
Efficient Lifelong Model Evaluation
in an Era of Rapid Progress

Ameya Prabhu∗1,3 Vishaal Udandarao*1,2 Philip H.S. Torr3
Matthias Bethge1† Adel Bibi3† Samuel Albanie2†

1Tübingen AI Center, University of Tübingen 2University of Cambridge 3University of Oxford

§ https://github.com/bethgelab/sort-and-search
õ https://huggingface.co/datasets/bethgelab/lifelong_benchmarks

Abstract
Standardized benchmarks drive progress in machine learning. However, with re-
peated testing, the risk of overfitting grows as algorithms over-exploit benchmark
idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-
expanding large-scale benchmarks called Lifelong Benchmarks. These benchmarks
introduce a major challenge: the high cost of evaluating a growing number of
models across very large sample sets. To address this challenge, we introduce
an efficient framework for model evaluation, Sort & Search (S&S), which reuses
previously evaluated models by leveraging dynamic programming algorithms to
selectively rank and sub-select test samples. To test our approach at scale, we
create Lifelong-CIFAR10 and Lifelong-ImageNet, containing 1.69M and 1.98M
test samples for classification. Extensive empirical evaluations across ∼31,000
models demonstrate that S&S achieves highly-efficient approximate accuracy mea-
surement, reducing compute cost from 180 GPU days to 5 GPU hours (∼1000x
reduction) on a single A100 GPU, with low approximation error and memory cost
of <100MB. Our work also highlights issues with current accuracy prediction
metrics, suggesting a need to move towards sample-level evaluation metrics. We
hope to guide future research by showing our method’s bottleneck lies primarily in
generalizing Sort beyond a single rank order and not in improving Search.

. . .

. . .

f1

f2

fm

x1 x2 xn

M
o

d
el

s

Samples

m ✕ n

1 0 0

000

1 1 1

. . .

. . .

. . .

. . .

. . .

.

Initial Accuracy Predictions

Efficient Model Evaluation

1 0 0

0 0 0

1 1 1

. . .

. . .

. . .

 . . .

. . .

.

 fm+1

 Predictions?

New Model

{x1 , x2 ,…, xn}

1 0 0

0 0 0

1 1 1

. . .

. . .

. . .

 . . .

. . .

.

P
red

ictio
n

s?

Sample Pool

select subset

eval on subset

 xn+1

New Sample Existing Models

eval on subset
Efficient Insertion

{f1 , f2 ,…, fm}

select subset

of size n'

of size m'

Figure 1: Efficient Lifelong Model Evaluation. Assume an initial pool of n samples and m models
evaluated on these samples (left). Our goal is to efficiently evaluate a new model (insertM) at
sub-linear cost (right top) and efficiently insert a new sample into the lifelong benchmark (insertD)
by determining sample difficulty at sub-linear cost (right bottom). See Section 2 for more details.

∗equal contribution, † equal supervising

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/bethgelab/sort-and-search
https://huggingface.co/datasets/bethgelab/lifelong_benchmarks

1 Introduction

The primary goal of standard evaluation benchmarks is to assess model performance on some task
using data that is representative of the visual world [87]. For instance, the CIFAR10 [54] benchmark
tested whether classifiers can distinguish between 10 categories, such as dogs and cats. Subsequent
versions like CIFAR10.1 [59], CIFAR10.2 [59], CINIC10 [21], and CIFAR10-W [83] introduced
more challenging and diverse samples to evaluate the same objective of classifying 10 categories. As
benchmarks become standardized and repeatedly used to evaluate competing methods, they gradually
lose their capacity to represent broader tasks effectively. This is because models become increasingly
specialized to perform well on these specific benchmarks. This phenomenon, known as overfitting,
occurs both in individual models and within the research community as a whole [28, 90]. Fresh
approaches must compete with a body of methods that have been highly tuned to such benchmarks,
incentivising further overfitting if they are to compete [9, 10].

One approach to preventing models from overfitting to biases [87, 3] is to move beyond fixed test
sets by creating an ever-expanding pool of test samples. This approach, known as Lifelong Model
Evaluation, aims to restore the representativeness of benchmarks to reflect the diversity of the visual
world by expanding the coverage of test sets. One can expand the pool by combining datasets or
using well-studied techniques like dynamic sampling [81, 51, 52], these expanding benchmarks
can grow substantially in size as they accumulate samples. This raises the less-explored issue of
increasing evaluation costs. As an example, it takes roughly 140 and 40 GPU days respectively to
evaluate our current model set on our Lifelong-CIFAR10 and Lifelong-ImageNet datasets (containing
31,000 and 167 models respectively). These issues are only exacerbated in benchmarking foundation
models [15]. For instance, evaluating a single large language model (LLM) on MMLU [40] (standard
benchmark for evaluating LLMs) takes 24 hours on a consumer-grade GPU [45]. This inevitably will
lead to a surge in evaluation costs when benchmarking lots of increasingly expensive models against
an ever-growing collection of test samples [78, 22]. Hence, we primarily ask: Can we reduce this
evaluation cost while minimising the prediction error?

We design algorithms to enable efficient evaluation in lifelong benchmarks, inspired by computerized
adaptive testing (CAT) [89]. CAT is a method used to create exams like the GRE and SAT from
a continuously growing pool of questions. Unlike traditional tests where all questions must be
answered, CAT sub-samples questions based on examinee responses. This approach efficiently
gauges proficiency with far fewer questions, while maintaining assessment accuracy. Similarly, we
aim to evaluate classification ability of new models without testing on all samples, instead selecting a
subset of samples to evaluate models. We propose a method, Sort & Search (S&S), which reuses past
model evaluations on a sample set through dynamic programming to enable efficient evaluation of
new incoming models. S&S operates by first ranking test samples by their difficulty, done efficiently
by leveraging data from previous tests. It then uses these updated rankings to evaluate new models,
streamlining the benchmarking process. This strategy enables efficient lifelong benchmarking,
reducing the cost dramatically from a collective of 180 GPU days to 5 GPU hours on a single A100
GPU. We achieve a 1000× reduction in inference costs compared to static evaluation on all samples,
reducing over 99.9% of computation costs while accurately predicting sample-wise performance.
Moreover, with a single algorithm, we address both key challenges: expanding dataset size and
evaluating new models given a dataset.

Taken together, our main contributions are:

1. We curate two lifelong benchmarks: Lifelong-CIFAR10 and Lifelong-ImageNet, consisting of
1.69M and 1.98M samples respectively.

2. We propose Sort & Search, a novel framework for efficient model evaluation.
3. We show that our simple framework is far more scalable and allows saving 1000x evaluation cost.
4. We provide a novel decomposition of errors in Sort & Search into largely independent sub-

components (aleatoric and epistemic errors).
5. We prove and empirically validate that our solution for the Search sub-component reaches the

optimal solution and our framework is stable under repeated additions without any degradation.

2 Lifelong Model Evaluation: Formulation and Challenges

We first formalise evaluation in lifelong model evaluation and describe the key challenges it raises.

2

Formulation. Let D=((x1, y1), . . . , (xn, yn)) denote an ordered collection of labeled examples,
sampled from the underlying task distribution of interest P (X×Y). Here, xi∈X denotes the ith

data sample and yi∈Y denotes the corresponding label. Let M=(f1, . . . , fm) denote an ordered
collection of models where each model, f :X→Y , maps data samples to predicted labels. Lifelong
benchmark, B=(D,M, insertD, insertM, metrics), augments D and M with three operations:

1 insertD((x′, y′)) inserts a new labeled example (x′, y′) into D.
2 insertM(f ′) inserts a new model f ′ into M.
3 metrics() returns a |M|-dimensional vector estimating each model’s performance.

Key challenges. When new models are proposed, the set M expands over time. Similarly, the sample
collection, D expands as new evaluation datasets get proposed to test various aspects of the problem
and resist overfitting. The key question becomes: How to efficiently update the benchmark? We
can instantiate a “naive” implementation of the metrics() operation (3) by simply re-evaluating
every model on every sample after each call to insertM (2) or insertD (1). However, such
a strategy exhibits O(|D||M|) runtime complexity for each call to metrics(), rendering lifelong
model evaluation practically infeasible as D and M grow. The central question considered by this
work is therefore the following: Given a lifelong benchmark B, how can we efficiently compute
metrics() each time we insert new labeled samples into D (1) or new models into M (2)?

Inserting ∆m models (2 insertM). Suppose that ∆m new models have just been released. We
wish to insert these new models into M and efficiently predict performance of these new models.
A naive approach would entail evaluating the ∆m models on all |D| samples. Our first challenge
is: Can we instead generate the prediction matrix by performing inference only on a small subset of
n′ ≪ |D| samples? We want to enable accurate prediction of the remaining entries in the prediction
matrix.

Inserting ∆n samples (1 insertD). Our second challenge arises when we obtain new ∆n labeled
data examples. We seek to insert these samples into D and efficiently predict performance of these
new samples. A naive approach entails evaluating all |M| models on the ∆n new examples. As
above, to substantially reduce cost, we select a small subset of m′ ≪ |M| models with the objective
of accurately predicting the remaining entries of the prediction matrix corresponding to the new ∆n
samples.

Approach. Our approach is characterized by two key ideas. First, we augment B with an instance-
level accuracy cache to amortise inference costs across evaluations. The cache is instantiated as
a matrix A ∈ {0, 1}|M|×|D| where A(i, j) ≜ I[fi(xj) = yj]. Second, we propose strategies to
efficiently generate the prediction matrix Y ∈ {0, 1}|M|×|D|, using a combination of sampling and
inference leveraging the accuracy cache. Our methodology is illustrated in Fig. 1.

Connections to Existing Literature. The lifelong model evaluation setup, where M and D grow
over time, has received limited attention [3], the sub-challenge of efficiently evaluating models
when new models are released has received more focus. Concretely, this maps to the problem
of insertM (2) within our framework. We comprehensively draw connections across different
research directions in Appendix H and briefly present the most similar works here. Model Spider
[105] efficiently ranks models from a pre-trained model zoo. LOVM [110], Flash-Eval [106] and
Flash-HELM [67] similarly rank foundation models efficiently on unseen datasets. However, these
approaches predict dataset-level metrics rather than instance-level metrics, and thereby cannot be
used in our setup to grow the prediction cache efficiently (see Section 2.1). Concurrent to our work,
Anchor Point Sampling [91] and IRT-Clustering [69] both propose efficient instance-level evaluations
by creating smaller core-sets from test data. They introduce clustering-based approaches and item
response theory [4] to obtain sample-wise accuracy predictions. However, their methods require
memory and time complexity quadratic in the number of data samples, i.e., O(|D|2) requiring well
over 10TB of RAM for benchmarks having a million samples. The comparisons are infeasible to
scale on datasets bigger than a few thousand samples. In contrast, our novel Sort & Search approach,
requires memory and time complexity of O(|D| log |D|) with the number of samples, and can scale
up to billion-sized test sets (see Section 4 for empirical results). In practice, our method only requiring
only two 1D arrays of size of the number of samples, requiring extremely minimal storage overhead,
being less than 3GB in absolute terms on billion scale datasets. Furthermore, we motivate why one
should adopt sample-wise prediction instead of overall accuracy prediction below.

