∈ T is permutation invariant w.r.t. the order of data points and encodes the

functional prior in the generative process.

p(DT
T |DC

T ;ϑ)︸ ︷︷ ︸
Marginal Likelihood

=
∏
τ∈T

∫ p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

p(z|DC
τ ;ϑ)︸ ︷︷ ︸

Functional Prior

dz

 (2)
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Throughout the paper, the optimization objective of our interest is the marginal log-likelihood of a
meta learning dataset in Eq. (3). Furthermore, this applies to all NP variants.

max
ϑ

∑
τ∈T

ln

[∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

]
(3)

For the sake of simplicity, we consider one task τ to derive equations in the following section, which
corresponds to maximizing the following objective1.

L(ϑ) = ln

[∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

]
(4)

In the NP family (Garnelo et al., 2018a;b), the target data points are conditionally independent given
the global latent variable p(DT

τ |z;ϑ) =
∏n+m

i=1 p(yi|[xi, z];ϑ). The marginal distribution can be
interpreted as the infinite mixture of distributions when z is defined on a continuous domain. Now
learning distributions over functions is reduced to a probabilistic inference problem.

3 OPTIMIZATION GAPS AND STATISTICAL TRAITS

3.1 INFERENCE SUBOPTIMALITY IN VANILLA NPS

Previously, variational auto-encoder (VAE) models (Kingma & Welling, 2013; Rezende et al., 2014)
mostly set a prior distribution fixed, e.g. N (0, I), as the default to approximate the posterior. This
differs significantly from NPs family settings. On the one hand, the functional prior is learned in
NPs. On the other hand, the functional prior participates in the performance evaluation.

Exact ELBO for NPs. Following the essential variational inference operation, we can establish
connections between the exact ELBO and the log-likelihood in Eq. (5). Given the functional prior
p(z|DC

τ ;ϑ) and the generative distribution p(DT
τ |z;ϑ), the exact functional posterior can be obtained

by the Bayes rule

p(z|DT
τ ;ϑ) =

p(DT
τ |z;ϑ)p(z|DC

τ ;ϑ)∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

.

The denominator p(DT
τ |DC

τ ) makes exact inference infeasible, and the family of variational poste-
riors is introduced to approximate p(z|DT

τ ;ϑ). Here the variational posterior family is defined in a
parameterized set QΦ = {qϕ(z)|ϕ ∈ Φ}.

L(ϑ) = ln p(DT
τ |DC

τ ;ϑ) = Eqϕ(z)

[
ln
p(DT

τ , z|DC
τ ;ϑ)

qϕ(z)

]
︸ ︷︷ ︸

Exact ELBO

+DKL

[
qϕ(z) ∥ p(z|DT

τ ;ϑ)
]︸ ︷︷ ︸

Posterior Approximation Gap
(5)

When the variational posterior family is flexible enough, e.g. p(z|DT
τ ;ϑ) ∈ QΦ, the posterior

approximation gap can be reduced to an arbitrarily small quantity. In this case, maximizing the
exact ELBO in Eq. (6) increases the likelihood in Eq. (5) accordingly.

LELBO(ϑ, ϕ) = Eqϕ(z)

[
ln p(DT

τ |z;ϑ)
]
−DKL

[
qϕ(z) ∥ p(z|DC

τ ;ϑ)
]

(6)

Approximate ELBO for NPs. As previously mentioned, the inference is complicated since the
functional prior and the posterior in the exact ELBO are unknown. To this end, Garnelo et al.
(2018b) proposes a surrogate objective as an approximate ELBO for NPs. This is defined as Eq. (7)
to maximize.

LNP(ϑ, ϕ) = Eqϕ(z)

ln p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

−DKL

[
qϕ(z) ∥ qϕ(z|DC

τ )
]︸ ︷︷ ︸

Consistent Regularizer

(7)

The Kullback-Leibler divergence between the approximate posterior qϕ(z) and the approximate
prior qϕ(z|DC

τ ) is referred to as the consistent regularizer in this paper. We claim that the consistent
regularizer is the source of the inference suboptimality of vanilla NPs, and this is shown in Appendix
(D.2) as the proof of Remark (1).

1Meta training and testing phases are implemented in a batch of tasks consistent with Eq. (2)/(3).
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Remark 1 Eq. (7) is an invalid variational inference objective, and optimizing it cannot guarantee
to find optimal or locally optimal solutions for the maximization over

∑
τ∈T ln p(DT

τ |DC
τ ;ϑ).

Other Available Objectives in NPs Family. Now we turn to other tractable optimization objectives
in NPs. These include conditional neural processes (CNPs) (Garnelo et al., 2018a) and convolutional
neural processes (ConvNPs) (Foong et al., 2020) (or VERSA (Gordon et al., 2018)).

The CNP is also a typical model of the NPs family. The objective LCNP(ϑ) can be obtained when
the functional prior collapses into a Dirac delta distribution with ẑ a fixed real-value vector.

LCNP(ϑ) = Ep(z|DC
τ ;ϑ)

[
ln p(DT

τ |z;ϑ)
]

with p(z|DC
τ ;ϑ) = δ(|z − ẑ|) (8)

For the ConvNP, we do not focus on the convolutional structural inductive bias and concentrate more
on the optimization objective itself. Its objective in Eq. (9) is a biased Monte Carlo estimate of Eq.
(3), so we can maximize the log-likelihood of marginal distributions straightforwardly.

LML-NP(ϑ) = ln

[
1

B

B∑
b=1

exp
(
ln p(DT

τ |z(b);ϑ)
)]

with z(b) ∼ p(z|DC
τ ;ϑ) (9)

This is termed as Monte Carlo Maximum Likelihood LML-NP(ϑ)
2, and B is the number of used

Monte Carlo samples. Without the involvement of the consistent regularizer, both LCNP(ϑ) and
LML-NP(ϑ) will not encounter the approximation gap in practice.

3.2 EVALUATION CRITERIA & ASYMPTOTIC PERFORMANCE

As in (Le et al., 2018; Foong et al., 2020), we take a multi-sample Monte Carlo method to evaluate
the performance. This applies to both meta training and meta testing processes. In detail, NP models
need to run B times stochastic forward pass by sampling z(b) ∼ p(z|DC

τ ;ϑ) and then compute the
log-likelihoods as ln

[
1
B

∑B
b=1 p(DT

τ |z(b);ϑ)
]
.

After describing the evaluation criteria, we turn to a phenomenon of our interest. In Gaussian pro-
cesses (Ghahramani, 2015), with more observed context points, the epistemic uncertainty can be
decreased, and the predictive mean function is closer to the ground truth.

Similarly, this trait is also reflected in NPs family and can be quantitatively described as follows.
Given a measure of average predictive errors β, the number of context points n and the evaluated
dataset, DT

τ , the introduced metrics β(DT
τ ;n) are decreased when increasing n in prediction. In our

paper, we refer to this trait as the asymptotic behavior.

Definition 3.1 (Prior Collapse) The functional prior p(z|DC
τ ;ϑ) = N (z;µϑ(DC

τ ),Σϑ(DC
τ )) is

said to collapse in learning when the trace of the covariance matrix satisfies Tr[Σϑ(DC
τ )] =∑d

i=1 σ
2
i ≈ 0 with Σϑ(DC

τ ) = diag[σ2
1 , . . . , σ

2
d].

As previously mentioned, we can more precisely keep track of measures β(DT
τ ;n), such as predic-

tive log-likelihoods or mean square errors of data points, to assess the asymptotic behavior. The role
of latent variables z is to propagate the uncertainty about the partial observations in functions. And
Definition (3.1) provides a quantitative way to examine the extent of prior collapse in ML-NPs and
SI-NPs.

4 TRACTABLE OPTIMIZATION VIA EXPECTATION MAXIMIZATION

In this section, we propose alleviating the inference suboptimality of NPs with the help of the vari-
ational expectation maximization algorithm. The strategy is to formulate a surrogate optimization
objective and then execute the EM-steps in optimization. The benefit of our method is to guarantee
performance improvement w.r.t. the likelihood of meta dataset in iterations and finally result in at
least a local optimum.

2The Monte Carlo maximum likelihood corresponds to the optimization objective that in (Foong et al.,
2020) except that the convolutional inductive bias is removed.
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Convergence Iteration

Optimization Gap

-th Iteration-st Iteration

Figure 2: Illustration of Expectation Maximization for NPs. Green lines indicate the results after
the E-steps while the red lines are for the M-steps in Algorithm (1). In the convergence iteration,
the performance gap L(ϑH)− L(ϑH−1) is close to zero and the algorithm results in at least a local
optimal solution. Values of these quantities are increased from the left to the right.

4.1 VARIATIONAL EXPECTATION MAXIMIZATION FOR NPS

This part is to avoid the inference suboptimality of vanilla NPs as mentioned earlier. We retain the
neural architectures used in NPs. The basic idea is illustrated in Fig. (2). In detail, we iteratively
construct the lower bound L(ϑK) and maximize the surrogate function L(ϑ;ϑK). The referred
optimization gap is due to the complexity of objectives or the choice of optimizers and measures the
difference between converged (local) optimal functional prior and the theoretical optimal functional
prior. The general pseudo code is Algorithm (1).

Algorithm 1: Variational Expectation Maximization for NPs.
Input : Task distribution p(T ); Task batch size, Number of particles, Initialized ϑ and η.
Output: Meta-trained parameters ϑ and η.

1 for k = 1 to K do
2 E-step #1: k ← k + 1 and reset the variational posterior qϕ(z) = p(z|DT

τ ;ϑk) in Eq. (5);
3 if Use the Functional Prior as the Proposal then
4 Reset qη(z|DT

τ ) = p(z|DC
τ ;ϑk);

5 else
6 E-step #2: update the proposal ηk = argminη LKL(η; ηk−1, ϑk) in Eq. (29) according

to operations in Appendix (E.3.1);
7 end
8 M-step: optimize surrogate functions ϑk+1 = argmaxϑ LSI-NP(ϑ; ηk, ϑk) in Eq. (12);
9 end

4.1.1 SURROGATE FUNCTION FOR EXACT NPS

To make the optimization of meta dataset log-likelihood feasible, we construct surrogate functions
as the proxy in each iteration step. These meta learning surrogate functions with special properties
are closely connected with the original objective, and we leave this discussion in Appendix (E).

