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Abstract

Time-varying Granger causality refers to patterns of causal relationships that vary over time
between brain functional time series at distinct source and target regions. It provides rich
information about the spatiotemporal structure of brain activity that underlies behavior.
Current methods for this problem fail to quantify nonlinear relationships in source-target
relationships, and require ad hoc setting of relationship time lags. This paper proposes
deep stacking networks (DSN), with adaptive convolutional kernels (ACK) as component
parts, to address these challenges. The DSN use convolutional neural networks to estimate
nonlinear source-target relationships, ACK allow these relationships to vary over time, and
time lags are estimated by analysis of ACK coefficients. When applied to synthetic data and
data simulated by the STANCE fMRI simulator, the method identified ground-truth time-
varying causal relationships and time lags more robustly than competing methods. The
method also identified more biologically-plausible causal relationships in a real-world task
fMRI dataset than a competing method. Our method is promising for modeling complex
functional relationships within brain networks.
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1. Introduction
Effective connectivity refers to the influence that functional activity in one brain system

exerts over functional activity in another (Friston, 2011). It has become an important tool to
understand the organization of human neural circuitry underlying perception and cognition
in health and disease based on time series data from functional neuroimaging methods such
as functional magnetic resonance imaging (fMRI) (Seth et al., 2015; Deshpande et al., 2009).
Granger causality, the predominant method for quantifying effective connectivity, assesses
the degree to which time series data at a current time point in a target region is predicted
by time series data at the current or earlier time points from a different (source) region,
after accounting for the influence of other sources and target regions data from previous
time points (Granger, 1969; Friston et al., 2013; Goebel et al., 2003). This method has
proven useful for clarifying various aspects of brain dynamics (Liao et al., 2009; Zhou et al.,
2011).
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Figure 1: A hypothetical time-varying causal relationship, where source Xt has a strong
linear relationship with target Yt+1 during rest (lefthand side), and Xt has a nonlinear
relationship with Yt+3 during task performance (righthand side). This paper presents a
method for automatically discovering such time-varying causal relationships.

Because connectivity relationships between brain regions are believed to change dynam-
ically over the course of task performance (Ambrosi et al., 2021; Marcinkevičs and Vogt,
2021; Sato et al., 2006), and even during periods of rest (Cekic et al., 2018), extensions of
Granger causality that quantify time-varying causal relationships (Figure 1) have the
potential for high impact. To date, three solutions to this problem have been presented,
all based on the vector autoregressive (VAR) model, which allows modeling of linear rela-
tionships between source and target (Ambrosi et al., 2021; Marcinkevičs and Vogt, 2021;
Sato et al., 2006). Time-varying VAR parameters were estimated using wavelet functions
(Sato et al., 2006), generalized VAR (GVAR) (Marcinkevičs and Vogt, 2021), and particle
filtering (PF) (Ambrosi et al., 2021).

This paper seeks to overcome two key limitations of prior time-varying Granger causality
methods. First, the prior methods were only able to model linear relationships between
source and target signals, thus precluding modeling of nonlinear causal relationships that
are expected to arise from complex neural dynamics (Liao et al., 2009; Marinazzo et al.,
2011; Schoukens and Ljung, 2019; Pŕıncipe et al., 2011). Second, prior methods for time-
varying Granger causality were limited in their ability to handle time lags: the number
of timesteps that elapse between causal brain activity at the source and resulting brain
activity at the target. One prior method limited the time lag to exactly one time point to
reduce computational complexity (Ambrosi et al., 2021), while the other methods required
the user to specify the time lag a priori (Marcinkevičs and Vogt, 2021; Sato et al., 2006).
This is important because time lags are not expected to be known a priori.