3

2.1 Why Adopt Sample-wise Prediction Metrics instead of Overall Accuracy Prediction?

Given model predictions ym+1 and ground-truth predictions am+1, current methods typically mea-
sures whether one can predict the average accuracy over the full test, measured by mean absolute
difference of aggregate accuracies Eagg(ym+1,am+1) = |(|ym+1|−|am+1|)|/n. We argue this is highly
unreliable as minimizing the metric only requires predicting the count of 1s in the prediction array
rather than correctly predicting on a sample level. For instance, consider a ground-truth prediction
array of [0,0,0,1,1,1]. A method that predicts [1,1,1,0,0,0] as the estimated prediction array achieves
optimal Eagg of 0 despite not predicting even a single sample prediction correctly! More generally, it
is always possible to obtain globally optimal Eagg of 0 while having worst-case mean-absolute error
E for any ground truth accuracy am+1. Formally,

Theorem 2.1. Given any ground-truth vector am+1, it is possible to construct a prediction vector
ym+1 such that Eagg(ym+1,am+1) = 0 and E(am+1,ym+1) = 2.min(1− |am+1|/n, |am+1|/n)

One might wonder whether these worst case bounds ever occur in practice. We empirically test a
simple yet optimal array construction, given with oracle ground-truth dataset-level accuracy of k2,
which achieves Eagg = 0, and consistently observe high mean-absolute error E of 0.4−0.5 on a
sample level on our lifelong benchmarks (n=∼106), i.e., the model incorrectly predicts 40−50%
of the samples in a binary classification task, which is surprisingly high. In comparison, our S&S
method, without any oracle access, gets 0.15−0.17 mean-absolute error with just n′=100 samples
(at 10, 000x compute saving) on the same benchmarks. Overall, this demonstrates that thoughtful
sample-level prediction mechanisms are necessary for efficient lifelong evaluation.

3 Sort & Search: Enabling Efficient Lifelong Model Evaluation

Inspired by CAT [89], we propose an efficient lifelong evaluation framework, Sort & Search (S&S),
comprising two components: (1) Ranking test samples from the entire dataset pool according to their
difficulty3, i.e., Sort and (2) Sampling a subset from the pool to test on, i.e., Search. This framework
effectively tackles the two key operations noted in Section 2 (1 insertD and 2 insertM).

We first describe our Sort and Search method in the case when new models are added (2 insertM),
and subsequently show that the same procedure applies when we have new incoming samples
(1 insertD) simply by transposing the cache (A → AT). A full schematic of our pipeline is
depicted in Fig. 2.

3.1 Ranking by Sort

Setup. We recall that our lifelong benchmark pool consists of evaluations of |M| models on |D|
samples. For ease of reference, say |M|=m and |D|=n, and we have our cache A ∈ {0, 1}m×n (see
Fig. 1 left). We can decompose the cache A row-wise corresponding to each model fi, i ∈ {1, ..,m},
obtaining the binary accuracy prediction across the n samples, denoted by ai = [pi1, pi2 . . . , pin].
Here, pij∈{0, 1} represents whether the model fi classified the sample xj correctly.

Goal. Given the cache A, we want to obtain a ranked order (from easy to hard) for its columns,
which represent the samples. This sorted order (Sort) can later be used for efficient prediction on
new incoming models (Search). We want to find the best global permutation matrix P ∈ {0, 1}n×n,
a binary matrix, such that AP permutes the columns of A so that we can rank samples from easy
(all 1s across models) to hard (all 0s across all models). We say this has a minimum distance from
the optimal ranked accuracy prediction matrix Y ∈ {0, 1}m×n computed by the hamming distance
between them, posed as solving the following problem:

P∗,Y∗ = argminP,Y∥AP−Y∥1, s.t. P ∈ {0, 1}n×n,P1n = 1n,1
⊤
nP = 1n,

if Yij = 1, then Yij′ = 1 ∀j′ ≤ j, if Yij = 0, then Yij′ = 0 ∀j′ ≥ j.
(1)

2Given |am+1| = k, one can show the prediction array [1⊤
k ,0

⊤
n−k] achieves optimal Eagg = 0

3If a sample xi is more “difficult" than a sample xj then at least equal number of models predict xj correctly
as the number of models predicting xi correctly [6].

4

Figure 2: Full Pipeline of Sort & Search. For efficiently evaluating new models, (Left) we first
sort all data samples by difficulty (refer Section 3.1) and (Right) then perform a uniform sampling
followed by DP-search and extrapolation for yielding new model predictions (refer Section 3.2). This
entire framework can also be transposed to efficiently insert new samples (refer Section 3.3).

By definition of a permutation matrix, the constraints P1n = 1n,1
⊤
nP = 1n on binary P enforces

by definition that P is a valid permutation matrix. The ranked accuracy prediction matrix Y is
a binary matrix created by a row-wise application of a thresholding operator for every row in Y
separately. The informal explanation of the optimization problem in Eq. (1) is to find an ordering of
samples such that error introduced by thresholding is minimized.

We next discuss how to solve this optimization. While the goal is finding the optimal permutation P∗,
we still need to jointly solve for P,Y here. We find a solution by alternating between optimizing P
keeping Y constant and optimizing Y keeping P constant, with the goal of finding the best P∗, with
a coordinate descent algorithm. We now present algorithms for optimizing the two subproblems.

3.1.1 Optimizing P Given Y

We know P is binary from Eq. (1). Hence, finding the optimal P∗ is NP-Hard [101]. To simplify the
sub-problem, we first present an algorithm to solve the case where we can order samples in a strictly
decreasing order of difficulty, measured by how many models classified it correctly (1). However,
samples cannot be arranged as strictly decreasing in practice. Subsequently, we present an alternative
which computes soft confidences, enabling the strictly decreasing constraint to hold (2). A third
alternative we explore removes the introduced constraint of a strictly decreasing order (3).

1 Sorting by Sum. We discuss how to order samples if they follow a strictly decreasing order of
difficulty. We can order samples in decreasing order of difficulty by a simple algorithm detailed
in Listing 1 (sort_by_sum)—intuitively, this algorithm greedily sorts samples from easy (more 1s)
to hard (less 1s) by sorting the sum vector across rows per column (which can trivially be converted
to the permutation matrix P∗).

However, the assumption of strictly decreasing order of difficulty is unrealistic as the number of
samples is usually far larger than the number of models. Hence, it is guaranteed that many samples
will have the same level of difficulty by the pigeonhole principle [2]. We propose to address this
by two methods: (a) Converting the cache (A) to store confidence predictions of ground truth class
rather than accuracy (Algorithm 2), or (b) Iteratively optimizing rows which are tied in sum values
(Algorithm 3). Note that we find 1 Sorting by Sum effective in all our tested scenarios, but provide
these alternatives in the case where it is insufficient.

2 Sorting by Confidence Sum. One method to have a strictly decreasing order is to relax the
constraint on the samples of ai = [pi1, pi2 . . . , pin] from pij ∈ {0, 1} to pij ∈ [0, 1], and use
confidence of the ground truth class. This modification allows all examples to be unique. The
procedure is then identical to Sorting by Sum, i.e. algorithm still greedily sorts samples from easy
(more 1s) to hard (less 1s) by sorting the sum vector across rows per column.

3 Recursive Sorting by Sum. Another alternative is relaxing the equal difficulty assumption in
Algorithm 1 . A natural question is: How does one order samples which have equal number of
models predicting them correctly, i.e., two columns of A with equal number of 1s?

5

We propose an iterative solution: at each step, order samples of equal difficulty by alternatively
optimizing P keeping Y constant by applying Algorithm 1 and optimizing Y keeping P constant
by DP-Search algorithm (presented in the next Section). We provide the algorithm for two iterations
for an illustration in Listing 1 (two_stage_sort_by_sum). Note that this strictly improves the
solution at each recursion depth. Note that ties are broken by preferring the model which minimizes
error the most.

3.1.2 Optimizing Y given a P

Optimizing Y given a P, is equivalent to finding a row-wise threshold k ≤ n minimizing the error
with the matrix AP for a given P. Intuitively, if the threshold for the ith row is k, then the ith row is of
the form [1⊤

k ,0
⊤
n−k] where 1k is a vector of all ones of size k and 0n−k is a zero vector of size n− k.

In every row, all samples before the row-wise threshold k are predicted to be correctly classified
(easy) and those after are incorrectly classified (hard) for the model corresponding to the row. To
optimize Y given P, we propose a dynamic programming algorithm, DP-Search which operates
on each row yi, detailed in Listing 1 (dp_search). Given a row in Y, DP-Search computes the
difference between number of 1s and number of 0s for each index. By using a prefix sum structure,
for an input of size n, the DP approach reduces time complexity from O(n2) to O(n). The optimal
threshold k is the index of the maximum value in this vector. The vector yi is simply [1⊤

k ,0
⊤
n−k]

where 1k is a vector of all ones of size k and 0n−k is a zero vector of size n − k. DP-Search is
guaranteed to return the globally optimal solution:
Theorem 3.1. Optimality of Y given P. For any given ai ∈ {0, 1}1×n and P, DP-Search returns
an ordered prediction vector yi ∈ {0, 1}1×n which is a global minimum of ∥aiP− yi∥1.

Applying DP-Search independently row-wise, the algorithm returns the optimal Y given P. Now,
we shall

3.1.3 Process Summary

We have outlined the process of optimizing (i) P given Y and (ii) Y given P. Note that (i) alone
suffices for Sorting Operation when using the 1 Sorting by Sum algorithm, while a combination
of (i) and (ii) is primarily needed for 3 Recursive Sorting by Sum. After sorting, we obtain AP∗,
which reflects the sample ordering based on difficulty. In the following section, we will reuse (ii) to
search for a Y given P to efficiently evaluate new models or add new samples.

3.2 Efficient Selection by Search

Goal. After solving Eq. (1), we obtain the optimal P∗ in the sorting phase. We assume that this
sample difficulty order generalizes to new models, ∆m. Recall that AP∗ represents the columns of
cache A, ordered by sample difficulty (those most often misclassified by models). Given ∆m new
models, our goal is to predict accuracy across all n samples for each model, i.e., the accuracy matrix
Y∆m ∈ {0, 1}∆m×n. This would be simple if we could evaluate all ∆m models on all n samples,
but this approach is costly. The challenge is thus to predict performance on the remaining samples
while evaluating only a small subset n′ ≪ n. Hence, we will assume that we can create a smaller
ground truth subset a′m+1 and study: How to find the best accuracy prediction vector ym+1? We use
the ground truth vector am+1 for evaluating the efficacy of our method.

Recall that evaluation of every new model can be done independently of others, i.e. Y∆m is separable
per row. Hence, we describe the problem for the first new model ym+1 ∈ {0, 1}1×n here.

(i) How to get the optimal ym+1? Our goal here is to generate the sample-wise prediction vector
ym+1 ∈ {0, 1}1×n. We divide it into two subtasks: selection and optimization. The selection task
is to select the best n′ observations to sample. The optimization task is, given the n′ observations
a′m+1 ∈ {0, 1}1×n′

how to generate the prediction vector ym+1 ∈ {0, 1}1×n.

Subtask 1: How to Select Samples? We want to find the best n′ observations forming a′. Note that
any ranked solution we obtain using this vector needs to be interpolated from n′ points to n points—
we use this intuition to sample n′ points. Hence, a simple solution is to sample points such that any
threshold found minimizes the difference between the actual threshold and a threshold predicted by our
set of n′, i.e., sample n′ points uniformly, providing the algorithm in Listing 1 (uniform_sampling).
We also compare empirically with a pure random sampling approach in Section 4.

