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ABSTRACT

Deep Neural Networks (DNNs) have achieved excellent performance in various
fields. However, DNNs’ vulnerability to Adversarial Examples (AE) hinders their
deployments to safety-critical applications. This paper presents a novel AE detec-
tion framework, named BEYOND, for trustworthy predictions. BEYOND performs
the detection by distinguishing the AE’s abnormal relation with its augmented
versions, i.e. neighbors, from two prospects: representation similarity and label
consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to
extract the representation and predict the label for its highly informative repre-
sentation capacity compared to supervised learning models. For clean samples,
their representations and predictions are closely consistent with their neighbors,
whereas those of AEs differ greatly. Furthermore, we explain this observation and
show that by leveraging this discrepancy BEYOND can effectively detect AEs. We
develop a rigorous justification for the effectiveness of BEYOND. Furthermore,
as a plug-and-play model, BEYOND can easily cooperate with the Adversarial
Trained Classifier (ATC), achieving the state-of-the-art (SOTA) robustness accu-
racy. Experimental results show that BEYOND outperforms baselines by a large
margin, especially under adaptive attacks. Empowered by the robust relationship
built on SSL, we found that BEYOND outperforms baselines in terms of both de-
tection ability and speed.

1 INTRODUCTION

Deep Neural Networks (DNNs) have been widely adopted in many fields due to their superior per-
formance. However, DNNs are vulnerable to Adversarial Examples (AEs), which can easily fool
DNNs by adding some imperceptible adversarial perturbations. This vulnerability prevents DNN
from being deployed in safety-critical applications such as autonomous driving (Cococcioni et al.,
2020) and disease diagnosis (Kaissis et al., 2020), where incorrect predictions can lead to catas-
trophic economic and even loss of life.

Existing defensive countermeasures can be roughly categorized as adversarial training, input purifi-
cation (Mao et al., 2021), and AE detection (Xu et al., 2017). Adversarial training is known as the
most effective defense technique (Croce & Hein, 2020), but it brings about degradation of accuracy
and additional training cost, which are unacceptable in some application scenarios. In contrast, input
transformation techniques are without high training/deployment costs, but their defensive ability is
limited, i.e. easily defeated by adaptive attacks (Croce & Hein, 2020).

Recently, a large number of AE detection methods have been proposed (Zuo & Zeng, 2021). Some
methods detect AE by interrogating the abnormal relationship between AE and other samples. For
example, Deep k-Nearest Neighbors (DkNN) (Papernot & McDaniel, 2018) compares the DNN-
extracted features of the input image with those of its k nearest neighbors layer by layer to identify
AE, leading to a high inference cost. Instead of comparing all features, Latent Neighborhood Graph
(LNG) (Abusnaina et al., 2021) employs a Graph Neural Network to make the comparison on a
neighborhood graph, whose nodes are pre-stored embeddings of AEs together with those of the
clean ones extracted by DNN, and the edges are built according to distances between the input node
and every reference node.
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Figure 1: Pipeline of the proposed BEYOND framework. First, we augment the input image to
obtain a bunch of its neighbors. Then, we perform the label consistency detection mechanism on
the classifier’s prediction of the input image and that of neighbors predicted by SSL’s classification
head. Meanwhile, the representation similarity mechanism employs cosine distance to measure
the similarity among the input image and its neighbors (left). The input image with poor label
consistency or representation similarity is flagged as AE (right).

Though more efficient than DkNN, LNG suffers from some weaknesses: some AEs are required
to build the graph, so its detection performance relies on the reference AEs and cannot effectively
generalize to unseen attacks. More importantly, both DkNN and LNG can be bypassed by adaptive
attacks, in which the adversary has full knowledge of the detection strategy.

We observe that one cause for adversarial vulnerability is the lack of feature invariance (Jiang et al.,
2020), i.e., small perturbations may lead to undesired large changes in features or even predicted
labels. On the other hand, Self-Supervised Learning (SSL) (Chen & He, 2021) models learn data
representation consistency under different data augmentations, which intuitively can mitigate the
issue of lacking feature invariance and thus improve adversarial robustness.

As an illustration, we visualize the SSL-extracted representation of the clean sample, AE, and that of
their corresponding augmentations in Fig. 1 (right). We can observe that the clean sample has closer
ties with its neighbors, reflected by the higher label consistency and representation similarity. How-
ever, the AE representation stays quite far away from its neighbors, and there is a wide divergence
in the predicted labels.

Inspired by the above observations, we propose a novel AE detection framework, named BE Your
Own NeighborhooD (BEYOND). The contributions of this work are summarized as follows:

• We propose BEYOND, a novel AE detection framework, which takes advantage of an SSL model’s
robust representation capacity to identify AE by referring to its neighbors. To our best knowledge,
BEYOND is the first work that leverages an SSL model for AE detection without prior knowledge
of adversarial attacks or AEs.

• We develop a rigorous justification for the effectiveness of BEYOND, and we derive an indicator
to evaluate the validity of the candidate augmentation.

• BEYOND can defend effectively against adaptive attacks. To defeat the two detection mechanisms:
label consistency and representation similarity simultaneously, attackers have to optimize two
objectives with contradictory directions, resulting in gradients canceling each other out.

• As a plug-and-play method, BEYOND can be applied directly to any image classifier without
compromising accuracy or additional retraining costs.

Experimental results show that BEYOND outperforms baselines by a large margin, especially under
adaptive attacks. Empowered by the robust relation net built on SSL, we found BEYOND outper-
forms baselines in terms of both detection ability and implementation costs.

2 BEYOND: PROPOSED METHOD

2.1 METHOD OVERVIEW

Components. BEYOND consists of three components: a SSL feature extractor f(·), a classification
head g(·), and a representation head h(·), as shown in Fig. 1 (left). Specifically, the SSL feature
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extractor is a Convolutional Neural Network (CNN), pre-trained by specially designed loss, e.g.
contrastive loss, without supervision1. A Fully-Connected layer (FC) acts as the classification head
g(·), trained by freezing the f(·). The g(·) performs on the input image’s neighbors for label con-
sistency detection. The representation head h(·) consisting of three FCs, encodes the output of f(·)
to an embedding, i.e. representation. We operate the representation similarity detection between the
input image and its neighbors.

Core idea. Our approach relies on robust relationships between the input and its neighbors for
the detection of AE. The key idea is that adversaries may easily attack one sample’s representation
to another submanifold, but it is difficult to totally shift that of all its neighbors. We employ the
SSL model to capture such relationships since it is trained to project input and its augmentations
(neighbors) to the same submanifold (Chen & He, 2021).

