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Abstract

Physically rearranging objects is an important capability for embodied agents.1

Visual room rearrangement evaluates an agent’s ability to rearrange objects in a2

room to a desired goal based solely on visual input. We propose a simple yet3

effective method for this problem: (1) search for and map which objects need4

to be rearranged, and (2) rearrange each object until the task is complete. Our5

approach consists of an off-the-shelf semantic segmentation model, voxel-based6

semantic map, and semantic search policy to efficiently find objects that need to be7

rearranged. On the AI2-THOR Rearrangement Challenge, our method improves8

on current state-of-the-art end-to-end reinforcement learning-based methods that9

learn visual rearrangement policies from 0.53% correct rearrangement to 15.11%,10

using only 2.7% as many samples from the environment.11

1 Introduction12

Physically rearranging objects is an everyday skill for humans, but remains a core challenge for13

embodied agents that assist humans in realistic environments. Natural environments for humans14

are complex and require generalization to a combinatorially large number of object configurations15

[Batra et al., 2020a]. Generalization in complex realistic environments remains an immense practical16

challenge for embodied agents, and the rearrangement setting provides a rich test bed for embodied17

generalization in these environments. The rearrangement setting combines two challenging perception18

and control tasks: (1) understanding the state of a dynamic 3D environment, and (2) acting over a19

long horizon to reach a goal. These problems have traditionally been studied independently by the20

vision and reinforcement learning communities [Chaplot et al., 2021], but the advent of large models21

and challenging benchmarks is showing that both components are important for embodied agents.22

Reinforcement learning (RL) can excel at embodied tasks, especially if centuries of experience23

can be leveraged [Weihs et al., 2021, Chaplot et al., 2020b, Ye et al., 2021] for training. In a24

simulated environment with unlimited retries, this experience is cheap to obtain, and agents can25

explore randomly until a good solution is discovered by the agent. This pipeline works incredibly well26

for tasks like point navigation [Wijmans et al., 2020], but in some cases this strategy is not enough.27

As the difficulty of embodied learning tasks increases, the agent must generalize to an increasing28

number of environment configurations, and broadly scaled experience can become insufficient.29

In the rearrangement setting, a perfect understanding of the environment simplifies the problem: an30

object is here, it should go there, and the rest can be solved with grasping and planning routines.31

Representing the information about the locations and states of objects in an accessible format is32

therefore an important contribution for the rearrangement setting. Our initial experiments suggest33

that accurate 3D semantic maps of the environment are one such accessible format for visual34

rearrangement. With accurate 3D semantic maps, our method rearranges 15.11% of objects correctly,35

and requires significantly less experience from the environment to do so. While end-to-end RL36
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Figure 1: Our method incrementally builds voxel-based Semantic Maps from visual observations and efficiently
finds objects using a Semantic Search Policy. We visualize an example rearrangement on the right with the initial
position of the pink object (laptop on the bed), followed by the agent holding the object (laptop), and finally the
destination position of the object (laptop on the desk).

requires up to 75 million environment steps in Weihs et al. [2021], our method only requires 2 million37

samples and trains offline. Our results suggest end-to-end RL without an accurate representation of38

the scene may be missing out on a fundamental aspect of understanding of the environment.39

We demonstrate how semantic maps help agents effectively understand dynamic 3D environments40

and perform visual rearrangement. These dynamic environments have elements that can move (like41

furniture), and objects with changing states (like the door of a cabinet). We present a method that42

builds accurate semantic maps in these dynamic environments, and reasons about what has changed.43

Deviating from prior work that leverages end-to-end RL, we propose a simple approach for visual44

rearrangement: (1) search for and map which objects need to be rearranged, and (2) procedurally45

rearrange objects until a desired goal configuration is reached. We evaluate our approach on the46

AI2-THOR Rearrangement Challenge [Weihs et al., 2021] and establish a new state-of-the-art.47

We propose an architecture for visual rearrangement that builds voxel-based semantic maps of the48

environment and rapidly finds objects using a search-based policy. Our method shows an improvement49

of 14.72 absolute percentage points over current work in visual rearrangement, and is robust to the50

accuracy of the perception model, the budget for exploration, and the size of objects being rearranged.51

We conduct ablations to diagnose where the bottlenecks are for visual rearrangement, and find that52

accurate scene understanding is the most crucial. As an upper bound, when provided with a perfect53

semantic map, our method solves 38.33% of tasks, a potential for significant out-of-the-box gains as54

better perception models are developed. Our results show the importance of building effective scene55

representations for embodied agents in complex and dynamic visual environments.56

2 Related Work57

Embodied 3D Scene Understanding. Knowledge of the 3D environment is at the heart of various58

tasks for embodied agents, such as point navigation [Anderson et al., 2018a], image navigation [Batra59

et al., 2020b, Yang et al., 2019], vision language navigation [Anderson et al., 2018b, Shridhar et al.,60

2020], embodied question answering [Gordon et al., 2018, Das et al., 2018], and more. These tasks61

require an agent to reason about its 3D environment. For example, vision language navigation [An-62

derson et al., 2018b, Shridhar et al., 2020] requires grounding language in an environment goal,63

and reasoning about where to navigate and what to modify in the environment to reach that goal.64