Here ϑk denotes the parameter of the latent variable model for NPs in the k-th iteration of variational
expectation maximization. Following the Algorithm (1), we take the E-step #1 by replacing the
approximate posterior in Eq. (6) with the last time updated p(z|DT

τ ;ϑk). And this results in the
following equation,

L(ϑ;ϑk) = Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ)− ln p(z|DT

τ ;ϑk)
]

(10)

where p(z|DT
τ ;ϑk) is the posterior distribution.

Proposition 1 The proposed meta learning function L(ϑ;ϑk) in Eq. (10) is a surrogate function
w.r.t. the log-likelihood of the meta learning dataset.

The above proposition is examined based on the definition in Appendix (E.1).

4.1.2 TRACTABLE OPTIMIZATION WITH SELF-NORMALIZED IMPORTANCE SAMPLING

Since the second term in Eq. (10) is constant in the iteration, we can drop it to simplify the surrogate
objective as the right side of the following equation.
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max
ϑ
L(ϑ;ϑk)⇔ max

ϑ
LEM(ϑ;ϑk) = Ep(z|DT

τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ)

]
(11)

Proposition 2 Optimizing this surrogate function of a batch of tasks via the variational expectation
maximization leads to an improvement guarantee w.r.t. the log-likelihood

∑
τ∈T ln p(DT

τ |DC
τ ;ϑ).

Still we cannot optimize LEM(ϑ;ϑk) since the expectation has no analytical solution and it is in-
tractable to sample from p(z|DT

τ ;ϑk) for Monte Carlo estimates3. Remember that the marginal
distribution p(DT

τ |DC
τ ;ϑk) is task dependent and can not be ignored in computing the posterior

p(z|DT
τ ;ϑk). To circumvent this, we introduce a proposal distribution qη(z|DT

τ ) and optimize the
objective via self-normalized importance sampling (Tokdar & Kass, 2010). The resulting meta learn-
ing surrogate function is as follows:

LEM(ϑ;ϑk) = Eqη

[
p(z|DT

τ ;ϑk)

qη(z|DT
τ )

ln p(DT
τ , z|DC

τ ;ϑ)

]
≈

B∑
b=1

ω̂(b) ln p(DT
τ , z

(b)|DC
τ ;ϑ)

=

B∑
b=1

ω̂(b)︸︷︷︸
Importance Weight

ln p(DT
τ |z(b);ϑ)︸ ︷︷ ︸

Generative Likelihood

+ ln p(z(b)|DC
τ ;ϑ)︸ ︷︷ ︸

Functional Prior Likelihood

 = LSI-NP(ϑ; ηk, ϑk)

(12)

where z(b) ∼ qηk
(z|DT

τ ), ω
(b) = exp

(
ln p(DT

τ |z(b);ϑk) + ln p(z(b)|DC
τ ;ϑk)− ln qηk

(z(b)|DT
τ )
)

and ω̂(b) = ω(b)∑B
b′=1

ω(b′) .

In terms of the first conditional term in Eq. (12), all the data points are conditional independent
and this is further expressed as ln p(DT

τ |z(b);ϑ) =
∑n+m

i=1 ln p(yi|[xi, z(b)];ϑ). In practice, the
selection of proposal distributions is empirically tricky, so we make the update of proposal distribu-
tions optional in implementations. In our experimental settings, we simply use the functional prior
p(z|DC

τ ;ϑ) as the default proposal distribution, which is competitive enough in performance.

Proposition 3 With one Monte Carlo sample used in Eq. (12), the presumed diagonal Gaussian
prior p(z|DC

τ ;ϑ) will collapse into a Dirac delta distribution in convergence. In this case, SI-NP
with the one sample Monte Carlo estimate in Eq. (13) is equivalent with CNP in Eq. (8).

LSI-NP(ϑ; ηk, ϑk) ≈ Ep(z|DC
τ ;ϑk)

ln p(DT
τ |z;ϑ)︸ ︷︷ ︸

Generative Likelihood

+ Ep(z|DC
τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]︸ ︷︷ ︸

Prior Collapse Term

(13)

The Proposition (3) establishes connections between SI-NPs and CNPs in optimization and we
attribute this to the collapse term in Eq. (13). Hence, CNP can be viewed as a particular example in
SI-NPs. The complete proof is based on limit analysis and can be found in Appendix (F.1).

4.2 SCALABLE TRAINING AND TESTING

As shown in Algorithm (1), the meta training process consists of two steps. We skip E-step #2 to
avoid unstable optimization observed in empirical results. By repeating E-step #1/M-step iterations
until convergence, the method can theoretically find at least a local optimal w.r.t. the log-likelihood
of meta learning dataset based on the Proposition (2).

Once the learning progress reaches the final convergence, we can make use of the learned functional
prior to obtain the predictive distribution. With B particles in prediction, the distribution can be
expressed as follows.

p(y|x,DC
τ ;ϑ) = Ep(z|DC

τ ;ϑ)p(y|[x, z];ϑ) ≈
1

B

B∑
b=1

p(y|[x, z(b)];ϑ) with z(b) ∼ p(z|DC
τ ;ϑ) (14)

3Though the exact posterior distribution p(z|DT ;ϑ) can be inferred by Bayes rule, the denominator∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz is not available.
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5 EXPERIMENTS AND ANALYSIS

In this section, two central questions are answered: (i) can variational EM based models SI-NPs,
achieve a better local optimum than vanilla NPs? (ii) what is the role of randomness in functional
priors? Specifically, we examine the influence of NPs optimization objectives on typical downstream
tasks and understand the functional prior quantitatively.

Baselines & Evaluations. Since our concentration is on optimization objectives in NPs family, we
compare to NP (Garnelo et al., 2018b), and CNP (Garnelo et al., 2018a), ML-NP (Foong et al.,
2020) in experiments. Note that our developed SI-NP and ML-NP (Foong et al., 2020) are impor-
tance weighted models, but the mechanisms in estimating weights are significantly different. As for
evaluations, we refer the reader to Sec. (3.2) for more information. Due to the page limit, additional
experimental results are attached in Appendix (H.5), which shows that SI-NPs can achieve SOTA
performance by adding attention networks.

5.1 SYNTHETIC REGRESSION
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Figure 3: Examples of Curve Fitting in RBF Kernel Cases. The plots report predictive mean
functions with ±3 standard deviations.

We create synthetic regression tasks by sampling functions from Gaussian processes. Three types of
kernels, respectively Matern− 5

2 , RBF, and Periodic, are used to generate diverse function distribu-
tions. In each iteration, a batch of data points from functions is randomly processed into the context
and the target for training models.

In meta testing, the same strategy is used to generate functions and data points. We report the
average log-likelihood results in Table (1). It shows SI-NPs outperform the vanilla NPs in all kernel
cases and are at least competitive with other baselines. ML-NPs are also superior to NPs, but they
cannot beat CNPs in RBF and Periodic cases. An illustration of fitted curves is given in Fig. (3):
compared to vanilla NPs, we notice that SI-NPs and ML-NPs can better match the ground truth and
capture the uncertainty between context data points.

Table 1: Test average log-likelihoods of target data points for 1-dimensional Gaussian process
dataset with various kernels (reported standard deviations in 5 runs). For each run, we randomly
sample 1000 functions as tasks to evaluate.

# Matern − 5
2

RBF Periodic

LGP (Oracle) 0.821±0.03 1.18±0.013 0.833±0.017

LNP (Garnelo et al., 2018b) -0.225±0.03 -0.183±0.03 -0.611±0.034

LCNP (Garnelo et al., 2018a) 0.295±0.017 0.463±0.023 -0.533±0.009

LML-NP (Foong et al., 2020) 0.303±0.013 0.439±0.009 -0.547±0.036

LSI-NP (ours) 0.305±0.006 0.493±0.007 -0.532±0.036

5.2 IMAGE COMPLETION

Similar to experiments in (Garnelo et al., 2018b; Kim et al., 2019), we perform image completion
experiments in this section. We implement NPs baselines in four commonly used datasets, namely
MNIST (Bottou et al., 1994), FMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009) and
SVHN (Sermanet et al., 2012). During the meta training, the goal is to complete images in which
some pixels have been randomly masked out. More precisely, we learn a latent variable model that
maps all pixel locations x ∈ [0, 1]2 to Gaussian distribution parameters of pixel values based on
the context pixel locations and values. Fig. (4) is an example of completion results from sampled
images. For implementation details, please refer to Appendix (G).
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Table 2: Test average log-likelihoods with reported standard deviations for image completion in
MNIST/FMNIST/SVHN/CIFAR10 (5 runs). We test the performance of different optimization ob-
jectives in both context data points and target data points. Except CNPs, we use 32 Monte Carlo
samples from the functional prior to evaluate the average log-likelihoods.

MNIST FMNIST SVHN CIFAR10
# context target context target context target context target

LNP 0.81±0.006 0.73±0.007 0.83±0.007 0.73±0.009 3.19±0.02 3.07±0.02 2.35±0.04 2.03±0.02

LCNP 1.05±0.005 0.99±0.008 0.95±0.007 0.90±0.009 3.57±0.003 3.48±0.004 2.71±0.004 2.53±0.006

LML-NP 1.06±0.004 0.99±0.006 0.94±0.008 0.89±0.007 3.51±0.008 3.43±0.006 2.60±0.005 2.41±0.005

LSI-NP (ours) 1.09±0.006 1.02±0.004 0.98±0.004 0.94±0.005 3.57±0.003 3.50±0.003 2.75±0.004 2.60±0.005

Figure 4: SI-NP Completed Im-
ages. From top to bottom in rows
are original images, context points,
learned predictive means and vari-
ances of sampled images.

