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Abstract
Do contemporary diffusion models preserve the
class geometry of hyperspherical data? Standard
diffusion models rely on isotropic Gaussian noise
in the forward process, inherently favoring Eu-
clidean spaces. However, many real-world prob-
lems involve non-Euclidean distributions, such
as hyperspherical manifolds, where class-specific
patterns are governed by angular geometry within
hypercones. When modeled in Euclidean space,
these angular subtleties are lost, leading to subop-
timal generative performance. To address this lim-
itation, we introduce HyperSphereDiff to align
hyperspherical structures with directional noise,
preserving class geometry and effectively captur-
ing angular uncertainty. We demonstrate both
theoretically and empirically that this approach
aligns the generative process with the intrinsic ge-
ometry of hyperspherical data, resulting in more
accurate and geometry-aware generative models.
We evaluate our framework on four object datasets
and two face datasets, showing that incorporating
angular uncertainty better preserves the underly-
ing hyperspherical manifold. Resources are avail-
able at: Link.

1. Introduction
Diffusion models have revolutionized generative model-
ing, achieving remarkable success in diverse modalities,
including generation of images (Ho et al., 2020; Dhariwal &
Nichol, 2021), audio (Kong et al., 2021), 3D scenes and 3D
structures (Bautista et al., 2022; Shue et al., 2023). These
models operate by progressively adding Gaussian noise to
the data in a forward process, followed by a reverse process
that learns to recover the original data from the corrupted
versions (Sohl-Dickstein et al., 2015). The use of Gaussian
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noise, coupled with its isotropic nature, simplifies both theo-
retical formulations and practical implementations, making
it a default choice for most diffusion frameworks (Kingma
et al., 2021). However, this assumption inherently biases
the data to Euclidean spaces (Song et al., 2021; Dhariwal &
Nichol, 2021), limiting the model’s ability to account for in-
trinsic geometric structures in non-Euclidean domains (Lui,
2012; Scott et al., 2021; De Bortoli et al., 2022), such as hy-
perspherical or manifold-constrained data (Bronstein et al.,
2017; Rezende et al., 2020). In such settings, Gaussian-
based diffusion may fail to fully capture the directional
relationships and nuanced variations inherent to the data, as
shown in Figure 1(a) (top row) where the forward process
of adding Gaussian noise leads to distortion in the angular
geometry of the classes during sampling. It motivates a
need for rethinking the noise distribution in the diffusion
processes.

Beyond the limitations of geometry, Gaussian noise also
overlooks the flexibility required to model varying uncer-
tainty levels across different samples. Ambiguous or noisy
data points appear across different timesteps in Figure 1(a)
(top row). These points require a representation where un-
certainty is explicitly modeled. However, the isotropic as-
sumption of Gaussian noise treats all directions equally,
failing to capture this uncertainty effectively. Researchers
have explored alternative noise distributions better suited
to specific data geometries and uncertainty modeling (Xu
et al., 2023). One promising direction is the von Mises-
Fisher (vMF) distribution (Mardia & Jupp, 2000), which
is naturally defined on hyperspheres and parameterized by
a concentration parameter that controls directional uncer-
tainty (Hasnat et al., 2017). For effective handling of un-
certainty using vMF noise in diffusion models, we aim to
align the generative process with the underlying geometry
of the data, thus enabling more accurate modeling of direc-
tional relationships. This approach builds on recent efforts
to integrate geometric priors into generative models (Falorsi
et al., 2018), expanding the scope of diffusion techniques to
hyperspherical data.

1.1. Research Contributions

We propose HyperSphereDiff (Diffusion with Hyper-
Spheres), leveraging the von Mises-Fisher (vMF) distribu-
tion to preserve hyperspherical class geometry by introduc-
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Figure 1. (a) Illustrating class geometry preservation in non-Euclidean hyperspherical spaces. The top row shows Gaussian diffusion,
which fails to capture structural relations, whereas the bottom row demonstrates von Mises–Fisher (vMF)-based diffusion, effectively
modeling directional uncertainty. Red and green arrows indicate forward and backward diffusion process, respectively. (b) Comparison of
on the 3D sphere: Gaussian (top) vs. vMF (bottom). Gaussian distorts class boundaries, while vMF maintains the original geometry,
preserving angular regions.

ing directional uncertainty into the diffusion process. It is
visually illustrated through Figure 1(a) (bottom row). Here,
geometry precisely captures angular relationships defining
class boundaries, whereas uncertainty reflects stochastic
variation governed by the vMF concentration parameter.
Figure 1(b) provides empirical visualization demonstrat-
ing that vMF-driven diffusion preserves hyper-conical class
geometry, while Gaussian-based diffusion distorts it. By
embedding vMF-based noise into both forward and reverse
processes, the manifold-aware framework maintains global
structure and local directional fidelity. It ensures directional
uncertainty respects hyperspherical structures throughout
the diffusion process. The key contributions of this research
are:

1. Class-Specific Hypercone Formalism. We introduce
a hypercone representation that preserves intra-class
angular concentration on the hypersphere while en-
forcing inter-class separation. This formalism captures
class structure by focusing on directional relationships
rather than purely Euclidean distances.

2. vMF-Based Forward and Reverse Processes. Gaus-
sian noise is replaced with vMF noise to maintain angu-
lar consistency. This ensures generated samples remain
on the hypersphere, effectively guiding them toward
class-specific hypercones during the reverse process.

3. Diverse and Hard Sample Generation. In contrast
to Gaussian-based methods, the vMF-driven approach
mitigates simplicity bias, producing a broader sample

distribution. We introduce two metrics, Hypercone
Coverage Ratio (HCR) and Hypercone Difficulty Skew
(HDS), for assessing geometry preservation.