We propose to use deep stacking networks (DSN) to overcome these limitations. DSN
allow estimation of nonlinear Granger causality between source (Xt) and target (Yt), after
accounting for the influence of activity in other source regions (Zt), using convolutional
neural network (CNN) modules; stacking multiple such modules allows modeling among
multiple sources and targets and each CNN module efficiently capture temporally-localized
features between a pair of source and target (Figure 2 (a)). Within each CNN is an adaptive
convolutional kernel (ACK), whose estimated kernel coefficients reveal time-varying causal
relationships and time lags at each time point in the time series (Figure 2 (b)). This ap-
proach extends our previous study, which used DSN to estimate nonlinear Granger causality
but was unable to handle time-varying causal relationships (Chuang et al., 2021). We show
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Figure 2: (a) Proposed DSN with CNN-ACKs to estimate nonlinear time-varying Granger
causality between source Xt and target Yt, conditioned on source Zt. (b) Top: Target
time series Yt is modeled in terms of a source time series Xt that is convolved by an ACK
Kt, whose values change over the course of time (t). Bottom: Kt is estimated at training
time through estimation of six (1 x 2) convolutional filters Q which are applied to the input
source time series Xt, followed by application of a PReLU activation function.

that the method identifies time-varying causal relationships, including time-varying time
lags, when applied to synthetic datasets and simulated data from a public-domain fMRI
simulator. We also show that it provides richer information about causal structures in a
real-world task fMRI dataset than traditional non-time-varying causal modeling does.

2. Methods
2.1. Multivariate Granger Causality via Deep Stacking Networks

Given sources Xt and Zt, and target Yt, we train a DSN whose CNNs with ACKs (CNN-
ACKs) use Xt, Yt, and Zt to reconstruct Yt. Conditional Granger causality is assessed in
terms of how much better Xt reconstructs Yt, after accounting for how well previous time
points of Yt, along with Zt, jointly reconstruct Yt (Figure 2 (a)). First, CNN-ACK 1 and
2 are trained to transform previous time points of Yt into Yt, and Zt into Yt, resulting
in estimates Ŷt,1 and Ŷt,2 and prediction errors εt,1 and εt,2. Then, to represent the best
reconstruction of Yt based on both of Yt and Zt, Ŷt,1 and Ŷt,2 provide inputs to the third
module, which estimates an element-wise weighted sum of the inputs to predict Yt, resulting
in estimate Ŷt,3 and prediction error εt,3. To reconstruct Yt based on Xt, time series Xt

is provided as input to CNN-ACK 3, again with Yt as the target, resulting in predicted
time series Ŷt,4 and prediction error εt,4. To reconstruct Yt in terms of all of Xt, Yt, and Zt

jointly, Ŷt,3 and Ŷt,4 are provided as inputs to an element-wise weighted sum to produce the
final estimate of Yt, Ŷt,5, and prediction error εt,5. The Granger causality of source Xt to
target Yt, conditioned on other source Zt (X → Y |Z), is defined in terms of the reduction
in modeling error when Xt, Yt, and Zt are used to reconstruct Yt, compared to when only
Yt and Zt are used to reconstruct Yt:

GCindexX→Y |Z = ln(
|εt,3|
|εt,5|

) (1)
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If incorporating Xt improves the reconstruction of Yt after accounting for effects of Yt
and Zt, GCindexX→Z|Y will be a large positive number, providing evidence for conditional
Granger causality. Complex causal relationships among several time series can be disentan-
gled by calculating conditional Granger causality with differing assignments of time series
to the roles of Xt, Yt, and Zt.

2.2. CNN-ACKs for Time-varying Granger Causality
Inspired by Jia et al. (2016) and Zamora Esquivel et al. (2019), we used CNN-ACKs

in our DSN architecture to estimate time-varying causal relationships. An ACK is defined
by a dynamic filter that changes its weights automatically depending on the data in the
input time series. The ACK Kt is generated by convolving filters Q with input time series
Xt and using an activation function to transform the result into Kt. The first step is that
at each timestep (t), the (1 x 6) hidden layer output Ht = [ht,5, . . . , ht,0] is calculated as
the dot product of six 1 x 2 filters Q = [q1,1, q1,2; . . . ; q6,1, q6,2] with the input time series
Xt = [xt−6, . . . , xt] (Figure 2 (b) Bottom).