Selection of neighbor number. Obviously, the larger the number of neighbors, the more stable
the relationship between them, but this may increase the overhead. We choose 50 neighbors for
BEYOND, since larger neighbors no longer significantly enhance performance, as shown in Fig. 4.

Workflow. Fig. 1 shows the workflow of the proposed BEYOND. When input comes, we first trans-
form it into 50 augmentations, i.e. 50 neighbors. Note that BEYOND is not based on random data
augmentation. Next, the input along with its 50 neighbors are fed to SSL feature extractor f(·) and
then the classification head g(·) and the representation head h(·), respectively. For the classification
branch, g(·) outputs the predicted label for 50 neighbors. Later, the label consistency detection al-
gorithm calculates the consistency level between the input label (predicted by the classifier) and 50
neighbor labels. When it comes to the representation branch, the 51 generated representations are
sent to the representation similarity detection algorithm for AE detection. If the consistency of the
label of a sample or its representation similarity is lower than a threshold, BEYOND shall flag it AE.

Algorithm 1 BEYOND detection algorithm
Input: Input image x, target classifier c(·), SSL feature extractor f(x), classification head g(x), projector head
h(x), label consistency threshold Tlabel, representation similarity threshold Trep, Augmentation Aug, neighbor
indicator i, total neighbor k
Output: reject / accept

1: Stage1: Collect labels and representations.
2: ℓcls(x) = c(x)
3: for i in k do
4: x̂i = Aug(x)
5: ℓssl(x̂i) = f(g(x̂i));r(x) = f(h(x)); r(x̂i) = f(h(x̂i))
6: Stage2: Label consistency detection mechanism.
7: for i in k do
8: if ℓ(x̂i) == ℓ(x) then Indlabel+ = 1
9: Stage3: Representation similarity detection mechanism.

10: for i in k do
11: if cos(r(x), r(x̂i)) < Tcos then Indrep+ = 1
12: Stage4: AE detection.
13: if Indlabel < Tlabel or Indrep < Trep then reject
14: else accept

2.2 DETECTION ALGORITHMS

For enhanced AE detection capability, BEYOND adopted two detection mechanisms: Label Consis-
tency, and Representation Similarity. The detection performance of the two combined can exceed
any of the individuals. More importantly, their contradictory optimization directions hinder adaptive
attacks to bypass both of them simultaneously.

Label Consistency. We compare the classifier prediction, ℓcls(x), on the input image, x, with the
predictions of the SSL classification head, ℓssl(x̂i), i = 1 . . . k, where x̂i denotes the ith neighbor,
k is the total number of neighbors. If ℓcls(x) equals ℓssli(x̂i), the label consistency increases by
one, IndLabel+ = 1. Once the final label consistency is less than the threshold, IndLabel < Tlabel,
the Label Consistency flags it as AE. We summarize the label consistency detection mechanism in
Algorithm. 1.

1Here, we employ the SimSiam (Chen & He, 2021) as the SSL feature-extractor for its decent performance.
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Representation Similarity. We employ the cosine distance as a metric to calculate the similarity
between the representation of input sample r(x) and that of its neighbors, r(x̂i), i = 1, ..., k. Once
the similarity, cos(r(x), r(x̂i)), is smaller than a certain value, representation similarity increases
by 1, IndRep+ = 1. If the final representation similarity is less than a threshold, IndReP < Trep,
the representation similarity flag the sample as an AE. Algorithm. 1 concludes the representation
similarity detection mechanism.

Note that, we select the thresholds, i.e. Tlabel, Trep, by fixing the False Positive Rate (FPR)@5%,
which can be determined only by clean samples, and the implementation of our method needs no
prior knowledge about AE.

3 THEORETICAL JUSTIFICATION

3.1 THEORETICAL ANALYSIS

Given a clean sample x, we receive its feature f(x) lying in the feature space spanned by the SSL
model. We assume that benign perturbation, i.e. random noise, δ̂, with bounded budgets causes
minor variation, ε̂, on the feature space, as described in Eq. 1:

f(x+ δ̂) = f(x) +∇f(x)δ̂ = f(x) + ε̂, (1)

where ∥ε̂∥2 is constrained to be within a radius r. In contrast, when it comes to AE, xadv , the
adversarial perturbation, δ, can cause considerable change, due to its maliciousness, that is, it causes
misclassification and transferability (Demontis et al., 2019; Liu et al., 2021; Papernot et al., 2016),
as formulated in Eq. 2.

f(xadv) = f(x+ δ) = f(x) +∇f(x)δ = f(x) + ε, (2)
where ∥ε∥2 is significantly larger than ∥ε̂∥2 formally, limε̂→0

ε
ε̂ = ∞. SSL model is trained to

generate close representations between an input x and its augmentation xaug = Wx (Hendrycks
et al., 2019; Jaiswal et al., 2020), where W ∈ Rw×h, w, h denote the width and height of x,
respectively. Based on this natural property of SSL (f(Wx) ≈ f(x)), we have:

f(Wx) = f(x) + o(ε̂),∇f(Wx) = ∇f(x) + o(ε̂), (3)

where o(ε̂) is a high-order infinitesimal item of ε̂. Moreover, according to Eq. 1 and Eq. 3, we can
derive that:

f(W (x+ δ̂)) = f(Wx) +∇f(Wx)Wδ̂

= f(x) +∇f(x)Wδ̂ + o(ε̂).
(4)

We let ε̂aug = ∇f(x)Wδ̂ and assume ε̂aug and ε̂ are infinitesimal isotropic, i.e. limε̂→0
ε̂aug

ε̂ = c,
where c is a constant. Therefore, we can rewrite Eq. 4 as follows:

f(W (x+ δ̂)) = f(x) + c · ε̂+ o(ε̂). (5)

Our goal is to prove that distance (similarity) between AE and its neighbors can be significantly
smaller (larger) than that of the clean sample in the space spanned by a SSL model, which is equiv-
alent to justify Eq. 6:

∥f(xadv)− f(W (xadv))∥22 ≥ ∥ f(x)− f(Wx)︸ ︷︷ ︸
ε̂aug=c·ε̂

∥22. (6)

Expending the left-hand item in Eq. 6, and defining m = ∇f(x)Wδ, we can obtain the following.