4. Theoretical Foundations and Empirical Validation.
Along with detailed theoretical foundations, through
extensive experiments on four object datasets and two
face datasets, we demonstrate improved alignment with
hyperspherical geometry. We observed enhanced ro-
bustness to varying uncertainty levels and superior per-
formance in class-conditional generation tasks.

1.2. Related Work

Denoising diffusion models can generate diverse unseen im-
age samples by training on existing datasets (Ho et al., 2020;
Song et al., 2021; Dhariwal & Nichol, 2021). First intro-
duced by (Sohl-Dickstein et al., 2015), they added Gaussian
noise in a forward process and learned to reverse it for sam-
ple generation. Advances in score-based modeling (Song &
Ermon, 2019; Pidstrigach, 2022), efficient sampling (Wat-
son et al., 2022), and discrete diffusion (Austin et al., 2021)
have further improved their capabilities. However, their
reliance on Gaussian noise limits them to Euclidean spaces,
restricting their ability to model directional relationships
in non-Euclidean domains (Bronstein et al., 2017). While
manifold-aware and sphere-based extensions (Rezende et al.,
2020) attempt to address this, they remain limited in han-
dling anisotropic and angular uncertainties.

The von Mises-Fisher (vMF) distribution, commonly used
for hyperspherical data, has demonstrated effectiveness in
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face recognition (Hasnat et al., 2017; Deng et al., 2019),
outlier detection and generation (Du et al., 2022; Ming
et al., 2023; Du et al., 2023) and representation learning
tasks (Davidson et al., 2018). It has also been employed in
generative modeling through hyperspherical GANs (David-
son et al., 2018) and spherical VAEs (Falorsi et al., 2018).
However, the integration of vMF noise into diffusion mod-
els remains relatively unexplored. Previous works explor-
ing non-Gaussian noise in diffusion processes (Wang et al.,
2022; Xu et al., 2023) lack a systematic approach to leverage
angular distributions like vMF.

In addition to Gaussian and vMF noise, alternative noise
types such as Laplacian noise (Dwork & et al., 2006), Stu-
dent’s t-noise (Matsubara & Imai, 2021), and blue noise
(Huang et al., 2024) have been explored for robustness and
outlier handling. Flow-based transformations have also
been used in generative tasks (Kingma & Dhariwal, 2018),
while domain-specific noises in molecular generation (Luo
et al., 2021) focus on aligning noise with data properties.
Our work adds to this growing body of literature by intro-
ducing a novel angular noise mechanism based on vMF
distributions, enabling the diffusion process to model class-
specific and directional uncertainty in hyperspherical do-
mains. Progressive Distillation (Salimans & Ho, 2022) uses
an angular DDIM update in Euclidean space but ignores
hyperspherical constraints. EDM (Karras et al., 2022) en-
sures variance preservation via dataset-dependent scaling
but lacks directional or geometric alignment. In contrast,
HyperSphereDiff operates directly on the hypersphere, pre-
serving both variance and manifold consistency without
extrinsic normalization.

2. Preliminary
In Gaussian-based diffusion models, the forward process
is defined as a Markov chain that incrementally corrupts
the data by introducing isotropic Gaussian noise. Let x0 ∼
pdata(x0) represent the original data. The sequence of noisy
samples xt is generated according to:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ,

where, αt ∈ (0, 1] is a variance schedule controlling the
relative weight of the signal and noise at time t and ϵ ∼
N (0, I) is isotropic Gaussian.

The geometry of the corrupted data distribution in a time
step t is defined by the weighted combination of the original
data x0 and the noise component ϵ. The resulting distribu-
tion can be expressed as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

which defines a trajectory in the Euclidean space where the
corrupted data progressively transitions from the original

distribution pdata(x0) to a standard Gaussian distribution
N (0, I) as t→ T .

The uncertainty in the forward process is introduced through
the isotropic Gaussian noise ϵ ∼ N (0, I). At each time step,
the variance of the noise component 1− αt increases as αt
decreases, representing a controlled diffusion of informa-
tion. This uncertainty is modeled symmetrically across all
dimensions of the data, resulting in a spherically symmet-
ric probability density function. Formally, the marginal
distribution at time t can be expressed as:

q(xt) =

∫
q(xt|x0)pdata(x0) dx0,

which represents the corrupted data distribution as a Gaus-
sian mixture where each component is centered at

√
ᾱtx0

and has variance 1− ᾱt . The reverse process is designed
to approximate p(x0|xt) and recover the original data by
progressively denoising the sample xt.

3. Revisiting Hyperspherical Data Geometry
The use of the Gaussian noise simplifies theoretical analysis
and computational implementation by assuming data resides
in the flat, unbounded Euclidean space Rd. However, this
approach is fundamentally sub-optimal when dealing with
non-Euclidean data geometries, such as hyperspheres Sd−1,
or other manifolds.

Theorem 3.1 (Gaussian Noise and Spherical Structure). Let
z ∼ N (0, I) be an isotropic Gaussian in Rd. Then:

(a) The radial density follows:

P (∥z∥ = r) ∝ rd−1e−r
2/2

(b) As d→∞:
∥z∥√
d

P−→ 1

(c) For data x ∈ Sd−1, the noised vector x + σz does not
preserve angular relationships as σ →∞.

Proof. (a) Follows from the Jacobian of spherical coordi-
nates, (b) By the law of large numbers, ∥z∥2/d → 1 in
probability, and (c) As σ → ∞, the contribution of x be-
comes negligible.

