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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR), which uses simple
binary feedback to post-train large language models, has shown significant em-
pirical success. However, a principled understanding of why it works has been
lacking. This paper builds a theoretical foundation for RLVR by analyzing its
training process at both the full-response (trajectory) and token levels. Central to
our analysis is a quantity called the Gradient Gap, which formalizes the direction
of improvement from low-reward to high-reward regions of the response space.
We prove that convergence critically depends on aligning the update direction with
this Gradient Gap. Moreover, we derive a sharp step-size threshold based on the
magnitude of the Gradient Gap: below it, learning converges, whereas above it,
performance collapses. Our theory further predicts how the critical step size must
scale with response length and the success rate, thereby explaining why practical
heuristics such as length normalization improve stability and showing that, with a
fixed learning rate, the success rate can stagnate strictly below 100%. We validate
these predictions through controlled bandit simulations and LLM experiments,
including training Qwen2.5-7B with GRPO.

1 INTRODUCTION

Large language models (LLMs) have recently achieved significant advances through reinforcement
learning post-training, which aligns them with complex tasks and preferences (Ziegler et al., 2019;
Ouyang et al., 2022; Shao et al., 2024; Team et al., 2025). In particular, Reinforcement Learning
with Verifiable Rewards (RLVR) has emerged as a powerful approach for post-training LLMs on
tasks where success can be automatically checked (e.g. using a compiler or solver) (Guo et al.,
2025). RLVR methods have shown impressive empirical gains by leveraging binary success/failure
feedback instead of human judgments, thereby simplifying the RL pipeline. Techniques in this vein
(e.g. variants of Proximal Policy Optimization, a.k.a. PPO (Schulman et al., 2017), like GRPO (Shao
et al., 2024), DAPO (Yu et al., 2025b), Dr. GRPO (Liu et al., 2025), etc.) eliminate the need for
learned reward or value models, relying purely on verifiable outcome signals. This has enabled LLMs
to achieve state-of-the-art results on challenging reasoning and code-generation tasks, demonstrating
the promise of RLVR-driven fine-tuning.

However, empirical progress in RLVR has far outpaced our theoretical understanding. The optimiza-
tion process remains largely a black box: we do not fully understand why RL-based post-training
works so well, under what conditions it might falter, or how to tune it for stable convergence. Recent
PPO-based variants (e.g. GRPO, DAPO, Dr. GRPO) have sprung up to improve training stability,
each introducing different heuristics like normalizing gradient updates by the output length or stan-
dardizing rewards by the group’s variance. Yet it remains unclear which of these design choices
truly matter; without a principled basis, their adoption is guided more by intuition than by theory.
This gap is especially pronounced given RLVR’s sparse binary rewards (each episode yields just
a single success/failure bit), which make it difficult to analyze how gradient descent navigates the
model’s vast parameter space or how the policy’s output distribution shifts toward higher-reward
answers. In practice, practitioners often resort to trial-and-error for critical hyperparameters and
algorithmic choices, where a mis-tuning can destabilize training or even cause catastrophic collapse
(e.g., forgetting pre-trained knowledge or converging to trivial outputs). These challenges underscore
the need for a rigorous theoretical framework to demystify RLVR’s optimization dynamics and reduce
reliance on guesswork.



This work establishes such a framework, providing a rigorous theoretical foundation for RLVR in
LLM post-training. Our key contributions are:

* Unified RLVR theory: We develop a principled framework for RLVR under binary rewards,
introducing the Gradient Gap to characterize the improvement direction from low- to
high-reward responses.

* Convergence guarantees: We prove the existence of a sharp step-size threshold that sepa-
rates stable convergence from divergence, providing clear guidance for safe hyperparameter
tuning.

* Length- and success-aware learning rates: Our theory shows that the effective learning
rate must shrink with output length and adapt to task difficulty, offering a theoretical
explanation for the stabilizing effect of heuristics such as length normalization and clarifying
why fixed step sizes can cause stagnation.