∥f(xadv)− f(Wxadv)∥22 = ∥f(x+ δ)− f(W (x+ δ))∥22
= ∥f(x) +∇f(x)δ − f(Wx)−∇f(Wx)Wδ∥22
= ∥ε−∇f(x)Wδ − o(ε)∥22 = ∥ε∥22 + ∥m∥22 − 2|⟨ε,m⟩|+ o(ε)

(7)

As mentioned in the prior literature (Mikołajczyk & Grochowski, 2018; Raff et al., 2019; Zeng et al.,
2020), augmentations can effectively weaken adversarial perturbation δ. Therefore, we assume that
the influence caused by Wδ is weaker than δ but stronger than the benign perturbation, δ̂. Formally,
we have:

∥∇f(x)δ︸ ︷︷ ︸
ε

∥2 > ∥∇f(x)Wδ︸ ︷︷ ︸
m

∥2 > ∥∇f(x)Wδ̂︸ ︷︷ ︸
ε̂aug=c·ε̂

∥2. (8)
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According to Cauchy–Schwarz inequality (Bhatia & Davis, 1995), we have the following chain of
inequalities obtained by taking Eq. 8 into Eq. 7:

∥ε∥22 + ∥m∥22 − 2|⟨ε,m⟩|+ o(ε) >

∥ε∥22 + ∥m∥22 − 2∥ε∥ · ∥m∥ = (∥ε∥2 − ∥m∥2)2,
(9)

where ∥m∥ ∈ (∥ε̂aug∥, ∥ε∥) according to Eq. 8.

Finally, from Eq. 9 we observe that by applying proper data augmentation, the distance between
AE and its neighbors in SSL’s feature space ∥f(xadv) − f(Wxadv)∥2 = ∥∥ε∥2 − ∥m∥2∥2 can be
significantly larger than that of clean samples ∥f(x) − f(Wx)∥2 = o(ε̂). The enlarged distance is
upper bounded by ∥ε∥2/∥ε̂aug∥2 times that of the clean sample, which implies that the imperceptible
perturbation δ in the image space can be significantly enlarged in SSL’s feature space by referring
to its neighbors. This exactly supports the design of BEYOND as described in Sec 2.1. In practice,
we adopt various augmentations instead of a single type to generate multiple neighbors for AE
detection, which reduces the randomness, resulting in more robust estimations.

3.2 ROBUSTNESS TO ADAPTIVE ATTACKS

Adaptive Objective Loss Function. Attackers can design adaptive attacks to try to bypass BE-
YOND when the attacker knows all the parameters of the model and the detection strategy. For an
SSL model with a feature extractor f , a projector h, and a classification head g, the classification
branch can be formulated as C = f ◦ g and the representation branch as R = f ◦ h. To attack
effectively, the adversary must deceive the target model while guaranteeing the label consistency
and representation similarity of the SSL model. Since BEYOND uses multiple augmentations, we
estimate their impact on label consistency and representation similarity during the adaptive attack
following Expectation over Transformation (EoT) (Athalye et al., 2018b) as:

Siml =
1

k

k∑
i=1

L
(
C
(
W i(x+ δ)

)
, yt

)
, Simr =

1

k

k∑
i=1

S(R(W i(x+ δ)),R(x+ δ)) (10)

where S represents cosine similarity, k represents the number of generated neighbors, and the linear
augmentation function W (x) = W (x, p); p ∼ P randomly samples p from the parameter distri-
bution P to generate different neighbors. Note that we guarantee the generated neighbors are fixed
each time by fixing the random seed. The adaptive adversaries perform attacks on the following
objective function:

min
δ

LC(x+ δ, yt) + Siml − α · Simr, (11)

where LC indicates classifier’s loss function, yt is the targeted class, and α refers to a hyperpa-
rameter2, which is a trade-off parameter between label consistency and representation similarity.
Experiments in the Appendix show that the adaptive attack is most effective when α = 1.

Conflicting Optimization Goals. For an AE xadv = x + δ and yadv = C(xadv), the classifica-
tion and representation outputs of its augmentation can be studied through their first-order Taylor
expansion at x:

yaug = C(Wxadv) = C(Wx) +∇C(Wx)Wδ

raug = R(Wxadv) = R(Wx) +∇R(Wx)Wδ
(12)

Since the SSL model is trained to generate close representations between a sample and its augmen-
tation (C(Wx) ≈ C(x),R(Wx) ≈ R(x)), the differences of label and representation between the
original sample and its augmentation are denoted as:

yaug − y ≈ ∇C(x)Wδ, raug − r ≈ ∇R(x)Wδ (13)

Therefore, to ensure the label consistency of AE, i.e., yaug = yt ̸= y, the optimization goal of the
adaptive attack is making δ larger within the perturbation budget:

δ = max
∥δ∥≤ϵ

(∇C(x)Wδ) (14)

2Note that we employ cosine metric that is negatively correlated with the similarity, so that the Simr item
is preceded by a minus sign.
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AUC (%) Unseen: Attacks used in training are preclude from tests. Seen: Attacks used in training are included in tests.
FGSM PGD AutoAttack Square FGSM PGD CW AutoAttack Square

DkNN 61.55±0.023 51.22±0.026 52.12±0.023 59.46±0.022 61.55±0.023 51.22±0.026 61.52±0.028 52.12±0.023 59.46±0.022

kNN 61.83±0.018 54.52±0.022 52.67±0.022 73.39±0.02 61.83±0.018 54.52±0.022 62.23±0.019 52.67±0.022 73.39±0.02

LID 71.08±0.024 61.33±0.025 55.56±0.021 66.18±0.025 73.61±0.02 67.98±0.02 55.68±0.021 56.33±0.024 85.94±0.018

Hu 84.51±0.025 58.59±0.028 53.55±0.029 95.82±0.02 84.51±0.025 58.59±0.028 91.02±0.022 53.55±0.029 95.82±0.02

Mao 95.33±0.012 82.61±0.016 81.95±0.02 85.76±0.019 95.33±0.012 82.61±0.016 83.10±0.018 81.95±0.02 85.76±0.019

LNG 98.51 63.14 58.47 94.71 99.88 91.39 89.74 84.03 98.82
BEYOND 98.89±0.013 99.28±0.02 99.16±0.021 99.27±0.016 98.89±0.013 99.28±0.02 99.20±0.008 99.16±0.021 99.27±0.016

Table 1: The AUC of Different Adversarial Detection Approaches on CIFAR-10. The results are
the mean and standard deviation of 5 runs. LNG is not open-sourced and the data comes from its
report. To align with baselines, classifier: ResNet110, FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Note that
BEYOND needs no AE for training, leading to the same value on both seen and unseen settings.
The bolded values are the best performance, and the underlined italicized values are the second-best
performance, the same below.

Conversely, the optimization goal of representation similarity (raug = r) is making δ smaller:
δ = min(∇R(x)Wδ) (15)

The conflicting optimization goals cause the gradients generated by attack label consistency and
representation similarity to cancel each other out, which is the reason why BEYOND is robust to
adaptive attacks. Fig. 11 visualizes the gradient cancellation of the two optimization objectives.

