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Abstract: Lifelong learning offers a promising paradigm of building a generalist
agent that learns and adapts over its lifespan. Unlike traditional lifelong learning
problems in image and text domains, which primarily involve the transfer of declar-
ative knowledge of entities and concepts, lifelong learning in decision-making
(LLDM) also necessitates the transfer of procedural knowledge, such as actions
and behaviors. To advance research in LLDM, we introduce LIBERO, a novel
benchmark of lifelong learning for robot manipulation. Specifically, LIBERO
highlights five key research topics in LLDM: 1) how to efficiently transfer declara-
tive knowledge, procedural knowledge, or the mixture of both; 2) how to design
effective policy architectures and 3) effective algorithms for LLDM; 4) the ro-
bustness of a lifelong learner with respect to task ordering; and 5) the effect of
model pretraining for LLDM. We develop an extendible procedural generation
pipeline that can in principle generate infinitely many tasks. For benchmarking
purpose, we create four task suites (130 tasks in total) that we use to investigate the
above-mentioned research topics. To support sample-efficient learning, we provide
high-quality human-teleoperated demonstration data for all tasks. Our extensive
experiments present several insightful or even unexpected discoveries: sequential
finetuning outperforms existing lifelong learning methods in forward transfer, no
single visual encoder architecture excels at all types of knowledge transfer, and
naive supervised pretraining can hinder agents’ performance in the subsequent
LLDM.

1 Introduction
A longstanding goal in machine learning is to develop a generalist agent that can perform a wide
range of tasks. While multitask learning [1] is one approach, it is computationally demanding and
not adaptable to ongoing changes. Lifelong learning [2], however, offers a practical solution by
amortizing the learning process over the agent’s lifespan. Its goal is to leverage prior knowledge to
facilitate learning new tasks (forward transfer) and use the newly acquired knowledge to enhance
performance on prior tasks (backward transfer).

The main body of the lifelong learning literature has focused on how agents transfer declarative
knowledge in visual or language tasks, which pertains to declarative knowledge about entities and
concepts [3, 4]. Yet it is understudied how agents transfer knowledge in decision-making tasks,
which involves a mixture of both declarative and procedural knowledge (knowledge about how to do
something). Consider a scenario where a robot, initially trained to retrieve juice from a fridge, fails
after learning new tasks. This could be due to forgetting the juice or fridge’s location (declarative
knowledge) or how to open the fridge or grasp the juice (procedural knowledge). So far, we lack
methods to systematically and quantitatively analyze this complex knowledge transfer.

To bridge this research gap, this paper introduces a new simulation benchmark, LIfelong learning
BEchmark on RObot manipulation tasks, LIBERO, to facilitate the systematic study of lifelong
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Figure 1: Top: LIBERO has four procedurally-generated task suites: LIBERO-SPATIAL, LIBERO-
OBJECT, and LIBERO-GOAL have 10 tasks each and require transferring knowledge about spatial
relationships, objects, and task goals; LIBERO-100 has 100 tasks and requires the transfer of
entangled knowledge. Bottom: we investigate five key research topics in LLDM on LIBERO.

learning in decision making (LLDM). An ideal LLDM testbed should enable continuous learning
across an expanding set of diverse tasks that share concepts and actions. LIBERO supports this
through a procedural generation pipeline for endless task creation, based on robot manipulation tasks
with shared visual concepts (declarative knowledge) and interactions (procedural knowledge).

For benchmarking purpose, LIBERO generates 130 language-conditioned robot manipulation tasks
inspired by human activities [5] and, grouped into four suites. The four task suites are designed to
examine distribution shifts in the object types, the spatial arrangement of objects, the task goals,
or the mixture of the previous three (top row of Figure 1). LIBERO is scalable, extendable, and
designed explicitly for studying lifelong learning in robot manipulation. To support efficient learning,
we provide high-quality, human-teleoperated demonstration data for all 130 tasks.

We present an initial study using LIBERO to investigate five major research topics in LLDM
(Figure 1): 1) knowledge transfer with different types of distribution shift; 2) neural architecture
design; 3) lifelong learning algorithm design; 4) robustness of the learner to task ordering; and 5)
how to leverage pre-trained models in LLDM (bottom row of Figure 1). We perform extensive
experiments across different policy architectures and different lifelong learning algorithms. Based on
our experiments, we make several insightful or even unexpected observations: (1) Policy architecture
design is as crucial as lifelong learning algorithms. The transformer architecture is better at abstracting
temporal information than a recurrent neural network. Vision transformers work well on tasks with
rich visual information (e.g., a variety of objects). Convolution networks work well when tasks
primarily need procedural knowledge. (2) While the lifelong learning algorithms we evaluated
are effective at preventing forgetting, they generally perform worse than sequential finetuning in
terms of forward transfer. (3) Our experiment shows that using pretrained language embeddings of
semantically-rich task descriptions yields performance no better than using those of the task IDs.
(4) Basic supervised pretraining on a large-scale offline dataset can have a negative impact on the
learner’s downstream performance in LLDM.

2 Research Topics in LLDM

We outline five major research topics in LLDM that motivate the design of LIBERO and our study.

(T1) Transfer of Different Types of Knowledge In order to accomplish a task such as put the
ketchup next to the plate in the basket, a robot must understand the concept ketchup, the location
of the plate/basket, and how to put the ketchup in the basket. Indeed, robot manipulation tasks in
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general necessitate different types of knowledge, making it hard to determine the cause of failure.
We present four task suites in Section 3.2: three task suites for studying the transfer of knowledge
about spatial relationships, object concepts, and task goals in a disentangled manner, and one suite
for studying the transfer of mixed types of knowledge.

(T2) Neural Architecture Design An important research question in LLDM is how to design
effective neural architectures to abstract the multi-modal observations (images, language descriptions,
and robot states) and transfer only relevant knowledge when learning new tasks.

(T3) Lifelong Learning Algorithm Design Given a policy architecture, it is crucial to determine
what learning algorithms to apply for LLDM. Specifically, the sequential nature of LLDM suggests
that even minor forgetting over successive steps can potentially lead to a total failure in execution. As
such, we consider the design of lifelong learning algorithms to be an open area of research in LLDM.

(T4) Robustness to Task Ordering It is well-known that task curriculum influences policy
learning [6, 7]. A robot in the real world, however, often cannot choose which task to encounter first.
Therefore, a good lifelong learning algorithm should be robust to different task orderings.

(T5) Usage of Pretrained Models In practice, robots will be most likely pretrained on large
datasets in factories before deployment [8]. However, it is not well-understood whether or how
pretraining could benefit subsequent LLDM.

3 LIBERO
3.1 Procedural Generation of Tasks
Research in LLDM requires a systematic way to create new tasks while maintaining task diversity
and relevance to existing tasks. LIBERO procedurally generates new tasks in three steps: 1) extract
behavioral templates from language annotations of human activities and generate sampled tasks
described in natural language based on such templates; 2) specify an initial object distribution given a
task description; and 3) specify task goals using a propositional formula that aligns with the language
instructions. Our generation pipeline is built on top of Robosuite [9], a modular manipulation
simulator that offers seamless integration. Figure 2 illustrates an example of task creation using this
pipeline, and each component is expanded upon below.