6

Subtask 2: Optimizing ym+1. Given the n′ observations a′m+1 ∈ {0, 1}1×n′
, how to generate the

prediction vector ym+1 ∈ {0, 1}1×n? We use the threshold given by DP-Search (Listing 1) and obtain
the threshold, given in terms of fraction of samples in |a′m+1|. We extrapolate this threshold from
n′ to n points, to obtain the threshold for the prediction vector ym+1. ym+1 is simply [1⊤

k ,0
⊤
n−k]

where 1k is a vector of all ones of size k and 0n−k is a zero vector of size n− k.

So far, we have only discussed evaluation of ∆m new models (2 insertM). How can we also
efficiently extend the benchmark i.e. efficiently adding ∆n new samples (1 insertD)?

3.3 Efficient Insertion of New Samples (insertD)

To add new samples into our lifelong benchmark efficiently, we have to estimate their difficulty with
respect to the other samples in the cache A. To efficiently determine difficulty by only evaluating
m′ ≪ m models, a ranking over models is required to enable optimally sub-sampling a subset of m′

models. This problem is quite similar in structure to the previously discussed addition of new models,
where we had to evaluate using a subset of n′ ≪ n samples. How do we connect the two problems?

We recast the same optimization objectives as described in Eq. (1), but replace A with A⊤ and Y
with Y⊤. In this case, Eq. (1) would have A⊤P, which would sort models, instead of samples,
based on their aggregate sum over samples (i.e., accuracy) optimized using Algorithm 1 to obtain
P∗, ordering the models from classifying least samples correctly to most samples correctly. Here,
Algorithm 1 is sufficient, without needing to solve the joint optimization (3) because accuracies
(sum across rows) are unique as the number of samples is typically much larger than the number of
models. In case of new incoming samples ∆n, we similarly would treat every sample independently
and optimize the predicted array y⊤

n+1 using Efficient Selection by Search (Section 3.2).

4 Experiments

To validate Sort & Search empirically, we showcase experiments on two tasks: 1 efficient estima-
tion of new sample difficulties (insertD) and 2 efficient performance evaluation of new models
(insertM). We then comprehensively analyse various design choices within our S&S framework.

4.1 Experimental Details

Lifelong-Datasets. We combine 31 domains of different CIFAR10-like datasets comprising samples
with various distribution shifts, synthetic samples generated by diffusion models, and samples queried
from different search engines to form Lifelong-CIFAR10. We deduplicate our dataset and downsample
images to 32×32. Our final dataset consists of 1.69M samples. Similarly, we source test samples
from ImageNet and corresponding variants to form Lifelong-Imagenet, designed for increased sample
diversity (43 unique domains) while operating on the same ImageNet classes. We include samples
from different web-engines and generated using diffusion models. Our final Lifelong-ImageNet
contains 1.98M samples (see full list of dataset breakdown in Appendix C).

Model Space. For Lifelong-CIFAR10, we use 31, 250 CIFAR-10 pre-trained models from the
NATS-Bench-Topology-search space [25]. For Lifelong-ImageNet, we use 167 ImageNet-1K and
ImageNet-21K pre-trained models, sourced primarily from timm [98] and imagenet-testbed [84].

Sample Addition Split (1 insertD). To study efficient estimation of new sample difficulties on
Lifelong-CIFAR10, we hold-out CIFAR-10W [83] samples for evaluation (∼500, 000 samples) and
use the rest ∼1.2 million samples for sorting. We do not perform experiments for Lifelong-Imagenet
since the number of models is quite small (167 in total), directly evaluating all models is relatively
efficient, as opposed to the more challenging Lifelong-CIFAR10 where evaluation on 31, 250 models
is expensive, practically necessitating reducing the number of models evaluated per new sample.

Model Evaluation Split (2 insertM). To study efficient evaluation of new models, we split the
model set for the Lifelong-CIFAR10 benchmark into a randomly selected subset of 6, 000 models for
ordering samples (i.e., Sort) and evaluate metrics on the remaining 25, 250 models (i.e., Search). For
Lifelong-Imagenet, we use 50 random models for ordering samples and evaluate on 117 models.

7

E = 0.16 + 0.07 * exp(-0.04n')
Exponential-decay fit:

(a) Lifelong-CIFAR10

E = 0.13 + 0.04 * exp(-0.02n')
Exponential-decay fit:

(b) Lifelong-ImageNet

101 102 103 104 105

Sampling Budget n'

0.13

0.14

0.15

0.16

0.17

0.18

M
ea

n
Ab

s.
 E

rr
or

CopyNearest&Expand (baseline)
Sort&Search (ours)

106x 105x 104x 103x 102x 101x
Compute Saved

(c) Baseline Comparison

Figure 3: Main Results. (a,b) We achieve 99% cost-savings for new model evaluation on Lifelong-
ImageNet and Lifelong-CIFAR10 showcasing the efficiency (MAE decays exponentially with n′) of
Sort&Search. (c) S&S is more efficient and accurate compared to the baseline on Lifelong-ImageNet.

Metrics (3 metrics()). We measure errors between estimated predictions for each new model
ym+1 and ground-truth predictions am+1 using mean-absolute error (MAE): E(am+1,ym+1):

E(am+1,ym+1) = ∥am+1P
∗−ym+1∥1/n (2)

4.2 Results: Sample-Level Model Performance Estimation (insertM)

We evaluate the predictive power of S&S for evaluating new models (2) when subjected to a varying
sampling budgets n′ i.e., we run our S&S over 13 different sampling budgets: {8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768} on both Lifelong-ImageNet and Lifelong-CIFAR10.

Our main results in Sections 4.2 and 4.3 use Sorting by Sum (1) for obtaining P∗ and uniform
sampling for the sample budget n′. Using this configuration, we now present our main results.

Key Result 1: Extreme Cost-Efficiency. From Figs. 3(a) and 3(b), we note our approach converges
to a very low mean-absolute error with 1/1000 the number of evaluation samples, leading to extreme
cost savings at inference time (from 180 GPU days to 5 GPU hours on one A100-80GB GPU)4.

Key Result 2: Mean Absolute Error Decays Exponentially. Upon analysing the observed E vs. n′

relationship, we note that exponentially decreasing curves fit perfectly in Figs. 3(a) and 3(b). The
exponential decay takes the form E=ae−bx+c. The fitted curves have large exponential coefficients
b of 0.04 and 0.02. This further shows the surprisingly high sample-efficiency obtained by S&S.

Key Result 3: Outperforming Baselines by Large Margins. We construct a competitive, scalable
version of Vivek et al. [91] as a baseline, called CopyNearest&Expand: It first samples n′ points out
of n (similar to S&S without sorting), and then expands the n′-sized prediction array to n samples by
copying the rest n−n′ predictions from the nearest neighbor prediction array from the ranking set
of models. We note that this baseline is equivalent to removing the Sort component, and only using
random sampling. Comparing to the baseline, we see from Fig. 3(c) that our Sort & Search is:

1) More accurate: It achieved 1% lower MAE at a sampling budget of n′=8192 compared to the
baseline, meaning that on average, our S&S correctly classifies ∼19k more samples.

2) Faster convergence: S&S converges much faster than the baseline (at n′=1, 024 vs. n′=32, 768)
thereby showcasing the high degree of sample efficiency in converging to the minimal error.

3) Consistent: Fig. 4(b) shows the better consistency of S&S, across wider range of models used for
Sort—at n′=512, S&S with only 10 Sort-models still outperforms the baseline using 50 Sort-models.

Storage Efficiency. Storage Efficiency. Our method (S&S) achieves high storage efficiency, requiring
only two 1D arrays: one to store the sort-sum and another to construct the current search output. This
results in minimal storage overhead, amounting to just 0.0166% of the input data or less than 100
MB in absolute terms. Consequently, Sort&Search not only outperforms alternative methods, such as
CopyNearest&Expand, but is also far more memory-optimized.

4The “compute saved” axis in the plots is computed as n
n′ . Effective compute savings are: In Lifelong-

CIFAR10, we do 25, 250×1, 697, 682 evaluations in the full evaluation v/s 25, 250×2, 048 in our evaluation.
Similarly, for Lifelong-ImageNet, we perform 117×1, 986, 310 v/s 117×2, 048 evaluations.

8

101 102 103

Sampling Budget m'

0.150

0.175

0.200

0.225

0.250

0.275

M
ea

n
Ab

s.
 E

rr
or

Sum
Confidence-Sum

106 105 104 103 102 101
Compute Saved

(a) Sample Difficulty (b) #Ranking models

101 102 103 104

Sampling Budget n'

0.14

0.16

0.18

0.20

M
ea

n
Ab

s.
 E

rr
or

Sum
Recursive Sum
Confidence Sum

(c) Ranking methods

101 102 103 104

Sampling Budget n'

0.14

0.16

0.18

0.20

0.22

M
ea

n
Ab

s.
 E

rr
or

Uniform
Random

(d) Sampling methods

Figure 4: (a) We achieve accurate sample difficulty estimates on Lifelong-CIFAR10 (<0.15 MAE) at a
fraction of the total number of models to be evaluated, thereby enabling cost-efficient sample insertion.
(b,c,d), We analyse three design choices for better understanding S&S, using Lifelong-Imagenet.

4.3 Results: Sample Difficulty Estimation (insertD)

We next showcase results for the task (1) where for new samples, the goal is to sub-sample the
number of models to evaluate, for accurately determining sample difficulty. We present results on
Lifelong-CIFAR10, with two different methods for ranking models5, Sorting by Sum (1) and Sorting
by Confidence Sum (2). We evaluate over 9 model budgets m′ (number of models evaluated over):
{8, 16, 32, 64, 128, 256, 512, 1024, 2048}. From Fig. 4(a), we observe that both methods converge
quickly—Sorting by Sum (1) reaches an MAE < 0.15 by only evaluating on m′=64 models out of
31, 250 (104× computation savings). This demonstrates our method’s ability to efficiently determine
sample difficulty, enabling efficient insertion back into the lifelong-benchmark pool.

4.4 Breaking down Sort & Search
Varying the Number of Sort-Models Used. In Fig. 4(b), we analyse the effect of the number of
models used for computing the initial ranking (i.e., m) on the final performance on Lifelong-ImageNet.
Using more models improves MAE— using lesser models for ranking (m=10) converges to a higher
MAE (2% difference at convergence when using m=50 (blue line) vs. m=10 (red line)). Note that
the m used for ranking does not have any effect on the speed of convergence itself (all methods
roughly converge at the same sampling budget (n′=2, 048)), but rather only on the MAE achieved.

Different Sorting Methods. We compare the three different algorithms on Lifelong-Imagenet: 1
Sorting by Sum, 2 Sorting by Confidence Sum, and 3 Sorting by Recursive Sum. From Fig. 4(c),
we note an MAE degradation when using the continual relaxation of the accuracy prediction values
as confidence values, signifying no benefits. However, using the multi-step recursive correction of
rankings (3) provides significant boosts (0.5% boost in MAE at all n′>1, 024) due to its ability to
locally correct ranking errors that the global sum method (1) is unable to account for.