Gaussian noise works well in flat, unbounded spaces due
to its isotropic nature. However, many real-world datasets
reside on curved spaces, such as hyperspheres or other Rie-
mannian manifolds. In these cases, Gaussian noise disrupts
the intrinsic geometry by introducing perturbations that ex-
tend beyond the manifold (Bronstein et al., 2017; Huang
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et al., 2022) (detailed proof in Appendix A). This misalign-
ment motivates the exploration of alternative noise processes
designed for data with non-Euclidean geometries.

Facial data embeddings, often derived through deep neural
networks, are typically normalized to lie on a hypersphere
Sd−1 ⊂ Rd, reflecting their natural angular variability due
to factors like pose, expression, and illumination changes
(Majumdar et al., 2017; Wang et al., 2018; Deng et al.,
2019). This normalization ensures that the similarity be-
tween two embeddings is determined by their angular re-
lationship rather than their magnitude, aligning with the
cosine similarity metric frequently used in recognition tasks.
For two embeddings e1, e2 ∈ Sd−1, their similarity can be
expressed as cos(θ) = e⊤1 e2 , where θ = arccos(e⊤1 e2) is
the geodesic distance on the hypersphere. This structure
inherently aligns facial embeddings with hyperspherical ge-
ometry, where angular deviations are the primary measure
of variability. In high-dimensional hyperspherical spaces,
facial classes can be modeled as distinct regions, often vi-
sualized as hypercones emanating from the origin. Each
class Ck ⊂ Sd−1 is centered around a mean direction vector
µk ∈ Sd−1, with intra-class variability characterized by
angular deviations. The vMF distribution provides a natural
framework for modeling such hypercones due to its con-
centration parameter κk, which controls the spread of the
distribution around µk. The probability density function is
given as:

f(x;µ, κ) =
κ(d/2)−1

(2π)d/2I(d/2)−1(κ)
exp(κµ⊤x),

where, I(d/2)−1(κ) is the modified Bessel function of the
first kind. To formalize this relationship, we introduce the
following lemma:

Lemma 3.2 (vMF Hypercone Representation). Let Ck ⊂
Sd−1 be a class hypercone centered at µk with angular
radius θk. The data follows a vMF distribution with concen-
tration κk. Then:

(a) The probability mass within the class hypercone is:

P (x ∈ Ck) = P (∠(x,µk) ≤ θk) ≥ 1−exp(−κk(1−cos θk))

(b) For any desired coverage probability 1−ϵ with ϵ ∈ (0, 1),
choosing:

κk ≥
1

1− cos θk
log

(
1

ϵ

)
ensures that P (x ∈ Ck) ≥ 1− ϵ.

Note: As θk → 0, the required concentration κk → ∞,
reflecting the scenario of a single-direction hypercone.

On the hypersphere Sd−1, classes naturally align within
hypercones defined by angular constraints, and the vMF
distribution inherently models these structures. Such distri-
butions also relate to class separation on hyperspheres (refer
Appendix B). Unlike Gaussian noise, vMF noise respects
the manifold’s geometry by modulating its focus through the
concentration parameter κ. When κ = 0, vMF is isotropic,
uniformly spanning the hypersphere, while larger κ values
focus the distribution within a hypercone around the mean
direction µ. This adaptability enables vMF-based diffu-
sion to effectively learn and represent class-wise structures,
ensuring a geometrically consistent generative modeling
framework.

4. Modeling Angular Uncertainty in Diffusion
To effectively model the uncertainty inherent in hyperspher-
ical data, we employ a forward diffusion process driven
by noise sampled from the vMF distribution. The forward
process introduces angular-based uncertainty such that the
data progressively transitions from structured, class-specific
noise to a uniform distribution over the hypersphere Sd−1.
Initially, the noise is highly concentrated (κ is large), pre-
serving the class structure within narrow hypercones. As the
process advances, κ decreases to zero, injecting isotropic
noise, and the data diffuses uniformly over the hypersphere.

4.1. Angular Noise Injection

In the proposed HyperSphereDiff, the forward process adds
noise to the data representation using angular interpolation.
At each time step t, the data representation obtained in a
latent space through an encoder is denoted as zt, which is up-
dated as zt = cos(θt)zt−1 + sin(θt)v, where zt−1 ∈ Sd−1

is the data representation at the previous time step, v is a
unit vector sampled uniformly from Sd−1, and θt is a time-
dependent angle that increases monotonically from 0 to π/2.
The angular interpolation ensures that the injected noise
aligns with the hyperspherical geometry. The parameter
θt acts as a scheduler, gradually increasing to control the
extent of deviation from the previous representation. Corre-
spondingly, this forward step mimics the vMF distribution
using κt as a scheduler. The decrease in κt defines the level
of angular uncertainty introduced at each step.

By employing κ as a scheduler, our forward diffusion pro-
cess progressively incorporates angular uncertainty, tran-
sitioning from class-structured perturbations to isotropic
noise (Figure 1). This ensures that the initial steps of the
corruption process retain class information, as larger κ val-
ues concentrate the data around class-specific hypercones.
Over time, as κ → 0 , the noise diffuses the data to a uni-
form hypersphere, reflecting maximum uncertainty. This
process inherently respects the geometric properties of hy-
perspherical data, with angular deviations tied to the data
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distribution rather than being purely random.

4.2. Backward Step: Hypersphere to Hypercone

In generative modeling with hyperspherical data, the reverse
process of HyperSphereDiff transforms noisy samples into
structured data aligned with class distributions. This pro-
cess progressively refines noisy points toward class-specific
hypercones using score-based methods. The reverse formu-
lation leverages vMF sampling, ensuring angular relation-
ships between classes are retained. The reverse process is
defined as:

zt−1 ∼ vMF (Π(zt + ηt∇zt log f(zt;µt, κt)), κt) ,

The complete algorithm A and experiments are based on
this reverse step and MSE loss as defined in standard Gaus-
sian diffusion. Alternatively, the reverse step with angular
updates using vMF-based stochastic denoising is defined as:

zt−1 ∼ vMF

(
Π
(
cos(θt)zt +

sin(θt)
∇zt log f(zt;µc)
∥∇zt log f(zt;µc)∥

)
, κt

)

To further align optimization with hyperspherical geometry,
the reverse denoising step is refined using an angular-based
loss function alternative to the MSE loss. Cosine Loss:
Encourages angular alignment between the score function
and noise direction.