Behavioral Templates and Instruction Generation Human activities serve as a fertile source of
tasks that can inspire and generate a vast number of manipulation tasks. We choose a large-scale
activity dataset, Ego4D [5], which includes a large variety of everyday activities with language
annotations. We pre-process the dataset by extracting the language descriptions and then summarize
them into a large set of commonly used language templates. After this pre-processing step, we use
the templates and select objects available in the simulator to generate a set of task descriptions in the
form of language instructions. For example, we can generate an instruction “Open the drawer of the
cabinet” from the template “Open ...”.

Initial State Distribution (µ0) To specify µ0, we first sample a scene layout that matches the
objects/behaviors in a provided instruction. For instance, a kitchen scene is selected for an instruction
Open the top drawer of the cabinet and put the bowl in it. Then, the details about µ0 are generated in
the PDDL language [10, 11]. Concretely, µ0 contains information about object categories and their
placement (Figure 2-(A)), and their initial status (Figure 2-(B)).

Goal Specifications (g) Based on µ0 and the language instruction, we specify the task goal using
a conjunction of predicates. Predicates include unary predicates that describe the properties of an
object, such as Open(X) or TurnOff(X), and binary predicates that describe spatial relations between
objects, such as On(A, B) or In(A, B). An example of the goal specification using PDDL language
can be found in Figure 2-(C). The simulation terminates when all predicates are verified true.

3.2 Task Suites
While the pipeline in Section 3.1 supports the generation of an unlimited number of tasks, we offer
fixed sets of tasks for benchmarking purposes. LIBERO has four task suites: LIBERO-SPATIAL,
LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-100. The first three task suites are curated to
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disentangle the transfer of declarative and procedural knowledge (as mentioned in (T1)), while
LIBERO-100 is a suite of 100 tasks with entangled knowledge transfer.

LIBERO-X LIBERO-SPATIAL, LIBERO-OBJECT, and LIBERO-GOAL all have 10 tasks2

and are designed to investigate the controlled transfer of knowledge about spatial information
(declarative), objects (declarative), and task goals (procedural). Specifically, all tasks in LIBERO-
SPATIAL request the robot to place a bowl, among the same set of objects, on a plate. But there are
two identical bowls that differ only in their location or spatial relationship to other objects. Hence, to
successfully complete LIBERO-SPATIAL, the robot needs to continually learn and memorize new
spatial relationships. All tasks in LIBERO-OBJECT request the robot to pick-place a unique object.
Hence, to accomplish LIBERO-OBJECT, the robot needs to continually learn and memorize new
object types. All tasks in LIBERO-GOAL share the same objects with fixed spatial relationships but
differ only in the task goal. Hence, to accomplish LIBERO-GOAL, the robot needs to continually
learn new knowledge about motions and behaviors. More details are in Appendix G.

LIBERO-100 LIBERO-100 contains 100 tasks that entail diverse object interactions and versatile
motor skills. In this paper, we split LIBERO-100 into 90 short-horizon tasks (LIBERO-90) and 10
long-horizon tasks (LIBERO-LONG). LIBERO-90 serves as the data source for pretraining (T5)
and LIBERO-LONG for downstream evaluation of lifelong learning algorithms.

3.3 Lifelong Learning Algorithms

We implement three representative lifelong learning algorithms to facilitate research in algorith-
mic design for LLDM. Specifically, we implement Experience Replay (ER) [12], Elastic Weight
Consolidation (EWC) [13], and PACKNET [14]. We pick ER, EWC, and PACKNET because they
correspond to the memory-based, regularization-based, and dynamic-architecture-based methods for
lifelong learning. In addition, prior research [15] has discovered that they are state-of-the-art methods.
Besides these three methods, we also implement sequential finetuning (SEQL) and multitask learning
(MTL), which serve as a lower bound and upper bound for lifelong learning algorithms, respectively.
More details about the algorithms are in Appendix F.1.

4 Experiments

Experiments are conducted as an initial study for the five research topics mentioned in Section 2.
Specifically, we focus on addressing the following research questions: Q1: How do different
architectures/LL algorithms perform under specific distribution shifts? Q2: To what extent does
neural architecture impact knowledge transfer in LLDM, and are there any discernible patterns in
the specialized capabilities of each architecture? Q3: How do existing algorithms from lifelong
supervised learning perform on LLDM tasks? Q4: To what extent does language embedding affect
knowledge transfer in LLDM? Q5: How robust are different LL algorithms to task ordering in
LLDM? Q6: Can supervised pretraining improve downstream lifelong learning performance in
LLDM? The detailed results/findings are in Appendix A.

5 Conclusion and Limitations

This paper introduces LIBERO, a new benchmark in the robot manipulation domain for supporting
research in LLDM. LIBERO includes a procedural generation pipeline that can create an infinite
number of manipulation tasks in the simulator. We use this pipeline to create 130 standardized tasks
and conduct a comprehensive set of experiments on policy and algorithm designs. The empirical
results suggest several future research directions: 1) how to design a better neural architecture to better
process spatial information or temporal information; 2) how to design a better algorithm to improve
forward transfer ability; and 3) how to use pretraining to help improve lifelong learning performance.
In the short term, we do not envision any negative societal impacts triggered by LIBERO. But
as the lifelong learner mainly learns from humans, studying how to preserve user privacy within
LLDM [16] is crucial in the long run.

2A suite of 10 tasks is enough to observe catastrophic forgetting while maintaining computation efficiency.
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Figure 2: LIBERO’s procedural generation pipeline: Extracting behavioral templates from a large-
scale human activity dataset (1), Ego4D, for generating task instructions (2); Based on the task
description, selecting the scene and generating the PDDL description file (3) that specifies the objects
and layouts (A), the initial object configurations (B), and the task goal (C).

A Experiments

Experiments are conducted as an initial study for the five research topics mentioned in Section 2. We
first introduce the evaluation metric used in experiments, and present analysis of empirical results in
LIBERO. The detailed experimental setup is in Appendix H and the study on Q5 is in Appendix I.2.
Our experiments focus on addressing the following research questions:

Q1: How do different architectures/LL algorithms perform under specific distribution shifts?
Q2: To what extent does neural architecture impact knowledge transfer in LLDM, and are there any
discernible patterns in the specialized capabilities of each architecture?
Q3: How do existing algorithms from lifelong supervised learning perform on LLDM tasks?
Q4: To what extent does language embedding affect knowledge transfer in LLDM?
Q5: How robust are different LL algorithms to task ordering in LLDM?
Q6: Can supervised pretraining improve downstream lifelong learning performance in LLDM?