* Empirical validation: We validate our theory through bandit simulations and LLM experi-
ments, including fine-tuning Qwen2.5-7B on GSM8K and DAPO17k datasets with GRPO,
demonstrating close alignment between theory and practice.

1.1 RELATED WORKS

Recent efforts in RL-based language model post-training have introduced a family of GRPO-style
algorithms that extend or modify Proximal Policy Optimization (PPO) for verifiable feedback settings.
GRPO itself eliminates the value critic by estimating advantages from a group of sampled responses,
using relative reward normalization instead of a learned baseline (Shao et al., 2024). Building on
this idea, DAPO augmented GRPO by decoupling the PPO clipping range and dynamically filtering
out cases where all responses in a batch are correct or all are incorrect (Yu et al., 2025b). Dr.
GRPO revisits the advantage normalization procedure, arguing that removing length and variance
normalizations (i.e. using only a mean baseline) can prevent bias in policy updates (Liu et al., 2025).
Additional related papers are discussed in Appendix A.

In parallel, theoretical work has established convergence guarantees for policy gradient (PG) methods,
including REINFORCE and actor-critic algorithms. In finite Markov decision processes with softmax
policies, the PG objective often satisfies a PL condition, implying that any stationary point is globally
optimal and that vanilla gradient ascent converges at a sublinear rate (Agarwal et al., 2021; Xiao,
2022). Actor-critic methods also achieve provable convergence by using two-timescale updates
or pessimistic value estimation (Wu et al., 2020; Zanette et al., 2021). However, extending these
guarantees to post-training large language models with verifiable binary rewards remains challenging,
as sparse success/failure signals provide very limited gradient information.

2 PROBLEM SET-UP

Language Model. We begin with a standard language model parameterized by # € R?, which
defines a conditional distribution 719(6 | ¢) over sequences of tokens 6 = (01,02, ...,0|5/) given

an input prompt/question g. Output tokens {ot},‘gl are drawn from a finite vocabulary 7, and the
generation process ends when the special end-of-sequence token 0|5 = EOS is emitted.

The model generates tokens in an autoregressive fashion: at every step ¢, the next token o; is sampled
conditioned on the prompt ¢ and all previously generated tokens 6.; = (01, 02, ..., 0¢—1). Formally,

(0| q) = H‘i‘l (0 | q,0<+). Each conditional distribution is defined by a softmax over token
logits hg(-):
exp{ho(q, 6<¢)}

0 i= . 1
T[Q(Ot | q, O<t) ZO/ET exp{hg(q, 6<t, O/)} ( )

Post-Training: Reinforcement Learning with Verifiable Rewards (RLVR). While a supervised
language model can generate fluent text, it often struggles to align with task-specific goals such as
math reasoning or code generation. Post-training addresses this limitation by adapting the model
parameters 6 to align more closely with an external reward signal that captures desirable behavior.

Formally, we assume access to an outcome reward model 7*(g, 6) that is directly verifiable and
assessed at the end of a generated sequence: r* = 1 if the answer is correct (e.g., a valid proof step



or passing code execution) and 7* = 0 otherwise. The aim of reinforcement learning in this context
is to tune the model parameters 6 so as to maximize the expected reward under the current policy:

maximizeeERd J(ﬂg) = EqwlP(Q),BNng(~|q) [r*(q, 5)} . 2)

Policy Gradient. To optimize J(7ty), we rely on policy gradient-based methods. At each iteration ¢,
the parameters 6 are updated according to

Okt1 = Ok + i - wyi, 3)

where 7, > 0 is the learning rate and w;, € R? is a normalized update direction with ||wg|[o < 1.
For clarity, we denote the policy and logit function at step k as 71, : = 19, and hy, : = hy, .