Reasoning about the 3D environment is especially important for the rearrangement setting, and has a65

rich interdisciplinary history in the robotics, vision, and reinforcement learning communities.66

Visual Room Rearrangement. Rearrangement has long been one of the fundamental tasks in67

robotics research [Ben-Shahar and Rivlin, 1996, Stilman et al., 2007, King et al., 2016, Krontiris and68

Bekris, 2016, Yuan et al., 2018, Correll et al., 2018, Labbé et al., 2020]. Typically, these methods69

address the challenge in the context of the state of the objects being fully observed [Cosgun et al.,70

2011, King et al., 2016], which allows for efficient and accurate planning-based solutions. In contrast,71

there has been recent interest in room rearrangement inside a realistic 3D simulator [Batra et al.,72
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2020a, Weihs et al., 2021, Gadre et al., 2022] where the states of objects and the rearrangement goal73

are not directly observed. In these cases, the simulator only provides a direct visual input, and the74

simulated environment is relatively complex and realistic. This latest iteration of rearrangement shares75

similarity with various other challenging embodied AI tasks such as embodied navigation [Anderson76

et al., 2018a, Batra et al., 2020b, Chaplot et al., 2020a, Shridhar et al., 2020, Francis et al., 2021, Min77

et al., 2021, Pashevich et al., 2021, Singh et al., 2021] and embodied question answering [Gordon78

et al., 2018, Das et al., 2018], which require finding objects and reasoning about their state.79

AI2-THOR Rearrangement Challenge. Our work builds on the latest rearrangement methods80

and demonstrates how building accurate voxel-based semantic maps can produce significant gains.81

We focus on the AI2-THOR Rearrangement Challenge [Weihs et al., 2021], which uses AI2-THOR,82

an open-source and high-fidelity simulator used in many prior works [Gadre et al., 2022, Weihs83

et al., 2021, Shridhar et al., 2020, Gordon et al., 2018]. Prior works on this challenge have studied a84

variety of approaches, including end-to-end RL in Weihs et al. [2021], and a planning-based approach85

in Gadre et al. [2022]. Our approach is the first to use voxel-based semantic maps to infer what86

to rearrange from an experience goal as described by Batra et al. [2020a]. Though both Gadre87

et al. [2022] and our method use planning, Gadre et al. [2022] use a graph-based continuous scene88

representation, and we use voxel-based semantic maps instead, which we show is more effective.89

3D Mapping & Search. Agents that interact with an embodied world through navigation and ma-90

nipulation must keep track of the world (mapping) [Thrun, 2002] and themselves (localization) [Thrun91

et al., 2001]—both extensively studied in robotics by processing low-level information [Engel et al.,92

2014], building semantic maps [Kuipers and Byun, 1991] and more recently, via techniques specifi-93

cally developed to handle dynamic and general aspects of the environment [Rünz and Agapito, 2017,94

Rosinol et al., 2021, Wong et al., 2021]. When semantics are more important than precision, such95

as for embodied learning tasks, recent methods have looked at neural network-based maps [Gupta96

et al., 2017, Chen et al., 2019, Wu et al., 2019b, Chaplot et al., 2020b, Blukis et al., 2021, Chaplot97

et al., 2021]. Our method builds on these and adopts the use of a voxel-based semantic map and pre-98

trained semantic segmentation model—a similar methodological setup to Chaplot et al. [2021], Min99

et al. [2021]. However, our method diverges from these prior works by using multiple voxel-based100

semantic maps to infer what to rearrange from an experience goal as described by Batra et al. [2020a].101

These prior works have instead considered geometric goals in Chaplot et al. [2021] and language102

goals in Min et al. [2021], and ours is the first to consider an experience goal [Batra et al., 2020a].103

Furthermore, while a search-based policy is used in Min et al. [2021], we are the first to use search104

with an unspecified destination (ie, the agent does not know what kind of object is it looking for).105

3 Methodology106

In this section, we present a simple approach for solving visual rearrangement problems. We begin the107

section by discussing the visual rearrangement problem statement and metrics we use for evaluation.108

We then discuss our methodological contributions. First, we propose to build multiple voxel-based109

semantic maps representing the environment in different configurations. Second, we propose a policy110

that efficiently finds objects that need to be rearranged. Third, we propose a method for inferring the111

rearrangement goal from two semantic maps to efficiently solve visual rearrangement tasks.112

Visual rearrangement definition and evaluation metrics. Consider the rearrangement setting113

defined by Batra et al. [2020a], which is a special case of a Markov Decision Process (MDP)114

augmented with a goal specification g = ϕ(s0, S
∗). This goal specification encodes the set of states115

S∗ for which the rearrangement task is considered solved from initial state s0. The agent typically116

does not directly observe the set of goal states S∗, and this is reflected by the goal specification117

function ϕ : S × 2S −→ G. We consider a setting where the rearrangement goal g is specified118

visually and the agent initially observes the environment in its goal configuration. This setting is119

especially challenging because the agent must remember what the environment initially looked like to120

infer the set of goal states. Once the goal has been understood and rearrangement has been attempted,121

we evaluate agents using metrics introduced by Weihs et al. [2021]. We consider a Success metric122

that measures the proportion of tasks for which the agent has correctly rearranged all objects and123

misplaced none during rearrangement. This metric is strict in the sense that an agent receives a124

success of 0.0 if at least one object is misplaced—even if all others are correctly rearranged. We125
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Figure 2: Overview of our method for an example task. Our method incrementally builds voxel-based
Semantic Maps from visual observations. Our Semantic Search Policy helps build accurate maps by selecting
navigation goals to efficiently find objects that need to be rearranged. Once accurate maps are built, our method
compares the Semantic Maps to identify disagreements between the maps, and rearranges objects to resolve
those disagreements using a deterministic rearrangement policy.