A.1 Evaluation Metrics
We report three metrics: FWT (forward transfer) [17], NBT (negative backward transfer), and
AUC (area under the success rate curve). All metrics are computed in terms of success rate, as
previous literature has shown that the success rate is a more reliable metric than training loss for
manipulation policies [18] (Detailed explanation in Appendix I.3). Lower NBT means a policy
has better performance in the previously seen tasks, higher FWT means a policy learns faster on a
new task, and higher AUC means an overall better performance considering both NBT and FWT.
Specifically, denote ci,j,e as the agent’s success rate on task j when it learned over i−1 previous tasks
and has just learned e epochs (e ∈ {0, 5, . . . , 50}) on task i. Let ci,i be the best success rate over all
evaluated epochs e for the current task i (i.e., ci,i = maxe ci,i,e). Then, we find the earliest epoch e∗i
in which the agent achieves the best performance on task i (i.e., e∗i = argmine ci,i,ei = ci,i), and
assume for all e ≥ e∗i , ci,i,e = ci,i.3 Given a different task j ̸= i, we define ci,j = ci,j,e∗i . Then
the three metrics are defined: FWT =

∑
k∈[K]

FWTk

K , FWTk = 1
11

∑
e∈{0...50} ck,k,e, NBT =∑

k∈[K]
NBTk

K , NBTk = 1
K−k

∑K
τ=k+1

(
ck,k − cτ,k

)
, and AUC =

∑
k∈[K]

AUCk

K , AUCk =
1

K−k+1

(
FWTk +

∑K
τ=k+1 cτ,k

)
. A visualization of these metrics is provided in Figure 4.

A.2 Experimental Results
We present empirical results to address the research questions. Please refer to Appendix I.1 for the
full results across all algorithms, policy architectures, and task suites.

3In practice, it’s possible that the agent’s performance on task i is not monotonically increasing due to the
variance of learning. But we keep the best checkpoint among those saved at epochs {e} as if the agent stops
learning after e∗i .
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Study on the Policy’s Neural Architectures (Q1, Q2) Table 1 reports the agent’s lifelong learning
performance using the three different neural architectures on the four task suites. Results are reported
when ER and PACKNET are used as they demonstrate the best lifelong learning performance across
all task suites.

Policy Arch. ER PACKNET

FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG

RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01

LIBERO-SPATIAL

RESNET-RNN 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

LIBERO-OBJECT

RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04

LIBERO-GOAL

RESNET-RNN 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

Table 1: Performance of the three neural architectures using ER and PACKNET on the four task
suites. Results are averaged over three seeds and we report the mean and standard error. The best
performance is bolded, and colored in purple if the improvement is statistically significant over
other neural architectures, when a two-tailed, Student’s t-test under equal sample sizes and unequal
variance is applied with a p-value of 0.05.

Findings: First, we observe that RESNET-T and VIT-T work much better than RESNET-RNN on
average, indicating that using a transformer on the “temporal" level could be a better option than
using an RNN model. Second, the performance difference among different architectures depends
on the underlying lifelong learning algorithm. If PACKNET (a dynamic architecture approach) is
used, we observe no significant performance difference between RESNET-T and VIT-T except on
the LIBERO-LONG task suite where VIT-T performs much better than RESNET-T. In contrast,
if ER is used, we observe that RESNET-T performs better than VIT-T on all task suites except
LIBERO-OBJECT. This potentially indicates that the ViT architecture is better at processing visual
information with more object varieties than the ResNet architecture when the network capacity is
sufficiently large (See the MTL results in Table 8 on LIBERO-OBJECT as the supporting evidence).
The above findings shed light on how one can improve architecture design for better processing of
spatial and temporal information in LLDM.

Study on Lifelong Learning Algorithms (Q1, Q3) Table 2 reports the lifelong learning per-
formance of the three lifelong learning algorithms, together with the SEQL and MTL baselines.
All experiments use the same RESNET-T architecture as it performs the best across all policy
architectures.

Findings: We observed a series of interesting findings that could potentially benefit future research
on algorithm design for LLDM: 1) SEQL shows the best FWT over all task suites. This is surprising
since it indicates all lifelong learning algorithms we consider actually hurt forward transfer; 2)
PACKNET outperforms other lifelong learning algorithms on LIBERO-X but is outperformed by
ER significantly on LIBERO-LONG, mainly because of low forward transfer. This confirms that
the dynamic architecture approach is good at preventing forgetting. But since PACKNET splits the
network into different sub-networks, the essential capacity of the network for learning any individual
task is smaller. Therefore, we conjecture that PACKNET is not rich enough to learn on LIBERO-
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Lifelong Algo. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
ER 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
EWC 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
PACKNET 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
MTL 0.48 ± 0.01 0.83 ± 0.00

LIBERO-OBJECT LIBERO-GOAL

SEQL 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
ER 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
EWC 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
PACKNET 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
MTL 0.54 ± 0.02 0.80 ± 0.01

Table 2: Performance of three lifelong algorithms and the SEQL and MTL baselines on the four
task suites, where the policy is fixed to be RESNET-T. Results are averaged over three seeds and
we report the mean and standard error. The best performance is bolded, and colored in purple if
the improvement is statistically significant over other algorithms, when a two-tailed, Student’s t-test
under equal sample sizes and unequal variance is applied with a p-value of 0.05.

LONG; 3) EWC works worse than SEQL, showing that the regularization on the loss term can actually
impede the agent’s performance on LLDM problems (See Appendix I.3); and 4) ER, the rehearsal
method, is robust across all task suites.

Study on Language Embeddings as the Task Identifier (Q4) To investigate to what extent
language embedding play a role in LLDM, we compare the performance of the same lifelong learner
using four different pretrained language embeddings. Namely, we choose BERT [19], CLIP [20],
GPT-2 [21] and the Task-ID embedding. Task-ID embeddings are produced by feeding a string such
as “Task 5” into a pretrained BERT model.

Embedding Type Dimension FWT(↑) NBT(↓) AUC(↑)

BERT 768 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01
CLIP 512 0.52 ± 0.00 0.34 ± 0.01 0.35 ± 0.01
GPT-2 768 0.46 ± 0.01 0.34 ± 0.02 0.30 ± 0.01
Task-ID 768 0.50 ± 0.01 0.37 ± 0.01 0.33 ± 0.01

Table 3: Performance of a lifelong learner using four different language embeddings on LIBERO-
LONG, where we fix the policy architecture to RESNET-T and the lifelong learning algorithm to ER.
The Task-ID embeddings are retrieved by feeding “Task + ID" into a pretrained BERT model. Results
are averaged over three seeds and we report the mean and standard error. The best performance is
bolded. No statistically significant difference is observed among the different language embeddings.

Findings: From Table 3, we observe no statistically significant difference among various language
embeddings, including the Task-ID embedding. This, we believe, is due to sentence embeddings
functioning as bag-of-words that differentiates different tasks. This insight calls for better language
encoding to harness the semantic information in task descriptions. Despite the similar performance,
we opt for BERT embeddings as our default task embedding.