Different Sampling Methods. In Fig. 4(d), we compare methods used for sub-selecting the data-
samples to evaluate—we compare uniform vs. random sampling. Both methods converge very
quickly and at similar budgets to their optimal values and start plateauing. However, uniform
sampling provides large boosts over random sampling when the sampling budget is small (5% lower
MAE at n′=8)—this can be attributed to its “diversity-seeking” behaviour which helps cover samples
from all difficulty ranges, better representing the entire benchmark evaluation samples rather than an
unrepresentative random set sampled via random sampling.

4.5 Decomposing the Errors of S&S

Here, we showcase a decomposition of the errors of Sort & Search. Specifically, the total mean
absolute error E(am+1,ym+1) can be decomposed into a component irreducible by further sampling,
referred to as the Aleatoric Sampling Error (Ealeatoric), and a component which can be improved by
querying larger fraction of samples n′, referred to as the Epistemic Sampling Error (Eepistemic).

Aleatoric Sampling Error. Let y∗
m+1 = y′ when n′ = n, i.e., it is the best prediction obtainable

across all subsampled thresholds, as we have access to the full am+1 vector. However, some error
remains between y∗ and am+1 due to the ordering operation (i.e., Sort). This error, caused by errors

5Recursive sum (3) is not applicable here as all sum values are unique, see Section 3.3.

9

Aleatoric Error

Lifelong-CIFAR10

- - - - Total Error (E)
—— Epistemic Error (Eepistemic)

Aleatoric Error

- - - - Total Error (E)
—— Epistemic Error (Eepistemic)

Lifelong-ImageNet

Figure 5: Error Decomposition Analysis on Lifelong-CIFAR10 (left) and Lifelong-ImageNet
(right). We observe that epistemic error (solid line) drops to 0 within only 100 to 1000 samples
across both datasets, indicating this error cannot be reduced further by better sampling methods. The
total error E is almost entirely irreducible (Aleatoric), induced because new models do not perfectly
align with the ranking order P∗. This suggests generalizing beyond a single rank ordering, not better
sampling strategies, should be the focus of subsequent research efforts.

in the generalization of the permutation matrix P∗ cannot be reduced by increasing the sample budget
n′. More formally, we define this error as:

Ealeatoric(am+1,ym+1) = min
ym+1

∥am+1P
∗ − ym+1∥ = ∥am+1P

∗ − y∗
m+1∥. (3)

Epistemic Sampling Error. Contrarily, there is a gap between optimal ranking prediction y∗
m+1 and

ym+1 with the current sample size n′. This gap, Epistemic Sampling Error, is formally defined as:

Eepistemic(y
∗
m+1,ym+1) = ∥y∗

m+1 − ym+1∥. (4)

Results. We analyse sampling effectiveness in Lifelong CIFAR-10 and Lifelong-ImageNet by studying
the Epistemic Sampling Error (Eepistemic) and Aleatoric Sampling Error (Ealeatoric) in Figure 5. First,
we see that the epistemic error is very low and quickly converges to 0, i.e., we converge to the
best achievable performance within sampling just 100 to 1000 samples on both datasets. The
remaining error after that is irreducible. We attribute it primarily caused by generalization gaps in
the global permutation matrix P∗ as better approximations like Recursive Sum (3) did not improve
performance as shown in Fig. 4(c). This introduces an interesting question: Do models follow a
single global ranking order or are they better decomposed into different rank orders?

How consistently do models follow one single global ranking order? We present a detailed analysis
in Appendix E to verify this. We calculated the cross-correlation matrix for predictions from 167
models across the entire Lifelong-Imagenet benchmark (1.9M test samples). Surprisingly, all model
pairs showed positive correlations to varying degrees, with no pairs being anti-correlated. Models
with near-zero correlations had near-random performance, indicating uncorrelated predictions due to
their randomness. Top-performing models exhibited slightly higher correlations. Overall, there was
no clear evidence of model cliques. This analysis strongly suggests that model predictions are highly
correlated, justifying our choice of using a single ranking function, but the ranking is simply noisy.

5 Conclusion

In this work, we address the efficient lifelong evaluation of models. To mitigate the rising evaluation
costs on large-scale benchmarks, we proposed an efficient framework called Sort & Search, which
leverages previous model predictions to rank and selectively evaluate test samples. Our extensive
experiments, involving over 31,000 models, demonstrate that our method reduces evaluation costs
by 1000x (over 99.9%) with minimal impact on estimated performance on a sample-level. We aim
for Sort & Search to inspire the development of more robust and efficient evaluation methods. Our
findings show that model predictions are highly correlated, supporting our use of a single ranking
function, though the ranking is somewhat noisy. Our analysis of Sort & Search suggests that future
research should focus on generalizing beyond a single rank ordering, rather than on better sampling
strategies. Overall, we hope Sort & Search enables large reductions in model evaluation cost and
provides promising avenues for future work in lifelong model evaluation.

10

Acknowledgements

The authors would like to thank (in alphabetic order): Bruno Andreis, Çağatay Yıldız, Fabio Pizzati,
Federico D’Agostino, Ori Press, Shashwat Goel, and Shyamgopal Karthik for helpful feedback. AP
is funded by Meta AI Grant No. DFR05540. VU thanks the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) and the European Laboratory for Learning and Intelligent
Systems (ELLIS) PhD program for support. VU was supported by a Google PhD Fellowship
in Machine Intelligence. PT thanks the Royal Academy of Engineering for their support. AB
acknowledges the funding from the KAUST Office of Sponsored Research (OSR-CRG2021-4648)
and the support from Google Cloud through the Google Gemma 2 Academic Program GCP Credit
Award. SA is supported by a Newton Trust Grant. MB acknowledges financial support via the
Open Philantropy Foundation funded by the Good Ventures Foundation. This work was supported
by the German Research Foundation (DFG): SFB 1233, Robust Vision: Inference Principles and
Neural Mechanisms, TP4, project number: 276693517 and the UKRI grant: Turing AI Fellowship
EP/W002981/1. MB is a member of the Machine Learning Cluster of Excellence, funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC number 2064/1 – Project number 390727645.

References
[1] Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of

gradients. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[2] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433, 1994.

[3] Anonymous. Democratizing evaluation with infinity-benchmarks: Sample-level heterogeneous test-
ing over arbitrary capabilities. In Submitted to The Thirteenth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Dj1PVLU8fK. under review.

[4] Frank B Baker. The basics of item response theory. ERIC, 2001.

[5] Eslam Mohamed Bakr, Pengzhan Sun, Xiaogian Shen, Faizan Farooq Khan, Li Erran Li, and Mohamed
Elhoseiny. Hrs-bench: Holistic, reliable and scalable benchmark for text-to-image models. In International
Conference on Computer Vision (ICCV), 2023.

[6] Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of example
difficulty. Conference on Neural Information Processing Systems (NeurIPS), 2021.

[7] Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification via generated
datasets. International Conference on Learning Representations Workshop (ICLR-W), 2023.

[8] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of
object recognition models. Conference on Neural Information Processing Systems (NeurIPS), 2019.

[9] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Conference on Fairness, Accountability, and
Transparency (FAccT), 2021.

[10] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we
done with imagenet? In Conference on Neural Information Processing Systems (NeurIPS), 2021.

[11] Haoyang Bi, Haiping Ma, Zhenya Huang, Yu Yin, Qi Liu, Enhong Chen, Yu Su, and Shijin Wang.
Quality meets diversity: A model-agnostic framework for computerized adaptive testing. In International
Conference on Data Mining (ICDM), 2020.

[12] Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin Shao, Wanrong Zhu, Anas Awadalla, Josh Gardner,
Rohan Taori, and Ludwig Schimdt. Visit-bench: A benchmark for vision-language instruction following
inspired by real-world use. Conference on Neural Information Processing Systems (NeurIPS), 2023.

[13] Nitzan Bitton-Guetta, Yonatan Bitton, Jack Hessel, Ludwig Schmidt, Yuval Elovici, Gabriel Stanovsky,
and Roy Schwartz. Breaking common sense: Whoops! a vision-and-language benchmark of synthetic
and compositional images. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2616–2627, 2023.

[14] Avrim Blum and Moritz Hardt. The ladder: A reliable leaderboard for machine learning competitions. In
International Conference on Machine Learning (ICML), 2015.

[15] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

11

https://openreview.net/forum?id=Dj1PVLU8fK

[16] Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari S Morcos.
Pug: Photorealistic and semantically controllable synthetic data for representation learning. arXiv preprint
arXiv:2308.03977, 2023.

[17] Samuel R Bowman and George E Dahl. What will it take to fix benchmarking in natural language
understanding? In North American Chapter of the Association for Computational Linguistics (NAACL),
2021.

[18] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[19] Muxi Chen, Yu Li, and Qiang Xu. Hibug: On human-interpretable model debug. In Conference on Neural
Information Processing Systems (NeurIPS), 2023.

[20] Ciprian A Corneanu, Sergio Escalera, and Aleix M Martinez. Computing the testing error without a
testing set. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[21] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet or
cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[22] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency misnomer.
arXiv preprint arXiv:2110.12894, 2021.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[24] Greg d’Eon, Jason d’Eon, James R Wright, and Kevin Leyton-Brown. The spotlight: A general method
for discovering systematic errors in deep learning models. In Conference on Fairness, Accountability,
and Transparency (FAccT), 2022.

[25] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking nas algorithms
for architecture topology and size. Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2021.

[26] Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with v-usable
information. In International Conference on Machine Learning (ICML), 2022.

[27] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher Lee-Messer, Jared
Dunnmon, James Zou, and Christopher Ré. Domino: Discovering systematic errors with cross-modal
embeddings. International Conference on Learning Representations (ICLR), 2022.

[28] Alex Fang, Simon Kornblith, and Ludwig Schmidt. Does progress on imagenet transfer to real-world
datasets? In Conference on Neural Information Processing Systems (NeurIPS), 2023.

[29] Wanyong Feng, Aritra Ghosh, Stephen Sireci, and Andrew S Lan. Balancing test accuracy and security in
computerized adaptive testing. International Conference on Artificial Intelligence in Education (AIED),
2023.

[30] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the next
generation of multimodal datasets. In Conference on Neural Information Processing Systems (NeurIPS),
2023.

[31] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858, 2022.

[32] Irena Gao, Gabriel Ilharco, Scott Lundberg, and Marco Tulio Ribeiro. Adaptive testing of computer
vision models. In International Conference on Computer Vision (ICCV), 2023.

[33] Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. Evaluating models’ local decision boundaries via
contrast sets. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.

[34] Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing the
downstream performance of pretrained self-supervised representations by their rank. In International
Conference on Machine Learning (ICML), 2023.

[35] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. In International Conference on Learning Representations (ICLR), 2018.

[36] Robert Geirhos, Kristof Meding, and Felix A Wichmann. Beyond accuracy: quantifying trial-by-trial
behaviour of cnns and humans by measuring error consistency. Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[37] Aritra Ghosh and Andrew Lan. Bobcat: Bilevel optimization-based computerized adaptive testing.
International Joint Conference on Artificial Intelligence (IJCAI), 2021.

12

[38] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. International Conference on Learning Representations (ICLR), 2019.

[39] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In International Conference on Computer Vision (ICCV), 2021.

[40] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. International Conference on Learning
Representations (ICLR), 2021.

[41] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[42] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe:
Fixing hackable benchmarks for vision-language compositionality. arXiv preprint arXiv:2306.14610,
2023.