This generic formulation captures a broad family of post-training algorithms used in RLVR. Repre-
sentative examples are:

REINFORCE: The classical policy gradient method updates parameters in the direction
Vo J(k) = Egup(q), s~ (-la) [A(2:0) - Vo log (6 | g)] 4

where the advantage function is given by A(q, 6) = 7*(q,0) — Eg/urn,(.|9)[7*(q,0)]. In
this case, the update rule 6;11 = 05 + o - V J(71;;) can be rewritten in our generic form
by setting wy, = Vo J(111)/||Vo J(71)||2 and nx, = « ||V J(711)]|2. Viewed in this way,
Dr. GRPO (Liu et al., 2025) emerges as a variant that replaces the single-sample advantage
with a group-wise demeaned version.

Group Relative Policy Optimization (GRPO): GRPO has recently become a standard choice for
RLVR. The full algorithm incorporates clipping ratios and multi-step updates (see Ap-
pendix B.1). To connect it with the generic policy gradient form, we consider a simplified
one-step approximation without clipping. In this case, the gradient direction is

A(g,0) 1
a(q) ol
where the conditional standard deviation o'(g) is given by 02(q) =Varg.,(.|¢)[r* (¢, 8) | q.
In practice, GRPO is typically trained with a cosine learning rate schedule, which can be
locally treated as a constant step size a. Within our generic update rule, this corresponds

to setting wr = garpo/ll9arpollz and My = a||garpoll2. so that both the response
length |0| and reward variability o(q) directly influence the effective step size 7.

dcrro(Tk) = ]Eq~1P(Q),6~7rk(»|q)[ Vg log 7. (6 | Q)} ; )

Objective. Our goal in this work is to understand how the choice of update direction wy, and step
size 7 influences the convergence of RLVR. In particular, we ask: under what conditions can we
guarantee convergence, and what design choices may lead to instability or failure modes?

3 TRAJECTORY-LEVEL ANALYSIS

In this section, we study the optimization scheme (3) on a single prompt q. We take a trajectory-level
view, where each response 6 is treated as a single unit rather than a sequence of tokens. By abstracting
away the internal structure, the analysis becomes simpler yet still revealing. We begin by outlining
the key ingredients of this trajectory-level view, then examine both its success modes and failure
cases. Although this setup is only a warm-up for the more detailed token-level analysis, it already
highlights several nontrivial and illuminating properties of RLVR.

3.1 KEY INGREDIENTS: GRADIENT GAP AND GAP ALIGNMENT

Recall that the optimization objective is the correction rate of the model 7y on prompt ¢: J,(7p) : =
Egony(-lq) [r*(q, 0) | q} . To analyze this, we partition the response space O into two sets based on
the verifiable reward r*(q, -):

(’); = {6€O|T*(q76):1} and 0, = {6€O|r*(q,5):0}, 6)
Here O; represents desirable responses (correct solutions), while O, contains undesirable ones.
Accordingly, Jy(709) = Pgry(.1q) [0 € OF | and 1 — Jy(19) = Pgry(1) [0 € Of |.



Conditional Policies. We further define conditional distributions over the positive and negative

sSpaces:
- _ (9 -
n;(o|q):7tg(o|q7(9;r) i= ﬁﬂl{oe@j}, (7a)
7 (3]q) =m(3|q,0;) = m.n{aeoq}. (7b)

These describe how the model 7ty distributes probability mass within the “good” and “bad” regions,
respectively.

Gradient Gap: A Direction for Improvement. Using the conditional policies, we measure the
expected log-probability gradient / score function in each region:

9, (M) : =By sy [Vo logms(6 | ¢)] and gy (mg) := By -, [Vo log (G | )]. (8)
The difference between them,
gq (1) — g (1), )

is the Gradient Gap. Intuitively, it highlights how the model’s parameters should be shifted to favor
desirable responses over undesirable ones.