Study on How Pretraining Affects Downstream LLDM (Q6) Fig 3 reports the results on
LIBERO-LONG of five combinations of algorithms and policy architectures, when the underlying
model is pretrained on the 90 short-horizion tasks in LIBERO-100 or learned from scratch. For
pretraining, we apply behavioral cloning on the 90 tasks using the three policy architectures for 50
epochs. We save a checkpoint every 5 epochs of training and then pick the checkpoint for each
architecture that has the best performance as the pretrained model for downstream LLDM.

Findings: We observe that the basic supervised pretraining can hurt the model’s downstream lifelong
learning performance. This, together with the results seen in Table 2 (e.g., naive sequential fine-tuning
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Figure 3: Performance of different combinations of algorithms and architectures without pretraining
or with pretraining. The multi-task learning performance is also included for reference.

has better forward transfer than when lifelong learning algorithms are applied), indicates that better
pretraining techniques are needed.

Attention Visualization: To better understand what type of knowledge the agent forgets during the
lifelong learning process, we visualize the agent’s attention map on each observed image input. The
visualized saliency maps and the discussion can be found in Appendix I.4.

B Related Work

This section provides an overview of existing benchmarks for lifelong learning and robot learning.
We refer the reader to Appendix F.1 for a detailed review of lifelong learning algorithms.

Lifelong Learning Benchmarks Pioneering work has adapted standard vision or language
datasets for studying LL. This line of work includes image classification datasets like MNIST [22],
CIFAR [23], and ImageNet [24]; segmentation datasets like Core50 [25]; and natural language
understanding datasets like GLUE [26] and SuperGLUE [27]. Besides supervised learning datasets,
video game benchmarks (e.g., Atari [28], XLand [29], and VisDoom [30]) in reinforcement learning
(RL) have also been used for studying LL. However, LL in standard supervised learning does not
involve procedural knowledge transfer, while RL problems in games do not represent human activities.
ContinualWorld [15] modifies the 50 manipulation tasks in MetaWorld for LL. CORA [31] builds
four lifelong RL benchmarks based on Atari, Procgen [32], MiniHack [33], and ALFRED [34].
F-SIOL-310 [35] and OpenLORIS [36] are challenging real-world lifelong object learning datasets
that are captured from robotic vision systems. Prior works have also analyzed different components
in a LL agent [37–39], but they do not focus on robot manipulation problems.

Robot Learning Benchmarks A variety of robot learning benchmarks have been proposed
to address challenges in meta learning (MetaWorld [40]), causality learning (CausalWorld [41]),
multi-task learning [42, 43], policy generalization to unseen objects [44, 45], and compositional
learning [46]. Compared to existing benchmarks in lifelong learning and robot learning, the task
suites in LIBERO are curated to address the research topics of LLDM. The benchmark includes a
large number of tasks based on everyday human activities that feature rich interactive behaviors with
a diverse range of objects. Additionally, the tasks in LIBERO are procedurally generated, making
the benchmark scalable and adaptable. Moreover, the provided high-quality human demonstration
dataset in LIBERO supports and encourages learning efficiency.

C Background

This section introduces the problem formulation and defines key terms used throughout the paper.

C.1 Markov Decision Process for Robot Learning

A robot learning problem can be formulated as a finite-horizon Markov Decision Process: M =
(S,A, T , H, µ0, R). Here, S and A are the state and action spaces of the robot. µ0 is the initial
state distribution, R : S × A → R is the reward function, and T : S × A → S is the transition
function. In this work, we assume a sparse-reward setting and replace R with a goal predicate
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g : S → {0, 1}. The robot’s objective is to learn a policy π that maximizes the expected return:
maxπ J(π) = Est,at∼π,µ0

[
∑H

t=1 g(st)].

C.2 Lifelong Robot Learning Problem

In a lifelong robot learning problem, a robot sequentially learns over K tasks {T 1, . . . , TK} with a
single policy π. We assume π is conditioned on the task, i.e., π(· | s;T ). For each task, T k ≡ (µk

0 , g
k)

is defined by the initial state distribution µk
0 and the goal predicate gk.4 We assume S,A, T , H are

the same for all tasks. Up to the k-th task T k, the robot aims to optimize

max
π

JLRL(π) =
1

k

k∑
p=1

[
E

spt ,a
p
t∼π(·;Tp), µp

0

[ L∑
t=1

gp(spt )

]]
. (1)

An important feature of the lifelong setting is that the agent loses access to the previous k − 1 tasks
when it learns on task T k.

Lifelong Imitation Learning Due to the challenge of sparse-reward reinforcement learning, we
consider a practical alternative setting where a user would provide a small demonstration dataset
for each task in the sequence. Denote Dk = {τki }Ni=1 as N demonstrations for task T k. Each
τki = (o0, a0, o1, a1, . . . , olk) where lk ≤ H . Here, ot is the robot’s sensory input, including the
perceptual observation and the information about the robot’s joints and gripper. In practice, the
observation ot is often non-Markovian. Therefore, following works in partially observable MDPs [47],
we represent st by the aggregated history of observations, i.e. st ≡ o≤t ≜ (o0, o1, . . . , ot). This
results in the lifelong imitation learning problem with the same objective as in Eq. (1). But during
training, we perform behavioral cloning [48] with the following surrogate objective function:

min
π

JBC(π) =
1

k

k∑
p=1

E
ot,at∼Dp

[ lp∑
t=0

L
(
π(o≤t;T

p), apt
)]

, (2)

where L is a supervised learning loss, e.g., the negative log-likelihood loss, and π is a Gaussian
mixture model. Similarly, we assume {Dp : p < k} are not fully available when learning T k.

D Metrics Visualization

We provide a visualization of the three metrics we compute in Figure 4. For completeness, we also

Figure 4: Metrics for LLDM

provide the formulas for the metrics here:

4Throughout the paper, a superscript/subscript is used to index the task/time step.
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FWT =
∑

k∈[K]

FWTk

K
, FWTk =

1

11

∑
e∈{0...50}

ck,k,e

NBT =
∑

k∈[K]

NBTk

K
, NBTk =

1

K − k

K∑
τ=k+1

(
ck,k − cτ,k

)
AUC =

∑
k∈[K]

AUCk

K
, AUCk =

1

K − k + 1

(
FWTk +

K∑
τ=k+1

cτ,k
)
.

E Implemented Neural Architectures and Lifelong Learning Algorithms

Neural Policy Arch.
RESNET-RNN
RESNET-T
VIT-T

Lifelong Learning Algo.

SEQL
EWC [13]
ER [12]
PACKNET [14]
MTL

Table 4: The implemented neural policy architectures and the lifelong learning algorithms in
LIBERO.