Moreover, the above analysis demonstrates that small perturbations do not guarantee label consis-
tency for AEs, while large perturbations impair representation similarity, which is consistent with
the empirical results in Sec 4.4.

4 EVALUATION

4.1 EXPERIMENTAL SETTING

Limited knowledge attack & Perfect knowledge attack. Following (Apruzzese et al., 2023), in
the limited knowledge attack setting, the adversary has complete knowledge of the classifier, while
the detection strategy is confidential. Whereas in an adaptive attack (perfect knowledge) setting, the
adversary is aware of the detection strategy.

Datasets & Target models. We conduct experiments on three commonly adopted datasets including
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, and IMAGENET (Krizhevsky et al., 2012) The
details of the target models (classifiers), and the employed SSL models together with their original
classification accuracy on clean samples are summarized in Tab. 6 3.

Augmentations. The types of augmentation used by BEYOND to generate neighbors are consistent
with Sim-Siam, including horizontal flipping, cropping, color jitter, and greyscale. However, BE-
YOND fixes the random seed to prevent benefiting from randomization. We generate 50 neighbors
for each sample, and the ablation study on the number of neighbors is further discussed in Sec. 4.4.

Attacks. Evaluations of limited knowledge attacks are conducted on FGSM, PGD, C&W, and Au-
toAttack. AutoAttack includes APGD, APGD-T, FAB-T, and Square (Andriushchenko et al., 2020),
where APGD-T and FAB-T are targeted attacks and Square is a black-box attack. As for adaptive
attacks, we employed the most adopted EoT and Orthogonal-PGD, which is a recent adaptive attack
designed for AE detectors.

Metrics. Following previous work (Abusnaina et al., 2021), we employ ROC curve & AUC and
Robust Accuracy (RA) as evaluation metrics.

• ROC curve & AUC: Receiver Operating Characteristic (ROC) curves describe the impact of
various thresholds on detection performance, and the Area Under the Curve (AUC) is an overall
indicator of the ROC curve.

• Robust Accuracy (RA): We employ RA as an evaluation metric, which can reflect the overall
system performance against adaptive attacks by considering both the classifier and the detector.

3The pre-trained SSL models for CIFAR-10 and CIFAR-100 are from Solo-learn (da Costa et al., 2022),
and for IMAGENET are from SimSiam (Chen & He, 2021).
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AUC (%) Unseen Seen
FGSM PGD FGSM PGD CW

DkNN 89.16±0.038 78.00±0.041 89.16±0.038 78.00±0.041 68.91±0.044

kNN 51.63±0.04 51.14±0.039 51.63±0.04 51.14±0.039 50.73±0.04

LID 90.32±0.046 52.56±0.038 99.24±0.043 98.09±0.042 58.83±0.041

Hu 72.56±0.037 86.00±0.042 72.56±0.037 86.00±0.042 80.79±0.044

LNG 96.85 89.61 99.53 98.42 86.05
BEYOND 97.59±0.04 96.26±0.045 97.59±0.04 96.26±0.045 95.46±0.047

Table 2: The AUC of Different Adversarial Detection Approaches on IMAGENET. To align with
baselines, classifier: DenseNet121, FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Due to memory and resource
constraints, baseline methods are not evaluated against AutoAttack on IMAGENET.

(a) CIFAR-10 (b) IMAGENET

Figure 2: ROC Curve of BEYOND against adap-
tive attacks with different perturbation budgets.

Model RA Acc. on clean samples
ATC ATC+BEYOND ATC ATC+BEYOND

(Rebuffi et al., 2021) 66.20% 84.40% 92.23% 92.83%
(Gowal et al., 2021) 64.10% 81.50% 88.74% 90.81%
(Gowal et al., 2020) 64.70% 83.80% 91.10% 91.79%
(Rebuffi et al., 2021) 62.20% 81.30% 88.50% 90.51%

Figure 3: ATC+BEYOND against AutoAttack on
CIFAR-10.

Baselines. We choose five detection-based defense methods as baselines: kNN (Dubey et al., 2019),
DkNN (Papernot & McDaniel, 2018), LID (Ma et al., 2018), (Hu et al., 2019) and LNG, which also
consider the relationship between the input and its neighbors to some extent. (Mao et al., 2021)
trains self-supervised branches to purify the adversarial examples, which is one of the best adaptive
robust methods available.

4.2 DEFENDING LIMITED KNOWLEDGE ATTACKS

We compare the AUC of BEYOND with DkNN, kNN, LID, Hu, Mao, and LNG on CIFAR-10 and
IMAGENET. Since LID and LNG rely on reference AEs, we report detection performance on both
seen and unseen attacks. In the seen attack setting, LID and LNG are trained with all types of attacks,
while using only the C&W attack in the unseen attack setting. Note that the detection performance
for seen and unseen attacks is consistent for detection methods without AEs training.

Tab. 1 shows that BEYOND consistently outperforms SOTA AE detectors on CIFAR-10, and the
performance advantage is particularly significant when detecting unseen attacks. This is because
BEYOND uses the augmentations of the input as its neighbors without relying on prior adversarial
knowledge. And according to the conclusion in Sec 3, adversarial perturbations impair label con-
sistency and representation similarity, which enables BEYOND to distinguish AEs from benign ones
with high accuracy.

Tab. 2 compares the AUC scores of BEYOND with SOTA AE detectors on IMAGENET. Experimental
results show that BEYOND outperforms the SOTA AE detectors in detecting unseen attacks. For seen
attacks, because BEYOND does not rely on prior adversarial knowledge, the detection performance
against FGSM and PGD is slightly lower than that of LNG. While for stronger attacks, i.e, C&W,
BEYOND outperforms baselines by a significant margin. For more information about BEYOND’s
detection performance (TPR@FPR) on CIFAR-10, CIFAR-100 and IMAGENET, please refer to the
Appendix.

Improved Robustness with ATC. As a plug-and-play approach, BEYOND integrates well with
existing Adversarial Trained Classifier (ATC)4. Tab. 3 shows the accuracy on clean samples and RA
against AutoAttack of ATC combined with BEYOND on CIFAR-10. As can be seen the addition of
BEYOND increases the robustness of ATC by a significant margin on both clean samples and AEs.
Note that the Acc in Table 3 is defined in Appendix.

4All ATCs are sourced from RobustBench (Croce et al., 2020).
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Classifier Method RA

Standard Mao 18.97%
BEYOND 19.45%

ATC Mao 75.09%
BEYOND 93.20%

Table 3: Comparison of ro-
bust accuracy against adap-
tive attacks on CIFAR-10.