Crucially, the Gradient Gap is directly proportional’ to the policy gradient given in equation (4):
Vo Jq(ﬂe) = Jq(TEH){l_Jq(TEH)} : (93_ _gq_) . (10)

This shows that the Gradient Gap captures the true direction of improvement. Unlike the full policy
gradient Vg J,(19), g1 (19) — g, (719) is not scaled down by the variability factor .J,(1—.J;), making
it a purer indicator of where to move.

Gap Alignment: Following the Right Direction. Consider now the optimization scheme (3). At
iteration k, define g/ (k) and g, (k) under the current policy 7tz. The update vector wj, should

ideally align with the improvement direction g (k) — g, (k).
‘We measure this alignment by the inner product
Apg(k) 1= wy - {g;r(k:) —g;(k)}. (11)
If lw,||> = 1, this equals Apg(k) = |[lgF (k) — g, (k)ll2 - cos Z{wy, g} (k) — g, (k)}. which
depends both on the magnitude of the Gradient Gap and the angle of alignment.
In the convergence analysis, Ay, (k) will play a central role. For stable progress we require:
(i) Apg(k) should be positive and preferably large, ensuring updates move in the right direction.

(ii) The step size n should adapt to its scale, preventing over- or under-shooting.

3.2 MAIN FINDINGS

We now turn to the central findings of our analysis. Proofs will be deferred to Appendices C and D.
Before presenting the results, let us impose a mild regularity condition on the policy score function.

Assumption 1 (Regularity of Trajectory Policy Score). The policy score function Vg log mp(6 | q)
behaves regularly with respect to the parameters 0:

(a) (Boundedness) There exists a constant G, < oo such that for all 0 and (q, 8),

Vo logms(a | q)||, < Go. (12)
(b) (Smoothness) The policy score function is L-Lipschitz continuous with respect to 0:
Vo log e (6 | ) — Ve logma(8 | q)||, < Lo- [0/ — 0] (13)
Throughout this section, we use the shorthand J,(k) = Jy(7;) to denote the performance at

iteration k.

'A formal proof of this is found in Appendix B.2



3.2.1 CONVERGENCE AND STAGNATION

Armed with this set-up, we now state our main theorem, which distinguishes between two possible
outcomes of learning: successful convergence to the optimum, or stagnation at a suboptimal perfor-
mance plateau. The distinction hinges on how well the update directions align with the underlying
objective. To formalize this, we introduce the notion of Cumulative Gap Alignment,

M(K) = 3520 [A g (k)4 mi (14)

which accumulates the amount of “useful progress” made up to horizon K. Intuitively, M (K) grows
whenever the update direction is positively aligned with the true objective, and it stagnates when the
updates fail to exploit the available signal.

Theorem 1 (Convergence and Stagnation). Assume that the step sizes satisfy i < ﬁ

(a) (Stagnation) Consider when J,(0) < 1. If the alignment signal is too weak, in the sense that
the cumulative alignment remains bounded M (K) < Cy and Y ;- ni < C} /(Lo + 8G?),
Sfor some constants 0 < Cy, C) < 00, then learning will stall. In this case, the performance

remains strictly sub-optimal: Jo(k) < J4(0)(J4(0) + exp(Co + C) {1 — J4(0)}) e

(b) (Convergence) Consider a case where J;(0) > 0. Suppose the step size ny, is adapted to the
strength of the alignment signal,

Apg(k
m < [Apg( )}+2
2(L,+8G?)
Then the performance is lower-bounded at any horizon K by
Jy(0) |
Jq(0) + {1 = J4(0)} exp { — 3 M(K)}

Moreover, if the alignment accumulates indefinitely, limg oo M(K) = +oo, then the
policy is guaranteed to achieve perfect performance: limp_,o J,(K) = 1.

where |- |4 = max(0, -). (15a)

Jo(K) > (15b)

The theorem establishes a clear dichotomy. Convergence is attainable only when update directions
exhibit consistent alignment with the underlying objective and the step size is properly scaled to
reflect this signal. In the absence of either alignment or adaptive scaling, progress stagnates and the
policy remains confined to a suboptimal regime.