E.1 Neural Network Architectures

We implement three vision-language policy networks, RESNET-RNN, RESNET-T, and VIT-T, that
integrate visual, temporal, and linguistic information for LLDM. Language instructions of tasks
are encoded using pretrained BERT embeddings [19]. The RESNET-RNN [18] uses a ResNet as the
visual backbone that encodes per-step visual observations and an LSTM as the temporal backbone to
process a sequence of encoded visual information. The language instruction is incorporated into the
ResNet features using the FiLM method [49] and added to the LSTM inputs, respectively. RESNET-T
architecture [50] uses a similar ResNet-based visual backbone, but a transformer decoder [51] as
the temporal backbone to process outputs from ResNet, which are a temporal sequence of visual
tokens. The language embedding is treated as a separate token in inputs to the transformer alongside
the visual tokens. The VIT-T architecture [52], which is widely used in visual-language tasks, uses a
Vision Transformer (ViT) as the visual backbone and a transformer decoder as the temporal backbone.
The language embedding is treated as a separate token in inputs of both ViT and the transformer
decoder. All the temporal backbones output a latent vector for every decision-making step. We
compute the multi-modal distribution over manipulation actions using a Gaussian-Mixture-Model
(GMM) based output head [53, 18, 54]. In the end, a robot executes a policy by sampling a continuous
value for end-effector action from the output distribution. Figure 5 visualizes the three architectures.

For all the lifelong learning algorithms and neural architectures, we use behavioral cloning (BC) [48]
to train policies for individual tasks (See (2)). BC allows for efficient policy learning such that we
can study lifelong learning algorithms with limited computational resources. To train BC, we provide
50 trajectories of high-quality demonstrations for every single task in the generated task suites. The
demonstrations are collected by human experts through teleoperation with 3Dconnexion Spacemouse.

In Section E.1, we outlined the neural network architectures utilized in our experiments, namely
RESNET-RNN, RESNET-T, and VIT-T. The specifics of each architecture are illustrated in Figure 5.
Furthermore, Table 5, 6, and 7 display the hyperparameters for the architectures used throughout all
of our experiments.
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Figure 5: We provide visualizations of the architectures for RESNET-RNN, RESNET-T, and VIT-T,
respectively. It is worth noting that each model architecture incorporates language embedding in
distinct ways.

Figure 6: The image encoders: ResNet-based encoder and the vision transformer-based encoder.

F Computation

For all experiments, we use a single Nvidia A100 GPU or a single Nvidia A40 GPU (CUDA 11.7)
with 8 16 CPUs for training and evaluation.
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Variable Value

resnet_image_embed_size 64
text_embed_size 32
rnn_hidden_size 1024
rnn_layer_num 2

rnn_dropout 0.0

Table 5: Hyper parameters of RESNET-RNN.

Variable Value

extra_info_hidden_size 128
img_embed_size 64

transformer_num_layers 4
transformer_num_heads 6

transformer_head_output_size 64
transformer_mlp_hidden_size 256

transformer_dropout 0.1
transformer_max_seq_len 10

Table 6: Hyper parameters of RESNET-T.

Variable Value

extra_info_hidden_size 128
img_embed_size 128

spatial_transformer_num_layers 7
spatial_transformer_num_heads 8

spatial_transformer_head_output_size 120
spatial_transformer_mlp_hidden_size 256

spatial_transformer_dropout 0.1
spatial_down_sample_embed_size 64
temporal_transformer_input_size null

temporal_transformer_num_layers 4
temporal_transformer_num_heads 6

temporal_transformer_head_output_size 64
temporal_transformer_mlp_hidden_size 256

temporal_transformer_dropout 0.1
temporal_transformer_max_seq_len 10

Table 7: Hyper parameters of VIT-T.

F.1 Lifelong Learning Algorithms

Lifelong learning (LL) is a field of study that aims to understand how an agent can continually
acquire and retain knowledge over an infinite sequence of tasks without catastrophically forgetting
previous knowledge. Recent literature proposes three main approaches to address the problem of
catastrophic forgetting in deep learning: Dynamic Architecture approaches, Regularization-Based
approaches, and Rehearsal approaches. Although some recent works explore the combination of
different approaches [55–57] or new strategies [58–60], our benchmark aims to provide an in-depth
analysis of these three basic lifelong learning directions to reveal their pros and cons on robot learning
tasks.

The dynamic architecture approach gradually expands the learning model to incorporate new knowl-
edge [61, 62, 14, 63–65]. Regularization-based methods, on the other hand, regularize the learner to
a previous checkpoint when it learns a new task [13, 66–68]. Rehearsal methods save exemplar data
from prior tasks and replay them with new data to consolidate the agent’s memory [12, 69–71]. For a
comprehensive review of LL methods, we refer readers to surveys [72, 73].

The following paragraphs provide details on the three lifelong learning algorithms that we have
implemented.

ER Experience Replay (ER) [12] is a rehearsal-based approach that maintains a memory buffer
of samples from previous tasks and leverages it to learn new tasks. After the completion of policy
learning for a task, ER stores a portion of the data into a storage memory. When training a new
task, ER samples data from the memory and combines it with the training data from the current task
so that the training data approximately represents the empirical distribution of all-task data. In our
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implementation, we use a replay buffer to store a portion of the training data (up to 1000 trajectories)
after training each task. For every training iteration during the training of a new task, we uniformly
sample a fixed number of replay data from the memory (32 trajectories) along with each batch of
training data from the new task.

EWC Elastic Weight Consolidation(EWC) [13] is a regularization-based approach that add a
regularization term that constraints neural network update to the original single-task learning objective.
Specifically, EWC uses the Fisher information matrix that quantify the importance of every neural
netwrk parameter. The loss function for task k is:

LEWC
k (θ) = LBC

K (θ) +
∑
i

λ

2
Fi

(
θi − θ∗k−1,i

)2
,

where λ is a penalty hyperparameter, and the coefficient Fi is the diagonal of the Fisher information
matrix: Fk = Es∼Dk

Ea∼pθ(·|s) (∇θk log pθk(a|s))
2. In this work, we use the online update version

of EWC that updates the Fisher information matrix using exponential moving average along the
lifelong learning process, and use the empirical estimation of above Fisher information matrix to
stabilize the estimation. Formally, the actually used estimation of Fisher Information Matrix is
F̃k = γFk−1+(1− γ)Fk, where Fk = E(s,a)∼Dk

(∇θk log pθk(a|s))
2 and k is the task number. We

set γ = 0.9 and λ = 5 · 104.

PACKNET PACKNET [14] is a dynamic architecture-based approach that aims to prevent changes
to parameters that are important for previous tasks in lifelong learning. To achieve this, PACKNET
iteratively trains, prunes, fine-tunes, and freezes parts of the network. The method theoretically
completely avoids catastrophic forgetting, but for each new task, the number of available parameters
shrinks. The pruning process in PACKNET involves two stages. First, the network is trained, and at the
end of the training, a fixed proportion of the most important parameters (25% in our implementation)
are chosen, and the rest are pruned. Second, the selected part of the network is fine-tuned and then
frozen. In our implementation, we follow the original paper [14] and do not train all biases and
normalization layers. We perform the same number of fine-tuning epochs as for training (50 epochs
in our implementation). Note that all evaluation metrics are calculated before the fine-tuning stage.
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G LIBERO Task Suite Designs

G.1 Task Suites

We visualize all the tasks from the four task suites in Figure 7- 10. Figure 7 visualizes the initial
states since the task goals are always the same. All the figures visualize the goal states of tasks except
for Figure 7, which visualizes the initial states since the task goals are always the same.