Lc = 1− E
[
∇zt log f(zt;µc)⊤ϵt

]
Geodesic Loss: Penalizes angular deviations.

Lg = E
[
arccos2

(
∇zt log f(zt;µc)⊤ϵt
∥∇zt log f(zt;µc)∥∥ϵt∥

)]

where, zt represents the current noisy sample, f(·) is
the vMF distribution modeling class hypercones, and
∇zt log f(·) is the score function providing gradient in-
formation. Here, interpolation using cos(θt) and sin(θt)
maintains angular relationships, while the normalized score
function preserves directional consistency. (Refer Appendix
C) The comparative analysis of various loss functions and
angular based denoising is provided in Appendix (Refer
Appendix H.2).

The process evolves from isotropic noise to class-specific
structures through the interplay of two key components.
The score function ∇zt

log f(zt;µt, κt) points towards the
class means µc, with the step size ηt controlling the update
strength. Simultaneously, vMF sampling adds controlled
stochasticity, ensuring updates remain consistent with hy-
perspherical geometry while progressively removing noise.

The concentration parameter κt plays a crucial role in shap-
ing this evolution. It starts small for isotropic diffusion and
then grows during the reverse process, increasingly favoring
class-specific directions. As κt increases, the vMF sam-
pling becomes more concentrated around the class means,
reflecting the growing certainty in class membership while
maintaining geometric consistency.

The combination of score-based updates and vMF sampling
ensures a smooth transition from noise to structured data.
The process gradually refines points until they converge
near their respective class means µc for a class c, effectively
recovering true class representations while preserving the
underlying hyperspherical geometry. This mechanism pro-
vides a mathematically principled approach to generating
class-consistent samples on the hypersphere, maintaining
both local structure and global class relationships through-
out the diffusion process.

Algorithm 1 HyperSphereDiff Training: vMF Diffusion
with Hypercone Preservation

Require: Data samples {xi}, class labels {yi}, diffusion
steps T

Require: Angular schedule {θt}Tt=1, Learning rate η
1: Initialize score network parameters θ
2: while not converged do
3: Sample batch (x, y) from dataset
4: Sample time step t ∼ Uniform(1, T )
5: κt ← cot(θt) ▷ Set concentration
6: Sample v ∼ Uniform(Sd−1)
7: zt ← Π(cos(θt)x+ sin(θt)v) ▷ Forward process
8: similar to zt ∼ vMF(x, κt)
9: ∇zt

log f ← ScoreNetθ(zt, t, y)
10: L ← ∥∇zt

log f −∇zt
log p(zt|x)∥2

11: Update θ using gradient of L
12: end while
13: return Trained score network parameters θ

4.3. Adaptive Class-Dependent Concentration

We consider data z0 on the unit hypersphere and a forward
diffusion process as before with vMF transitions. In the
reverse process pθ(z0:T ) = pθ(z0 | z1, y)

∏T
t=1 pθ(zt−1 |

zt, y), we guide samples into learned truncated regions on
the hypersphere. We employ two networks: a direction
predictor Dϕ that estimates class-specific directions mt =
Dϕ(zt, t, y), and an angle predictor Cψ that estimates class
angular radii θy = Cψ(zt, t, y). These networks learn to
form dynamic hypercones Ct,y = {z : ∠(z,mt) ≤ θy}
that capture class-specific regions at each step. The reverse
process uses truncated vMF:

pθ(z0 | z1, y) = TvMF
(
z0; mθ(z1, y), κθ(z1, y), Ct,y

)
,
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Algorithm 2 HyperSphereDiff Testing: Sampling from
vMF Diffusion with Class Guidance
Require: Class label y, diffusion steps T , trained score

network θ
Require: Angular schedule {θt}Tt=1, step sizes {ηt}Tt=1

1: Sample zT ∼ Uniform(Sd−1)
2: for t = T to 1 do
3: κt ← cot(θt) ▷ Get concentration
4: if t > 1 then
5: ∇zt

log f ← ScoreNetθ(zt, t, y)
6: mt ← zt + ηt∇zt log f
7: mt ←mt/∥mt∥ ▷ Project to hypersphere
8: zt−1 ∼ vMF(mt, κt)
9: end if

10: end for
11: return Final sample z1

TvMF(z;µ, κ, C) =
1

Z(κ, C)
exp
(
κµ⊤z

)
1{z ∈ C},

We maintain adaptive concentration through κθ(zt, y) =
κmax σ

(
β [θy − ∠(zt,mt)]

)
, where β is a scaling factor,

κmax is maximum concentration allowed and σ(.) is sig-
moid function, ensuring stronger concentration within pre-
dicted regions. The normalization constant Z(κ, C) for the
truncated vMF can be computed as:

Z(κ, C) =
∫
C
exp(κµ⊤z) dSd−1(z)

where, dSd−1 is the hyperspherical measure. This integral
has a closed form in terms of the incomplete gamma func-
tion when C is a hypercone. The networks Dϕ and Cψ
are trained jointly with the score network to minimize the
objective:

L(ϕ, ψ) = Et,y
[
∥mt − m̂y∥2 + λ(θy − θ̂y)2

]
where, m̂y and θ̂y are empirical class statistics computed
from training data, and λ balances the direction and angle
losses. This ensures that the predicted geometry aligns with
the true class structure while maintaining the flexibility of
learned truncation regions.