Defense L∞=0.01 L∞=8/255
RA@FPR5% RA@FPR50% RA@FPR5% RA@FPR50%

BEYOND 88.38% 98.81% 13.80% 48.20%
BEYOND +ATC 96.30% 99.30% 94.50% 97.80%

Trapdoor (Shan et al., 2020) 0.00% 7.00% 0.00% 8.00%
DLA (Sperl et al., 2020) 62.60% 83.70% 0.00% 28.20%
SID (Tian et al., 2021) 6.90% 23.40% 0.00% 1.60%

SPAM (Liu et al., 2019) 1.20% 46.00% 0.00% 38.00%

Table 4: Robust Accuracy under Orthogonal-PGD Attack.

4.3 DEFENDING ADAPTIVE ATTACKS

ROC Curve of Perturbation Budgets. Fig. 2 summarizes the ROC curve varying with different
perturbation budgets on CIFAR-10 and IMAGENET. Our analysis regarding Fig. 2 is as follows:
1) BEYOND can be bypassed when perturbations are large enough, due to large perturbations cir-
cumventing the transformation. This proves that BEYOND is not gradient masking (Athalye et al.,
2018a) and our adaptive attack design is effective. However, large perturbations are easier to per-
ceive. 2) When the perturbation is small, the detection performance of BEYOND for adaptive attacks
still maintains a high level, because small perturbations cannot guarantee both label consistency and
representation similarity (as shown in Fig. 6 (a)). The above empirical conclusions are consistent
with the analysis in Sec 3.2.

Performance against Orthogonal-PGD Adaptive Attacks. Orthogonal-Projected Gradient De-
scent (Orthogonal-PGD) is a recently proposed AE detection benchmark for adaptive attacks.
Orthogonal-PGD has two attack strategies: orthogonal strategy and selection strategy. Tab. 4 shows
BEYOND outperforms the four baselines by a considerable margin in orthogonal strategy, especially
under small perturbations. For the worst case, BEYOND can still keep 13.8% (L∞ = 8/255).
Furthermore, incorporating ATC can significantly improve the detection performance of BEYOND
against large perturbation to 94.5%. See the Appendix for more selection strategy results. In ad-
dition, the coupling of the classifier and defense model in Mao’s method is not consistent with the
Orthogonal-PGD setting. We compare the robust accuracy of BEYOND and Mao for general adap-
tive attacks in Tab. 3, which shows that BEYOND outperforms Mao et al. against adaptive attacks
with both standard classifier and ATC.

(a) Standard AEs (b) Adaptive AEs

Figure 4: Ablation Study of the Number of
Neighbors.

(a) CIFAR-10 (b) IMAGENET

Figure 5: Ablation studies of representation
similarity & label consistency against adaptive
attacks.

4.4 ABLATION STUDY

The Number of Neighbors K. To study the impact of the number of neighbors against standard and
adaptive attacks, we conduct BEYOND with k = 5, 10, 25, 50, 80. Fig. 4 (a) shows the effect of the
number of neighbors on the detection performance against PGD with different perturbation budgets.
It can be observed that the detection performance with a large number of neighbors is better, but
the performance is not significantly improved when the number of neighbors exceeds 50. As for
adaptive attacks, Fig. 4 (b) shows the performance of the adaptive attacks generated for different
k (ϵ = 8/255). Contrary to intuition, adaptive attacks perform slightly worse when k is small.
This is because only four linear transformations (horizontal flip, crop, color jitter, and grayscale)
are deployed in BEYOND, and different numbers of neighbors just used different transformation
parameters. When k is small, the difference between neighbors is great, and the optimization of
adaptive attack is difficult (multi-task learning increases model robustness (Mao et al., 2020)); when
k is large, there may be similar neighbors that provide rich information for adaptive attacks for each
transform, which is shown in the Appendix.
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(a) (b)

Figure 6: Trade-off between Label Consistency
and Representation Similarity.

Model FLOPs(G) Params(M) Time(s) Overall

AT
C

(Rebuffi et al., 2021) 38.8 254.44 1.21 11945
(Gowal et al., 2021) 38.8 254.44 1.21 11945
(Gowal et al., 2020) 38.8 254.44 1.21 11945
(Rebuffi et al., 2021) 60.57 396.23 1.24 29760

D
et

. Mao 5.25 38.12 38.46 7697
LNG 0.286 8.33 9.22 20.521

BEYOND 0.715 20.62 1.12 16.512

Table 5: Comparison of Implementation Costs.

Contribution of Representation Similarity & Label Consistency against Adaptive Attacks. The
analysis in Sec. 3.2 shows label consistency is more beneficial for detecting small perturbations,
while representational similarity is favourable for large perturbations, which is consistent with re-
sults in Fig. 5. When the perturbation is small, the detection performance based on label consis-
tency (blue line) is better than representation similarity (green line). As perturbation increases,
representation similarity is difficult to maintain, leading to higher performance of representation
similarity-based detectors. In summary, the label consistency and representation similarity have
different sensitivities to perturbation, so their cooperation has the optimal performance (red line).

Representation Similarity & Label Consistency. The previous analysis and empirical results have
proved that there is a trade-off between label consistency and representation similarity. Fig. 6 (a)
shows the variation of label consistency and representation similarity with perturbation size on
CIFAR-100. We can observe that label consistency and representation similarity respond differ-
ently to the perturbation size, small perturbations are beneficial for representation similarity, and
large perturbations favor label consistency, which matches the conclusion in Sec. 3.2. Furthermore,
both objectives can be optimized simultaneously when the perturbation is large enough, which is
why the adaptive attack in Fig. 2 can completely break BEYOND when the perturbation budget is
larger than 16/255. Fig. 6 (b) shows that when there is only one detection strategy, either label
consistency and representation similarity, the adaptive attack can break through the defense. How-
ever, when attacking both strategies, the attack performance decreases. Hence, the robustness of
BEYOND to adaptive attacks comes from the conflicts arising from optimizing these two strategies.
See Appendix for more visualization results of optimization conflicts.

4.5 IMPLEMENTATION COSTS

BEYOND uses an additional SSL model for AE detection, which inevitably increases the compu-
tational and storage cost. And the inference time (speed) is also considered in practice. Tab. 5
presents the comparison for SOTA adversarial training defense and AE detection method, i.e. LNG.
The detection models have a smaller model structure than those of ATCs, which can be reflected by
the Params and FLOPs (Xie et al., 2020) being much lower than those of ATC. For BEYOND, the
projection head is a three-layer FC, leading to higher parameters and FLOPs than LNG. However,
BEYOND only compares the relationship between neighbors without calculating the distance with
the reference set, resulting in a faster inference speed than that of LNG. The method of Mao et al.
requires iteration, making its inference time unaffordable (Croce et al., 2022). We show the FLOPs
× Params × Time as the Overall metric in Tab. 5’s last column for overall comparison. If cost is a
real concern in some scenarios, we can further reduce the cost with some strategy, e.g., reducing the
neighbor number, without compromising performance significantly, as shown in Fig. 4 (a).