Figure 7: LIBERO-SPATIAL

Figure 8: LIBERO-OBJECT

Figure 9: LIBERO-GOAL
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Figure 10: LIBERO-100
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G.2 PDDL-based Scene Description File

Here we visualize the whole content of an example scene description file based on PDDL. This file
corresponds to the task shown in Figure 2.

Example task: Open the top drawer of the cabinet and put the bowl in it.

( d e f i n e ( problem LIBERO_Ki tchen_Tab le top_Manipu la t ion )
( : domain r o b o s u i t e )
( : l a n g u a g e open t h e t o p drawer o f t h e c a b i n e t and p u t t h e bowl i n i t )

( : r e g i o n s
( w o o d e n _ c a b i n e t _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .01 −0.31 0 . 0 1 −0 .29)
)

)
( : y a w _ r o t a t i o n (

(3 .141592653589793 3 .141592653589793)
)

)
)
( a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .025 −0.025 0 .025 0 . 0 2 5 )
)

)
( : y a w _ r o t a t i o n (

( 0 . 0 0 . 0 )
)

)
)
( p l a t e _ i n i t _ r e g i o n

( : t a r g e t k i t c h e n _ t a b l e )
( : r a n g e s (

( −0 .025 0 .225 0 .025 0 . 2 7 5 )
)

)
( : y a w _ r o t a t i o n (

( 0 . 0 0 . 0 )
)

)
)
( t o p _ s i d e

( : t a r g e t wooden_cab ine t_1 )
)
( t o p _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)
( m i d d l e _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)
( b o t t o m _ r e g i o n

( : t a r g e t wooden_cab ine t_1 )
)

)

( : f i x t u r e s
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k i t c h e n _ t a b l e − k i t c h e n _ t a b l e
wooden_cab ine t_1 − wooden_cab ine t

)

( : o b j e c t s
a k i t a _ b l a c k _ b o w l _ 1 − a k i t a _ b l a c k _ b o w l
p l a t e _ 1 − p l a t e

)

( : o b j _ o f _ i n t e r e s t
wooden_cab ine t_1
a k i t a _ b l a c k _ b o w l _ 1

)

( : i n i t
( On a k i t a _ b l a c k _ b o w l _ 1 k i t c h e n _ t a b l e _ a k i t a _ b l a c k _ b o w l _ i n i t _ r e g i o n )
( On p l a t e _ 1 k i t c h e n _ t a b l e _ p l a t e _ i n i t _ r e g i o n )
( On wooden_cab ine t_1 k i t c h e n _ t a b l e _ w o o d e n _ c a b i n e t _ i n i t _ r e g i o n )

)

( : g o a l
( And ( Open w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )

( In a k i t a _ b l a c k _ b o w l _ 1 w o o d e n _ c a b i n e t _ 1 _ t o p _ r e g i o n )
)

)

)
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H Experimental Setup

We consider five lifelong learning algorithms: SEQL the sequential learning baseline where the
agent learns each task in the sequence directly without any further consideration, MTL the multitask
learning baseline where the agent learns all tasks in the sequence simultaneously, the regularization-
based method EWC [13], the replay-based method ER [12], and the dynamic architecture-based
method PACKNET [14]. SEQL and MTL can be seen as approximations of the lower and upper
bounds respectively for any lifelong learning algorithm. The other three methods represent the
three primary categories of lifelong learning algorithms. For the neural architectures, we consider
three vision-language policy architectures: RESNET-RNN, RESNET-T, VIT-T, which differ in how
spatial or temporal information is aggregated (See Appendix E.1 for more details). For each task,
the agent is trained over 50 epochs on the 50 demonstration trajectories. We evaluate the agent’s
average success rate over 20 test rollout trajectories of a maximum length of 600 every 5 epochs.
We use Adam optimizer [74] with a batch size of 32, and a cosine scheduled learning rate from
0.0001 to 0.00001 for each task. Following the convention of Robomimic [18], we pick the model
checkpoint that achieves the best success rate as the final policy for a given task. After 50 epochs
of training, the agent with the best checkpoint is then evaluated on all previously learned tasks,
with 20 test rollout trajectories for each task. All policy networks are matched in Floating Point
Operations Per Second (FLOPS): all policy architectures have ∼13.5G FLOPS. For each combination
of algorithm, policy architecture, and task suite, we run the lifelong learning method 3 times with
random seeds {100, 200, 300} (180 experiments in total). See Table 4 for the implemented algorithms
and architectures.

I Additional Experiment Results

I.1 Full Results

We provide the full results across three different lifelong learning algorithms (e.g., EWC, ER,
PACKNET) and three different policy architectures (e.g., RESNET-RNN, RESNET-T, VIT-T) on the
four task suites in Table 8.

To better illustrate the performance of each lifelong learning agent throughout the learning process,
we present plots that show how the agent’s performance evolves over the stream of tasks. Firstly, we
provide plots that compare the performance of the agent using different lifelong learning algorithms
while fixing the policy architecture (refer to Figure 11,12, and 13). Next, we provide plots that
compare the performance of the agent using different policy architectures while fixing the lifelong
learning algorithm (refer to Figure14, 15, and 16)
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Algo. Policy Arch. FWT(↑) NBT(↓) AUC(↑) FWT(↑) NBT(↓) AUC(↑)

LIBERO-LONG LIBERO-SPATIAL

SEQL
RESNET-RNN 0.24 ± 0.02 0.28 ± 0.01 0.07 ± 0.01 0.50 ± 0.01 0.61 ± 0.01 0.14 ± 0.01
RESNET-T 0.54 ± 0.01 0.63 ± 0.01 0.15 ± 0.00 0.72 ± 0.01 0.81 ± 0.01 0.20 ± 0.01
VIT-T 0.44 ± 0.04 0.50 ± 0.05 0.13 ± 0.01 0.63 ± 0.02 0.76 ± 0.01 0.16 ± 0.01

ER
RESNET-RNN 0.16 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.40 ± 0.02 0.29 ± 0.02 0.29 ± 0.01
RESNET-T 0.48 ± 0.02 0.32 ± 0.04 0.32 ± 0.01 0.65 ± 0.03 0.27 ± 0.03 0.56 ± 0.01
VIT-T 0.38 ± 0.05 0.29 ± 0.06 0.25 ± 0.02 0.63 ± 0.01 0.29 ± 0.02 0.50 ± 0.02