consider an additional %Fixed Strict metric that measures the proportion of objects per task correctly126

rearranged, equal to 0.0 per task if any were misplaced. This second metric is more informative127

regarding how close the agent was to solving each task. Effective agents will correctly rearrange all128

objects in the scene to their goal configurations, maximizing their Success and %Fixed Strict.129

Building two semantic maps. Our approach builds off recent work that uses voxel-based semantic130

maps in embodied settings [Min et al., 2021, Chaplot et al., 2021]. Our work differs from these in131

that we use multiple voxel-based semantic maps to encode both the goal state and current state of the132

environment. In particular, we build two semantic maps m0,m1 ∈ RH×W×D×C that represent 3D133

grids with H ×W ×D voxels. Each voxel is represented with a categorical distribution on C classes134

encoding which class is likely to occupy each voxel. Empty voxels are assigned the zero vector. In an135

initial observation phase for each task, our agent navigates the scene and builds m0, a semantic map136

encoding the goal configurations for objects in the scene. Likewise, in a second interaction phase, our137

agent navigates the scene and builds m1, a semantic map encoding the current state of objects in the138

scene. At every timestep during each phase, pose, RGB, and depth images are observed, and either139

m0 or m1 is updated depending on which instance of the scene the agent is currently observing.140

Incorporating semantic predictions in the maps. Each semantic map is initialized to all zeros141

and, at every timestep t, semantic predictions from Mask R-CNN [He et al., 2017] are added to142

the map. Given the RGB image observation It, we generate semantic predictions from Mask R-143

CNN consisting of the probability of each pixel belonging to a particular class. We filter these144

predictions to remove those with a detection confidence lower than 0.9 and conduct an ablation in145

Section 4.3. We follow Chaplot et al. [2021] and generate an egocentric point cloud cegot using the146

depth observation Dt. Each point in this point cloud is associated with a pixel in the image It and147

a vector of class probabilities from Mask R-CNN. Given the current pose xt, we then transform148

the egocentric point cloud cegot from the agent’s coordinate system to world coordinate system.149

This transformation results in a geocentric point cloud cgeot that is converted to a geocentric voxel150

representation vgeot ∈ RH×W×D×C of the same cardinality as the semantic maps. We additionally151

generate a voxelized mask vmask
t ∈ RH×W×D×1 that equals one for every occupied voxel in vgeot152

and zero otherwise. New semantic predictions are added to the maps with a moving average.153

mi[t+ 1] = mi[t]⊙ (1− vmask
t (1− ϵ)) + vgeot (1− ϵ) (1)

The update in Equation 1 allows voxels to be updated at different rates depending on how frequently154

they are observed. The hyperparameter ϵ ∈ (0, 1) controls how quickly the semantic maps are155

updated to account for new semantic predictions, and is set to 0.5 in our experiments. An overview156
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Algorithm 1 3D Mapping and Semantic Search For Visual Rearrangement
Require: visual rearrangement environment e, initial voxel-based semantic maps m0,m1 ∈
RH×W×D×C , search-based policy πθ(x|m), pre-trained semantic segmentation model g
for each phase i ∈ {0, 1} do

for each It, Dt, xt observed do
vgeot , vmask

t ← project( g(It), Dt, xt ) ▷ project to voxels
mi[t]← mi[t− 1]⊙ (1− vmask

t (1− ϵ)) + vgeot (1− ϵ) ▷ update map
if goal is reached or goal does not exist then

goal ∼ πθ(x|mi[t]) ▷ emit a semantic search goal
end if
navigate to goal

end for
end for
while a disagreement d between m0 and m1 is detected do

navigate to d in m1 and rearrange d to match m0

end while

of how our two semantic maps are built is shown in Figure 2. We’ve detailed how the semantic maps157

are constructed from observations, and we will next describe how navigation goals are selected.158

Locating objects with a search-based policy. Building accurate maps requires locating and159

observing every object in the scene so they can be added to the maps. This requires intelligently160

selecting navigation goals based on where objects are likely to be. We learn a high-level policy161

πθ(x|mi) that builds off recent work in Min et al. [2021], Chaplot et al. [2021] and parameterizes a162

distribution over 3D search locations in the environment. The input to the policy is a 3D semantic163

map mi from whichever phase is currently active. The policy is a 5-layer 2D convolutional neural164

network that processes a 3D semantic map mi and outputs a categorical distribution over voxels in mi,165

corresponding to 3D search locations. The policy is trained using maximum likelihood training with166

an expert distribution p∗(x) that captures the locations of the K objects the agent should rearrange in167

the current scene. This expert distribution in Equation 2 is a Gaussian mixture model with a mode168

centered at the location µk of each object, and a variance hyperparameter σ2 for each mode.169

p∗(x) ∝ 1

K

K∑
k=1

N (x;µk, σ
2I) (2)