Sketch of Proof. The key step is the inequality

o (2 ) o (25005) — (k)

which is stated formally in Lemma 1 of Appendix C.1.1. This inequality shows that Ay, (t) 7,
captures the first-order Taylor approximation of the change in log-odds of .J;. Summing (16) over
iterations and analyzing the resulting terms under different cases reveals that the Cumulative Gap
Alignment M (K') governs the value of J,,. This establishes the claims in Theorem 1.

< (Lo +8G2) 12, (16)

3.2.2 THE IMPORTANCE OF PROPERLY CHOSEN STEP SIZE 7y,

According to condition (152a) in Theorem 1(b), the step size 1, must be carefully scaled to match the
gap alignment Ay, (k). To illustrate this, we contrast two scenarios: a modest step size yields linear
convergence, whereas an overly aggressive one causes failure.

Linear Convergence Under Proper Scaling. Suppose that every update direction provides a consistent
signal, so that the Gap Alignment A, (k) is uniformly bounded below. In this case, a properly
chosen fixed step size is sufficient to guarantee rapid improvement.

Corollary 1 (Linear Convergence with a Uniform Gap). If every update direction w, provides a
uniform gap, Apg(k) > Apg > 0 for all k > 0, then a simple fixed step size 1 satisfying
< m Aﬂq 1 }
min
= 9(Lo +8G2) 2/L, [

drives the error to zero at a linear rate: 1 — J,(K) < 135("0()0) exp{ — 3 Auqn-K}.




The Perils of Overshooting. The picture changes sharply when the step size is too large. If condi-
tion (15a) in Theorem 1(b) is violated, convergence may break down entirely. The next result shows
that even with perfect update directions, learning can collapse under overly aggressive step sizes.

Theorem 2 (Catastrophic Failure from an Overly Large Step Size). There exists a problem instance
under Assumption | with G, > /L, where the Gap Alignment is uniformly positive, A, (k) >
Apg > 0 for all k > 0, yet using an overly large constant step size n, = 1 leads to failure.
Specifically, if the step size satisfies

60 Apeg < 1

< - -
L+G: =" = o v G

where 0 < Apg < %\/ Lo + G2, the policy’s performance will strictly decrease at every step,

ultimately converging to zero: Jo(k) < Jq(k — 1) and limg o J4(k) = 0.

While the numerical constants (e.g., 60, 120) are not sharp, the phenomenon is robust: an oversized
step size causes repeated overshooting, pushing the system toward collapse rather than improvement.

Intuition for the lower bound analysis. Our convergence analysis (Theorem 1) relies on equa-
tion (16), which uses a first-order approximation of the change in log-odds. For the lower bound, how-
ever, it is crucial to examine the second-order expansion. To this end, we define conditional variances
over the positive (and negative) response space: Var™ : = Varg - (a.04) [wy, - Vg log (6 | q)].

The term Var™ is defined analogously. The second-order Taylor expansion gives

Je(k+1) Jy (k) -
log (25 ) —log (757 ) = Auglk Vart — Var™} -n2 + O(n8). (17
e\ wrn) e L m tiq (k) mi; + {Var ar” } -+ O(ng) . (17)
In our construction, the linear term is always favorable: A4 (k) n,, > 0. The challenge comes from
the quadratic term. If the variance over the negative space dominates, Var~ > Var™, then for
moderately large step sizes the second-order effect can overwhelm the first-order gain, pulling the
log-odds downward and decreasing J,.

This phenomenon is not just a theoretical artifact—it is highly plausible in practice. Real-world
language models typically face an enormous negative space (many incorrect responses) with high
variability, leading to large Var ™. In contrast, the positive space often contains only a few consistent
modes, keeping Var™ relatively small. This imbalance highlights the danger of overshooting: unless
the step size 7y, is carefully calibrated, the variance contribution from the negative space can dominate
and derail learning. To ensure both stability and progress, the step size must respect the scale
e = Apg(k)/ (Lo + G2).