In the evaluation, the number of context pixels is randomly
selected for each image in the dataset. We examine the perfor-
mance in a testing set of the above image datasets and report
the average log-likelihoods in Table (2). We can see that SI-
NP achieves the best performance in all image datasets. The
performance gaps between SI-NPs and NPs are remarkable.
Furthermore, the asymptotic behaviors of all baselines are il-
lustrated in Fig. (5). All models exhibit asymptotic behaviors
by varying the number of context points, and NPs mainly re-
sult in clearly lower log-likelihoods with 10 context points.
The observations with different number of context pixels are
consistent with the conclusion in Table (2).

Figure 5: Asymptotic Performance in Image Completion. We meta test pixel average log-
likelihoods with varying number of context points in image datasets. Context points are randomly
selected for each image in testing processes. For MNIST/FMNIST datasets, the numbers of context
pixels in testing are {10, 100, 300, 500, 700}. For CIFAR10/SVHN datasets, the numbers of context
pixels in testing are {10, 100, 300, 500, 800, 1000}.

Another critical finding is reported in Fig. (6), which examines whether the learned functional priors
collapse into the deterministic ones. This is based on the average computed trace of covariance
matrices in learned functional priors. In MNIST dataset, SI-NPs encounter the prior collapse, and
ML-NPs also obtain extremely lower trace values of covariance matrices. We attribute the prior
collapse in MNIST to its most superficial structures and limited semantic diversity, which results in
lower prior uncertainty. For image datasets with more complicated semantics, the computed trace
values in SI-NPs retain a reasonable interval. The scale of SI-NPs’ trace values coincides with the
semantics complexity of image datasets: CIFAR10>SVHN>FMNIST>MNIST. Another common
observation is that with context points increasing, both models’ trace values of functional priors in
most datasets decrease to a certain level.

The above reveals the meaning of the learned functional priors in SI-NPs: The functional prior ex-
hibits higher uncertainty with more complicated semantics. Hence, it has the potential of generating
functional samples with more diversity. For datasets with less rich semantics, the randomness of the
learned functional priors plays a less critical role, and the deterministic functional representation is
capable of function generation. Also, with more observations, the randomness of functional priors
can be reduced.
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Figure 6: Statistics of Learned Functional Priors in ML-NPs/SI-NPs. In meta testing, we still
vary the number of context points in image datasets. The trace of learned functional priors’ covari-
ance matrices Tr[Σϑ(DC

τ )] is computed based on p(z|DC
τ ;ϑ) = N (z;µϑ(DC

τ ),Σϑ(DC
τ )).

6 RELATED WORK

NPs Family. NPs are simple and flexible in model formulations, but they may suffer from un-
derfitting. Previous research focuses more on the use of structural inductive biases in NPs. (Kim
et al., 2019; 2021) improves the predictive performance by adding attention based local variables.
Translation equivariance and invariance are incorporated in modeling NPs with help of convolutions
(Gordon et al., 2019; Foong et al., 2020; Kawano et al., 2020). To find more compact functional
representations, the contrastive loss is used to regularize (C)NPs’ training (Gondal et al., 2021). Hi-
erarchical and mixture structures are also explored to induce diverse latent variables in NPs (Wang
& Van Hoof, 2020; Wang & van Hoof, 2022). Lee et al. (2020) combines boostrapping tricks with
neural processes to improve expressiveness of latent variables. Besides, NPs are applied to address
sequential decision-making problems (Galashov et al., 2019; Wang & Van Hoof, 2022). A summary
of these models is given in Appendix (D.3).

Expectation Maximization & Wake-Sleep Algorithms. For log-likelihood maximization prob-
lems with incomplete observations, expectation maximization (Bishop & Nasrabadi, 2006;
Balestriero et al., 2020) is a tractable approach in optimization. It consists of an E-step to opti-
mize the distribution of latent variables and a M-step to maximize the likelihood parameters. The
optimization of VAEs and variants is also built upon an EM framework (Ghojogh et al., 2021; Gao
et al., 2021). Our developed algorithm can be interpreted as EM for NPs. Another family of algo-
rithms related to our method is wake-sleep algorithms (Bornschein & Bengio, 2014; Eslami et al.,
2016; Dieng & Paisley, 2019; Le et al., 2020), where self-normalized importance sampling is used
in Monte Carlo estimates. In this case, our method can be also viewed as the extension of the
reweighted wake-sleep (RWS) algorithm to NPs with an improvement guarantee. Another differ-
ence lies in that optimizing a learnable functional prior is of most importance in NPs, while RWS
algorithms are mostly used in scenarios with a fixed prior.

7 CONCLUSION

Technical Discussions. In this paper, we study NPs family from an optimization objective per-
spective and analyze the inference suboptimality of vanilla NPs. Within the variational expectation
maximization framework, our developed SI-NP improves the target likelihood step by step to obtain
a more optimal functional prior. Besides, experimental results tell us the learned functional prior has
close connections with the number of context points and complexity of function families.

Existing Limitations. Compared to vanilla NPs, SI-NP requires more than one Monte Carlo sample
from the functional prior in training, which consumes more computations. Though intuitively, the
uncertainty of the functional prior can be forward propagated to the output distribution, the influence
of such uncertainty has not been mathematically studied.

Future Extensions. The SI-NP objective is regardless of neural architectures so that any structural
inductive bias can be incorporated in modeling. The combination can theoretically produce supe-
rior functional representation baselines in the domain (Please refer to Appendix (H.5) for extensive
experiments).
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A FREQUENTLY ASKED QUESTIONS

In this section, we list frequently asked questions from researchers who help proofread this
manuscript. These raised questions are crucial, so we include more detailed discussions here.
Meanwhile, we make extra efforts for readers to quickly understand our work and make slides
as follows https://anonymous.4open.science/r/SI_NPs_Slides-7C94/iclr_
submission_slides.pdf.

Learnable Proposal Distributions. The reason why we set the update of learnable proposal distri-
bution an optional choice is that we find it difficult to balance the optimization of Eq. (12) and Eq.
(31). This is non-trivial and assigning equal weights in optimization results in unstable performance
in experiments (Please refer to Section (H.1) for more discussion.). So, we leave the improvement
of the proposal distribution future research. Suppose a reasonable objective or at least a weight
scheduling mechanism for two objectives in two E-steps can be developed to stabilize the training.
In that case, SI-NPs are likely to achieve even better performance.

Influence of Functional Prior Collapse. Generally, the generated functions are more diverse when
the functional prior does not collapse: More randomness can be reflected from the functional prior,
and the uncertainty of partial observation can be propagated to the output space. However, in ex-
periments, we observe that for functions with more superficial structures, e.g. MNIST dataset, the
deterministic functional representation in CNPs is sufficient to generate functions of high quality. So
there is no consensus on the influence of the functional prior collapse on the generation performance.

Influence of the Number of Inference Particles in SI-NPs. With more inference particles (latent
variables), SI-NPs can avoid the prior collapse in some cases, but the cost is expensive for computa-
tions. To trade-off performance and computations, we set the required number of particles for meta
training in a small quantity, e.g. 8 particles for image completion tasks.

Connections between Different Optimization Objectives. In Table (3), we summarize the con-
nections of different objectives with the meta dataset log-likelihood L(ϑ). Note that LNP(ϑ, ϕ) is
not the exact ELBO of L(ϑ). LML-NP(ϑ) can also be viewed as the importance weighted method
with equal weights for all particles. Since the estimates of importance weights in SI-NPs exploit the
target observations and consider the difference in particles, this helps improve the model’s general-
ization capability. Though the self-normalized importance sampling makes SI-NPs’ estimates over
L(ϑ) biased, there is a probabilistic convergence guarantee towards the true integral quantity of our
interest (Please refer to Chapter 9 in the Book ”Monte Carlo Theory, Methods and Examples”
(Owen, 2013)).

Combination with Structural Inductive Biases. The primary research focus is on the optimality
of the different optimization objectives, and this study applies to more general stochastic processes
(stationary or nonstationary cases). Theoretically, the objective of SI-NPs can be combined with
most structural inductive biases in Table (4), especially when the function family is complicated.
For example, the scale parameter of Matern kernels also varies with kernel values, bringing more
variations in realizations. In this case, we guess a global latent variable is difficult to handle: SI-NPs
and ML-NPs might encounter a similar performance bottleneck from the empirical observations in
the main paper. To further improve the performance, we take the attention module (Kim et al., 2019)
as an example to conduct extensive experiments in Section (H.5). Since the meta learning exper-
iment is computationally expensive and time-consuming in training processes, we do not examine
combinations with other inductive biases in this paper.

GP Oracles in Synthetic Regression. Note that the GP oracle is computed in the form
ln p(y1:n+m|y1:n, x1:n+m), where the predictive distribution is mainly with a non-diagonal covari-
ance matrix (suggesting yn+m not independent in statistics). In comparison, the log-likelihood of
NPs family is computed in the form

∑n+m
i=1 ln p(yi|[xi, z];ϑ), where y1:n+m is conditional indepen-

dent w.r.t. the global latent variable z. Such a difference in computations causes the mentioned gap.
However, with a large neural model, such as the integration of attention networks in Section (H.5),
the quantified performance gap of GP Oracles and the log-likelihood of NPs family is well reduced.
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Table 3: A Summary of Optimization Objectives in NPs Family. We list the available optimization
objectives in Section (3)/(4). For Importance Weighted Estimates, multiple Monte Carlo samples
are required in meta training.

Optimization Objective Connection with L(ϑ) in Eq. (4) Importance Weighted Estimates
LNP(ϑ, ϕ) Approximate ELBO ✗
LCNP(ϑ) Biased Estimate ✗
LML-NP(ϑ) Biased Estimate ✓

LSI-NP (Ours) Biased Estimate ✓

B PROBABILISTIC GENERATIVE PROCESS IN NPS

Definition B.1 (Exchangeable Stochastic Processes) We denote a probability space of functions
by (Ω,F ,P). Let νx1,...,xN

be a probability measure on Rd with {x1, . . . , xN} a finite index set. The
process is called an exchangeable stochastic process S : X×Ω→ Rd such that νx1,...,xN

(F1×· · ·×
FN ) = P(Sx1 ∈ F1, . . . ,SxN

∈ FN ) if it satisfies exchangeable consistency and marginalization
consistency.