Once a policy πθ(x|mi) is trained that captures a semantic prior for object locations, we use planning170

to reach goals sampled from the policy. We build a planar graph that represents traversable space171

derived from voxel occupancy in the semantic map, and use Dijkstra’s algorithm [Dijkstra, 1959]172

to find the shortest path from the agent’s current location to the goal. We filter navigation goals to173

ensure only feasible goals are sampled, and then allow sufficient time for each navigation goal to be174

reached. Once the current goal is reached, we sample another goal and call the planner again.175

Inferring the rearrangement goal from the maps. Once two semantic maps are built, we compare176

them to extract differences in object locations, which we refer to as map disagreements. These177

disagreements represent objects that need to be rearranged by the agent. To locate disagreements,178

we first use OpenCV [Bradski, 2000] to label connected voxels of the same class as object instances.179

We consider voxels with nonzero probability of class c to contain an instance of that class. Object180

instances are then matched between phases by taking the assignment of object instances that minimizes181

the difference in appearance between instances of the same class. We leverage the Hungarian182

algorithm [Kuhn and Yaw, 1955], and represent appearance by the average color of an object instance183

in the map. Once objects are matched, we label pairs separated by > 0.05 meters as disagreements.184

Given a set of map disagreements {(x1, x
∗
1), (x2, x

∗
2), . . . , (xN , x∗

N )} represented by the current pose185

xi and goal pose x∗
i for each object, we leverage a planning-based rearrangement policy to solve the186

task. Our rearrangement policy navigates to each object in succession and transports them to their187

goal location. By accurately mapping with a search-based policy, inferring the rearrangement goal,188

and planning towards the goal, our method in Algorithm 1 efficiently solves visual rearrangement.189
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Table 1: Evaluation on the 2022 AI2-THOR 2-Phase Rearrangement Challenge. Our method attains state-of-
the-art performance on this challenge, outperforming prior work by 875% %Fixed Strict. Results are averaged
over 1000 rearrangement tasks in each of the 2022 validation set and 2022 test set. Higher is better. A Success
of 100.0 indicates all objects are successfully rearranged if none are misplaced and 0.0 otherwise. The metric
%Fixed Strict is more lenient, equal to the percent of objects that are successfully rearranged if none are newly
misplaced, and 0.0 otherwise.

Validation Test
Method %Fixed Strict Success %Fixed Strict Success

VRR + Map [Weihs et al., 2021] 1.18 0.40 0.53 0.00
CSR [Gadre et al., 2022] 3.30 1.20 1.90 0.40

Ours w/o Semantic Search 15.77 4.30 +795% 15.11 +900% 3.60
Ours 17.47 6.30 +875% 16.62 +1158% 4.63

4 Experiments190

We presented a modular approach for rearrangement. In this section we evaluate our approach and191

show its effectiveness. We first evaluate our approach on the AI2-THOR Rearrangement Challenge192

Weihs et al. [2021] and show our approach leads to an improvement of 14.72 absolute percentage193

points over current work, detailed in Subsection 4.1. This benchmark tests an agent’s ability to194

rearrange rooms to a desired object goal configuration, and is a suitable choice for measuring visual195

rearrangement performance. Next, we show the importance of each proposed component, and196

demonstrate in Subsection 4.2 our voxel-based map and search-based policy exhibit large potential197

gains as more performant models for perception and search are developed in the future. Finally,198

we show in Subsection4.3 our approach is robust to the quality of object detections and budget for199

exploration. Our experiments show our method is robust and effective at visual rearrangement.200

Description of the benchmark. In this benchmark, the goal is to rearrange up to five objects to201

a desired state, defined in terms of object locations and openness. The challenge is based on the202

RoomR [Weihs et al., 2021] dataset that consists of a training set with 80 rooms and 4000 tasks,203

validation set with 20 rooms and 1000 tasks, and a test set with 20 rooms and 1000 tasks. We consider204

a two-phase setting where an agent observes the goal configuration of the scene during an initial205

Walkthrough Phase. The scene is then shuffled, and the agent is tasked with rearranging objects back206

to their goal configuration during a second Unshuffle Phase. This two-phase rearrangement setting is207

challenging because it requires the agent to remember the scene layout from the Walkthrough Phase,208

to identify the rearrangement goal. Goals are internally represented by a set of valid object poses209

S∗ ⊂ (R3×SO(3))×(R3×SO(3)) · · ·×(R3×SO(3)), but the agent does not observe S∗ directly.210

At every time step t during either phase, the agent observes a geocentric pose xt, an egocentric RGB211

image It, and an egocentric depth image Dt. The rearrangement goal is specified indirectly via212

observations of the scene layout during the Walkthrough Phase. During training, additional metadata213

is available such as ground-truth semantic labels, but during evaluation only the allowed observations214

xt, It and Dt can be used. Once both the Walkthrough Phase and Unshuffle Phase are complete, we215

measure performance using the %Fixed Strict and Success metrics described in Section 3.216

4.1 Effectiveness At Visual Rearrangement217

The goal of this subsection is to evaluate the effectiveness of our method at visual rearrangement.218