EWC
RESNET-RNN 0.02 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.14 ± 0.02 0.23 ± 0.02 0.03 ± 0.00
RESNET-T 0.13 ± 0.02 0.22 ± 0.03 0.02 ± 0.00 0.23 ± 0.01 0.33 ± 0.01 0.06 ± 0.01
VIT-T 0.05 ± 0.02 0.09 ± 0.03 0.01 ± 0.00 0.32 ± 0.03 0.48 ± 0.03 0.06 ± 0.01

PACKNET
RESNET-RNN 0.13 ± 0.00 0.21 ± 0.01 0.03 ± 0.00 0.27 ± 0.03 0.38 ± 0.03 0.06 ± 0.01
RESNET-T 0.22 ± 0.01 0.08 ± 0.01 0.25 ± 0.00 0.55 ± 0.01 0.07 ± 0.02 0.63 ± 0.00
VIT-T 0.36 ± 0.01 0.14 ± 0.01 0.34 ± 0.01 0.57 ± 0.04 0.15 ± 0.00 0.59 ± 0.03

MTL
RESNET-RNN 0.20 ± 0.01 0.61 ± 0.00
RESNET-T 0.48 ± 0.01 0.83 ± 0.00
VIT-T 0.46 ± 0.00 0.79 ± 0.01

LIBERO-OBJECT LIBERO-GOAL

SEQL
RESNET-RNN 0.48 ± 0.03 0.53 ± 0.04 0.15 ± 0.01 0.61 ± 0.01 0.73 ± 0.01 0.16 ± 0.00
RESNET-T 0.78 ± 0.04 0.76 ± 0.04 0.26 ± 0.02 0.77 ± 0.01 0.82 ± 0.01 0.22 ± 0.00
VIT-T 0.76 ± 0.03 0.73 ± 0.03 0.27 ± 0.02 0.75 ± 0.01 0.85 ± 0.01 0.20 ± 0.01

ER
RESNET-RNN 0.30 ± 0.01 0.27 ± 0.05 0.17 ± 0.05 0.41 ± 0.00 0.35 ± 0.01 0.26 ± 0.01
RESNET-T 0.67 ± 0.07 0.43 ± 0.04 0.44 ± 0.06 0.64 ± 0.01 0.34 ± 0.02 0.49 ± 0.02
VIT-T 0.70 ± 0.02 0.28 ± 0.01 0.57 ± 0.01 0.57 ± 0.00 0.40 ± 0.02 0.38 ± 0.01

EWC
RESNET-RNN 0.17 ± 0.04 0.23 ± 0.04 0.06 ± 0.01 0.16 ± 0.01 0.22 ± 0.01 0.06 ± 0.01
RESNET-T 0.56 ± 0.03 0.69 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.48 ± 0.03 0.06 ± 0.00
VIT-T 0.57 ± 0.03 0.64 ± 0.03 0.23 ± 0.00 0.32 ± 0.04 0.45 ± 0.04 0.07 ± 0.01

PACKNET
RESNET-RNN 0.29 ± 0.02 0.35 ± 0.02 0.13 ± 0.01 0.32 ± 0.03 0.37 ± 0.04 0.11 ± 0.01
RESNET-T 0.60 ± 0.07 0.17 ± 0.05 0.60 ± 0.05 0.63 ± 0.02 0.06 ± 0.01 0.75 ± 0.01
VIT-T 0.58 ± 0.03 0.18 ± 0.02 0.56 ± 0.04 0.69 ± 0.02 0.08 ± 0.01 0.76 ± 0.02

MTL
RESNET-RNN 0.10 ± 0.03 0.59 ± 0.00
RESNET-T 0.54 ± 0.02 0.80 ± 0.01
VIT-T 0.78 ± 0.02 0.82 ± 0.01

Table 8: We present the full results of all networks and algorithms on all four task suites. For each task
suite, we highlight the top three AUC scores among the combinations of the three lifelong learning
algorithms and the three neural architectures. The best three results are highlighted in magenta (the
best), light magenta (the second best), and super light magenta (the third best), respectively.
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Figure 11: We compare the performance of different algorithms using the RESNET-RNN policy
architecture in Figure 11. The y-axis represents the success rate, and the x-axis shows the agent’s
performance on each of the 10 tasks in a specific task suite over the course of learning. For example,
the upper-left plot in the figure displays the agent’s performance on the first task as it learns the 10
tasks sequentially.

Figure 12: Comparison of different algorithms using the RESNET-T policy architecture. The y-axis
represents the success rate, while the x-axis shows the agent’s performance on each of the 10 tasks in
a given task suite during the course of learning. For example, the plot in the upper-left corner depicts
the agent’s performance on the first task as it learns the 10 tasks sequentially.
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Figure 13: Comparison of different algorithms using the VIT-T policy architecture. The success rate
is represented on the y-axis, while the x-axis shows the agent’s performance on the 10 tasks in a
given task suite over the course of learning. For instance, the plot in the upper-left corner illustrates
the agent’s performance on the first task when learning the 10 tasks sequentially.

Figure 14: Comparison of different architectures with the EWC algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite over the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.
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Figure 15: Comparison of different architectures with the ER algorithm. The y-axis is the success
rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite ver the
course of learning. For instance, the upper-left plot shows the agent’s performance on the first task
when learning the 10 tasks sequentially.

Figure 16: Comparison of different architectures with the PACKNET algorithm. The y-axis is the
success rate, while the x-axis shows the agent’s performance on the 10 tasks in a given task suite
over the course of learning. For instance, the upper-left plot shows the agent’s performance on the
first task when learning the 10 tasks sequentially.
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I.2 Study on task ordering (Q4)

Figure 17 shows the result of the study on Q4. For all experiments in this study, we used RESNET-
T as the neural architecture and evaluated both ER and PACKNET. As the figure illustrates, the
performance of both algorithms varies across different task orderings. This finding highlights an
important direction for future research: developing algorithms or architectures that are robust to
varying task orderings.

Figure 17: Performance of ER and PACKNET using RESNET-T on five different task orderings. An
error bar shows the performance standard deviation for a fixed ordering.

Findings: From Figure 17, we observe that indeed different task ordering could result in very different
performances for the same algorithm. Specifically, such difference is statistically significant for
PACKNET.

I.3 Loss v.s. Success Rates

We demonstrate that behavioral cloning loss can be a misleading indicator of task success rate
in this section. In supervised learning tasks like image classifications, lower loss often indicates
better prediction accuracy. However, this is not, in general, true for decision-making tasks. This is
because errors can compound until failures during executing a robot [75]. Figure 18, 12 and 13 plots
the training loss and success rates of three lifelong learning methods (ER, EWC, and PACKNET)
for comparison. We evaluate the three algorithms on four task suites using three different neural
architectures.