Here we can translate the generative process of NPs in the following mathematical way.

τ ∼ p(T ), z ∼ N (z;µϑ(DC
τ ),Σϑ(DC

τ ))

xi ∼ p(x), yi ∼ p(y|[xi, z];ϑ) ∀i ∈ {1, 2, . . . , n+m}
(15)

C PREDICTIVE DISTRIBUTIONS IN GPS & NPS

Here we take one-dimensional deep Gaussian processes (Dai et al., 2016) as an example. With
context points DC = {(xi, yi)}ni=1 and target points DT = {(xi, yi)}n+m

i=1 = [xT , yT ], the key
to applications is the predictive distribution p(f(xT )|DC , xT ) = N (yT ;µT ,ΣT ). The conditional
mean µT and covariance ΣT functions in Eq. (16) are permutation invariant to the order of context
points.

µT = mθ(xT ) + ΣT,CΣ
−1
C,C

(
yC −mθ(xC)

)
ΣT = ΣT,T − ΣT,CΣ

−1
C,CΣC,T

(16)

Here the covariance matrix denoted by Σ is computed with the context input xC = (x1, . . . , xn) ∈
Rn×d, the target input xT = (x1, . . . , xn+m) ∈ R(n+m)×d, and a kernel function ψ, e.g.
[ΣC,C ]i,j = ψ(xi, xj), mθ is the mean function mθ, and the context output is yC = (y1, . . . , yn) ∈
Rn. Nevertheless, the computation of matrix inversion in Eq. (16) makes the runtime complexity as
expensive as O((n+m)3).

D NPS FORMULATION & STRUCTURAL INDUCTIVE BIASES

D.1 PRIOR, POSTERIOR & PROPOSAL DISTRIBUTIONS

Since fast adaptation is achieved in an amortized way, which reduces the gradient updates w.r.t.
model parameters to learning function specific latent variables with meta trained neural networks.

Definition D.1 (Permutation Invariant Functions) Let Sn be an n-element permutation group.
For any permutation operator g ∈ Sn, the function is a bijective mapping from the order set
{1, 2, . . . , n} to itself:

g : [1, 2, . . . , n]→ [g1, g2, . . . , gn].

Then given a set of data points {x1, x2, . . . , xn}, the function Φ is said to be a permutation invariant
function if the following equation is satisfied ∀g ∈ Sn

Φ(g ◦ [x1, x2, . . . , xn]) = Φ([xg1 , xg2 , . . . , xgn ]) = Φ([x1, x2, . . . , xn]).
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The context points and the target points are treated as sets, so the amortized network should be
permutation invariant w.r.t. the order of data points.

Approximate Posterior Distribution. This is denoted by qϕ(z|DT
τ ) in this paper. Usually, the

approximate posterior is used in NPs (Garnelo et al., 2018b; Kim et al., 2019) and works as a proxy
for the non-analytical exact posterior p(z|DT

τ ;ϑ).

Prior Distribution. This is denoted by p(z|DC
τ ;ϑ) in this paper. Unlike the approximate prior

qϕ(z|DC
τ ) used in NPs, we use an exact functional prior in SI-NPs.

Proposal Distribution. This is denoted by qη(z|DT
τ ) in this paper. The role of the proposal distri-

bution resembles that of the approximate posterior in NPs. It is used to sample latent variables and
enables the computation of the importance weights in NPs.

Mean Pooling

Eembedding

Eembedding

Eembedding

...... ...
(a) Approximate or Learned Functional Priors

(b) Generative Distributions

or

Figure 7: Computational Diagram of Vanilla NPs. The blue one and the pink one are, respectively,
the encoder and the decoder structures in vanilla NPs. The approximate posterior, the approximate
prior, the learned prior, and the proposal distributions are in the same neural structure as the encoder.
For the generative distribution in the form of the decoder, the diagram shows one instance (x∗, y∗) ∈
DT

τ in a generation and the sampled global latent variable z ∼ p(z|DC
τ ;ϑ) or z ∼ qϕ(z|DC

τ ) is
shared across all data points in one realization.

In vanilla NPs, the latent variable z is inferred from a set of data points, and the distributions qϕ(z)
and qϕ(z|DC

τ ) are learned via functions permutation invariant to the order of data points. An exam-
ple module to parameterize qϕ(z|DC

τ ) = N (z;µC ,ΣC) can be Eq. (17) with
⊕

a mean pooling
operator and {hϕ, gϕ} encoder networks.

ri = hϕ([xi, yi]) ∀(xi, yi) ∈ DC
τ , rC =

N⊕
i=1

ri, [µC ,ΣC ] = gϕ(rC) (17)

The same with that in traditional stochastic processes, a realisation corresponds to a sampled func-
tion f(X) generated in a sequential way: z ∼ qϕ(z|DC

τ ), f(X) ∼ p(Y |X, z;ϑ).
Since this paper aims to study the influence of different optimization objectives concerning the NP
models, we retain the basic model set-up for all baselines. The Fig. (7) exhibits the neural ar-
chitecture of the vanilla NPs, and such a structure is also shared with ML-NPs and SI-NPs in our
paper.
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As previously mentioned, these methods can be straightforwardly incorporated with other structural
inductive biases (Kim et al., 2019; Gordon et al., 2019; Gondal et al., 2021; Wang & van Hoof,
2022). For example, in the following section, we augment all methods with attention networks (Kim
et al., 2019) and examine the resulting performance.

D.2 APPROXIMATE ELBOS IN NPS & PROOF OF REMARK 1

ln p(DT
τ |DC

τ ;ϑ) = ln

∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz (18a)

≥ Eqϕ(z)

[
ln p(DT

τ |z;ϑ)
]
−DKL

 qϕ(z)︸ ︷︷ ︸
Approximate Posterior

∥ p(z|DC
τ ;ϑ)︸ ︷︷ ︸

Functional Prior

 = LELBO(ϑ, ϕ) (18b)

≈ Eqϕ(z)

[
ln p(DT

τ |z;ϑ)
]
−DKL

 qϕ(z)︸ ︷︷ ︸
Approximate Posterior

∥ qϕ(z|DC
τ )︸ ︷︷ ︸

Approximate Prior

 = LNP(ϑ, ϕ) □ (18c)

For Eq. (18.b), remember that w.r.t. these VAE-like methods, it is hard to guarantee the improve-
ment of the evidence in each iteration when optimizing ELBO due to the existence of a posterior
approximation gap. Meanwhile, the form of the functional prior is unknown.

Proof D.1 (Remark 1) Vanilla NPs directly replace the real functional prior by the approximate
one qϕ(z|DC

τ ) and introduce the consistent regularizer in Eq. (7). We further introduce the prior
approximation gap in Eq. (19), in which the sign is undetermined.

LNP(ϑ, ϕ) = LELBO(ϑ, ϕ) + Eqϕ(z)

[
ln

qϕ(z|DC
τ )

p(z|DC
τ ;ϑ)

]
︸ ︷︷ ︸

Prior Approximation Gap

(19)

Based on decomposition in Eq. (6)/(19), we can find that there exists no consistent monotonic rela-
tionship between L(ϑ) and LNP(ϑ, ϕ). The invalid ELBO makes the optimization w.r.t. LNP(ϑ, ϕ)
not always improve log-likelihood L(ϑ).

L(ϑ) ≥ LELBO(ϑ, ϕ), L(ϑ) ≱ LNP(ϑ, ϕ) ∀ϑ ∈ Θ and ϕ ∈ Φ (20)

On the left side of Eq. (20), the ELBO of NPs can be bounded by the log-likelihood of meta learning
dataset. Optimizing the ELBO can guarantee the optimal or local optimal solution when the approx-
imation gap and the amortization gap are well closed. However, the right side of Eq. (20) implies
the previous commonly-used strategies, e.g. normalizing flows for richer variational posterior dis-
tributions (Rezende & Mohamed, 2015), auxiliary variables for augmented variational posterior
distributions (Maaløe et al., 2016) and more flexible prior distributions (Tomczak & Welling, 2018),
to close VAEs inference gaps (Cremer et al., 2018) will not guarantee the performance improvement
in a theoretical sense. In other words, the consistent regularizer in NPs is ill-posed for optimization.

D.3 SUMMARY OF NPS FAMILY

In this part, we summarize the encoder and decoders for typical NP variants and point out the
inductive biases behind them. The information is summarized in Table (4). We can see a variety
of inductive biases can be used to improve NPs, most of them from the model structure perspective
rather than the optimization objective.
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Table 4: Summary of Typical Neural Process Related Models (Meta-Testing Scenarios). The recog-
nition model and the generative model respectively correspond to the encoder and the decoder in the
family of neural processes. Here [xC , yC ] are context data points and we consider (x∗, y∗) a data
point in target dataset.

Models Recognition Model Generative Model Inductive Bias

CNP (Garnelo et al., 2018a) z = fϕ(xC , yC) pθ(y∗|[x∗, z]) conditional functional

NP (Garnelo et al., 2018b) qϕ(z|[xC , yC ]) pθ(y∗|[x∗, z]) global functional

ANP (Kim et al., 2019; 2021) qϕ1(z|[xC , yC ]) pθ(y∗|[x∗, z, z∗]) global functional
fϕ2(z∗|[xC , yC ], x∗) local embedding

FCRL (Gondal et al., 2021) fϕ(z|[xC , yC ]) pθ(y∗|[x∗, z]) contrastive functional

ConvNP (Foong et al., 2020) pϕ(z|[xC , yC ]) pθ(y∗|[x∗, z]) convolutional functional

Conv-CNP (Gordon et al., 2019) fϕ(z∗|[xC , yC ], x∗) pθ(y∗|[x∗, z∗]) convolutional functional

FNP (Louizos et al., 2019) fϕ(z∗|[xC , yC ], x∗) pθ(y∗|z∗) latent DAG

D.4 INFERENCE GAPS

In this section, we apply the trick of inference gap decomposition (Cremer et al., 2018) to understand
vanilla NPs. Here we denote the approximate inference gap byDAI

KL and the posterior approximation
gap by DPA

KL in Table (5).