5 CONCLUSION

In this paper, we take the first step to detect AEs by identifying abnormal relations between AEs
and their neighbors without prior knowledge of AEs. Samples that have low label consistency
and representation similarity with their neighbors are detected as AE. Experiments with limited and
perfect knowledge attacks show that BEYOND outperforms the SOTA AE detectors in both detection
ability and efficiency. Moreover, as a plug-and-play model, BEYOND can be well integrated with
ATC to further improve robustness.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ahmed Abusnaina, Yuhang Wu, Sunpreet Arora, Yizhen Wang, Fei Wang, Hao Yang, and David
Mohaisen. Adversarial example detection using latent neighborhood graph. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7687–7696, 2021.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: A query-efficient black-box adversarial attack via random search. In Computer Vi-
sion – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXIII, pp. 484–501, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-
030-58591-4. doi: 10.1007/978-3-030-58592-1 29. URL https://doi.org/10.1007/
978-3-030-58592-1_29.

Giovanni Apruzzese, Hyrum S Anderson, Savino Dambra, David Freeman, Fabio Pierazzi, and
Kevin Roundy. “real attackers don’t compute gradients”: Bridging the gap between adversarial
ml research and practice. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML), pp. 339–364. IEEE, 2023.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018a.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284–293. PMLR, 2018b.

Rajendra Bhatia and Chandler Davis. A cauchy-schwarz inequality for operators with applications.
Linear algebra and its applications, 223:119–129, 1995.

Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang, and Nicholas Carlini. Evading
adversarial example detection defenses with orthogonal projected gradient descent. arXiv preprint
arXiv:2106.15023, 2021.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020a.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640–9649, 2021.

Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi, Sergio Saponara, and Benoit Dupont
de Dinechin. Novel arithmetics in deep neural networks signal processing for autonomous driv-
ing: Challenges and opportunities. IEEE Signal Processing Magazine, 38(1):97–110, 2020.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

10

https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1007/978-3-030-58592-1_29


Under review as a conference paper at ICLR 2024

Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan
Cemgil. Evaluating the adversarial robustness of adaptive test-time defenses. In International
Conference on Machine Learning, pp. 4421–4435. PMLR, 2022.

Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-learn:
A library of self-supervised methods for visual representation learning. J. Mach. Learn. Res., 23:
56–1, 2022.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transfer-
ability of evasion and poisoning attacks. In 28th USENIX security symposium (USENIX security
19), pp. 321–338, 2019.

Abhimanyu Dubey, Laurens van der Maaten, I. Zeki Yalniz, Yixuan Li, and Dhruv Mahajan. Defense
against adversarial images using web-scale nearest-neighbor search. computer vision and pattern
recognition, 2019.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A Mann. Improving robustness using generated data. Advances in Neural Information
Processing Systems, 34:4218–4233, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A APPENDIX

A DATASETS & MODELS

We conduct experiments on three commonly adopted datasets including CIFAR-10 Krizhevsky et al.
(2009), CIFAR-100, and a more IMAGENET Krizhevsky et al. (2012). The details of the target mod-
els (classifiers), and the employed SSL models together with their original classification accuracy
on clean samples are summarized in Tab. 6 5.

Dataset Classifier
SSL

Acc. on clean samples↑
Classifier SSL

CIFAR-10 ResNet18 91.53% 90.74%
CIFAR-100 ResNet18 75.34% 66.04%
IMAGENET ResNet50 80.86% 68.30%

Table 6: Information of datasets and models.

B DETECTION PERFORMANCE

B.1 TPR@FPR AGAINST LIMITED KNOWLEDGE ATTACKS.

Tab. 7 reports TPR@FPR5% to show the AE detection performance of BEYOND. It can be observed
that BEYOND maintains a high detection performance on various attacks and datasets, which is
attributed to our detection mechanism. Combining label consistency and representation similarity,
BEYOND identifies AEs without reference AE set.

5The pre-trained SSL models for CIFAR-10 and CIFAR-100 are from Solo-learn da Costa et al. (2022), and
for IMAGENET are from SimSiam Chen & He (2021).
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Dataset CIFAR-10 CIFAR-100 IMAGENET
Attack TPR@FPR5% ↑
FGSM 86.16% 89.80% 61.05%
PGD 82.80% 85.90% 89.80%
C&W 91.48% 91.96% 76.69%

AutoAttack 93.42% 90.90% 84.25%

Table 7: TPR@FPR 5% of BEYOND against Limited Knowledge Attacks. All attacks are performed
under L∞ = 8/255.

Tab. 8 reports TPR@FPR 3% to further demonstrate the AE detection capability of BEYOND. Be-
cause the detection mechanism does not rely on additional prior knowledge of AE or model retrain-
ing, it has been confirmed that BEYOND can generalize well to defend various attacks. Furthermore,
on the complex dataset, i.e., IMAGENET, BEYOND still maintains a high detection performance.

Dataset CIFAR-10 CIFAR-100 IMAGENET

Attack TPR@FPR3% ↑
FGSM 76.37% 81.93% 51.74%
PGD 69.50% 76.00% 82.20%
C&W 85.29% 84.32% 68.50%

AutoAttack 88.33% 83.91% 72.06%

Table 8: TPR@FPR 3% of BEYOND against Limited Knowledge Attacks. All attacks are performed
under L∞ = 8/255.

B.2 ACCURACY WITH ATC

Following (Yang et al., 2022), Accuracy in Table 3 indicates the detector’s accuracy on clean samples
by combining the detector with the classifier, and calculated as follows:

Acc =
#Classifier correct&Detector pass

#All clean samples
+

#Classifier wrong&Detector reject
#All clean samples

B.3 PERFORMANCE AGAINST ORTHOGONAL-PGD SELECTION STRATEGY ADAPTIVE
ATTACKS

Orthogonal-Projected Gradient Descent (Orthogonal-PGD) is a recently proposed AE detection
benchmark. In the selection strategy, Orthogonal-PGD updates the input by selectively exploit-
ing perturbations produced by either the classifier or the detector to avoid perturbation waste. Tab. 9
shows BEYOND outperforms the four baselines by a considerable margin in selection strategy, espe-
cially under small perturbations.