Findings: We observe that though sometimes EWC has the lowest loss, it did not achieve good
success rate. ER, on the other hand, can have the highest loss but perform better than EWC. In
conclusion, success rates, instead of behavioral cloning loss, should be the right metric to evaluate
whether a model checkpoint is good or not.
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Figure 18: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-RNN policy. The first (second) row shows the loss (success rate) of the agent
on task i throughout the LLDM procedure.
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Figure 19: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with RESNET-T policy. The first (second) row shows the loss (success rate) of the agent on
task i throughout the LLDM procedure.
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Figure 20: Losses and success rates of ER (violet), EWC (grey), and PACKNET (blue) on four task
suites with VIT-T policy. The first (second) row shows the loss (success rate) of the agent on task i
throughout the LLDM procedure.
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I.4 Attention Visualization

It is also important to visualize the behavior of the robot and its attention maps during the completion
of tasks in the lifelong learning process to give us intuition and qualitative feedback on the perfor-
mance of different algorithms and architectures. We visualize the attention maps of learned policies
with Greydanus et al. [76] and compare them in different studies as in A.2 to see if the robot correctly
pays attention to the right regions of interest in each task.

Perturbation-based attention visualization: We use a perturbation-based method [76] to extract
attention maps from agents. Given an input image I , the method applies a Gaussian filter to a pixel
location (i, j) to blur the image partially, and produces the perturbed image Φ(I, i, j). Denote the
learned policy as π and the inputs to the spatial module (e.g., the last latent representation of resnet
or ViT encoder) πu(I) for image I . Then we define the saliency score as the Euclidean distance
between the latent representations of the original and the blurred images:

Sπ(i, j) =
1

2

∣∣∣∣∣∣∣∣πu(I)− πu(Φ(I, i, j))

∣∣∣∣∣∣∣∣2. (3)

Intuitively, Sπ(i, j) describes how much removing information from the region around location (i, j)
changes the policy. In other words, a large Sπ(i, j) indicates that the information around pixel (i, j)
is important for the learning agent’s decision-making. Instead of calculating the score for every
pixel, [76] found that computing a saliency score for pixel i mod 5 and j mod 5 produced good
saliency maps at lower computational costs for Atari games. The final saliency map P is normalized
as P (i, j) = Sπ(i,j)∑

i,j Sπ(i,j)
.

We provide the visualization and our analysis on the following pages.
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Different Task Suites

Figure 21: Attention map comparison among different task suites with ER and RESNET-T. Each row
corresponds to a task suite.

Findings: Figure 21 shows attention visualization for 12 tasks across 4 task suites (e.g., 3 tasks per
suite). We observe that:

1. policies pay more attention to the robot arm and the target placement area than the target
object.

2. sometimes the policy pays attention to task-irrelevant areas, such as the blank area on the
table.
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These observations demonstrate that the learned policy use perceptual data for decision-making
in a very different way from how humans do. The robot policies tends to spuriously correlate
task-irrelevant features with actions, a major reason why the policies overfit to the tasks and do not
generalize well across tasks.
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The Same Task over the Course of Lifelong Learning

Figure 22: Attention map of the same state of the task put both the alphabet soup and the tomato
sauce in the basket from LIBERO-LONG during lifelong learning. Each row visualizes how the
attention maps change on the first task with one of the LL algorithms (ER and PACKNET) and one of
the neural architectures (RESNET-T and VIT-T). Initial policy is the policy that is trained on the first
task. And all the following attention maps correspond to policies after training on the third, fifth, and
the tenth tasks.

Findings: Figure 22 shows attention visualizations from policies trained with ER and PACKNET
using the architectures RESNET-T and VIT-T respectively. We observe that:

1. The ViT visual encoder’s attention is more consistent over time, while the ResNet encoder’s
attention map gradually dilutes.

2. PackNet, as it splits the model capacity for different tasks, shows a more consistent attention
map over the course of learning.
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Different Lifelong Learning Algorithms

Figure 23: Comparison of attention maps of different lifelong learning algorithms with RESNET-T
on LIBERO-LONG. Each row shows the same state of a task with different neural architectures.
“Task 5” refers to the task put the white mug on the left plate and put the yellow and white mug on the
right plate. “Task 10” refers to the task put the yellow and white mug in the microwave and close it.
The second row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the
attention map differences in backward transfer.

Findings: Figure 23 shows the attention visualization of three lifelong learning algorithms on
LIBERO-LONG with RESNET-T on two tasks (task 5 and task 10). The first and third rows show the
attention of the policy on the same task it has just learned. While the second row shows the attention
of the policy on the task it learned in the past. We observe that:

1. PACKNET shows more concentrated attention compared against ER and EWC (usually just
a single mode).

2. ER shares similar attention map with EWC, but EWC performs much worse than ER.
Therefore, attention can only assist the analysis but cannot be treated as a criterion for
performance prediction.
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Different Neural Architectures

Figure 24: Comparison of attention maps of different neural architectures with ER on LIBERO-
LONG. Each row shows the same state of a task with different neural architectures. “Task 5” refers
to the task put the white mug on the left plate and put the yellow and white mug on the right plate.
“Task 10” refers to the task put the yellow and white mug in the microwave and close it. The second
row shows the policy that is trained on task 10 and gets evaluated on task 5, showing the attention
map differences in backward transfer.

Findings: Figure 24 shows attention map comparisons of the three neural architectures on LIBERO-
LONG with ER on two tasks (task 5 and task 10). We observe that:

1. ViT has more concentrated attention than policies using ResNet.

2. When ResNet forgets, the attention is changing smoothly (more diluted). But for ViT, when
it forgets, the attention can completely shift to a different location.

3. When ResNet is combined with LSTM or a temporal transformer, the attention hints at the
"course of future trajectory". But we do not observe that when ViT is used as the encoder.
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Different Task Ordering

Figure 25: Attention map comparison among different orderings with ER and RESNET-T on three
selected tasks from LIBERO-LONG: put both the alphabet soup and the tomato sauce in the basket,
put the white mug on the left plate and put the yellow and white mug on the right plate, and put the
yellow and white mug in the microwave and close it. Each row corresponds to a specific sequence of
task ordering, and the caption of each attention map indicates the order of the task in that sequence.

Findings: Figure 25 shows attention map comparisons of three different task orderings. We show two
immediately learned tasks from LIBERO-LONG trained with ER and RESNET-T. We observe that:

1. As expected, learning the same task at different positions in the task stream results in
different attention visualization.

2. There seems to be a trend that the policy has a more spread-out attention when it learns on
tasks that are later in the sequence.

38



With or Without Pretraining

Figure 26: Attention map comparison between models without/with pretrained models using RESNET-
T and different lifelong learning algorithms on three selected tasks from LIBERO-LONG.
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Findings: Figure 26 shows attention map comparisons between models with/without pretrained
models on LIBERO-LONG with RESNET-T and all three LL algorithms. We observe that:

1. With pretraining, the policies attend to task-irrelevant regions more easily than those without
pretraining.

2. Some of the policies with pretraining have better attention to the task-relevant features than
their counterparts without pertaining, but their performance remains lower (the last in the
second row and the second in the fourth row). This observation, again, shows that there is
no positive correlation between semantically meaningful attention maps and the policy’s
performance.
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