[43] Zhenya Huang, Qi Liu, Chengxiang Zhai, Yu Yin, Enhong Chen, Weibo Gao, and Guoping Hu. Exploring
multi-objective exercise recommendations in online education systems. In International Conference on
Information and Knowledge Management (CIKM), 2019.

[44] Ben Hutchinson, Negar Rostamzadeh, Christina Greer, Katherine Heller, and Vinodkumar Prabhakaran.
Evaluation gaps in machine learning practice. In Conference on Fairness, Accountability, and Trans-
parency (FAccT), 2022.

[45] Régis Pierrard Ilyas Moutawwakil. Llm-perf leaderboard. https://huggingface.co/spaces/
optimum/llm-perf-leaderboard, 2023.

[46] Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchenbauer, Manli Shu, Aniruddha Saha, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Bring your own data! self-supervised evaluation for large
language models. arXiv preprint arXiv:2306.13651, 2023.

[47] Disi Ji, Robert L Logan, Padhraic Smyth, and Mark Steyvers. Active bayesian assessment of black-box
classifiers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7935–7944,
2021.

[48] Amita Kamath, Jack Hessel, and Kai-Wei Chang. Text encoders are performance bottlenecks in contrastive
vision-language models. arXiv preprint arXiv:2305.14897, 2023.

[49] Gal Kaplun, Nikhil Ghosh, Saurabh Garg, Boaz Barak, and Preetum Nakkiran. Deconstructing distribu-
tions: A pointwise framework of learning. International Conference on Learning Representations (ICLR),
2023.

[50] Faisal Khan, Bilge Mutlu, and Jerry Zhu. How do humans teach: On curriculum learning and teaching
dimension. Advances in neural information processing systems, 24, 2011.

[51] Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen,
Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp.
North American Chapter of the Association for Computational Linguistics (NAACL), 2021.

[52] Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient model
evaluation. In International Conference on Machine Learning (ICML), 2021.

[53] Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Thomas Rainforth. Active surrogate estimators:
An active learning approach to label-efficient model evaluation. Conference on Neural Information
Processing Systems (NeurIPS), 2022.

[54] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[55] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset v4: Unified
image classification, object detection, and visual relationship detection at scale. International Journal of
Computer Vision (IJCV), 128(7):1956–1981, 2020.

[56] Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi Zhang,
Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, et al. Holistic evaluation of text-to-image
models. Conference on Neural Information Processing Systems (NeurIPS), 2023.

[57] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models.
arXiv preprint arXiv:2211.09110, 2022.

[58] Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a meta
review of evaluation failures across machine learning. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

13

https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard

[59] Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and Ludwig
Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction. In International
Conference on Machine Learning Workshops (ICML-W), 2020.

[60] Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. arXiv preprint
arXiv:2203.08242, 2022.

[61] Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht. Model similarity
mitigates test set overuse. Conference on Neural Information Processing Systems (NeurIPS), 32, 2019.

[62] Dena F Mujtaba and Nihar R Mahapatra. Multi-objective optimization of item selection in computerized
adaptive testing. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
1018–1026, 2021.

[63] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial
nli: A new benchmark for natural language understanding. Annual Meeting of the Association for
Computational Linguistics (ACL), 2020.

[64] Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Jan Brauner, and Matthias Samwald. Mapping global
dynamics of benchmark creation and saturation in artificial intelligence. Nature Communications, 13(1):
6793, 2022.

[65] Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan, Anette Frank, Iacer Calixto, and Albert Gatt.
Valse: A task-independent benchmark for vision and language models centered on linguistic phenomena.
arXiv preprint arXiv:2112.07566, 2021.

[66] Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. Red teaming language models with language models. Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2022.

[67] Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language models). arXiv preprint
arXiv:2308.11696, 2023.

[68] Momchil Peychev, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Automated classification of
model errors on imagenet. Conference on Neural Information Processing Systems (NeurIPS), 2023.

[69] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
tinybenchmarks: evaluating llms with fewer examples. arXiv preprint arXiv:2402.14992, 2024.

[70] Christopher Potts, Zhengxuan Wu, Atticus Geiger, and Douwe Kiela. Dynasent: A dynamic benchmark
for sentiment analysis. Dynasent: A dynamic benchmark for sentiment analysis, 2021.

[71] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[72] Inioluwa Deborah Raji, Emily M Bender, Amandalynne Paullada, Emily Denton, and Alex Hanna. Ai
and the everything in the whole wide world benchmark. Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[73] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

[74] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning (ICML), 2019.

[75] Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P Lalor, Robin Jia, and Jordan Boyd-
Graber. Evaluation examples are not equally informative: How should that change nlp leaderboards? In
Annual Meeting of the Association for Computational Linguistics (ACL), 2021.

[76] Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil, Moritz Hardt, John Miller, and
Ludwig Schmidt. A meta-analysis of overfitting in machine learning. Conference on Neural Information
Processing Systems (NeurIPS), 2019.

[77] Mark Rofin, Vladislav Mikhailov, Mikhail Florinskiy, Andrey Kravchenko, Elena Tutubalina, Tatiana
Shavrina, Daniel Karabekyan, and Ekaterina Artemova. Vote’n’rank: Revision of benchmarking with
social choice theory. Annual Meeting of the Association for Computational Linguistics (EACL), 2022.

[78] Nikhil Sardana and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for inference in language
model scaling laws. arXiv preprint arXiv:2401.00448, 2023.

[79] Zhelun Shi, Zhipin Wang, Hongxing Fan, Zhenfei Yin, Lu Sheng, Yu Qiao, and Jing Shao. Chef: A
comprehensive evaluation framework for standardized assessment of multimodal large language models.
arXiv preprint arXiv:2311.02692, 2023.

[80] Ali Shirali and Moritz Hardt. What makes imagenet look unlike laion. arXiv preprint arXiv:2306.15769,
2023.

14

[81] Ali Shirali, Rediet Abebe, and Moritz Hardt. A theory of dynamic benchmarks. arXiv preprint
arXiv:2210.03165, 2022.

[82] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615,
2022.

[83] Xiaoxiao Sun, Xingjian Leng, Zijian Wang, Yang Yang, Zi Huang, and Liang Zheng. Cifar-10-warehouse:
Broad and more realistic testbeds in model generalization analysis. arXiv preprint arXiv:2310.04414,
2023.

[84] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2020.

[85] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238–
5248, 2022.

[86] Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina Katabi, Dilip Krishnan, and Phillip Isola. Learning vision
from models rivals learning vision from data. arXiv preprint arXiv:2312.17742, 2023.

[87] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[88] Vishaal Udandarao, Max F Burg, Samuel Albanie, and Matthias Bethge. Visual data-type understanding
does not emerge from scaling vision-language models. arXiv preprint arXiv:2310.08577, 2023.

[89] Wim J Van der Linden and Cees AW Glas. Computerized adaptive testing: Theory and practice. Springer,
2000.

[90] Kirill Vishniakov, Zhiqiang Shen, and Zhuang Liu. Convnet vs transformer, supervised vs clip: Beyond
imagenet accuracy. 2023.

[91] Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking models
with much fewer examples. arXiv preprint arXiv:2309.08638, 2023.

[92] Eric Wallace, Adina Williams, Robin Jia, and Douwe Kiela. Analyzing dynamic adversarial training data
in the limit. In Annual Meeting of the Association for Computational Linguistics (ACL), pages 202–217,
2022.

[93] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[94] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems. Conference on Neural Information Processing Systems (NeurIPS), 2019.

[95] Hangyu Wang, Ting Long, Liang Yin, Weinan Zhang, Wei Xia, Qichen Hong, Dingyin Xia, Ruiming
Tang, and Yong Yu. Gmocat: A graph-enhanced multi-objective method for computerized adaptive testing.
In Conference on Knowledge Discovery and Data Mining (KDD), 2023.

[96] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. Conference on Neural Information Processing Systems (NeurIPS),
2019.

[97] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin Zhang. Prioritizing test
inputs for deep neural networks via mutation analysis. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pages 397–409. IEEE, 2021.

[98] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[99] Olivia Wiles, Isabela Albuquerque, and Sven Gowal. Discovering bugs in vision models using off-the-shelf
image generation and captioning. arXiv preprint arXiv:2208.08831, 2022.

[100] Jingwei Yu, Mu Zhenyu, Jiayi Lei, Li’Ang Yin, Wei Xia, Yong Yu, and Ting Long. Sacat: Student-
adaptive computerized adaptive testing. In The Fifth International Conference on Distributed Artificial
Intelligence, 2023.

[101] Ganzhao Yuan and Bernard Ghanem. Binary optimization via mathematical programming with equilib-
rium constraints. arXiv preprint arXiv:1608.04425, 2016.

[102] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

15

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[103] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why
vision-language models behave like bags-of-words, and what to do about it? In The Eleventh International
Conference on Learning Representations, 2022.

[104] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic,
Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The visual task
adaptation benchmark. 2019.

[105] Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye. Model spider: Learning
to rank pre-trained models efficiently. arXiv preprint arXiv:2306.03900, 2023.

[106] Lin Zhao, Tianchen Zhao, Zinan Lin, Xuefei Ning, Guohao Dai, Huazhong Yang, and Yu Wang. Flasheval:
Towards fast and accurate evaluation of text-to-image diffusion generative models. arXiv preprint
arXiv:2403.16379, 2024.

[107] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

[108] Wangchunshu Zhou, Yan Zeng, Shizhe Diao, and Xinsong Zhang. Vlue: A multi-task multi-dimension
benchmark for evaluating vision-language pre-training. In International Conference on Machine Learning
(ICML), 2022.

[109] Yan Zhuang, Qi Liu, Zhenya Huang, Zhi Li, Shuanghong Shen, and Haiping Ma. Fully adaptive
framework: Neural computerized adaptive testing for online education. In Conference on Artificial
Intelligence (AAAI), 2022.

[110] Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Serena Yeung. Lovm: Language-only vision
model selection. arXiv preprint arXiv:2306.08893, 2023.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have highlighted the main efficient evaluation claim in the title, abstract,
introduction and results section. We back up our main claim with our experiments in Sec-
tion 4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included a limitations section in Appendix L.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we provide our proofs in Appendices I and J.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We transparently include all our experimental settings required to reproduce
our findings in the main paper. We also include pseudo-code for the algorithms used in Sort
& Search in Listing 1. Further, we release our Sort & Search (anonymized) codebase for
ensuring reproducibility, in the supplementary material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide the code in the supplementary material.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we include all the experimental setup details in Section 4.1.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars with standard error of the mean, for our main results
in Section 4.2.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

17

Answer: [Yes]
Justification: We mention the total number of GPU hours required for our entire model eval-
uation using the standard full-evaluation vs. using our Sort & Search method, highlighting
the cost savings from our method, in the main paper.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, to the best of our knowledge and abilities.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper can be considered as foundational research and not tied to particular
applications, let alone deployments. We do not immediately see any negative societal impact.
A positive societal impact might be faster and cheaper evaluation available for developing
benchmarks.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only work with existing datsets and models, and do not release any new
datasets or models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original datasets and code for correct credit assignment
in Table 1.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is documented and released under GPL3 license.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

18

https://neurips.cc/public/EthicsGuidelines

Part I

Appendix

Table of Contents
A Domain-Agnosticity of Lifelong Benchmarks 2

B Towards Truly Lifelong Benchmarks: A Conceptual Framework 3

C Lifelong-ImageNet and Lifelong-CIFAR10: Details 4

D Pythonic Pseudo-code for Sort & Search algorithms 5

E Analysis: How Consistently Do Models Follow Global Ranking? 6

F Analysis: Changing the metric from MAE to a Rank Correlation 8

G Does Error Accumulate with Consecutive Additions of New Models/Data? 9

H Extended Related Work 10

I Proof of Theorem 3.1 12

J Proof for Theorem 4.1 13

K 167 Models used for Lifelong-ImageNet experiments 14

L Limitations and Open Problems 15

1

A Domain-Agnosticity of Lifelong Benchmarks

Our framework is domain-agnostic. All our framework requires is an A matrix constructed using
any binary metric, with rows representing samples and columns representing evaluated models. We
discuss several applications of our framework across a range of metrics:

• Language Models: Our framework can be directly applied to multiple-choice question
evaluations popular for benchmarking language model evaluations. The metric here is
exact match or near-exact match, a binary metric that perfectly aligns with our framework
requirements.