For the worst case, BEYOND can still maintain 8.04% (L∞ = 8/255), while the baselines are
only 0.4%. Furthermore, incorporating ATC can significantly improve the detection performance of
BEYOND against large perturbation to 91.5%.

B.4 DETECTION PERFORMANCE ON CIFAR-100

Fig. 7 shows the detection performance of BEYOND against adaptive attacks on CIFAR-100 and the
contribution of label consistency and representation similarity. It can be seen BEYOND is effective
for detecting adaptive attacks on CIFAR-10. Meanwhile, label consistency is more suitable for
detecting small perturbations, while representation similarity is favourable for large perturbations,
which is consistent with the conclusion on CIFAR-10 and IMAGENET.
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Defense L∞=0.01 L∞=8/255
RA

@FPR5%
RA

@FPR50%
RA

@FPR5%
RA

@FPR50%
BEYOND 79.63% 97.47% 8.04% 40.42%

BEYOND +ATC 95.80% 99.40% 91.50% 95.90%
Trapdoor 0.20% 49.50% 0.40% 37.20%
DLA’20 17.00% 55.90% 0.00% 13.50%
SID’21 8.90% 50.90% 0.00% 11.40%

Table 9: Robust Accuracy under Orthogonal-PGD selection strategy on CIFAR-10. The bolded val-
ues are the best performance and the underlined italicized values are the second-best performance.

(a) (b)

Figure 7: (a) Detection performance against adaptive attacks on CIFAR-100. (b) Contribution of
label consistency and representation similarity on CIFAR-100

B.5 DETECTION PERFORMANCE FOR VARIOUS TYPES OF ATTACKS

To evaluate the detection performance of BEYOND for different types of attacks, we test the most
representative method that supports multiple norm attacks, AutoAttack. AutoAttack supports L∞,
L2 and L1 norm attacks. In the main paper, we only report the detection performance of BEYOND
against AutoAttack L∞. Table 11 shows the performance of BEYOND against AutoAttack with
different norms. Where the perturbation budgets (ϵ) on CIFAR-10 are 8/255 (L∞), 0.5 (L2), and
8 (L1); and on IMAGENET are 8/255 (L∞), 3 (L2), and 64 (L1). The results show BEYOND is still
effective against attacks based on different norms.

B.6 HYPERPARAMETER ALPHA IN ADAPTIVE ATTACKS

The design of the adaptive attack in Eq. 11 includes a hyperparameter α, which is a trade-off param-
eter between label consistency and representation similarity. Tab. 10 shows the AUC of BEYOND
under different α. As shown, when α = 0, i.e. the attacker only attacks the label consistency de-
tection mechanism, the AUC score is still high, which proves that our approach is not based on the
weak transferability of AEs. Moreover, adaptive attacks are strongest when α = 1, which is used
for all tests.

C ABLATION STUDY ON SSL MODEL

BEYOND can flexibly cooperate with various SSL models without compromising AE detection per-
formance, as long as the SSL model is trained to generate similar representations for the input and
its augmentations. Without loss of generality, we let BEYOND encapsulate five different SSL mod-
els, including: SimSiam (Chen & He, 2021) (employed in main paper), BYOL (Grill et al., 2020),
MoCov3 (Chen et al., 2021), SwAV (Caron et al., 2020b), DeepClusterv2 (Caron et al., 2020a), and
report the BEYOND’s AE detection performance in Tab. 12. As can be seen, BEYOND generalizes
well with all five SSL models under various experimental settings.
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α 0 1 10 20 50 100
CIFAR-10 82.03% 63.91% 64.57% 76.15% 88.56% 92.53%

CIFAR-100 90.58% 88.49% 91.61% 93.10% 94.05% 94.37%

Table 10: AUC for Adaptive Attack under different α.

AUC(%) L∞ L2 L1

CIFAR-10 99.18 99.13 99.07
IMAGENET 97.14 97.26 97.18

Table 11: Detection performance of BEYOND against AutoAttack with different norms.

D DISPLAY OF GENERATED NEIGHBORS

Fig. 8 shows the 50 neighbors augmented by the original image. Augmentations are made up of
four linear variations including color jitter, crop, horizontal flip and greyscale. Neighbors are gener-
ated by random combinations of transformation parameters, whose consistency is ensured by fixing
random seeds. It can be noticed that when the number of generated neighbors is small, there is a
large difference between neighbors, while when the number of generated neighbors is large, there
are similar neighbors. This may be the reason why the adaptive attack is a little more difficult to
break BEYOND when k is small in Fig. 4.

E SELECT EFFECTIVE AUGMENTATIONS

To better improve the effectiveness of BEYOND, we analyze the conditions under which the aug-
mentation can effectively weaken adversarial perturbation. Effective data augmentation makes the
augmented label yaug tend to the ground-truth label ytrue and away from the adversarial label yadv:

||yaug − ytrue||2 ≤ ||yaug − yadv||2 ≤ ||yadv − ytrue||2. (16)

Since ytrue is the one-hot encoding, the range of ||yadv − ytrue||2 is (
√
2/2,

√
2). The distance

is
√
2 when the item corresponding to yadv is 1 in the logits of yadv , and

√
2/2 when the item

corresponding to yadv and ytrue both occupy 1/2. Given a SSL-based classifier, C, we have:

C(W (x+ δ)) = C(Wx) +∇C(Wx)Wδ

= ytrue +∇C(Wx)Wδ = yaug.
(17)

Therefore, the distance between yaug and ytrue is:

||yaug − ytrue||2 = ||∇C(Wx)Wδ||2
≤ ||∇C(Wx)W ||2||δ||2 ≤ ||∇C(Wx)W ||2ϵ

(18)

where ||δ||2 is bounded by ϵ. Eq. 16 always holds, then:

||∇C(Wx)W ||2ϵ ≤
√
2

2
⇒ ||∇C(Wx)W ||2 ≤

√
2

2ϵ
. (19)

In summary, augmentation can mitigate adversarial perturbation when it satisfies Eq. 19.