We leverage the RoomR [Weihs et al., 2021] dataset and evaluate our method on the two-phase rear-219

rangement challenge. We report performance in Table 1 and show an improvement in %Fixed Strict220

from 1.9 to 15.11 over the current state-of-the-art method, namely Continuous Scene Representations221

(CSR) [Gadre et al., 2022]. These results show our method is more effective than prior work at visual222

rearrangement, leading to a relative improvement of 875% over current work. Our success of 4.63%223

on the test set indicates our method solves 46 / 1000 tasks, whereas the best existing approach, CSR,224

solves 4 / 1000 tasks. Furthermore, our method correctly rearranges 499 / 3004 objects in the test set,225

while the best existing approach, CSR, rearranges only 57 / 3004 objects in the test set.226

The results in Table 1 support two conclusions. First, 3D Mapping is a helpful inductive bias. Ours is227

currently the only method on the challenge to leverage 3D Mapping for identifying rearrangement228

6



Table 2: Ablation of the importance of each component of our method. Our method produces significant gains
as perception and search models become more accurate. Results are averaged over 1000 rearrangement tasks
in each of the 2022 validation set and 2022 test set. As in Table 1, higher is better, and a Success of 100.0
indicates all objects are successfully rearranged if none are misplaced and 0.0 otherwise. Our results show that as
perception and search models continue to improve with future research, we have an out-of-the-box improvement
of 34.73 Success on the test set.

Validation Test
Method %Fixed Strict Success %Fixed Strict Success

CSR + GT T 3.80 1.30 2.10 0.70
CSR + GT BT 7.90 3.00 5.90 2.20
CSR + GT MBT 26.00 8.80 27.00 10.00

Ours + GT Semantic Search 21.24 7.60 +942% 19.79 +871% 6.10
Ours + GT Segmentation 66.66 45.60 +1004% 59.29 +1707% 37.55
Ours + GT Both 68.46 48.60 +1008% 59.50 +1742% 38.33

goals. The next best approach, CSR Gadre et al. [2022], represents the scene with a graph, where229

nodes encode objects, and edges encode spatial relationships. Determining which objects need230

to be rearranged benefits from knowing their fine-grain 3D position, which our method directly231

represents in our semantic maps. These results suggest an important hypothesis that our method more232

successfully rearranges small objects. This is an important contribution (see additional results in233

Subsection 4.5) because many common objects humans use are small—cutlery, plates, cups, writing234

implements, etc. Agents helpful to humans must successfully handle these small objects.235

4.2 Component Ablation236

The goal of this experiment is to determine the importance of each component to our method. We237

consider a series of ablations in Table 2 that replace different components of our method with ground238

truth predictions. We first consider Ours + GT Semantic Search, where we substitute the predictions239

of our search-based policy πθ with the ground truth locations of objects that need to be rearranged.240

We also consider Ours + GT Segmentation, where we substitute the predictions of Mask R-CNN [He241

et al., 2017] with ground truth semantic segmentation labels. The final ablation in the table Ours +242

GT Both includes both substitutions at once. In addition to reporting our performance, we reference243

the performance of CSR [Gadre et al., 2022] in a similar set of ablations. We consider CSR + GT T244

which uses expert trajectories that observe all objects needing to be rearranged, CSR + GT BT which245

also uses ground truth object detection labels, and CSR + GT MBT which additionally uses ground246

truth object instance pairs between the Walkthrough Phase and the Unshuffle Phase. Table 2 shows247

our method produces a better out-of-the-box improvement in all metrics as the perception and search248

components become more accurate, suggesting both components are important.249

Table 2 demonstrates our method produces significant gains when paired with accurate semantic250

search and accurate semantic segmentation. When using ground-truth semantic segmentation labels251

and ground-truth search locations, our method attains an improvement of 35.35 absolute percentage252

points in Success compared to existing work given access to the same experts. CSR + GT BT makes253

the same assumptions as our method with both components replaced with ground-truth, and is used254

to compute this improvement margin. When prior work is given the additional accommodation of255

ground-truth object instance pairs between the two environment phases, CSR + GT MBT, our method256

maintains an improvement of 27.55 absolute Success points without the accommodation. These257

results show our method has greater room for improvement than prior work, with a %Fixed Strict258

32.50 absolute percentage points higher than current work. Our method’s room for improvement with259

more accurate perception and search models is appealing because accurate 3D vision models are an260

active area of research, and our method directly benefits from innovations in these models.261

4.3 Stability Versus Perception Quality262

In the previous sections, we evaluated our method’s effectiveness at rearrangement, and room for263

growth as better perception and search models are developed. This direct benefit from improvements264

in perception quality resulting from better models is desireable, but an effective method should also265
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Figure 3: Rearrangement performance versus perception quality. Dark colored lines represent the average
metric across 1000 tasks, and shaded regions correspond to a 68% confidence interval. Lower Num Newly
Misplaced (left plot) is better, higher %Fixed Strict (center plot) and Success (right plot) are better. Our method
improves smoothly as perception quality increases, simulated by varying the detection confidence threshold used
to filter Mask R-CNN predictions detailed in Section 3.