The combination of learned directional prediction, adaptive
concentration, and explicit truncation provides a powerful
mechanism for class-conditional generation. At each step
t, the process maintains a dynamic balance between score-
based updates and geometric constraints:

E[zt−1|zt, y] = mt+ηt∇zt
log f(zt;µt, κt)·1{zt ∈ Ct,y}

This ensures samples remain within class-appropriate re-
gions while benefiting from the score function’s gradient
information. Detailed proofs of forward and reverse model-
ing are shown in Appendix D.

Table 1. Performance comparison of Gaussian and HyperSphereD-
iff across six datasets using FID (lower is better), HCR (lower is
better), and HDS (lower values indicates harder samples). The
vMF model demonstrates superior capability in generating chal-
lenging samples with better FID and HDS scores.

Dataset FID HCR HDS
Gaussian vMF Gaussian vMF Gaussian vMF

MNIST 1.95 1.86 0.17 0.14 0.76 0.52
CIFAR-10 3.45 3.52 0.23 0.2 0.72 0.48
CUB-200 8.47 9.11 0.19 0.13 0.81 0.41
Cars-196 9.09 7.87 0.19 0.17 0.85 0.6
CelebA 9.31 9.29 0.42 0.22 0.77 0.59

D-LORD 11.38 9.27 0.46 0.21 0.91 0.62

4.4. Beyond Geometry and Uncertainty: Retaining
Image Information

In our face generation process, we introduce two forms of
uncertainty to capture both magnitude and directional com-
ponents in the data representation motivated by (Chiranjeev
et al., 2024). Specifically, we interpret an image embed-
ding x as having a magnitude ∥x∥ (which relates to overall
intensity or scale) and a direction x/∥x∥ ∈ Sd−1 (which
captures structural and class-related geometry). We employ
a Gaussian distribution to model the magnitude uncertainty
and a vMF distribution to model the directional uncertainty.
This hybrid approach preserves crucial class geometry on
the hypersphere, while still accommodating image-specific
variability (e.g. changes in lighting or intensity) through
Gaussian noise. The detailed forward and reverse process is
provided in Appendix F.

5. Experiments
We evaluate HyperSphereDiff on four object datasets
(CIFAR-10 (Krizhevsky et al., 2009), MNIST (Deng, 2012),
CUB-200 (Wah et al., 2011) and Cars-196 (Krause et al.,
2013)), and two face datasets (CelebA (Liu et al., 2015) and
D-LORD (Manchanda et al., 2023)). The architecture and
training details are provided in Appendix H.

Retaining Geometry: We define two metrics to evaluate
whether the generated samples preserve the class structure
and maintain distributional properties of the original data.
Hypercone Coverage Ratio (HCR): The HCR quanti-
fies the percentage of generated samples outside the class
distribution’s hypercone. For each class k, we compute:

HCR =
1

K

K∑
k=1

1

Nk

Nk∑
i=1

1
[
cos−1(zi · µk) > θmax

k

]
A lower HCR indicates better preservation of the class struc-
ture, while a higher HCR suggests out-of-class or unrealistic
samples.
Hypercone Difficulty Skew (HDS): The HDS measures
whether the model generates easy samples by analyzing how
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CUB-200 Celeb-A Cars196

Figure 2. Generated samples of birds (left), faces (middle) and cars (right) using the proposed vMF based diffusion model trained on
CUB-200, CelebA and Cars-196 dataset, showcasing the preservation of key attributes and diversity.

Concentration kappa (𝜅) decreases

Class Mean (𝜇)

Figure 3. Real-world surveillance samples generated using class-
dependent adaptive concentration κ, through proposed diffusion
model after training on D-LORD dataset.

they are distributed across sub-cones of increasing angular
deviation. A high HDS indicates the model generates easy
samples, while a low HDS suggests a balanced distribution
across difficulty levels (refer Appendix H.1). For each class
k, we compute the fraction of samples in each sub-cone and
compute HDS:

pmk =
1

Nk

Nk∑
i=1

1
[
θm−1 < cos−1(zi · µk) ≤ θm

]
HDS =

1

K

K∑
k=1

M∑
m=1

wmp
m
k

The HCR and HDS metrics offer a thorough assessment of
generative models in angular space. HCR measures class
consistency and assesses how well intra-class variations are
preserved, while HDS identifies whether the model favors
generating easier samples. An ideal generative model should
maintain a low HCR while achieving an HDS that aligns
with the natural difficulty distribution of the original data.

Table 1 highlights the comparison between the Gaussian and
vMF models in terms of HCR and HDS in six datasets. The
Hypercone Coverage Ratio (HCR) consistently decreases
for the vMF model compared to the Gaussian model, indicat-

ing that the vMF generates samples that follow the original
class structure, thus preserving angular relations. Similarly,
the Hypercone Difficulty Skew (HDS) value with the vMF
model in all six datasets is around 0.5, reflecting its ability
to generate generalized samples across the hypercone rather
than generating simple samples. Gaussian-based generated
samples have HDS values around 0.6, showing that a higher
proportion of samples are generated from the innermost
hypercone demonstrating simplicity bias. For datasets like
D-LORD and CUB-200, the reduction in HCR and HDS is
particularly pronounced, showcasing the efficiency of the
vMF model in modeling angular variation and producing
diverse samples.