• Dense Prediction Tasks or Multi-label Classification: For pixel-wise prediction tasks
or multi-label classification, our framework can be adapted by flattening the predictions
of each sample. In this approach, each sample contributes an array of binary values to the
A matrix instead of a single value. Extending the search algorithm is straightforward: if a
point is sampled, all associated values are sampled and annotated.

• Tasks with Real-valued Predictions: For tasks such as regression or BLEU score evalua-
tions, our framework can be used after applying a thresholding operation, which converts
predictions into binary values (above or below the threshold). While this adaptation allows
the framework to function, it restricts the output predictions to the binary threshold level.

Followup work [3] does extend lifelong benchmarks to evaluating language models and multimodal
language models and tackles the unique challenges faced in those cases.

2

B Towards Truly Lifelong Benchmarks: A Conceptual Framework

In the main paper, we introduced the concept of lifelong model evaluation through the idea of
ever-expanding large-scale benchmarks, termed Lifelong Benchmarks. Although Lifelong-ImageNet
and Lifelong-CIFAR10 are large-scale, they are not truly lifelong as they do not expand over time.
These benchmarks primarily test the efficacy of our Sort & Search method due to their large size.

To achieve true lifelong benchmarks, we need continuous acquisition of samples and models, allowing
for continual growth (as detailed in Section 2). In Fig. 6, we illustrate how lifelong benchmarking
differs from the standard benchmarking approaches currently used in machine learning research.

New incoming
samples

Traditional Approach: Static Benchmarks

D1: Cats-Dogs D2: Cats-Dogs-V2 D3: Cats-Dogs-Toon

Proposed Approach: Lifelong Benchmarks

Model Score

1 0.94
2 0.87
3 0.58

Model Score

1 0.86
2 0.75
3 0.89

Model Score

1 0.71
2 0.95
3 0.83

Lifelong Cats-Dogs

time

update pool

Model Score

1 0.63
2 0.49
3 0.82
… …
N 0.76

model evaluation

sample ranking
Model

1
Model

2

Models to
evaluate

Model
N

…

Model
1

Model
2

Model
3

Models to
evaluate

Model
N

…

time

M1 “state-of-the-art”
M3 best “robust generalization”

M2 best “distributional generalization”

Figure 6: Static vs Lifelong Benchmarking. (Top) Static benchmarks incentivise machine learning
practitioners to overfit models to specific datasets, weakening their ability to assess generalisation.
(Bottom) We conceptualise Lifelong Benchmarks as an alternative paradigm—ever-expanding pools
of test samples that resist overfitting while retaining computational tractability.

3

C Lifelong-ImageNet and Lifelong-CIFAR10: Details

In this section, we detail the creation of our two lifelong benchmarks.

Considerations. We aim to establish lifelong benchmarking as a standard evaluation protocol in
computer vision. To demonstrate this, we considered two popular datasets as our basis: CIFAR10 [54]
and ImageNet [23]. We chose them due to (1) their widespread adoption in prior art, (2) the diverse
set of models trained on them, and (3) the presence of numerous dataset variants with the same set of
labels, encompassing distribution shifts [8], temporal variations [80], and adversarial samples [41].

Note that while our current lifelong benchmarks are based on two datasets, our framework can
generally be applied to any broader range of datasets. We describe the precise construction of our
datasets below. See Table 1 for key statistics and a detailed breakdown.

Lifelong-CIFAR10. We combine 31 domains of different CIFAR10-like datasets comprising samples
applied with various synthetic distribution shifts, synthetic samples generated by diffusion models,
and samples queried from different search engines using different colors and domains. We deduplicate
our dataset to ensure uniqueness and downsample all images to the standard CIFAR10 resolution of
32× 32. Our final dataset consists of 1.69 million samples.

Lifelong-ImageNet. We source our test samples from ImageNet and its corresponding variants.
Similar to Lifelong-CIFAR10, our benchmark is designed for increased sample diversity (43 unique
domains) while operating on the same ImageNet class set. We include samples sourced from different
web-engines and generated using diffusion models. Our final Lifelong-ImageNet contains 1.98
million samples.

Table 1: Overview of our Lifelong Benchmarks. We list the constituent source datasets (dedupli-
cated) and their statistics for constructing our lifelong benchmarks here. Our benchmarks encompass
a wide-range of natural and synthetic domains, sources and distribution shifts, making for a compre-
hensive lifelong testbed.

Dataset #Test Samples #Domains #Unique Sources Synthetic/Natural Corrupted/Clean License
Lifelong-CIFAR10 1,697,682 31 9 Both Both

CIFAR10.1 [73] 2,000 1 1 Natural Clean MIT License
CIFAR10 [54] 10,000 1 1 Natural Clean Unknown
CIFAR10.2 [59] 12,000 1 1 Natural Clean Unknown
CINIC10 [21] 210,000 1 1 Natural Clean MIT License
CIFAR10-W [83] 513,682 11 8 Both Clean MIT License
CIFAR10-C [40] 950,000 19 1 Natural Corrupted Apache-2.0 License

Lifelong-ImageNet 1,986,310 43 9 Both Both
ImageNet-A [41] 7,500 1 3 Natural Clean MIT License
ObjectNet [8] 18,514 1 1 Natural Clean Custom License
OpenImagesNet [55] 23,104 1 1 Natural Clean MIT License
ImageNet-V2 [74] 30,000 1 1 Natural Clean MIT License
ImageNet-R [39] 30,000 13 1 Natural Clean MIT License
ImageNet [23] 50,000 1 1 Natural Clean Custom Non-Commercial
Greyscale-ImageNet [84] 50,000 1 1 Natural Clean MIT License
StylizedImageNet [35] 50,000 1 1 Synthetic Corrupted MIT License
ImageNet-Sketch [96] 50,889 1 1 Natural Clean MIT License
SDNet [7] 98,706 19 1 Synthetic Clean MIT License
LaionNet [80] 677,597 1 1 Natural Clean Unknown
ImageNet-C [38] 900,000 19 1 Natural Corrupted Apache-2.0 License

4

https://github.com/modestyachts/CIFAR-10.1?tab=MIT-1-ov-file##readme
https://huggingface.co/datasets/cifar100
https://github.com/modestyachts/cifar-10.2
https://github.com/BayesWatch/cinic-10/blob/master/LICENSE
https://github.com/sxzrt/CIFAR-10-W
https://github.com/hendrycks/robustness?tab=Apache-2.0-1-ov-file##readme
https://github.com/hendrycks/natural-adv-examples?tab=MIT-1-ov-file##readme
https://objectnet.dev/download.html
https://github.com/modestyachts/imagenet-testbed?tab=MIT-1-ov-file##readme
https://github.com/modestyachts/ImageNetV2?tab=MIT-1-ov-file##readme
https://github.com/hendrycks/imagenet-r?tab=MIT-1-ov-file##readme
https://www.reddit.com/r/deeplearning/comments/14mt4l3/imagenet_licence/
https://github.com/modestyachts/imagenet-testbed?tab=MIT-1-ov-file##readme
https://github.com/rgeirhos/Stylized-ImageNet?tab=MIT-1-ov-file##readme
https://github.com/HaohanWang/ImageNet-Sketch?tab=MIT-1-ov-file##readme
https://github.com/Hritikbansal/generative-robustness?tab=MIT-1-ov-file##readme
https://github.com/alishiraliGit/eval-on-laion
https://github.com/hendrycks/robustness?tab=Apache-2.0-1-ov-file##readme

D Pythonic Pseudo-code for Sort & Search algorithms

Here, we provide pythonic-pseudo code for the constituent algorithms of Sort & Search, which we
described in detail in Section 3.

def sort_by_sum(A):
sum_ranking = A.sum(axis=0)
order = np.flip(np.argsort(sum_ranking))
return order

def two_stage_sort_by_sum(A, idx):
#Step 1: Sum
order = sort_by_sum(A)
#Step 1: Search
thresh = dp_search(A[:, order])

#Iterate over bins
bins_ordered = sum_bins[order]
uniq_bins = np.unique(bins_ordered)

for u_bin in uniq_bins:
idx = np.nonzero(bins_ordered==u_bin)[0]
bin_thresh =

np.nonzero(np.all([[bins_ordered >=
idx.min()], [bins_ordered <=
idx.max()]], axis=0))[1]

↪→
↪→
↪→
At = A[thresh][:, order[idx]]
#Step 2: Sum
new_order = sort_by_sum(At)
Replace current ordering within new in

bin↪→
order[idx] = order[idx[new_order]]

return order

def uniform_sampling(query, num_p):
idx -> num_p uniformly sampled points
idx = np.arange(0, len(query),

len(query)//num_p)[1:]
return idx

def dp_search(query):
query is 1 x k (from a row of PA)
(k can be assigned := n, n', m, m')
query[query==0] = -1
cumsum = np.cumsum(query)
idx = np.argmax(cumsum)
return idx/len(query)
threshold as % of length, transfers n' -> n

size↪→

Listing 1: (Left) Algorithm for Optimizing P given Y (Right) Algorithm for Optimizing Y given P

5

E Analysis: How Consistently Do Models Follow Global Ranking?

In all our main results using Sort & Search, we use a single ranking order for all new models. A
natural question arises: Are all models consistent in their agreement of what is considered a difficult
sample, and what is easy? Perhaps, there could be a clique of models that all agree that certain
samples are hard, whereas other models that do not—is this the case or is one ranking order truly
sufficient?

To justify this choice of considering a single ranking order, we run a simple experiment. We compute
the cross-correlation matrix between each of the 167 models with each other on the predictions
across the entire Lifelong-Imagenet benchmark (1,986,310 test samples) where models are sorted
in descending order of accuracy i.e. the highest accuracy model is plotted in the first row/column
and the least accurate model is plotted last. Note that the 167 models are extremely distinct in
architecture, backbone, training datasets, data augmentation, normalization, and loss functions (see
full list in Appendix K). The cross-correlation matrix plot is depicted in Fig. 7(b).

Reading the plot. The colorbar is important here, it ranges from 0 to 1—we implicitly only
look at positively correlated models. We verified that all the correlation values were positive by
plotting the distribution of correlation values in Fig. 7(a)—hence, there are no models that are
totally anti-correlated with each other. Now, in the correlation matrix, if there exist certain “model
cliques”—certain sets of models that are highly correlated with each other and anti-correlated with
all others—we would observe disconnected components, systematically isolated squares.