4 TOKEN-LEVEL ANALYSIS

We now move towards a token-level analysis of RLVR, which sharpens the trajectory-level perspective
developed earlier. While natural and general for abstract analysis, our analysis in Section 3 overlooks
the autoregressive structure of LLMs: responses are generated token by token, with intermediate
Chain-of-Thought (CoT) steps shaping the learning dynamics.

At the trajectory level, the regularity conditions in Assumption | are imposed on the policy score
Vo logmy(6 | q) of the entire response 6. However, the score can be decomposed into token-wise
contributions: Vg logmy(0 | q) = Z';;'l Vo logmg (ot | q,0<¢), where every token o, requires a
forward pass from the language model and thus carries its own regularity properties. This makes it
more natural—and ultimately more powerful—to impose assumptions at the token level. Doing so
introduces response length as an explicit factor, which will be central to our analysis. Interestingly, as
we will see, it also reveals how the training dynamics adapt to task difficulty under the current policy.
We refine Assumption | into the following token-level version.

Assumption 2 (Regularity of Token Policy Score). There exist Gy, L, € (0, 400) such that

HV@ log g (ot | ¢, 6<t)H2 < Gp < oo forall 0, question q, response prefix G, and token oy,
b < Lo- 18—l

Hve log mg: (04 | q,6<t) — Vg log (0t | q,0<¢)

In addition, we propose a second key assumption concerning the distribution of response length.



Assumption 3 (Sub-Exponential Response Length). There exist constants Too, Ty, € (0, +00) such
that for every question q and every policy Ty, if G ~ 7r9( | ¢) and ¢ : = |0| denotes the response
length, then 1 < £ < T, almost surely, and |||y, < Ty,.”

Assumption 3 characterizes response length: T, bounds the worst case, while T, reflects the typical
scale. It holds Er, [|0] | ¢] < Ty, < Too/log?2, so that Ty, may be much smaller than 7.

With these two assumptions in place, we are ready to present our token-level convergence guarantee.
The statement parallels the trajectory-level result, but now incorporates the finer granularity of token-
wise dynamics. We retain the key quantities from Section 3.1, namely the Gap Alignment Ay, (k)
from equation (1 1), and the Cumulative Gap Alignment M (K) from equation (14).

Theorem 3 (Convergence at the Token-Level). Assume J,(0) > 0. If the step size ny, is scaled to the
strength of the alignment signal,

e < min{ [Apg(k)]+ /2 } (18a)

L, T +Grmﬂ1waMﬁ}2/LT +G2Ty,

then the performance is guaranteed at any horizon K by

J4(0)
JlK) 2 O T = 70} e [~ TR}

This result closely mirrors the trajectory-level guarantee but introduces several new elements. The
response length parameters T, and T, now play a direct role, reflecting the cost of token-level
granularity. In addition, the factor (1 — .J;) emerges in the step-size condition, linking stability to the
current performance level of the policy. In a later discussion, we will examine the implications of
condition (18a), with particular attention to how step-size choices manifest in practical algorithms
such as GRPO and Dr. GRPO.

(18b)

Complementing the positive result in Theorem 3, we now show that the step-size scalings with T,
and Ty, are essentially tight, as established by the token-level analogue of Theorem 2 below.

Theorem 4 (Catastrophic Failure from an Overly Large Step Size at the Token Level). There exists
a problem instance satisfying Assumption 2 with G, > \/Lip where the Alignment Gap is always
positive, Apq (k) > Apg > 0, yet choosing a constant step size ny, = 1 that is too large leads to a
complete failure of learning. Specifically, if the step size satisfies

120 Apig ) < 1
Lo+ G T = 7 7 2 (L, +G2) T

where 0 < Ap, < 240, [(Lp + G2 ) o, the policy’s performance will strictly decrease at every

19)

step, ultimately converging to zero: J (k) < Jy(k — 1) and limg _, o, J4(K) = 0.