be robust when perception quality is poor. In this section, we evaluate our method’s performance266

stability as a function of the quality of object detections. We simulate changes in object detection267

quality by varying the detection confidence threshold of Mask R-CNN [He et al., 2017] described in268

Section 3. A low threshold permits accepting detections where Mask R-CNN makes high-variance269

predictions, reducing the quality of detections overall. In the following experiment, we vary the270

detection confidence threshold on the validation and test sets of the rearrangement challenge.271

Figure 3 shows our method is robust to small changes in perception quality. As the detection272

confidence increases, simulating an improvement in object detection fidelity, performance of our273

method smoothly increases. Peak performance with our method on the validation set is attained with274

a detection confidence threshold close to 0.9, which is the value we employ throughout the paper.275

Error bars in this experiment are computed using a 68% confidence interval with 1000 sample points,276

corresponding to 1000 tasks in each of the validation and test sets. The small width of error bars277

indicates the observed relationship between perception quality and performance most likely holds278

for tasks individually (not just on average), supporting the conclusion our method is robust to small279

changes in perception quality. We make a final observation that as perception quality increases, fewer280

objects are misplaced as our method more accurately infers the rearrangement goal. These results281

suggest our method produces consistent gains in rearrangement as perception models improve.282

4.4 Stability Versus Exploration Budget283

We conduct an ablation in this section to evaluate how the exploration budget affects our method.284

This is an important experiment because the conditions an agent faces in the real world vary, and285

an effective agent is robust when the budget for exploring the scene is small. We simulate a limited286

exploration budget by varying the amount of navigation goals used by the agent when building the287

semantic maps. A lower budget results in fewer time steps spent building the semantic maps, and288

fewer updates to voxels described in Section 3. With fewer updates, sampling goals intelligently is289

crucial to ensure the agent has the information necessary to infer the task rearrangement goal.290

Figure 4 shows our method is robust when the exploration budget is small. Performance is stable291

when less than 5 navigation goals are proposed by our semantic search module, where no penalty292

in %Fixed Strict and Success can be observed. This result confirms the effectiveness of semantic293

search: sampled goals correspond to the locations of objects likely to need rearrangement, so even294

when the budget is small, these objects are already observed. The experiment also shows that as295

the budget decreases, fewer objects are misplaced. This is intuitive because when the budget is296

small, fewer objects in the environment are observed and added to the map, reducing the chance297

of incorrect map disagreements being proposed. Additionally, when the budget is large, the agent298

spends the majority of the episode in navigation, and may not have enough time left to correct map299

disagreements, resulting in slightly lower overall performance. These results suggest our method is300

effective for a variety of exploration budgets, and is robust when the budget is small.301

4.5 Failure Modes302

Our previous experiments showed instances where our method is effective, but an understanding303

of its limitations is equally important. The goal of this subsection is to identify how and why our304
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Figure 4: Rearrangement performance versus perception quality. Dark colored lines represent the average
metric across 1000 tasks, and shaded regions correspond to a 68% confidence interval. Lower Num Newly
Misplaced (left plot) is better, higher %Fixed Strict (center plot) and Success (right plot) is better. Our method
improves smoothly as perception quality increases, simulated by varying the detection confidence threshold used
to filter Mask R-CNN predictions detailed in Section 3.

method can fail. To accomplish this, we conduct an ablation to study how three indicators—object305

size, distance to the goal position, and amount of nearby clutter—affect our method. These capture306

different aspects of what makes rearrangement hard. For example, small objects can be ignored,307

objects distant to their goal can be easier to misplace, and objects too close to one another can be308

mis-detected. We measure the performance of our method with respect to these indicators in Figure 6309

in Appendix B, and analyze the experimental conditions when our method is less effective.310

Our results illuminate what kinds of tasks are difficult for our method. We find experimentally that311

objects further from the rearrangement goal are harder for our method to successfully rearrange.312

Objects within 0.326 meters of the goal are correctly rearranged >30% of the time, whereas objects313

further than 4.157 meters from the goal are only correctly rearranged <20% of the time. One314

explanation for this disparity in performance could be matching object instances between phases315

is more difficult when those instances are further apart. Better perception models can mitigate this316

explanation by providing more information about object appearance that may be used to accurately317

pair instances. While this first observation is intuitive, our second is more surprising. We find that318

our method rearranges small objects as effectively as large objects, suggesting our method is robust319

to the size of objects it rearranges. This quality is desireable because realistic environments contain320

objects in a variety of sizes. Effective agents should generalize to a variety of object sizes.321

5 Conclusion322

We presented a simple modular approach for rearranging objects to desired visual goals. Our approach323

leverages a voxel-based semantic map containing objects detected by a perception model, and a324

semantic-search policy for efficiently locating the objects to rearrange. Our approach generalizes325

effectively to rearrangement goals of varying difficulties, including objects that are small in size,326

far from the goal, and in cluttered spaces. Furthermore, our approach is efficient, performing well327

even with a small exploration budget. Our experimental evaluation shows our approach improves328

over current work in rearrangement by 14.7 absolute percentage points, and continues to improve329

smoothly as better models are developed and the quality of object detections increases. Our results330

confirm the efficacy of active perceptual mapping for the rearrangement setting, and motivate several331

future directions that can expand the flexibility and generalization of the method.332