Result. From the correlation plot, we do not find any clear evidence of model cliques. The only
anomalous entries we could find are low performing models, whose predictions are uncorrelated
with all other models as they are random. We observe slightly higher correlations between the top
performing models, but note that this is confounded by their high accuracy—if models are highly
accurate, their correlations are likely to be higher by chance alone (since there are more ones in the
prediction arrays and hence higher chance of intersecting predictions). However, no distinct cliques
were found.

Therefore, this analysis further gives us a strong indication that model predictions are highly correlated,
hence justifying our choice of using a single ranking function.

Brief Discussion. While our analysis suggests that model predictions are highly correlated, we point
out that this analysis is done for a varied set of models purely for the task of image classification.
We do acknowledge that other tasks like retrieval or captioning might yield different correlation
structures, such that there might be different model cliques emerging. Such a structure would then
potentially impact our Sort algorithm. Hence, while our current results suggest that the sorted order
of difficulty generalizes to new incoming models holds fairly robustly, our method might still be
sensitive to task deviations, labeling errors etc. We leave a further exploration of this for future work.

6

(a) Spearman Correlations are all positive

(b) Spearman Correlation Matrix

Figure 7: Correlation Analysis between Model Predictions on Lifelong-ImageNet. (a) We note that
all correlations between model predictions are positive, signifying the similarities between all models
despite their diverse sizes, architectures, and inductive biases. (b) We show the cross-correlation
matrix between all model predictions—the x and y axes showcase models, sorted by their accuracies.
The floating point numbers on the x and y axes are the model accuracies—the highest accuracy
models (70% accuracy) appear at the top and left, while the lowest accuracy models appear at the
bottom and right (10%− 30%).

7

F Analysis: Changing the metric from MAE to a Rank Correlation

In all our main results using Sort & Search, we use the mean-absolute-error (MAE) to evaluate the
effectiveness of our framework.

While MAE serves as a useful proxy metric for algorithm development, it is not a necessary
requirement to provide practical applications. In particular, for many use-cases, it is the ranking
of the models, rather than their absolute metrics, that are of primary importance for informing
downstream decisions about which model to use.

Figure 8: We change the metric for evaluating the efficacy of Sort & Search from MAE to Spearman
correlation—we observe consistently high correlations of 0.5 or greater.

To illustrate a practical application, we examine whether Sort & Search preserves the ranking of
models at high sampling efficiency. Specifically, we conducted an experiment by changing the
evaluation metric from MAE to Spearman correlation between the rankings of 25, 250 models using
Sort & Search and the rankings obtained after full sample evaluation on Lifelong-CIFAR10. The
results, presented in Fig. 8, show a consistently high correlation of 0.5. We believe this demonstrates
the framework’s applicability for practical use-cases.

8

G Does Error Accumulate with Consecutive Additions of New Models/Data?

In this section, we argue that the errors should not accumulate with consecutive addition of new
models or data. The core intuition lies in the fact that sequential updates to P∗

t when made with
the predicted vector yt+1 will necessarily preserve the same permutation, i.e. P∗

t+1 = P∗
t as yt+1

strictly follows P∗
t itself, adding an error of 0.

Detailed Explanation. Considering the case where a new model is presented in which A ∈
{0, 1}|M×|D| where |M| is the number of models and |D| the number of data samples. We solve
Equation 1 by alternating the solution between solving for y given the permutation P and P given the
prediction y. For ease, and without loss of generality, consider the problem when solving Equation 1
repetitively for a sequence of new samples. A natural question is: Do we need to re-optimize for Pt

and update A with the new ranked prediction vectors yt for every timestep?

Our algorithm Sort & Search, while might not be achieving global optimality in both P and y,
however, we have a guarantee that if P∗

t and y∗
t are the solutions of Sort & Search at step t, then

P∗
t = P∗

t+1 at every step and we do not require recomputing P∗
t+1 optimizing [At|y∗

t]Pt+1 after
every addition where [At|Y∗

t] is the concatenation of At with the new sample Yt+1. This is since
Sort & Search only requires access to the sum over columns of [At|Y∗

t] (see Algorithm 1). The
core intuition underlying this result is that at the new step t + 1 the vector y∗

t+1 has a structure of
ones followed by zeros ordered according to the optimal permutation P∗

t+1 that orders samples from
“easiest” to “hardest” following the structure in AP∗

t . Hence, adding it to the sum preserves the
ordering of elements (if ties are broken in the manner of the old ordering).

Empirical Backing. We conducted experiments by adding new models serially and using the Sort &
Search predictions as ground truth for further model additions on Lifelong-ImageNet dataset. The
results are presented in the Appendix G. We observe the errors do not accumulate with consecutive
additions, exactly the same model order is preserved – confirming our insight empirically.

9

H Extended Related Work

In this section, we expand on the brief literature review from Section 2 for a more expansive coverage
of related topics.

Comprehensive Benchmarks. Benchmarking has become ubiquitous in the machine learning
world in the last few years [72]. It has gained further traction in the recent past with the release
of foundation models like GPT-4 [18] and CLIP [71]. A popular direction taken by efforts like
GLUE [93], BigBench [82], HELM [57] etc., is to have a benchmark of benchmarks, reporting the
average accuracy over the constituent datasets. This approach now spans across several domains
including fact-based question-answering [40], language understanding [94], zero-shot classification
of vision-language models [30], large-scale vision model evaluation [104], multi-modal model
evaluation [102, 108], and text-to-image generation [5, 56]. Despite these benchmarks having vast
coverage of testing concepts, the obvious downsides are two-fold: (1) they are static in nature and
hence can always be susceptible to test-set contamination [60], and (2) their large sizes renders them
very expensive to run full model evaluations on.

Adversarial Dynamic Benchmarks. One necessary aspect essential for lifelong benchmarks is
collecting harder samples, which has been pursued by two strands of works. Adversarial methods
to augment benchmarks [92, 63, 51, 70, 81] aim to automatically curate samples that all tested
models reliably fail on. These methods usually involve an iterative optimisation procedure to find
such adversarial samples. The second strand of work in curating adversarial samples are efforts
revolving around red-teaming [31, 66] that aim to explicitly elicit certain sets of behaviours from
foundation models; primarily these approaches look at the problem of adversarial benchmarking
from a safety perspective. Further, a host of benchmarks that aim to stress-test models are making
their way on the horizon—their primary goal is to create test sets for manually discovered failure
modes [103, 65, 85, 88, 42, 48, 13, 16]. However, while they are sample efficient, they are criticized
as unfair. To mitigate this, a strand of automatic error discovery [19, 27, 99, 68] or their human-
in-the-loop variants [97, 24, 32] have been developed. This is complementary to our work, as we
primarily explore model testing.

Active Testing. Efforts such as [47, 52, 53, 106] aim to identify “high-quality”, representative test
instances from a large amount of unlabeled data, which can reveal more model failures with less
labeling effort. The key assumption underlying these works is that they assume access to a host of
unlabeled data at a relatively cheap cost. However, they assume that the cost of label acquisition is a
bottleneck. However, these assumptions can break down when doing multiple forward passes on a
single batch of data with a large-scale foundation model is necessitated. Albeit similar in spirit to
the task of actively acquiring a subset of samples for testing models, an important distinction of our
method is that we want to minimise the number of forward-passes through a model—we believe that
the cost of running a model on several test samples is substantial, and hence needs to be reduced for
efficient evaluation in terms of time, resources and capital.

Ideas for Replacing Benchmarks. Recently, there have been a surge of methods introducing creative
ways of benchmarking models [58, 76, 49, 33, 75, 77, 61, 44, 17, 86, 64, 34, 76, 75] including hosted
competitions [14], self-supervised evaluation [46] and newer metrics [36]. Further, recently ELO
style methods have been gaining a lot of attention [12, 107] due to their scalability of deployment
to millions of users in a peer-to-peer manner. The ELO algorithm is used to compute ranks for
different models based on human-in-the-loop preferences. However, despite its utility ELO is heavily
dependent on the choice of user inputs and can be a very biased estimator of model rankings [79].
Another interesting idea proposed by [20] is to assume access to the pre-training data of models and
compute topological maps to give predictions of test error; this however requires running expensive
forward passes over the training data or modifying the training protocol, which might be not be
scalable to pre-trained models.

Computerized Adaptive Testing. Computerized Adaptive Testing (CAT) is a framework that allows
for efficient testing of human examinees. The idea is to lower the burden of students taking tests by
only asking them a subset of questions from the entire pool. There have been few main directions
of solutions: model-agnostic strategies for selection [11], bi-level optimization [37, 109, 29], multi-
objective optimization [62, 43, 95], retrieval-augmented adaptive search [100]. One key challenge in
CAT is the lack of a stable ground-truth. Since the goal in CAT is to estimate the proficiency of an
examinee, and the examinee’s true ground-truth proficiency is not provided, how would one evaluate
the true proficiency of an examinee? Thereby, existing CAT methods cannot explicitly optimise for

10

predicting ability directly i.e. they cannot do exact ability estimation. Hence, CAT methods are not
usually guaranteed to converge to the true examinee abilities under certain conditions. The biggest
distinction of our work from CAT is the access to the ground-truth targets for the tasks we consider.
In both Lifelong-ImageNet and Lifelong-CIFAR10, we have access to the ground-truth and hence can
compute grounded metrics that can be optimised towards, unlike in CAT, where every method has to
inherently be label-free.

Curriculum Learning. This refers to the problem of finding a curriculum of input samples such
that the optimisation objective of an algorithm becomes easier. The most intuitive explanation from
curriculum learning comes from how humans learn [50]. In the context of machine learning, the idea
behind curriculum learning is to find the “difficulty” of samples, where difficulty is usually defined
in terms of the ease of classifying that sample correctly. Some recent works in this direction utilise
estimating variance of gradients [1] and other information theoretic properties [26] to estimate sample
difficulty. These approaches are complementary to our Sum component in S&S since these can be
easily integrated into our framework directly.

11

I Proof of Theorem 3.1

Theorem. Optimality of Y given P. For any given ai ∈ {0, 1}1×n and P, DP-Search returns an
ordered prediction vector yi ∈ {0, 1}1×n which is a global minimum of ∥aiP− yi∥1, where being
an ordered prediction vector implies that if yj = 1 then yj′ = 1∀j′ ≤ j. Moreover, if yj = 0, then
yj′ = 0 ∀j′ ≥ j.

Proof. First, we reduce the problem from Eq. (1) to the following:

y′∗ = argminy′∥a′P∗ − y′∥
if y′

j = 1, then y′
j′ = 1 ∀j′ ≤ j, and if y′

j = 0, then y′
j′ = 0 ∀j′ ≥ j. (5)

Note that y′ essentially constructs a vector, y′
i, of all ones up to some index i with the rest being

zero . Let b = a′P∗ be the sorted vector according to the permutation matrix. Thus, the objective
function has the following error:

e(y′
i) =

(
i−

i∑
k=1

bk

)
+

n∑
k=i+1

bk. (6)

Observe that the first term is the number of zeros to the left of index i (inclusive) in b, while the
second term is the number of 1s in b to the right of index i.

Proposition I.1. If y′
i is a minimizer to Theorem 4.2, then, the following holds:

n∑
k=i+1

bk ≤ (n− i)−
n∑

k=i+1

bj .