This lower bound confirms that the step-size condition (18a) reflects an intrinsic barrier. Indeed, by
treating (1 — J ,(k)) as constant and applying the crude bound Ty, < T&, the upper limit in (18a)

reduces to g S [Apg(k)] 4 /{(Ly + G2) Two }, which matches the overshooting threshold in (19) up
to constants. This alignment verifies the sharp dependence on response length in step-size selection.

Finally, note that the (1 — J,(k)) factor only influences how fast convergence proceeds toward 1. In
the lower bound construction of Theorem 4, J, (k) is strictly decreasing, so this term behaves like a
constant and does not alter the failure guarantee. Hence, it affects the upper bound but not the lower
bound.

Implications in GRPO and Dr. GRPO. We next examine how the update rules of GRPO and Dr.
GRPO (or REINFORCE) fit into our token-level framework. For clarity, we restrict attention to the
scaling behavior with respect to Apig, Ty, , Jq, and (1 — J;;) under a single prompt g.

In this regime, the GRPO gradient from equation (5) simplifies to

gcrro(T) =< Esom,(1g) [A( 0) - Vg logm (6| q) Q] {Twl V(1= J, }

*For a random variable X, the t)1-Orlicz norm is || X ||y, := inf {a > 0 : E [exp(|X|/a)] < 2}. Finite-
ness of || X ||, is equivalent to X being sub-exponential.




The Dr. GRPO (or REINFORCE) gradient takes the form (4). Applying identity (10) gives

garpo =< Ty VI (1= Jg) - (9 —9;) and  gp, areo = Jo(1 = Jo) - (95 —95) -
An update step 0y1 = 0 + o - g(71) for g = garpo OF 9py. crpo can therefore be interpreted
as moving in the direction wy = (g —g,)/llgs — g, |2, with alignment magnitude Ay, =
lgs — gy ll2, and effective learning rates

(GRPO) i = Apg T \/J;1—J;) and (Dr. GRPO) ny, = Aptg - Jy(1—Jg). (20)

On the other hand, condition (18a) in Theorem 3, under the simplification L, < Gf, and retaining
the Ty, /(1 — J,) term in the denominator, reduces to

(Theorem 3, condition (18a)) M S Apg - dell(l —Jg) . 21

Comparing equations (20) and (21) leads to several insights:

Gradient gap. Both GRPO and Dr. GRPO scale proportionally with the gap alignment Ay, consis-
tent with the theoretical condition.

Sequence length. GRPO exhibits the correct 1/T), scaling, aligning with the theory, offering an
explanation for why length normalization empirically stabilizes training. In contrast,
Dr. GRPO lacks this normalization.

Correction rate. After variance normalization, GRPO overshoots as J; — 1. We hypothesize that
this may explain the observed stagnation of training at a correction rate strictly below 1.

Sketch of Proof for Theorem 3. The proof builds on the following refined token-level inequality:

log (%) —log (%) > Apg(k) - mi — (Lp Too + IG_‘Q’%) n2. (22)

The formal statement of bound (22) is provided in Lemma 2 in Appendix C.2. In parallel, we adapt
the trajectory-level result (16) to the token setting by taking G, = G, T\ and L, = L,T. We then
combine these two bounds, applying whichever is tighter in a given regime. The remaining steps
follow the same structure as in Theorem 1(b).

The main technical challenge lies in proving inequality (22). The difficulty is that the Gradient Gap
g — g7 is not a martingale, since it depends on the conditional distributions 7t and 71, . To address
this, we relate the log moment generating functions of the conditional score functions to those of
the unconditional scores, which do form martingales. This step is crucial: it yields the sharp linear
dependence on Ty, in the 77 term of (22). Without this refinement, a naive trajectory-level analysis
would give only the weaker quadratic dependence G2 T2 .