Generation Quality: We evaluate the quality of generated
samples using our method across six diverse datasets. These
include natural images (CelebA, CIFAR-10), fine-grained
object categories (CUB-200, Cars-196), and structured dig-
its (MNIST). Figure 2 presents examples of generated faces
and birds from models trained on CelebA, Cars-196, and
CUB-200. The images exhibit realistic structural coherence
and diversity, resembling their respective distributions. We
also compute the Fréchet Inception Distance (FID) (Byna-
gari, 2019), achieving competitive scores across all datasets
(Table 1). In particular, CelebA, D-LORD, and Cars-196
show high performance, indicating that the model captures
both global structure and fine-grained details. This demon-
strates that HyperSphereDiff generates high-quality samples
with significant variation while preserving class structure,
aligning with our theoretical insights (See Appendix H).

Hypercone Generation: We evaluate the hypercone con-
straint by analyzing generated samples from both inner and
outer hypercones, shown in Appendix H. Samples in the
inner hypercone retain class-consistent features, while those
in the outer hypercone exhibit noisy generations, validating
the effectiveness of our metric in capturing generation qual-
ity. Furthermore, for the real-world D-LORD (Manchanda
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Figure 4. (a) Comparison of samples generated using Gaussian and vMF diffusion models, highlighting improved variation in pose,
illumination, expression, and quality with vMF. (b) Scatter plot with fitted regression shows cosine similarity to the class mean, where
HyperSphereDiff generates more challenging samples with broader similarity distribution compared to Gaussian.

Figure 5. Gaussian-based diffusion generates samples tightly clus-
tered near the class mean (high similarity, low variance), favoring
easier cases. In contrast, HyperSphereDiff produces a more diverse
spread (lower similarity, higher variance), ensuring better coverage
across difficulty levels.

et al., 2023) dataset, we sample images at varying kappa
values shown in Figure 3, concentrating the samples around
the mean vector to reflect distance-wise variations in the
surveillance imagery. These experiments highlight how dif-
fusion with hypercone constraints ensures both intra-class
consistency and controlled diversity.

Face Recognition Results: We evaluate the performance
of our proposed method on the real-world D-LORD (Man-
chanda et al., 2023) surveillance dataset, which consists of
sequential frame images exhibiting angular relationships in
the feature space. We generated samples of 1000 synthetic
subjects using both Gaussian-based diffusion and our vMF-
based hyperspherical diffusion. Training the ArcFace model
on the generated data leads to 5.0% improvement on the
real test set identification accuracy with the HyperSphereD-

Table 2. FID scores for different noise configurations across Celeb-
A and D-LORD datasets. The hybrid Gaussian + Spherical method
achieves the best performance.

Dataset Gaussian Gaussian + Spherical Spherical
Celeb-A 9.31 9.29 9.31
D-LORD 11.38 9.27 10.94

iff compared to the Gaussian model. This result highlights
the ability of our approach to generate data that better aligns
with the angular structure of real-world surveillance images,
effectively capturing the underlying geometry.

Generating Hard Samples: We observed that the vMF-
based approach consistently produced samples with varied
cosine similarity to the class mean, indicating a higher de-
gree of generalized sample generation compared to the Gaus-
sian baseline, as shown in Figure 4. This is also supported
by qualitative results, where vMF samples exhibit greater
variations in pose, illumination and expression, closely re-
sembling real-world challenges. Quantitatively, this ob-
servation is validated using HDS metric (Table 1), which
measures the proportion of samples concentrated in the
smaller hypercones. The vMF model achieved lower HDS
values, confirming its effectiveness in generating harder,
more diverse samples that can better represent challenging
scenarios in real-world datasets. Further, Figure 5 shows
HyperSphereDiff yields broader coverage (mean cosine sim-
ilarity=0.722, std=0.137), reflecting balanced difficulty rep-
resentation compared to Gaussian diffusion (mean=0.900,
std=0.048).

Ablation Study: Table 2 presents FID scores comparison on
Celeb-A and D-LORD datasets under three noise strategies:
Gaussian, Spherical (HyperSphereDiff ), and a hybrid of

8
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Figure 6. Feature representation of the 10-class MNIST dataset generated using Gaussian-based diffusion (left) and vMF-based diffusion
(right). The vMF-based sampling aligns generated sample features within class-specific 3D hypercones, while Gaussian-based sampling
results in scattered features outside the class-hypercones.

Figure 7. Comparison between interpolation using Gaussian-based
diffusion and vMF-based diffusion for generating images between
two variants of the same subject: (a) Expression, (b) Pose.

both. The hybrid model yields the lowest FID scores across
both datasets (9.29 for Celeb-A and 9.27 for D-LORD),
suggesting that combining magnitude-based Gaussian noise
with direction-aware spherical noise results in better gener-
ation quality. Purely Gaussian or purely spherical models
alone are less effective, particularly for D-LORD, where
Gaussian diffusion performs poorly (FID = 11.38) and the
spherical-only model underperforms compared to the hybrid.
This demonstrates the advantage of modeling dual uncer-
tainty by capturing both intensity variation and directional
structure to enhance the realism and class consistency.

Feature Representation: Figure 6 illustrates the feature
representations of conditional samples generated from the

10 classes of the MNIST dataset. The figure highlights that
the vMF-based reverse sampling effectively converges sam-
ples within class-specific hypercones, capturing the angular
geometry of the data. In contrast, Gaussian-based reverse
sampling produces samples that converge within Euclidean
space, failing to adhere to the hyperspherical structure.

Interpolation Results: Figure 7 shows interpolations using
Gaussian-based diffusion (top row) which often produce
unnatural or inconsistent transitions, especially with large
attribute shifts. In contrast, our HyperSphereDiff (bottom
row) angular interpolation on a hypersphere yields smoother,
identity-preserving transitions across poses and expressions.