Proof. Let j < i and that y′
i and y′

j are feasible solutions for Theorem 4.2. However, let that y′
i

be such that the inequality in Proposition I.1 while it is not the case for y′
j . Then, we compare the

differences in the objective functions e(y′
i) and e(y′

j). We have that:

e(y′
j)− e(y′

i) =

(j − j∑
k=1

bj

)
+

n∑
k=j+1

bk

−

[(
i−

i∑
k=1

bk

)
+

n∑
k=i+1

bk

]

= 2

i∑
k=j+1

bk − (i− j).

However, we know from the assumptions that 2
∑n

i+1 bk ≤ n − i and that 2
∑n

j+1 bk ≥ n − j.
Subtracting the two inequalities we have 2

∑n
k=j+1 bk ≥ i− j which implies that y′(sj) ≥ e(y′

i)

which implies that y′
i is a better solution to any other y′

j not satisfying the inequality in Proposition
I.1.

The inequality condition in proposition I.1 implies that for the choice of index i, the number of zeros
in a to the right of index i is more than the number of 1s to the right of index i. Since any solution
y′

i either satisfies property in Proposition I.1 or not. Moreover, since Proposition I.1 demonstrated
that the set of indices that satisfy this property are better, in objective value, than all those that do not
satisfy it, then this condition achieves optimality.

12

J Proof for Theorem 4.1

Theorem. Given any ground-truth vector am+1, it is possible to construct a prediction vector ym+1

such that Eagg(ym+1,am+1) = 0 and E(am+1,ym+1) = 2min(1− |am+1|/n, |am+1|/n)

Proof. Given am+1, construct a the prediction vector ym+1, such that Eagg(ym+1,am+1) = 0 and
E(am+1,ym+1) = 2.min(1− |am+1|/n, |am+1|/n)

Construction: We first design construction for the prediction vector ym+1. Let us consider three
cases: (i) |am+1| < 0.5, (ii) |am+1| > 0.5 and (iii) |am+1| = 0.5.

Case 1 (|am+1| < 0.5): We construct the prediction vector by first flipping all the indexes with value
1 in am+1 to 0, resulting in MAE of |am+1|/n. Since, we are constrained to maintain the same |am+1|,
we can flip any |am+1| other indexes with values 0 to 1. This is possible in this case as there are more
0s than 1s in am+1. This results in MAE of |am+1|/n. Taken together, they achieve the total MAE of
E = 2|am+1|/n.

Case 2 (|am+1| > 0.5): We construct the prediction vector by first flipping all the indexes with value
0 in am+1 to 1, resulting in an MAE of 1− |am+1|/n. Since, we are constrained to maintain the same
|am+1|, we can flip any other index 1− |am+1| with values 1 to 0. This is possible in this case as
there are more 1s than 0s in am+1. This results in an MAE of 1 − |am+1|/n. Taken together, they
achieve the total MAE of E = 2.(1− |am+1|/n).

Case 3 (|am+1| = 0.5): We construct the prediction vector by flipping all the indexes with value 0 in
am+1 to 1 and flipping all the indexes with value 1 in am+1 to 0. This achieves the total MAE of
E = 1 = 2|am+1|/n = 2.(1− |am+1|/n).

This concludes the construction of the prediction vector ym+1.

13

K 167 Models used for Lifelong-ImageNet experiments

We use the following models (as named in the timm [98] and imagenet-testbed [84] repositories):

1. BiT-M-R101x3-ILSVRC2012

2. BiT-M-R50x1-ILSVRC2012

3. BiT-M-R50x3-ILSVRC2012

4. FixPNASNet

5. FixResNet50

6. FixResNet50CutMix

7. FixResNet50CutMix_v2

8. FixResNet50_no_adaptation

9. FixResNet50_v2

10. alexnet

11. alexnet_lpf2

12. alexnet_lpf3

13. alexnet_lpf5

14. bninception

15. bninception-imagenet21k

16. cafferesnet101

17. densenet121

18. densenet121_lpf2

19. densenet121_lpf3

20. densenet121_lpf5

21. densenet161

22. densenet169

23. densenet201

24. dpn107

25. dpn131

26. dpn68

27. dpn68b

28. dpn92

29. dpn98

30. efficientnet-b0

31. efficientnet-b0-autoaug

32. efficientnet-b1

33. efficientnet-b1-advprop-autoaug

34. efficientnet-b1-autoaug

35. efficientnet-b2

36. efficientnet-b2-advprop-autoaug

37. efficientnet-b2-autoaug

38. efficientnet-b3

39. efficientnet-b3-advprop-autoaug

40. efficientnet-b3-autoaug

41. efficientnet-b4

42. efficientnet-b4-advprop-autoaug

43. efficientnet-b4-autoaug

44. efficientnet-b5

45. efficientnet-b5-advprop-autoaug

46. efficientnet-b5-autoaug

47. efficientnet-b5-randaug

48. efficientnet-b6-advprop-autoaug

49. efficientnet-b6-autoaug

50. efficientnet-b7-advprop-autoaug

51. efficientnet-b7-autoaug

52. efficientnet-b7-randaug

53. efficientnet-b8-advprop-autoaug

54. fbresnet152

55. inceptionresnetv2

56. inceptionv3

57. inceptionv4

58. instagram-resnext101_32x16d

59. instagram-resnext101_32x32d

60. instagram-resnext101_32x8d

61. mnasnet0_5

62. mnasnet1_0

63. mobilenet_v2

64. mobilenet_v2_lpf3

65. mobilenet_v2_lpf5

66. nasnetalarge

67. nasnetamobile

68. polynet

69. resnet101

70. resnet101_cutmix

71. resnet101_lpf2

72. resnet101_lpf3

73. resnet101_lpf5

74. resnet152

75. resnet18

76. resnet18-rotation-nocrop_40

77. resnet18-rotation-random_30

78. resnet18-rotation-random_40

79. resnet18-rotation-standard_40

80. resnet18-rotation-worst10_30

81. resnet18-rotation-worst10_40

82. resnet18_lpf2

83. resnet18_lpf3

84. resnet18_lpf5

85. resnet18_ssl

86. resnet18_swsl

87. resnet34

88. resnet34_lpf2

89. resnet34_lpf3

90. resnet34_lpf5

91. resnet50

92. resnet50_adv-train-free

93. resnet50_augmix

94. resnet50_aws_baseline

95. resnet50_cutmix

96. resnet50_cutout

97. resnet50_deepaugment

98. resnet50_deepaugment_augmix

99. resnet50_feature_cutmix

100. resnet50_l2_eps3_robust

101. resnet50_linf_eps4_robust

102. resnet50_linf_eps8_robust

103. resnet50_lpf2

104. resnet50_lpf3

105. resnet50_lpf5

106. resnet50_mixup

107. resnet50_ssl

108. resnet50_swsl

109. resnet50_trained_on_SIN

110. resnet50_trained_on_SIN_and_IN

111. resnet50_with_brightness_aws

112. resnet50_with_contrast_aws

113. resnet50_with_defocus_blur_aws

114. resnet50_with_fog_aws

115. resnet50_with_frost_aws

116. resnet50_with_gaussian_noise_aws

117. resnet50_with_greyscale_aws

118. resnet50_with_jpeg_compression_aws

119. resnet50_with_motion_blur_aws

120. resnet50_with_pixelate_aws

121. resnet50_with_saturate_aws

122. resnet50_with_spatter_aws

123. resnet50_with_zoom_blur_aws

124. resnext101_32x16d_ssl

125. resnext101_32x4d

126. resnext101_32x4d_ssl

127. resnext101_32x4d_swsl

128. resnext101_32x8d

129. resnext101_32x8d_ssl

130. resnext101_32x8d_swsl

131. resnext101_64x4d

132. resnext50_32x4d

133. resnext50_32x4d_ssl

134. resnext50_32x4d_swsl

135. se_resnet101

136. se_resnet152

137. se_resnet50

138. se_resnext101_32x4d

139. se_resnext50_32x4d

140. senet154

141. shufflenet_v2_x0_5

142. shufflenet_v2_x1_0

143. squeezenet1_0

144. squeezenet1_1

145. vgg11

146. vgg11_bn

147. vgg13

148. vgg13_bn

149. vgg16

150. vgg16_bn

151. vgg16_bn_lpf2

152. vgg16_bn_lpf3

153. vgg16_bn_lpf5

154. vgg16_lpf2

155. vgg16_lpf3

156. vgg16_lpf5

157. vgg19

158. vgg19_bn

159. wide_resnet101_2

160. xception
161. resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN

162. resnet50_imagenet_subsample_1_of_16_batch64_original_images

163. resnet50_imagenet_subsample_1_of_2_batch64_original_images

164. resnet50_imagenet_subsample_1_of_32_batch64_original_images

165. resnet50_imagenet_subsample_1_of_8_batch64_original_images

166. resnet50_with_gaussian_noise_contrast_motion_blur_jpeg_compression_aws

167. resnet50_imagenet_100percent_batch64_original_images

14

L Limitations and Open Problems

Although showcasing very promising results in enhancing the efficiency of evaluating models on
our large-scale Lifelong Benchmarks, our investigation with S&S leads to some interesting open
problems:

(1) Ranking Imprecision: Our error decomposition analysis provides convincing evidence (Section 4.5)
that the ordering of samples P∗ while evaluating new models bottlenecks prediction performance.
Generalizing from imposing a single sample ordering P∗ to sample ordering structures, such as
different clusters of models each with their own orderings or rejection frameworks for models if it
does not align with the ordering could dramatically improve the framework.

(2) Identifying Difficult Samples: Finding and labeling challenging examples is an essential task
for lifelong benchmarks, which is not the focus of our work. Studying hard or adversarial sample
selection approaches with lifelong benchmarking is a promising direction. We provide an extensive
survey of related approaches in this direction in Appendix H.

(3) Scaling up to Foundation Models: Our work mainly tackles lifelong model evaluation under an
image classification setting for trained classification models. Despite it being clear that our method
should scale to foundation models, since it only relies on the existence of an A matrix, it would be
interesting to test it on more benchmarks from the LLM and VLM domain.

15

	Introduction
	Lifelong Model Evaluation: Formulation and Challenges
	Why Adopt Sample-wise Prediction Metrics instead of Overall Accuracy Prediction?

	Sort & Search: Enabling Efficient Lifelong Model Evaluation
	Ranking by Sort
	Optimizing P Given Y
	Optimizing Y given a P
	Process Summary

	Efficient Selection by Search
	Efficient Insertion of New Samples (insertD)

	Experiments
	Experimental Details
	Results: Sample-Level Model Performance Estimation (insertM)
	Results: Sample Difficulty Estimation (insertD)
	Breaking down Sort & Search
	Decomposing the Errors of S&S

	Conclusion
	I Appendix
	Domain-Agnosticity of Lifelong Benchmarks
	Towards Truly Lifelong Benchmarks: A Conceptual Framework
	Lifelong-ImageNet and Lifelong-CIFAR10: Details
	Pythonic Pseudo-code for Sort & Search algorithms
	Analysis: How Consistently Do Models Follow Global Ranking?
	Analysis: Changing the metric from MAE to a Rank Correlation
	Does Error Accumulate with Consecutive Additions of New Models/Data?
	Extended Related Work
	Proof of Theorem 3.1
	Proof for Theorem 4.1
	167 Models used for Lifelong-ImageNet experiments
	Limitations and Open Problems