ht,5 = [q1,1, q1,2] · [xt−6, xt−5]; ...;ht,0 = [q6,1, q6,2] · [xt−1, xt] (2)

Then, the Parametric Rectified Linear Unit (PReLU) activation function is applied to
each element of hidden layer output Ht to generate the ACK Kt,

Kt = [kt,5, ..., kt,0] = PReLUt(Ht) = [PReLUt,5(ht,5), ..., PReLUt,0(ht,0)] (3)

The coefficients of Kt can be interpreted as evidence of Granger causality at specific
time lags at time t of the time series. For example, if kt,5 (lag 5 causality) has a large
magnitude, it suggests that at time t, there is a causal relationship between the source at
time t-5 and the target at time t. The estimate of the target time series, Ŷt, is the dot
product of Kt with the input time series Xt = [xt−5, . . . , xt] (Figure 2 (b) Top).

Ŷt = KT
t Xt (4)

In each CNN-ACK, the six filters Q (2 weights and 1 bias terms for each filter) and
the parameters of PReLU (6 weights for each timestep) are the learnable parameters. We
used the TensorFlow and Keras software packages to build our network architecture and
optimize it with Adam optimizer (Chollet et al., 2015; Abadi et al., 2016).

2.3. Design of Experiments
We applied the proposed method to synthetic time series data, simulated task fMRI

data from the public-domain STANCE simulator (Hill et al., 2017), and a real-world task
fMRI dataset. For each synthetic and simulated dataset, 100 Xt, Yt, Zt time series triples
were generated as described in subsequent sections, and the real-world task fMRI dataset
included 100 fMRI scans. For each dataset, ten-fold cross validation was used to repeatedly
train s and quantify causal relationships within the testing set of the fold. Conditional
Granger causality between source and target, independent of source was considered evident
when the mean GC index over the ten-folds of cross validation was significantly greater than
0 via a one-sample t-test (p-value <0.05). Identified causal relationships were compared
to those programmed into the synthetic and simulated data sets, and causal relationships
identified in the real-world data were compared to published data about the brain functional
underpinnings of the task.
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2.4. Synthetic Datasets
We designed two synthetic datasets that focused on testing the method’s ability to

model nonlinear causal relationships whose functional form differed between well-defined
epochs of the time series, but whose time lag was constant; and testing the ability to model
relationships whose functional form is constant, but whose time lags differ between epochs.

Synthetic dataset 1: identical time lags in all epochs. Each time series had 110
timesteps generated according to the equations in Table 1. N(0,0.1) represents Gaussian
noise with zero mean and 0.1 standard deviation.

Synthetic dataset 2: different time lags in different epochs. Each time series
had 110 timesteps generated according to the equations in Table 2.

Table 1: Synthetic dataset 1: identical time lags in all epochs.

X-Y relationship Equation Timestep (t)

Epoch 1 Linear Yt = 5Xt−1 + 0.5N(0, 0.1) 1-22
Epoch 2 Quadratic Yt = −0.5(Xt−1)

2 + 0.5N(0, 0.1) 23-44
Epoch 3 Exponential Yt = 0.5eXt−1 + 0.5N(0, 0.1) 45-66
Epoch 4 Cubic Yt = −5(Xt−1)

3 + 0.5N(0, 0.1) 67-88
Epoch 5 No Yt = 0.5N(0, 0.1) 89-110

Xt ∼ N(0, 0.1); Zt ∼ N(0, 0.1)

Table 2: Synthetic dataset 2: different time lags in different epochs.