6. Conclusion and Future Work
In this work, we have challenged the ubiquitous Gaussian
assumption in diffusion models by introducing a novel hy-
perspherical framework HyperSphereDiff that leverages
vMF distributions for generative modeling on angular mani-
folds. By incorporating hyperspherical geometry and class-
dependent uncertainty, our approach preserves angular struc-
ture while producing diverse, semantically rich samples. Ex-
tensive experiments on facial and complex object datasets
demonstrate its effectiveness in fine-grained tasks where
angular relationships are critical. This work opens new
avenues for manifold-constrained generative modeling, ad-
vancing geometry-aware diffusion techniques. Future re-
search will focus on developing adaptive κ-based sched-
ulers, adopting hierarchical hypercone partitioning for finer
class variations, and extending the framework to conditional
generation tasks, such as pose-invariant face synthesis.
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Impact Statement
This work introduces a novel hyperspherical diffusion frame-
work leveraging von Mises–Fisher (vMF) distributions to
enhance the modeling of high-dimensional angular data in
Machine Learning. By improving the fidelity and inter-
pretability of generative models, the proposed method has
applications in computer vision, fine-grained classification,
and surveillance. However, like other generative techniques,
it carries potential ethical risks, including misuse in deep-
fakes, privacy concerns, and bias amplification. To mitigate
these risks, we emphasize responsible use and transparency,
particularly in sensitive domains (Mittal et al., 2024). Over-
all, this research advances generative modeling for hyper-
spherical data while promoting a deeper understanding of
geometric structures in Machine Learning.
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A. Gaussian Noise Distorts Angular Relationship
A key challenge in hyperspherical data modeling is preserving the angular relationships that define class structure, especially
when noise is introduced. In many generative and transformation-based approaches, Gaussian noise is commonly used
to perturb data points. However, in non-Euclidean spaces like the hypersphere, such noise can significantly distort the
underlying geometric structure. Unlike structured perturbations that respect the manifold’s constraints, isotropic Gaussian
noise introduces deviations that shift points off the sphere and disrupt their relative angles. The following lemma formally
establishes how Gaussian noise fails to maintain angular class structure, particularly in high-dimensional spaces where its
effects become more pronounced.

Lemma A.1 (Gaussian Noise Distorts Angular Class Structure). Let {xi}Ni=1 be N points in Sd−1 (grouped into classes)
such that the angular distances (or equivalently, dot products) between points reflect some inter-class and intra-class
relationships (e.g. points in the same class are close in angle, points in different classes have larger angles). Define the
perturbed points

x̃i = xi + ϵi, ϵi ∼ N (0, σ2I), i = 1, . . . , N,

where, ϵi are i.i.d. isotropic Gaussians in Rd. Then in general, the inner products

x̃⊤
i x̃j and x⊤

i xj

are not preserved; i.e. with high probability, the angles among the perturbed points (x̃1, . . . , x̃N ) are significantly different
from those among the original points (x1, . . . ,xN ), especially as d grows and/or σ > 0 is large.

Proof (Sketch):

i) No longer on the hypersphere. Since ∥ϵi∥ ≠ 0 almost surely, the perturbed points x̃i will not lie on Sd−1, so angles
measured in Rd w.r.t. the origin are already changed. More precisely,

∥x̃i∥2 = ∥xi + ϵi∥2 ≈ 1 + ∥ϵi∥2 + 2 (x⊤
i ϵi),

which (with probability 1) is not equal to 1. Thus, any “spherical” relationships are broken immediately.

ii) Inner products become random. Consider the inner product

x̃⊤
i x̃j = (xi + ϵi)

⊤(xj + ϵj) = x⊤
i xj + x⊤

i ϵj + x⊤
j ϵi + ϵ⊤i ϵj .

Since ϵi, ϵj are Gaussians with mean 0, each cross-term is a random variable whose distribution depends on σ2 and d.

iii) High dimension amplifies distortion. In high d with σ2 > 0, we typically have ∥ϵi∥ ≈
√
d σ, so the energy in the noise

vectors can overshadow the original norm (∥xi∥ = 1). Hence ∥x̃i∥ ≈
√
d σ, dominating any small angular differences

that originally existed among the {xi}. Even for moderate d, if σ is large enough, x̃i and x̃j become nearly orthogonal
or randomly oriented (depending on the sign and correlation among the noise). Thus, the relative angles among the
perturbed points often bear little resemblance to the original class structure.

iv) Conclusion. Because isotropic Gaussian noise in Rd shifts points off the hypersphere and injects random directions at
scale σ, it fails to preserve the original spherical relationships (both inter-class angles and intra-class distributions).
In fact, for large d or sufficiently large σ, the new angles are effectively random, destroying the class separation that
was originally encoded in angles on Sd−1.

B. Class Separation using vMF
A fundamental challenge in generative modeling on hyperspheres is ensuring class separability while preserving the
underlying geometric structure. The von Mises-Fisher (vMF) distribution provides a natural way to model directional
data while maintaining angular coherence. Unlike Gaussian noise, which distorts class boundaries by introducing random
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perturbations in Euclidean space, vMF-based modeling enforces directional consistency by concentrating samples around a
mean direction with a tunable spread controlled by the concentration parameter κ.

The following lemma establishes a probabilistic bound on class separability when data points from different classes are
modeled using vMF distributions. It quantifies how the probability of misclassification depends on κ and the angular
separation θ between class centers. This result provides a theoretical foundation for setting κ to achieve a desired classification
accuracy and demonstrates that stronger concentration (higher κ) exponentially improves separation, reinforcing the
effectiveness of vMF-based diffusion in preserving hyperspherical structure.