Since it is infeasible to obtain the exact form for the functional posterior, we cannot directly close
the mentioned approximate gap, and approximate methods are used to learn them. In vanilla NPs,
the consistent regularizer in Eq. (7) works as the surrogate for the ELBO. But based on our analysis,
closing this surrogate gap cannot lead to a theoretically optimal solution of functional priors.

Table 5: Inference Gaps in vanilla NPs. The ↓ indicates the minimization to obtain the optimal
inference solution. The sign − − means not applicable in deriving equivalent KL divergence form.
The sign ∗ indicates the optimal posterior approximation in the family of variational distributions
ϕ∗ = argminϕ∈ΦDKL

[
qϕ(z) ∥ p(z|DT

τ ;ϑ
∗)
]
. Here ϑ∗ consists of the optimal parameters in priors

p(z|DC
τ ;ϑ

∗) and the conditional distribution p(DT
τ |z;ϑ∗).

Terms Optimization Objective KL Divergence
or Gaps

Approximate Inference L(ϑ∗)− LELBO(ϑ
∗, ϕ) ↓ DKL

[
qϕ(z) ∥ p(z∗|DT

τ ;ϑ)
]

Posterior Approximation L(ϑ∗)− LELBO(ϑ
∗, ϕ∗) ↓ DKL

[
qϕ∗(z) ∥ p(z|DT

τ ;ϑ
∗)
]

Amortization LELBO(ϑ
∗, ϕ∗)− LELBO(ϑ

∗, ϕ) ↓ DAI
KL −DPA

KL

NP Prior Approximation |LELBO(ϑ
∗, ϕ∗)− LNP(ϑ

∗, ϕ∗)| −
Surrogate Likelihood L(ϑ∗)− L(ϑ;ϑk) ↓ L(ϑ∗)− L(ϑH)

E FORMULATION OF VARIATIONAL EXPECTATION MAXIMIZATION METHOD

In this section, we detail the progress of optimizing the NP model with the help of variational ex-
pectation maximization algorithms. The concept of meta learning surrogate functions is introduced,
and NPs are verified. Meanwhile, the improvement guarantee as well as other concerning technical
points are included to better understand our method.
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E.1 PROOF OF IMPROVEMENT GUARANTEE USING VARIATIONAL EXPECTATION
MAXIMIZATION

E.1.1 META LEARNING SURROGATE FUNCTION

Definition E.1 (Surrogate Function) 4 Given the objective function f(ϑ) to maximize, surrogate
functions g(ϑ;ϑk) w.r.t. f(ϑ) are a family of functions with the following properties.

• Both f(ϑ) and g(ϑ;ϑk) are C2-functions, which means f(ϑ) has first order and second
order derivatives of those functions exist and these are smooth in the domain of the function.

• The following two formulas hold:

g(ϑ;ϑk) ≤ f(ϑ) ∀ϑ; g(ϑk;ϑk) = f(ϑk). (21)

When the objective function f(ϑ) to maximize is complicated, e.g. multi-modal likelihood func-
tions, a surrogate function g(ϑ;ϑk) enables an easier proxy implementation with convergence
guarantee to at least the local optimal. To see this point, recall the properties of the surrogate
function g(ϑk;ϑk) = f(ϑk). The update rule for the surrogate function follows that ϑk+1 =
argmaxϑ g(ϑ;ϑk). And this results in f(ϑk+1) ≥ g(ϑk+1;ϑk) ≥ f(ϑk).
Recall the following function L(ϑ;ϑk) in the main paper.

L(ϑ;ϑk) =
∑
τ∈T

Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ , z|DC
τ ;ϑ)− ln p(z|DT

τ ;ϑk)
]

(22)

The expectation operation in the k-th iteration step corresponds to E-step : qϕ(z|DC
τ ) =

pϑk
(z|DC

τ ), while the maximization operation in the k-th iteration step updates the parameter as
M-step : ϑk+1 = argmaxϑ L(ϑ;ϑk).

ln p(DT
τ |DC

τ ;ϑk)︸ ︷︷ ︸
Model Evidence

=
E-step

L(ϑk;ϑk) ≤
M-step

L(ϑk+1;ϑk) (23a)

≤ L(ϑk+1;ϑk) +DKL[p(z|DT
τ ;ϑk) ∥ p(z|DT

τ ;ϑk+1)] = ln p(DT
τ |DC

τ ;ϑk+1)︸ ︷︷ ︸
Model Evidence

□ (23b)

E.1.2 IMPROVEMENT GUARANTEE

As illustrated in Eq.s (23), the surrogate function L(ϑ;ϑk) is bounded by two log-likelihoods. Over
the process of iterations, the log-likelihood is gradually increased to the final convergence.

ln p(DT
τ |DC

τ ;ϑ1) ≤ L(ϑ2;ϑ1) ≤ ln p(DT
τ |DC

τ ;ϑ2) ≤ · · · ≤ L(ϑH ;ϑH−1) ≤ ln p(DT
τ |DC

τ ;ϑH)
(24)

This indicates that the finally updated parameters of the surrogate function are exactly (sub-)optimal
ones for the evidence. Based on these rules, directly optimizing the surrogate function step by step
can theoretically guarantee the finding of optimal or at least a local optimal parameters.

E.2 IMPORTANCE SAMPLING IN A VARIATIONAL EM ALGORITHM

Though the conditional marginal distribution p(DT
τ |DC

τ ;ϑk) is not analytical, the importance sam-
pling trick can be used to estimate the result with the help of a proposal distribution qη(z|DT

τ ).

4Note that the surrogate function above is defined in the Minorize-Maximization (MM) algorithm sense
(Hunter & Lange, 2004).
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p(DT
τ |DC

τ ;ϑk) =

∫
p(DT

τ , z|DC
τ ;ϑk)dz =

∫
qη(z|DT

τ )
p(DT

τ , z|DC
τ ;ϑk)

qη(z|DT
τ )

dz

≈ 1

B

B∑
b=1

p(DT
τ , z

(b)|DC
τ ;ϑk)

qη(z(b)|DT
τ )

=
1

B

B∑
b=1

ω(b),

with z(b) ∼ qη(z|DT
τ ) and ω(b) =

p(DT
τ , z

(b)|DC
τ ;ϑk)

qη(z(b)|DT
τ )

(25)

Especially, the joint distribution is computed via the decomposition that p(DT
τ , z

(b)|DC
τ ;ϑk) =

p(z(b)|DC
τ ;ϑk)p(DT

τ |z(b);ϑk) with p(DT
τ |z(b);ϑk) =

∏n+m
i=1 p(yi|[xi, z(b)];ϑk).

With the above equation, the intractable optimization objective is transformed into a feasible one.

LEM(ϑ;ϑk) = Ep(z|DT
τ ;ϑk) ln p(D

T
τ , z|DC

τ ;ϑ) =

∫
p(DT

τ , z|DC
τ ;ϑk)

p(DT
τ |DC

τ ;ϑk)
ln p(DT

τ , z|DC
τ ;ϑ)dz

(26a)

=

∫
qη(z|DT

τ )
p(DT

τ , z|DC
τ ;ϑk)

qη(z|DT
τ )p(DT

τ |DC
τ ;ϑk)

ln p(DT
τ , z|DC

τ ;ϑ)dz

(26b)

≈ 1

B

B∑
b=1

ω(b)

p(DT
τ |DC

τ ;ϑk)
ln p(DT

τ , z
(b)|DC

τ ;ϑ)

(26c)

=

B∑
b=1

ω(b)∑B
b′=1 ω

(b′)
ln p(DT

τ , z
(b)|DC

τ ;ϑ) =

B∑
b=1

ω̂(b) ln p(DT
τ , z

(b)|DC
τ ;ϑ) = LSI-NP(ϑ, η;ϑk)

(26d)

We can expand the term inside the expectation in Eq (26.a) as follows.

p(DT
τ , z

(b)|DC
τ ;ϑ) = p(z(b)|DC

τ ;ϑ)p(DT
τ |z(b);ϑ) (27)

As for the exact posterior p(z|DT
τ ;ϑk), we can get the following expansion.

p(z|DT
τ ;ϑk) =

p(z,DT
τ ;ϑk)∫

p(z,DT
τ ;ϑk)dz

=
p(z|DC

τ ;ϑk)p(DT
τ |z;ϑk)∫

p(z|DC
τ ;ϑk)p(DT

τ |z;ϑk)dz
(28)

The distribution has the complicated denominator and this makes it infeasible to directly sample
from the conditional distribution.

E.3 OPTIMIZATION OBJECTIVE WITH PROPOSAL DISTRIBUTIONS

This subsection shows the mentioned optional optimization step E-step #2 in Algorithm (1).

E.3.1 UPDATE OF PROPOSAL DISTRIBUTIONS (OPTIONAL)

The use of proposal distribution qη enables sampling z for Monte Carlo estimates. Another role
of the proposal distribution is to work as a proxy for the posterior p(z|DT

τ ;ϑk), and the variance
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Vqη

[
p(z|DT

τ ;ϑk)
qη(z|DT

τ )
ln p(DT

τ , z|DC
τ ;ϑ)

]
is expected to be lower for stable training. So a reasonable

optimization objective is to get two distributions as close as each other, e.g. minimizing the Kull-
back–Leibler divergence DKL[p(z|DT

τ ;ϑk) ∥ qη(z|DT
τ )].