X-Y relationship Equation Timestep (t)

Epoch 1 Time lag 2 Yt = 0.5Xt−2 + 0.5N(0, 0.1) 1-55
Epoch 2 Time lag 5 Yt = −0.5Xt−5 + 0.5N(0, 0.1) 56-110

Xt ∼ N(0, 0.1); Zt ∼ N(0, 0.1)

2.5. Simulated Task fMRI Datasets
For each simulated dataset, triples of 130-timestep time series, each of which contained

single-timestep-duration events, were produced, with causal relationships existing between
events in one time series, and events in another. Each time series of events was convolved
with a canonical hemodynamic response function (HRF), followed by addition of simulated
system and physiological noise at a magnitude of 1% of the event-related fMRI signal.

Simulated dataset 1: identical time lags in all epochs. Each Xt, Yt, Zt time
series triple was initially generated with 52 randomly placed events. Then, time series Yt,
between time points 1 and 65, was edited so that an event at Yt was added if there was also
an event at Xt−1; i.e., X had an excitatory effect on Y during this epoch. Similarly, time
series Yt, between time points 66 and 130, was edited so that an event at Yt was deleted if
there were events at Xt−1 and Yt (Table 3); i.e., X had an inhibitory effect on Y.

Simulated dataset 2: different time lags in different epochs. All Xt, Yt, Zt

time series triples were generated initially with 52 randomly placed events. Then, as for
simulated dataset 1, events in the Yt were edited to reflect the differing excitatory and
inhibitory effects of Xt at differing time lags within each epoch (Table 4).

2.6. Real-World Task fMRI Dataset
We applied the proposed method to task fMRI data collected from the Bogalusa Heart

Study (Berenson et al., 2001). One hundred participants performed a Stroop task during
fMRI on a GE Discovery 3T scanner at Pennington Biomedical Research Center. Acquisi-
tion of T1-weighted structural MPRAGE and axial 2D gradient echo EPI BOLD fMRI data
was described previously (Carmichael et al., 2019). Preprocessing of fMRI included slice
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timing correction, head motion correction, smoothing, co-registration to the T1-weighted
image, and warping of T1-weighted data to a Montreal Neurological Institute (MNI) coordi-
nate. The regions of interest (ROI) in MNI coordinate previously identified as activated by
the Stroop task (fusiform gyrus, occipital gyrus, precuneus, and thalamus) were extracted
(Sheu et al., 2012). The proposed method was applied to all possible assignments of ROIs to
the roles of source, target, and other source (i.e., to Xt, Yt, and Zt) to explore time-varying
Granger causalities. A specific time lag is selected when its time lag causality coefficients
were significantly different from 0 via a one-sample t-test. Differences in causal relationships
between rest and task conditions were assessed by testing whether the difference in Granger
causality coefficients between conditions was significantly different from 0 by permutation
testing with 10,000 permutations.

Table 3: Simulated dataset 1: identical time lags in all epochs.

X-Y relationship Time lag Timestep (t)

Epoch 1 Excitation 1 1-65
Epoch 2 Inhibition 1 66-130

Table 4: Simulated dataset 2: different time lags in different epochs.

X-Y relationship Time lag Timestep (t)

Epoch 1 Excitation 1 1-26
Epoch 2 Inhibition 1 27-52
Epoch 3 Excitation 3 53-78
Epoch 4 Inhibition 4 79-104
Epoch 5 No relationship - 105-130

3. Results
3.1. Synthetic Datasets

Synthetic dataset 1: identical time lags in all epochs. The proposed method
correctly identified the true Granger causality X → Y |Z in synthetic dataset 1 (p-value
<0.0001). The other possible assignments of Xt, Yt, and Zt to sources and target had no
evidence of Granger causality (minimum p-value = 0.7437). In addition, the time depen-
dence of the X → Y |Z causal relationships was correctly tracked by the Granger causality
coefficients (the coefficients of ACK Kt) that quantified each time lag (Figure 3 & Figure 4
(a)). Specifically, Granger causality coefficients corresponding to ground-truth causal re-
lationships (e.g., the lag 1 causality coefficient during epoch 1) were nonzero while other
Granger causality coefficients were correctly estimated to be close to the nominal null value.
Both GVAR and PF successfully identified the linear causal relationship in the linear epoch
as expected; but they failed to identify other causal relationships in other epochs, likely due
to the linear assumptions they make. (Figure 4 (a)).