One promising future direction is improving the map representation of objects. One limitation of333

the rearrangement setting in this work is that objects only have simple states: position, orientation,334

and openness. Real objects are complex and have states that may change over time, potentially from335

interactions not involving the agent. Investigating tasks that require modelling these dynamic objects336

in the map is an emerging topic that can benefit from new benchmarks and methods. A second337

promising future direction is using an agent’s experience to improve its perception. Feedback from338

the environment, including instructions, rewards, and transition dynamics, provides rich information339

about how to improve perception when true labels may be difficult to acquire. Investigating how to340

leverage all sources of feedback available to an agent is a useful research topic that may unlock better341

generalization for embodied agents in dynamic environments.342
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(Supplementary Material)
A Simple Approach for Visual Rearrangement:

3D Mapping and Semantic Search

In this appendix we include the following supporting experiments and visualizations:484

A. We begin this appendix by presenting the performance of our map disagreement detec-485

tion module for each object category. We find that our method effectively detects map486

disagreements for both small and large objects, and is therefore robust to object size.487

B. We then present a performance breakdown of our method for object size, distance to goal,488

and amount of clutter, and find that our method is less effective when objects are further489

from the goal or when nearby objects are closer together.490

C. We report confidence intervals for our method’s performance on the rearrangement challenge.491

D. Finally, we outline the compute infrastructure needed to reproduce our experiments.492

E. We list the hyperparameters used in our paper.493

F. We categorize why our method can fail and provide a qualitative example.494

The official code for our method will be released at publication.495

A Object Type Versus Detection Accuracy496

In this section, we visualize the relationship between the performance of our map disagreement497

detection module, detailed in Section 3, and the category of objects to be rearranged. For each of498

1000 tasks in the validation set and test set of RoomR [Weihs et al., 2021], we record which object499

categories are detected as needing to be rearranged, and log the ground truth list of object categories500

that need to be rearranged. For each object, we calculate precision as the proportion of objects per501

category that were correctly identified as map disagreements out of all predicted map disagreements.502

Similarly, we calculate recall as the proportion of correctly identified as map disagreements out of503

all ground-truth map disagreements. Each bar in Figure 5 represents a 68% confidence interval of504

precision and recall over 1000 tasks per dataset split. The experiment shows that our method is505

robust to the size of objects that it rearranges because small objects such as the SoapBar, CellPhone,506

CreditCard, and DishSponge have comparable accuracy to large objects in Figure 5.507

B Performance Analysis508

This section extends Section 4.5 with an experiment to show potential failure modes. We consider509

three failure modes: (1) object size, (2) object distance to the goal, and (3) closest object in the510

same class. These indicators are visualized in Figure 6 against %Fixed. Our experiment suggests511

our method is robust to the size of objects, shown by the lack of a global trend in the left plot in512

Figure 6, and confirmed by Appendix A. Additionally, the experiment shows that objects further from513

the rearrangement goal are solved less frequently (middle plot), which is intuitive. Instances that514

have been shuffled to faraway locations in the scene may require longer exploration to find, and may515

be more difficult for our map disagreement detection module to match. A final conclusion we can516

draw from this experiment is that our method can fail when object instances are too close together.517

This is shown in the right plot in Figure 6 by the steep drop in performance when objects in the518

same category are < 1 meter apart. In this situation, our semantic mapping module can incorrectly519

detect two nearby objects as a single object, which prevents their successful rearrangement. For each520

of these potential failure modes, better perception and mapping approaches that more accurately521

describe object locations and appearance can improve fidelity of our method and reduce failure.522
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Figure 5: Performance breakdown on the validation and test sets for various types of objects. The
height of bars corresponds to the sample mean of precision or recall for our map disagreement
detection module. Error bars show a 68% confidence interval for each kind of object. The top two
plots correspond to precision and recall on the validation set, while the bottom two plots correspond
to precision and recall on the test set. Object categories are shown on the x-axis, and are ordered in
ascending order of size. The experiment shows our method is robust to size, with small objects at the
left end of the plots having comparable accuracy to large objects at the right end of the plots.

C Performance Confidence Intervals523

We report 68% confidence intervals in Table 3 to supplement our evaluation in Section 4.1 and Sec-524

tion 4.2. We calculate intervals using 1000 tasks from the validation and test sets of the RoomR [Weihs525

et al., 2021] dataset, and report the mean followed by± interval width. Note that the official rearrange-526

ment challenge leaderboard does not expose confidence intervals, nor the sample-wise performance527

needed to calculate them. Due to this, we are unable to compute confidence intervals of the baselines528

VRR [Weihs et al., 2021] and CSR [Gadre et al., 2022] at this time. These additional results show529

that our improvements over prior work significantly exceed the 68% confidence interval.530
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Figure 6: Performance of various ablations for different Size (Meters3), Distance To Goal (Meters),
and Nearest Same Object (Meters). These indicators measure properties of objects that make
rearrangement hard. Colored lines represent the average performance over 1000 tasks in each dataset
split. Error bars represent a 68% confidence interval over those same 1000 sample points. The
experiment shows our method can fail when objects of the same class are too close together (right
plot), and when objects are too far from the goal location, typically >4.157 meters (center plot).