This treatment is equivalent to wake phase updates in (Bornschein & Bengio, 2014). We can ob-
tain the optimization objective on the right side of Eq. (29) with the help of the self-normalized
importance sampling.

min
η
DKL[p(z|DT

τ ;ϑk) ∥ qη(z|DT
τ )]

⇔ min
η
LKL(η; ηk−1, ϑk) = −

B∑
b=1

ω̂(b) ln qη(z
(b)|DT

τ )
(29)

Here the self-normalized importance weights {ω̂(b)}Bb=1 inside the above equation are the same
as that in Eq. (12). Also note that the the denominator 1

B

∑B
b′=1 ω

(b′) of the weight relates to the
estimate of p(DT

τ |DC
τ ), which has biases with limited samples at the beginning of training. However,

with the improvement of approximation, the bias can be decreased accordingly (Zimmermann et al.,
2021).

E.3.2 DERIVATION OF THE PROPOSAL UPDATE OBJECTIVE

It is trivial to see the following equation since the term Ep(z|DT
τ ;ϑk)

[
p(z|DT

τ ;ϑk)
]

is a constant.

min
η
DKL[p(z|DT

τ ;ϑk) ∥ qη(z|DT
τ )]⇔ min

η
−Ep(z|DT

τ ;ϑk)[ln qη(z|D
T
τ )] (30)

Once again, we apply self-normalized importance sampling to the right side of Eq. (30). With the
same set of sampled latent variables, the reweighted objective w.r.t. the proposal distribution can be
derived.

min
η
−Ep(z|DT

τ ;ϑk)[ln qη(z|D
T
τ )] ≈ −

B∑
b=1

ω̂(b) ln qη(z
(b)|DT

τ ) = LKL(η; ηk−1, ϑk) (31)

E.4 GRADIENT ESTIMATES IN VARIATIONAL EM

In the E-step #2, note that the model parameter is fixed as ϑk, we can estimate the gradient of η
w.r.t. LKL(η; ηk−1, ϑk) in the following way. This operation is to close the divergence between the
proposal distribution and the exact posterior distribution.

∂LKL(η; ηk−1, ϑk)

∂η
=

B∑
b=1

ω̂(b)

(
∂ ln qη(z

(b)|DT
τ )

∂η

)
(32)

In the M-step, note that the normalized importance weights are constant, the proposal distribu-
tion is fixed, and the gradient w.r.t. LSI-NP(ϑ; ηk, ϑk) can be estimated in a straightforward way as
follows.

∂LSI-NP(ϑ; ηk, ϑk)

∂ϑ
=

B∑
b=1

ω̂(b)

(
∂ ln p(z(b)|DC

τ ;ϑ)

∂ϑ
+
∂ ln p(DT

τ |z(b);ϑ)
∂ϑ

)
(33)

We can see the role of normalized importance weights in gradient estimates from Eq. (33): remem-
ber that ω̂(b) ∝ p(DT

τ |z(b);ϑk) in the k-th iteration when the functional prior works as the proposal
distribution, so the more gradients will be allocated to those particles with higher generative likeli-
hoods. Meanwhile, the normalized importance weights influence the optimization of the functional
prior distribution so that the functional prior can match the best set of particles well.
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F CONNECTION WITH CNPS

F.1 PRIOR COLLAPSE IN SI-NPS WITH ONE MONTE CARLO SAMPLE

Theorem 1 (L’Hôpital’s Rule (Hospital, 1696)) Let f(x) and g(x) be two functions differentiable
on an open interval I except possibly at a point c contained in I. If limx→c f(x) = limx→c g(x) =

∞, and
(

1
g(x)f(x)

)′
̸= 0 with ∀x ∈ I and x ̸= c, we can have the following limit equation.

lim
x→c

f(x)− g(x) = lim
x→c

1
g(x) −

1
f(x)

1
g(x)f(x)

= lim
x→c

(
1

g(x) −
1

f(x)

)′
(

1
g(x)f(x)

)′ (34)

Proof F.1 (Proposition 3) Note that in our default setup of SI-NPs, the functional prior works as
the proposal distribution to sample the latent variable.

Let z ∈ Rd be the latent variable for a diagonal Gaussian conditional prior p(z|DC
τ ;ϑ) =

N (z;µϑ(DC
τ ),Σϑ(DC

τ )). Here the learned mean and the covariance matrix are simply denoted
by µϑ = [µ1, . . . , µd]

T ∈ Rd and Σϑ = diag
[
σ2
1 , . . . , σ

2
d

]
.

With one Monte Carlo sample ẑ = [ẑ1, . . . , ẑd]
T from the conditional prior, it can be written as

ẑ = µϑ + ϵ̂Σ
1
2

ϑ , ϵ̂ ∼ N (0, Id) with help of a reparameterization trick (Kingma & Welling, 2013).

Ep(z|DC
τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]
≈ ln p(z|DC

τ ;ϑ) = −
1

2
ln(2π) +

d∑
i=1

[
− lnσi −

(µi − ẑi)2

2σ2
i

]
(35)

Eq. (35) is the result of one Monte Carlo estimate, termed as the collapse term in the main paper.
Built up on these, we rewrite the SI-NP optimization objective to maximize as Eq. (36).

LSI-NP = Ep(z|DC
τ ;ϑ)

[
ln p(DT

τ |z;ϑ)
]
+ Ep(z|DC

τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]

≈
n+m∑
i=1

ln p(yi|[xi, µϑ + ϵ̂Σ
1
2

ϑ ;ϑ])−

(
1

2
ln(2π) +

d∑
i=1

[
lnσi +

(µi − ẑi)2

2σ2
i

]) (36)

Now we prove that when the learned variance parameter {σi}di=1 collapse into the value zero, the
optimization objective in Eq. (35) and Eq. (36) can be maximized. To simplify the notation, we
put the mean variable µϑ aside, focus more on the variance variable Σϑ and let the value µi−ẑi

2
denoted by κi. We can directly apply L’Hôpital’s Rule in Theorem (1) to these quantities and
obtain the following equations.

lim
σi→0

− lnσi −
κi
σ2
i

= lim
σi→0

σ2
i

κi
+ 1

lnσi

− σ2
i

κi lnσi

= lim
σi→0

σ2
i lnσi + κi
−σ2

i

= lim
σi→0

(
σ2
i lnσi + κi

)′
(−σ2

i )
′ = lim

σi→0

2σi lnσi + σi
−2σi

= lim
σi→0

− lnσi −
1

2
= +∞

(37)

Putting them together, the Gaussian latent variable will finally collapse into a Dirac delta distri-
bution and this demonstrates the equivalence between SI-NP with one Monte Carlo sample and
CNP.

F.2 EFFECT OF ADJUSTING COEFFICIENTS OF THE PRIOR REGULARIZER

Remark 2 Either increasing the number of Monte Carlo samples or lower the weight of the collapse
term in SI-NPs can effectively avoid the prior collapse.
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With increase of Monte Carlo samples, we can see the scale of the generative term outweights
that of the collapse term, which indicates more weights are put in the gradient w.r.t. the variance
parameters to maximize the generative log-likelihood. In this way, it can naturally avoid the prior
collapse caused by the second term.

Next, we analyze the influence of the coefficients α with α ∈ (0, 1) for the generative and functional
prior likelihoods. To this end, we go back to the original meta learning objective and introduce the
α-dependent one as L(ϑ;α) in Eq. (38).

max
ϑ

Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ |z;ϑ)
]
+ (1− α)Ep(z|DT

τ ;ϑk)

[
ln p(z|DC

τ ;ϑ)
]
= L(ϑ;α)

⇔ max
ϑ

Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ |z;ϑ)
]
+ (1− α)Ep(z|DT

τ ;ϑk)

[
ln

p(z|DC
τ ;ϑ)

p(z|DT
τ ;ϑk)

+ ln p(z|DT
τ ;ϑk)

]
⇔ max

ϑ
Ep(z|DT

τ ;ϑk)

[
ln p(DT

τ |z;ϑ)
]
+ (1− α)DKL

[
p(z|DT

τ ;ϑk) ∥ p(z|DC
τ ;ϑ)

]
+(1− α)Ep(z|DT

τ ;ϑk)

[
p(z|DT

τ ;ϑk)
]︸ ︷︷ ︸

Constant

⇔ max
ϑ

Ep(z|DT
τ ;ϑk)

[
ln p(DT

τ |z;ϑ)
]
+ (1− α)DKL

[
p(z|DT

τ ;ϑk) ∥ p(z|DC
τ ;ϑ)

]
(38)

As noticed in L(ϑ;α), the KL divergence constraint enforces the functional prior p(z|DC
τ ;ϑ) to be

close to the learned functional posterior p(z|DT
τ ;ϑk). Since the functional posterior is derived from

the full observation of a function, this suggests that the relation of conditional entropy H(z|DT
τ ) ≤

H(z|DC
τ ). This trait is also empirically supported by Fig. (6), where the functional priors with

fewer context points exhibit higher values in the trace of the covariance matrices. As consequence,
larger α values impose less constraint on the KL divergence term and results in higher entropy of
p(z|DC

τ ;ϑ).

G EXPERIMENTAL SETUP & IMPLEMENTATION DETAILS

In all experiments, we use Adam (Kingma & Welling, 2013) as the default optimizer for all experi-
ments. Pytorch5 works as the toolkit to program and run experiments.

The implementation of vanilla NPs/CNPs/ANPs follows the repository6 and related work (Garnelo
et al., 2018a;b; Kim et al., 2019) in DeepMind. The implementation of ML-NPs is based on that in
(Foong et al., 2020) except that the convolution modules are removed for the fair comparison since
the inference objective is our research focus. To enable researchers to implement our developed
method in studies, we leave the anonymous Github link here: https://anonymous.4open.
science/r/SI_NPs-C832, where we provide an example of SI-NPs. The full code implemen-
tations of our method will be released in the final version.

G.1 META LEARNING DATASETS

Synthetic Regression. We use the Gaussian process simulator to generate different stochastic func-
tions. Three types of kernels are used to formulate diverse Gaussian processes. This is the same as
that in (Lee et al., 2020; Kawano et al., 2020).