To further validate our analysis, we generate 1000 adversarial examples by PGD with ϵ = 8/255

on CIFAR-10. Table 13 shows the ratios for different data augmentations meeting the threshold
√
2

2ϵ .
A higher ratio means the augmentation is more effective. It can be observed that Rotation, Color
Jitter and Compose are the three most effective augmentations according to our analysis. To further
validate our analysis, we perform t-sne (Van der Maaten & Hinton, 2008) visualizations of the SSL
representations of clean and AEs processed by different augmentation methods. We utilize a self-
supervised feature extractor and projection head to obtain SSL representations and use augmentation
methods to generate 20 neighbors for both clean samples and AEs. As seen in Fig. 10, the effective
augmentation methods with the high ratio in Table 13 can effectively increase the distance between
AEs and their neighbors. For example, Rotation has the highest ratio in Table 13, and the distance
between AE and its neighbors in Fig. 10 is larger than that of clean samples. While Horizontal and
Vertical have the lowest ratio, and the distance between AE and its neighbors is still close in Fig. 10

16



Under review as a conference paper at ICLR 2024

Dataset Model FGSM PGD C&W APGD-CE APGD-T FAB-T Square

CIFAR-10

SimSiam 97.17% 96.48% 98.22% 96.60% 99.45% 99.14% 98.60%
BYOL 97.22% 94.60% 98.38% 94.97% 99.54% 99.61% 99.02%

MoCo v3 98.54% 98.26% 99.25% 98.38% 99.82% 99.69% 99.31%
SwAV 96.29% 94.81% 97.62% 95.40% 99.14% 98.73% 98.16%

DeepCluster v2 92.68% 89.28% 95.32% 90.72% 98.04% 97.56% 96.55%

CIFAR-100

SimSiam 97.82% 97.29% 97.93% 97.40% 98.33% 97.99% 97.80%
BYOL 98.04% 97.00% 98.01% 96.75% 98.45% 98.33% 98.13%

MoCo v3 98.34% 98.10% 98.50% 98.14% 98.81% 98.58% 98.44%
SwAV 97.58% 96.91% 97.85% 97.01% 98.44% 97.94% 97.70%

IMAGENET
SimSiam 92.01% 96.88% 94.56% 97.15% 97.45% 95.47% 94.58%
BYOL 92.01% 96.57% 94.58% 96.67% 97.00% 95.65% 94.25%

Table 12: AUC scores for BEYOND with various SSL models against 7 adversarial attacks. SSL
models trained on CIFAR-10 and CIFAR-100 are implemented with ResNet18, trained on IMA-
GENET are implemented with ResNet50.

Figure 8: Display of generated neighbors. The original image is on the left and the generated 50
neighbors are on the right.

Moreover, we test the detection performance of high ratio augmentations and low ratio augmenta-
tions in Table 14. It can be seen that the average detection performance of the effective augmenta-
tions obtained by our analysis is 5% higher than that of the other augmentations.

F CONFLICT RATE OF LABEL CONSISTENCY AND REPRESENTATION
SIMILARITY

The conflict between label consistency and representation similarity stems from their different op-
timization goal. Fig. 9 shows the gradient conflict rate for adaptive attacks with different step sizes
on different perturbation budgets. We can find that the gradient conflict rate decreases for large
perturbations and converges as the perturbation further increases, with the convergence point being
consistent with the turning point in Fig. 6 of the main paper.

Sec. 3.2 demonstrates the conflict between label consistency and representation similarity stems
from their different optimization goals. Fig. 11 visualizes the gradients produced by optimizing
label consistency and representation similarity on the input. It’s shown that attacks on label consis-
tency or representation similarity produce gradients that modify the input in a certain direction, but
optimizing for both leads to conflicting gradients. The experiments in the Appendix show that the
gradient conflict rate decreases when the perturbation becomes larger, which is consistent with the
results in Fig. 6 (a).

G RELATED WORKS

The authors in (Szegedy et al., 2013) first discovered that an adversary could maximize the prediction
error of the network by adding some imperceptible perturbation, δ, which is typically bounded by a
perturbation budget, ϵ, under an Lp-norm, e.g., L∞ and L2. Project Gradient Descent (PGD) pro-
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Figure 9: Conflicting rate for optimizing label
consistency and representation similarity with
different attack step size.

Aug Ratio Aug Ratio
Rotation 99.9% Vertical 25.9%

Crop 40.7% Color Jitter 99.0%
Resize 74.0% Gray 40.6%

Horizontal 25.9% Compose 99.7%

Table 13: The ratio of different data augmen-
tations meeting the threshold. Compose is a
combination of augmentations used to train SSL
models, including crop, resize, horizontal flip,
and color jitter.

(a) Crop (b) Horizontal (c) Vertical (d) Gray

(e) Resize (f) Rotation (g) Color Jitter (h) Compose

Figure 10: Visualization of clean sample and AE with different augmented neighborhoods.

posed by (Madry et al., 2017) is one of the most powerful iterative attacks. PGD motivates various
gradient-based attacks such as AutoAttack (Croce & Hein, 2020) and Orthogonal-PGD (Bryniarski
et al., 2021), which can break many SOTA AE defenses (Croce et al., 2022). Another widely adopted
adversarial attack is C&W (Carlini & Wagner, 2017). Compared to the norm-bounded PGD attack,
C&W conducts AEs with a high attack success rate by formulating the adversarial attack problem
as an optimization problem.

Label Gradient Representation Gradient

+ =

Figure 11: Gradient conflict between label consistency and representation similarity. The colored
pixels represent the gradient direction, while the blank means gradient conflict.
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Augmentation FGSM PGD CW AutoAttack Average
ColorJitter&Resize&Rotation 97.11% 96.55% 98.15% 96.56% 97.09%

Gray&Horizaotal&Crop&Vertical 92.44% 91.36% 94.70% 91.87% 92.59%

Table 14: Detection performance comparison of augmentations.

Existing defense techniques focus either on robust prediction or detection. The most effective way
to achieve robust prediction is adversarial training (Elfwing et al., 2018; Zhang et al., 2019), and the
use of nearest neighbors is a common approach to detecting AEs. kNN (Dubey et al., 2019) and
DkNN (Papernot & McDaniel, 2018) discriminate AEs by checking the label consistency of each
layer’s neighborhoods. (Ma et al., 2018) define Local Intrinsic Dimensionality (LID) to character-
ize the properties of AEs and use a simple k-NN classifier to detect AEs. LNG (Abusnaina et al.,
2021) searches for the nearest samples in the reference data and constructs a graph, further training
a specialized GNN to detect AEs. Although these nearest-neighbor-based methods achieve compet-
itive detection performance, all rely on external AEs for training detectors or searching thresholds,
resulting in defeat against unseen attacks.

Recent studies have shown that SSL can improve adversarial robustness as SSL models are label-
independent and insensitive to transformations (Hendrycks et al., 2019). An intuitive idea is to
combine adversarial training and SSL (Ho & Nvasconcelos, 2020; Kim et al., 2020; Moayeri &
Feizi, 2021), which remain computationally expensive and not robust to adaptive attacks. (Shi et al.,
2021) and (Mao et al., 2021) find that the auxiliary SSL task can be used to purify AEs, which are
shown to be robust to adaptive attacks. However, (Croce et al., 2022) shows these adaptive test-time
defenses can be broken by stronger adaptive attacks.
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