Synthetic dataset 2: different time lags in different epochs. The proposed
method correctly identified the true Granger causality X → Y |Z (p-value <0.0001). As
above, Granger causality coefficients correctly tracked changes in time lags across epochs
(see, e.g., the low errors in the lag 2 and lag 5 causality coefficients during the epochs they
exerted causal effects, Figure 4(b)), and other coefficients were correctly estimated to be
null. GVAR and PF failed to correctly track time-varying causalitie.

3.2. Simulated Task fMRI Datasets
The proposed method correctly identified the true Granger causality X → Y |Z in

simulated dataset 1 and 2 (p-value = 0.0011 and 0.0015, respectively). Also, the time-
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Figure 3: Time courses of ground-truth Granger causality coefficients (red) and estimates
(Kt) from DSN-ACKs (mean in black, values within 1 standard deviation of the mean in
gray) for differing time lags in synthetic dataset 1.

Figure 4: Sum of squared errors (SSE) differences between ground truth Granger causality
coefficients and estimates of time lag 0-5 Granger causality coefficients provided by DSN-
ACKs, GVAR, and PF for (a) synthetic dataset 1 and (b) synthetic dataset 2.

varying Granger causality coefficients for X → Y |Z were correctly estimated across all
epochs by DSN-ACKs (Figure 5). All the other causality relationships among Xt, Yt, and
Zt were correctly determined to be null (minimum p-value = 0.1382 and 0.2229 for simulated
dataset 1 and 2, respectively). Both GVAR and PF failed to estimate Granger causality
coefficients accurately in both simulated datasets.

3.3. Real-World Task fMRI Dataset
Figure 6 shows which lag 0 Granger causality coefficients were estimated to be non-

zero among the four Stroop task ROIs during rest and task execution. Reciprocal causal
relationships between the occipital gyrus and thalamus were identified independent of the
fusiform gyrus, in agreement with previous findings (Guido, 2018; Usrey and Alitto, 2015).
In addition, a causal relationship from the fusiform gyrus to occipital gyrus, independent
of precuneus, has been identified. Reciprocal Granger causalities between the occipital
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Figure 5: Time courses of ground-truth time series Yt and the predicted Ŷt by DSN-ACKs
for simulated dataset 1 (a) and 2 (b). Ground truth Granger causality coefficients at time
lags relevant to each time series epoch are shown above the time series; estimates of those
Granger causality coefficients generated by DSN-ACKs, GVAR, and PF are depicted below.

Figure 6: The estimated time lag 0 Granger causality coefficients (kt,0) between various
triples of brain regions from the real-world fMRI dataset during Stroop task performance
and rest. Permutation test *p <0.05, **p <0.001.

gyrus and precuneus independent of fusiform gyrus have also been identified. No causal
relationship has been identified by GVAR and PF. These lag 0 Granger causality coefficients
were statistically different between task and rest conditions. This suggests differences in
functional causal dynamics corresponding to differences in behaviors being performed by
those brain regions. The latter three causal relationships were not successfully identified
by our previous method that failed to account for time-varying causality (Chuang et al.,
2021), suggesting that the current method captures richer information about complex brain
network functioning than prior methods.

4. Conclusion
Our DSN-ACKs architecture that characterizes time-varying nonlinear conditional Granger

causality identifies time-varying causal relationships programmed into synthetic and sim-
ulated fMRI data. When applied to real task fMRI data, the method identifies plausible
causal brain functional relationships among brain regions that prior methods were unable
to identify. Future work should extend this approach to account for spatially- and tem-
porally variable hemodynamic response functions that could impact discovery of causal
relationships (Ambrosi et al., 2021; Duggento et al., 2021).
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