For each task, we generate x from the uniform distribution U [−2.0, 2.0] and the mean function is
zero. The number of context points is drawn from n ∼ U [3, 47] and the number of target points is
n+m with m ∼ U [3, 50−n]. The following kernel functions specify different Gaussian processes
in this paper.

5https://pytorch.org/
6https://github.com/deepmind/neural-processes
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• Matern − 5
2 kernel:

k(x, x′) = s2

(
1 +

√
5d

l
+

5d2

3l2

)
exp

(
−
√
5d

l

)
with d = 4|x− x′|, s ∼ U [0.1, 1.0] and l ∼ U [0.1, 0.6];

• RBF kernel:

k(x, x′) = s2 exp

(
− (x− x′)2

2l2

)
with s ∼ U [0.1, 1.0] and l ∼ U [0.1, 0.6]

• Periodic kernel:

k(x, x′) = s2 exp

−2 sin2(π||x−x′||2
p )

l2


with s ∼ U [0.1, 1.0], l ∼ U [0.1, 0.6] and p ∼ U [0.1, 0.5]

Image Datasets. Benchmark image datasets include MNIST (Bottou et al., 1994), FMNIST (Xiao
et al., 2017), CIFAR10 (Krizhevsky et al., 2009) and SVHN (Sermanet et al., 2012). In meta training
and testing, we randomly select the number of context pixels n for each sampled batch of images
(n ∼ U [1, 784] in MNIST/FMNIST and n ∼ U [1, 1023] in CIFAR10/SVHN). For pixel values,
they are transformed to normalized Tensors via pytorch package. All other set-ups are the same as
in (Garnelo et al., 2018a;b; Kim et al., 2019).

Sim2Real Dataset. This is a part of additional experiments. We retain the preprocessing and meta
training set-up in (Gordon et al., 2019). The meta training datasets include the Lotka-Volterra sim-
ulation samples and Predator-Prey’s real-world dataset. All datasets are normalized before the meta
training process. Please refer to (Gordon et al., 2019) for more details.

G.2 NEURAL ARCHITECTURES & OPTIMIZATIONS & EVALUATION SET-UP

Synthetic Regression. In terms of neural architectures, we use the same setup as that in (Gordon
et al., 2019; Lee et al., 2020) for all baselines. The dimension of latent variables is 128. The
Encoder is a two hidden layer neural network with 128 neuron units for each layer. The Decoder
is a one hidden layer neural network with 128 neuron units. The optimizer’s learning rate is 5e− 4.
For all methods, we sample 100 tasks as one batch to train in each iteration, and the number of
iteration steps in meta training is 100000. In meta training, the numbers of Monte Carlo samples for
ML-NPs and SI-NPs are 16, while those in meta testing are 32.

Image Completion. The setup is the same with that in (Garnelo et al., 2018a) and works for all
NPs variants. As default, we set the dimension of latent variables z as 128 for all baselines. For
all baselines, the Encoder is constituted with three hidden layers (128 neuron units each). The
Decoder has five hidden layers (128 neuron units each) as well. The learning rate for the optimizer
is 5e− 4. The training batch size for all images is 4 and we meta train the model until convergence
(the maximum epoch number for MNIST/FMNIST is 100, and that for CIFAR10/SVHN is 200,
and early stop is used when it reaches convergence). In meta training, the numbers of Monte Carlo
samples are 16 for ML-NPs and 8 for SI-NPs (We find that 8 Monte Carlo samples are enough for
SI-NPs to obtain competitive performance and increasing the number of particles will require more
computations but the performance improvement is minor). In meta testing, the Monte Carlo sample
numbers are 32 for latent variable models.

Sim2Real. We use the same setup as that in (Gordon et al., 2019; Lee et al., 2020) for all baselines.
The neural architectures are the same as the Synthetic regression settings, except the dimension of
output variables changes to 2. For other settings, please refer to (Gordon et al., 2019) for more
details.

As in (Garnelo et al., 2018a), for the Decoder in all models, we use the modified standard deviation
variable σ̂i = 0.1 + 0.9 ∗ σi for the output distribution p(yi|xi, z;ϑ) in all benchmarks, where
σi = MLPϑ(xi, zi).
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Evaluation Set-up of Datasets. For Table (1)/(2) in meta testing, we keep the same set-up as (Foong
et al., 2020; Gordon et al., 2019; Lee et al., 2020; Kawano et al., 2020), which randomly select the
number of context points in each batch and average the testing results of all batches as the final
result. The range of the number of context points can be found in the above subsection.

H MORE EXPERIMENTAL RESULTS

H.1 SI-NPS WITH A LEARNABLE PROPOSAL DISTRIBUTION

We have investigated the use of a learnable proposal distribution in SI-NPs. In this case, an additional
proposal distribution qη(z) = N (z;µη(DT

τ ),Ση(DT
τ )) is introduced to sample the latent variables.

The neural architecture of such a proposal distribution is the same as the approximate posterior in
vanilla NPs, but the role is entirely distinguished.

Unfortunately, we find that it is difficult to stabilize performance even though coefficients of the
generative log-likelihood ln p(DT

τ |z(b);ϑ), the functional prior log-likelihood ln p(z(b)|DC
τ ;ϑ) and

the proposal likelihood ln qη(z
(b)|DT

τ ) are tuned in a lot of trials. Since there is no convergence
solution when assigning the same weights to minimize Eq. (31) and the negative of Eq. (12) with a
shared optimizer, we do not report the result here.

H.2 EVALUATION WITH MORE MONTE CARLO PARTICLES

In the main paper, evaluating the exact likelihood L(ϑ) = ln
[∫
p(DT

τ |z;ϑ)p(z|DC
τ ;ϑ)dz

]
is in-

tractable for the studied latent variable models, so we report the evaluation results by setting B the
number of the Monte Carlo particles in Eq. (39) fixed.

LMC(ϑ;B) = ln

[
1

B

B∑
b=1

exp
(
ln p(DT

τ |z(b);ϑ)
)]

with z(b) ∼ p(z|DC
τ ;ϑ) (39)

Empirical Explanation. We set B = 32 in evaluation based on the empirical observations be-
cause the evaluated likelihood for all experiments nearly reaches the convergence or does not sig-
nificantly increase. To see this point, we give the illustration of the evaluation results by varying
the number of Monte Carlo samples and analyzing the test log-likelihoods in image completion
tasks. As displayed in Fig. (8), SI-NPs show performance improvement with more particles in
FMNIST/CIFAR10/SVHN, and B = 32 is sufficient enough in evaluation7. For CNPs, the perfor-
mance does not change with more particles since the functional prior is collapsed. While for NPs,
the performance goes far worse than importance-weighted ones and does not significantly improve
with more particles. So we only show the ML-NPs and SI-NPs for better visual comparison.

Theoretical Explanation. Note that ML-NPs and SI-NPs are importance weighted methods, the
number of Monte Carlo samples matters. It is theoretically proved in Theorem 1 in the paper impor-
tance weighted autoencoders (Burda et al., 2016) that LMC(ϑ;B1) ≥ LMC(ϑ;B2) with B1 ≥ B2.
Our developed SI-NPs can be viewed as the conditional version of importance weighted autoen-
coders, which explains the empirical observations in Fig. (8). However, when the prior is collapsed
to a deterministic embedding, we do not expect this effect.

H.3 INFLUENCE OF DIMENSIONS OF LATENT VARIABLES

It is unrealistic to explore all hyper-parameters’ influence: e.g., learning rates, numbers of layers,
dimensions of each layer, types of activation function, batch size in training, dimensions of latent
variables, the Cartesian of these hyper-parameters causes dimension explosion, and the required
time of running experiments can be more than one year with limited GPUs. So we keep most of the
set-up of the above hyper-parameters the same as that in original papers of CNP/NP/ANPs.

7Even though in FMNIST, more performance gain is observed using SI-NPs with more particles, B = 32
is sufficient and fair enough for all benchmarks.
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Figure 8: Evaluation of Image Completion with Varying Number of Monte Carlo Particles. The x-
axis records the number of Monte Carlo particles B in the set {1, 4, 8, 16, 32, 64, 96, 128}. The first
row is to report the log-likelihood of the target points, while the second row is for the log-likelihood
of the context points.

In this subsection, we study the influence of dimensions of latent variables on SI-NPs. Considering
that the meta training process is time expensive, we report the result on FMNIST image completion
in Table (6). It can be observed that this factor rarely influences test performance.

Table 6: Test average log-likelihoods with reported standard deviations for image completion in
FMNIST (5 runs). We test the performance of different optimization objectives in both context data
points and target data points. We use 32 Monte Carlo samples from the functional prior to evaluate
the average log-likelihoods.

dim lat = 32 dim lat = 64 dim lat = 128 dim lat = 256
# context target context target context target context target

LSI-NP (ours) 0.98±0.006 0.95±0.004 0.98±0.004 0.93±0.005 0.98±0.004 0.94±0.005 0.98±0.004 0.93±0.005

H.4 SIM2REAL EXPERIMENTAL RESULTS

Following that in (Gordon et al., 2019; Lee et al., 2020), We conduct experiments in Lotka-Volterra
dynamical systems. The transition dataset is collected in the mentioned simulator for meta training.
The testing scenarios include Lotka-Volterra simulators and a Predator-Prey’s real-world dataset
Hudson’s Baye hare-lynx.

The meta testing results are reported in Table (7). It can be seen that SI-NPs can achieve the best
performance in Lotka-Volterra and Predator-Prey datasets. Since the Predator-Prey dataset is out
of the meta training distribution, the log-likelihoods are significantly lower than the Lotka-Volterra
ones.
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Figure 9: From the Left to the Right are population fitting results with ±1 standard deviation in
the predator and prey datasets with the meta trained SI-NPs. The x-axis corresponds to normalized
years from 1845 to 1935 in order.
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Meanwhile, we plot the predicted predator and prey population evolution in Fig. (9). As illustrated,
meta trained SI-NPs can roughly characterize the trends and they can capture critical turning points.