5 NUMERICAL EXPERIMENTS
5.1 REINFORCE ON CONTEXTUAL BANDITS

We consider a contextual variant of the synthetic bandit experiment of Arnal et al. (2025, Section 5.1).
contextual bandit with contexts = € [0, 1]¢ for d = 10. For a set of N : = 100 arms, we generate
linear scores for each context x, s(z) = 8 T2 € RV for a matrix 8 € R4*V, with standard normal
entries. 7, (x) : = arg max, ¢ (y) s(2). We use linear logits initialized as {o(z) : = 6 « € RV, for
0o ~ N(0, 0.012 -Idgxq). The policy 7y, was then initialized as a softmax over ¢y and the parameters
0 were updated according to the REINFORCE exact gradient update at a training context x with
stepsize n : = 0.1:
Ok =0k + 1 Eyry, (o) [(ry(@r) = o, (710,)) - Vo log o, (y | 21)] -

The training context x;, was selected at random among those (from an initial pool of 100 contexts
drawn uniformly from [0, 1]%) with intermediate value function J () € [0.2,0.8], following intu-
itions from curriculum learning for filtering out overly difficult or easy prompts (Zhang et al., 2025).

We construct three plots based on calculating the following for 500 randomly evaluated contexts x: the
value function .J, (71p,, ), per-context cumulative gradient gap Zf:o [Apz(i)]4 - m, and the relative per-

context cumulative gradient gap Zfzo([A,ui(i)]Jr — [Apz, (4)]+) - 7 which measures the discrepancy
of the gradient gaps at the training contexts .
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Figure 1: Contextual Bandit Experiments.
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From the first subplot, we observe a distinctive logistic relationship between the cumulative gradient
gap and the value function, reminiscent of our theory (Corollary 1).

From the second subplot, we see there are two regimes for each context’s cumulative gradient gap
curve: either fast exponential convergence (Corollary 1) or lack of improvement (Theorem 2).

In the third plot, we interestingly see that those contexts with close to 0 relative cumulative gradient
gap (i.e., close to that of training contexts) experience faster convergence.

5.2 GRPO ON LANGUAGE MODELS

We validate our theory on three GRPO training runs for language model math reasoning: (1) Qwen2.5-
7B on the GSMS8k dataset (Cobbe et al., 2021) and (2) Qwen2.5-Math-7B on the DAPO-17k dataset
(Yu et al., 2025a). For background, the GSM8k dataset consists of grade-school math word problems,
while the more challenging DAPO-17k dataset consists of problems derived from past AIME and
AMC competitions.

At each training step, we approximate the batch-average gradient gap magnitude IE,[A/,] using
the relation ggrpo X v/Jq(1 —Jg) - (g;r - gq’), as derived in Section 4. In Figure 2, we plot
the cumulative gradient gap vs. the value function, colored by normalized step count. For all three
datasets, we see a similar relationship between cumulative gradient gap and accuracy as in our theory
and bandit experiment.
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Figure 2: Cumulative Gradient Gap vs. Validated Accuracy for our experiments.

6 DISCUSSION AND FUTURE DIRECTIONS

Our analysis is restricted to the single-prompt setting, which enabled sharp characterizations of
Gradient Gap alignment and step size scaling. In practice, however, training involves a diverse batch
of prompts. In this regime, both the alignment signal Ay, (k) and the optimal step size ;, can vary
substantially across prompts. A single update direction wj, may align well with some prompts but
poorly with others, and a step size that is safe for one subset may be overly aggressive for another,
leading to overshooting and limited overall gains.

These observations suggest several directions for future work: developing prompt-adaptive updates
that adjust direction or scale based on batch heterogeneity, analyzing the statistical dynamics of RLVR
under diverse prompt distributions, and extending the framework to sequential or curriculum-based
training (Bengio et al., 2009; Chen et al., 2025; Zhang et al., 2025). Such extensions are essential for
a full theory of RLVR in realistic multi-prompt settings.
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