Table 3: Confidence intervals for our method on the AI2-THOR rearrangement challenge. Intervals
are calculated from 1000 sample points from RoomR [Weihs et al., 2021] validation and test sets. We
report pertformance starting with the sample mean, followed by ± a 68% confidence interval width.
Our improvements over prior work significantly exceed the 68% confidence interval, which suggests
that our improvements are significant and our method performs consistently well.

Validation Test
Method %Fixed Strict Success %Fixed Strict Success

Ours w/o Semantic Search 15.77 ± 0.85 4.30 ± 0.63 15.11 ± 0.84 3.60 ± 0.58
Ours 17.47 ± 0.92 6.30 ± 0.76 16.62 ± 0.89 4.63 ± 0.67
Ours + GT Semantic Search 21.24 ± 0.99 7.60 ± 0.83 19.79 ± 0.96 6.10 ± 0.75
Ours + GT Segmentation 66.66 ± 1.21 45.60 ± 1.57 59.29 ± 1.26 37.55 ± 1.53
Ours + GT Both 68.46 ± 1.20 48.60 ± 1.57 59.50 ± 1.31 38.33 ± 1.57

D Required Compute531

The goal of this section is to outline the amount of compute required to replicate our experiments.532

We will describe the amount of compute required for (1) training Mask R-CNN, (2) training a533

semantic search policy πθ(x|mi), and (3) benchmarking the agent on the rearrangement challenge.534

For training Mask R-CNN, a dataset of 2 million images with instance segmentation labels were535

collected from the THOR simulator using the training split of the RoomR [Weihs et al., 2021] dataset.536

We then used Detectron2 [Wu et al., 2019a] with default hyperparameters to train Mask R-CNN with537

a ResNet50 [He et al., 2016] Feature Pyramid Network backbone [Lin et al., 2017]. We trained our538

Mask R-CNN for five epochs using a DGX with eight Nvidia 32GB v100 GPUS for 48 hours. Our539

semantic search policy requires significantly less compute: completing 15 epochs on a dataset of540

8000 semantic maps annotated with an expert search distribution in nine hours on a single Nvidia541

12GB 3080ti GPU. Evaluating our method on the AI2-THOR rearrangement challenge requires 40542

GPU-hours with a 2080ti GPU or equivalent. In practice, we parallelize evaluation across 32 GPUs,543

which results in an evaluation time of 1.25 hours for each of the validation and test sets.544

E Hyperparameters545

We provide a list of hyperparameters are their values in Table 4. These hyperparameters are held546

constant throughout the paper, except in ablations that study the sensitivity of our method to them,547

such as Section 4.3. Our ablations show our method is robust to these hyperparameters.548
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Table 4: Hyperparameters used by our approach for all rearrangement tasks.

Hyperparameter Value

voxel size 0.05 meters
map height H 384
map width W 384
map depth D 96
classes C 54
detection confidence threshold 0.9
rearrangement distance threshold 0.05 meters
expert search distribution σ 0.75 meters
πθ convolution hidden size 64
πθ convolution kernel size 3× 3
πθ layers 5
πθ activation function ReLU
πθ optimizer Adam
πθ learning rate 0.0003
πθ batch size 8
πθ epochs 15
πθ dataset size 8000

F Reasons For Task Failures549

This section explores the reasons why certain tasks in the validation and test sets are not solved by550

our method. We consider four reasons for task failures that cover all possible outcomes: (1) the agent551

correctly predicts which objects need to be moved where, but fails to rearrange at least one object, (2)552

the agent incorrectly predicts an object needs to be rearranged that doesn’t, (3) the agent runs out553

of time, and (4) the agent misses at least one object that needs to be rearranged. We visualize the554

proportion of failed tasks for each category in Figure 7. We find that our method with ground truth555

perception and search (Ours + GT SSS) tends to fail to rearrange objects after correctly identifying556

which objects need to be rearranged. In contrast, the largest reason for failure for our method (Ours)557

is the agent running out of time, followed by rearranging incorrect objects. This suggests the largest558

potential gains for our method arise from improving the speed and fidelity of map building, whereas,559

the optimality of the rearrangement policy becomes the bottleneck once a perfect map is available.560
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Figure 7: Categorization of the reasons why our method fails to solve tasks. The proportion of tasks
that are solved (shown in blue) or fail due to one of four reasons (orange, green, red, purple) is shown
for different ablations of our method. The height per bar corresponds to the proportion of tasks in
the validation or test set in each category, and error bars indicate a 68% confidence interval. This
experiment shows the largest reason for failure is a result of mapping errors. In the right plot, the
agent fails most frequently by rearranging the wrong object, and by running out of time, which can
result from imperfect semantic maps. In contrast, once perfect maps are available in the left plot, the
largest source of errors are due to an imperfect planning-based rearrangement policy instead.
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Locating ToiletPaper Moving To Goal Placed At Wrong LocationAttempt Placing At Goal

Figure 8: Qualitative example for why rearranging the correct object can fail. In this task, the agent
correctly predicts the ToiletPaper needs to be rearranged, but fails to place the ToiletPaper in the
correct location. The rightmost image shows the goal is located on the floor, but the agent mistakenly
places the ToiletPaper on the bathtub instead, shown in the second image from the right.
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