Table 7: Test average log-likelihoods of target data points with reported standard deviations for
Sim2Real (4 runs). We test the performance of different optimization objectives in both context data
points and target data points. For each run, we randomly sample 1000 functions as tasks to evaluate.

# Sim (Lotka-Volterra) Real(Predator-Prey)

LNP -0.457±0.015 -3.275±0.507

LCNP -0.273±0.026 -3.012±0.034

LML-NP -1.381±0.196 -2.969±0.165

LSI-NP (ours) -0.240±0.052 -2.934±0.33

H.5 AUGMENTING SI-NPS WITH ATTENTION NETWORKS

Theoretically, we can combine different optimization objectives of NPs with various structural in-
ductive biases. Take the attention inductive bias as an example; we augment the vanilla SI-NP with
attention networks the same as in (Kim et al., 2019) and compare the augmented one with other
augmented baselines. To enable fair comparison, we also augment other baselines with attention
networks. We apply the modification to all methods, and this operation results in ANP (Kim et al.,
2019), ML-ANP and SI-ANPs.

Neural Architectures. We retain all neural architectures the same as in Appendix (G.2), except
for adding the deterministic path to obtain a local deterministic variable (Kim et al., 2019). The
deterministic path is built with a cross attention encoder. Due to memory restriction, one head is
used to obtain a 128 dimensional local variable, and the neural network set-up for query/key/value
is the same as (Kim et al., 2019)8.

Optimization. We retain the optimization step the same as those in Appendix (G.2).

H.5.1 SYNTHETIC REGRESSION

In Table (8), it can be seen SI-ANPs outperform ANPs in all kernel cases. SI-ANPs show a slight
advantage over ML-ANPs in Marten and RBF kernels. We also observe anomaly results of ANPs in
the Periodic kernel case, which illustrates that the use of attention might deteriorate the performance.

Table 8: Test average log-likelihoods of target data points with reported standard deviations for
1-dimensional Gaussian process dataset with various kernels (5 runs). For each run, we randomly
sample 1000 functions as tasks to evaluate. All NP models are augmented with attention networks.
Settings are same as in the main paper.

# Matern − 5
2 RBF Periodic

LANP (Kim et al., 2019) 0.98±0.021 1.06±0.020 -1.346±0.102

LML-ANP (Foong et al., 2020) 0.985±0.019 1.062±0.019 0.574±0.023

LSI-ANP (ours) 0.995±0.017 1.071±0.017 0.56±0.024

H.5.2 IMAGE COMPLETION

In Table (9), we report the results in image completion. We notice that the SI-ANP significantly
beats other models in FMNIST/SVHN/CIFAR10 and is comparable with the ML-ANP in MNIST.
Meanwhile, the performance gap between vanilla NPs and SI-NPs in Table (2) is quite huge, while
this situation is alleviated after adding attention modules. All of these indicate that incorporating
structural inductive biases in complicated tasks is also necessary. Combining SI-NPs with more
powerful structural inductive biases is the top choice for boosting performance.

8https://github.com/deepmind/neural-processes
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Table 9: Test average log-likelihoods of target data points with reported standard deviations for im-
age completion in MNIST/FMNIST/SVHN/CIFAR10 (4 runs). All NP models are augmented with
attention networks. Same as in the main paper, we test the performance of different optimization
objectives in target data points. We use 32 Monte Carlo samples from the functional prior to evaluate
the average log-likelihoods.

# MNIST FMNIST SVHN CIFAR10
LANP (Kim et al., 2019) 1.173±0.008 1.101±0.01 4.011±0.005 3.605±0.016

LML-ANP (Foong et al., 2020) 1.216±0.003 1.172±0.009 4.017±0.002 3.545±0.01

LSI-ANP (ours) 1.212±0.004 1.174±0.005 4.040±0.002 3.710±0.028

H.5.3 SIM2REAL

In Table (10), we report the results with the attention module augmentation. As observed, ANPs,
ML-ANPs, and SI-ANPs exhibit comparable performance in Lotka-Volterra simulation. As for
the Predatory-Prey testing results, the conclusion is similar to that in Table (7) without attention
augmentations.

Table 10: Test average log-likelihoods of target data points with reported standard deviations for
Sim2Real (4 runs). We test the performance of different optimization objectives augmented by
attention inductive bias (Kim et al., 2019) in both context data points and target data points. For
each run, we randomly sample 1000 functions as tasks to evaluate.

# Sim (Lotka-Volterra) Real(Predator-Prey)

LANP 2.211±0.017 -3.174±0.121

LML-ANP 2.203±0.042 -3.624±0.152

LSI-ANP (ours) 2.203±0.026 -2.822±0.316

In this case, we guess the local deterministic embedding from the attention network plays a more
critical role than the global latent variable in fitting these two datasets. The visualization of fitting
Predator-Prey samples with SI-ANPs is given in Fig. (10). The real-world samples are well fitted
with well quantified standard deviations. We notice that the measured predictive mean square errors
and the negative log-likelihoods of the target data points in the Predator-Prey testing dataset are
comparable using SI-NPs and SI-ANPs. However, the fitting result of the context data points are
distinguished a lot: the mean square error of SI-NPs in 4 runs is 0.285±0.007 and that of SI-ANPs
is 0.029±0.004. This implies that the attention network in the real-world dataset focuses more on
the context point fitting while the global latent variable is for the general trend characterization.
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Figure 10: From the Left to the Right are population fitting results with±1 standard deviation in the
predator and prey datasets with the meta trained SI-ANPs. The x-axis corresponds to normalized
years from 1845 to 1935 in order.
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Figure 11: Examples of curve fitting in all kernel cases. From the up to the down in rows are
respectively Marten, RBF, and Periodic cases.

H.6 ADDITIONAL VISUALIZATIONS

H.6.1 MORE SYNTHETIC REGRESSION RELATED RESULTS

We include more visualized results with the meta-trained models for Gaussian process datasets in
Fig. (11). An illustrated, periodic kernel cases are most challenging, and SI-NPs can learn faint but
crucial fluctuation signals from mean functions, while vanilla NPs fail to capture them. For other
cases, the behaviors of these models are similar in characterizing trends: vanilla NPs tend to show
higher variance in Marten kernel cases. SI-NPs and ML-NPs are comparable in Marten and RBF
kernel cases. CNPs seem to best match the context points in both cases.

In Fig.s (12)/(13)/(14), we respectively plot the curve fitting results in all kernel cases when all la-
tent variable models are augmented by attention networks. In Marten and RBF cases, all attention
augmented models well fit data points. Nevertheless, in RBF cases, SI-NPs can better capture data
point-dependent deviations. In Periodic cases, it can be observed that SI-ANPs can precisely cap-
ture fluctuations and quantify more convincing uncertainty. Sometimes, ANPs underestimate the
uncertainty while ML-ANPs fail to show data point distinguished uncertainty.

H.6.2 MORE IMAGE COMPLETION RELATED RESULTS

In Fig. (15), the scale of computed KL divergence values in vanilla NPs is positively correlated with
the semantic complexity. Also, note that the approximate functional prior in vanilla NPs seldom
collapses, but it has a theoretical bias away from the optimal functional prior according to Remark
(1). We can also find with more context points, the approximate prior is closer to the approximate
posterior, so the value decreases accordingly.

In Fig. (16), we sample a collection of images from MNIST/FMNIST/SVHN/CIFAR10 to visualize
the completed results. We can find that without structural inductive biases, SI-NPs can reasonably
complete the images in MNIST/FMNIST/SVHN and exhibit the uncertainty from partial observa-
tions. The learned functional prior, such as that in SVHN, can generate images that are different from
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Figure 12: Examples of Curve Fitting in Matern Kernel Cases.
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Figure 13: Examples of Curve Fitting in RBF Kernel Cases.

31



Published as a conference paper at ICLR 2023

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2

y

Curve Fitting with SI-ANPs
Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2

Curve Fitting with ANPs
Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2

Curve Fitting with ML-ANPs
Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2

1

0

1

2

y

Curve Fitting with SI-ANPs
Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

3

2

1

0

1

Curve Fitting with ANPs

Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2

1

0

1

2
Curve Fitting with ML-ANPs

Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2

1

0

1

2

y

Curve Fitting with SI-ANPs
Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5
Curve Fitting with ANPs

Ground Truth
Predictive Mean

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Curve Fitting with ML-ANPs

Ground Truth
Predictive Mean

Figure 14: Examples of Curve Fitting in Periodic Kernel Cases.
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Figure 15: Evaluation of KL Divergence Terms in Vanilla NPs. In meta testing, we still
vary the number of context points in image datasets. For NPs, the KL divergence value
DKL

[
qϕ(z) ∥ qϕ(z|DC

τ )
]

is computed.

the ground truth due to partial observation. As for CIFAR10, it has more complicated semantics and
is challenging for SI-NPs with only MLPs in neural architectures.

For cases when SI-NPs are augmented by attention neural networks (Kim et al., 2019), we show
more generated examples with learned SI-ANPs in Fig. (17)/(18). As can be seen, the completed
results are not blurred and have a high quality. Notably, the quantified variances are decreased with
the increase in the context points, which shows excellent asymptotic behavior in this domain.

Figure 16: Examples of Image Completion Results using SI-NPs. From top to bottom in rows are
original images, context points, means, and variances of completed images.
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Figure 17: Examples of CIFAR10 Image Completion Results using SI-ANPs. From left to right and
top to bottom are cases with 10, 100, 300, 500, and 800 randomly selected pixels as the context
points.

Figure 18: Examples of FMNIST Image Completion Results using SI-ANPs. From left to right and
top to bottom are cases with 10, 100, 300, 500, and 700 randomly selected pixels as the context
points.

I COMPUTATION TOOLS

In this project, we use NVIDIA 1080-TiGPUs to finish all experiments.
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