Lemma B.1 (Class Separation with von Mises-Fisher Distributions). Consider two classes C1 and C2 on the unit hypersphere
Sd−1, with mean directions µ1,µ2 ∈ Sd−1 separated by angle θ = arccos(µ⊤

1 µ2). Suppose data points in each class
follow von Mises-Fisher distributions with the same concentration parameter κ > 0:

p(x|µi, κ) = Cd(κ) exp(κµ
⊤
i x), i = 1, 2 (1)

where, Cd(κ) is the normalizing constant. Then:

(a) The probability of misclassification Pe (classifying a point from class 1 as belonging to class 2 or vice versa) is bounded
above by:

Pe ≤ exp(−κ(1− cos θ))

(b) For any desired error rate ϵ > 0, setting the concentration parameter as:

κ ≥ 1

1− cos θ
log

(
1

ϵ

)
guarantees that Pe ≤ ϵ.

Proof. 1. For a point x drawn from class 1, i.e., x ∼ vMF(µ1, κ), the probability density at angle ϕ from µ1 is:

p(ϕ) = Cd(κ) exp(κ cosϕ)

2. Misclassification occurs when x is closer to µ2 than to µ1. Byhyperspherical geometry, this happens when the angle ϕ
between x and µ1 exceeds θ/2.

3. Therefore, the misclassification probability is:

Pe =

∫ π

θ/2

p(ϕ) sind−2(ϕ)dϕ

where, sind−2(ϕ)dϕ is the surface element on Sd−1.

4. For ϕ ≥ θ/2, we have cosϕ ≤ cos(θ/2), thus:

Pe =

∫ π

θ/2

Cd(κ) exp(κ cosϕ) sin
d−2(ϕ)dϕ

≤ Cd(κ) exp(κ cos(θ/2))
∫ π

θ/2

sind−2(ϕ)dϕ

≤ exp(−κ(1− cos θ))

5. For part (b), solving exp(−κ(1− cos θ)) ≤ ϵ yields the required bound on κ.

Implications: (1) The bound tightens exponentially with κ. (2) Larger angular separation θ allows for smaller κ. (3) For
fixed ϵ, required κ scales inversely with class separation.
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C. Variational Bound
In typical hyperspherical diffusion, the reverse process attempts to invert the forward noising so that data points return
precisely to their original directions. By contrast, certain tasks (e.g., class-conditional generation) may demand a less rigid
constraint: as long as the final sample lies within a small hypercone around a class-specific prototype, the objective is
satisfied. We formalize this idea by modifying the standard diffusion variational bound to allow for hypercone-constrained
convergence in the reverse process.

C.1. Forward Process on the Hypersphere

We assume data z0 ∈ Sd−1 are sampled from some distribution q(z0). The forward noising process gradually transforms z0
into an approximately uniform distribution on the hypersphere by injecting von Mises–Fisher noise:

q(zt | zt−1) = vMF
(
zt−1, κt

)
, t = 1, . . . , T (2)

where, vMF(µ, κ) denotes a vMF distribution on Sd−1 with mean direction µ and concentration parameter κ ≥ 0. For large
t, κt → 0, causing the distribution q(zT | z0) to approach uniform on Sd−1.

Hence, the complete forward chain for (z0:T ) is:

q(z0:T ) = q(z0)

T∏
t=1

q(zt | zt−1) (3)

Our goal is then to reverse this process, recovering z0 from a noisy zT .

C.2. Class-Specific Hypercones and the Reverse Process

Hypercone Definition. We consider C distinct classes, each identified by a direction µc ∈ Sd−1 and an angular radius
θc ≥ 0. The class hypercone Cc(θc) is then defined as:

Cc(θc) =
{
z ∈ Sd−1 : ∠(z, µc) ≤ θc

}
(4)

Thus, each class c corresponds to all directions on a hypersphere within angular distance θc of µc.

We introduce a class-conditional reverse process that moves from zT to z0 in T steps:

pθ(z0:T | y) = pθ(z0 | z1, y)
T∏
t=1

pθ(zt | zt+1, y), (5)

where, y ∈ {1, . . . , C} is the class label. For each intermediate t ≥ 1, we let

pθ(zt−1 | zt, y) = vMF
(
mθ(zt, y), κ̃t

)
, (6)

where, mθ(zt, y) is a (learned) unit vector on the hypersphere and κ̃t is a (possibly deterministic or learned) concentration.

Class Hypercone at t = 0. Instead of insisting that z0 exactly match the original data direction, we only require that z0
lie in the appropriate class hypercone Cy(θy). Hence, we can define:

pθ(z0 | z1, y) = (truncated vMF with support in Cy(θy)
)
, (7)

so that z0 /∈ Cy(θy) has zero probability. Equivalently, one may define a suitable parametric distribution that is sharply
peaked around µy but has finite support within angle θy .

C.3. Variational Bound with Hypercone Constraint

Let z0 belong to class y. We seek to maximize pθ(z0 | y) (the likelihood of reconstructing z0 within the correct hypercone).
A standard approach introduces the forward chain as a variational distribution and applies Jensen’s inequality.
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C.4. Evidence Lower Bound (ELBO) Derivation

We start from:

log pθ(z0 | y) = log

∫
pθ(z0:T | y) dz1:T = log

∫
q(z1:T | z0, y)
q(z1:T | z0, y)

pθ(z0:T | y) dz1:T , (8)

where, q(z1:T | z0, y) =
∏T
t=1 q(zt | zt−1, y), but note that in practice q(zt | zt−1, y) usually coincides with q(zt | zt−1)

if the forward noising is class-agnostic. Applying Jensen’s inequality to the expression inside :

log pθ(z0 | y) = logEq(z1:T |z0,y)

[
pθ(z0:T | y)
q(z1:T | z0, y)

]
≥ Eq(z1:T |z0,y)

[
log

pθ(z0:T | y)
q(z1:T | z0, y)

]
(9)

Hence we define the negative ELBO:

L(θ) = Eq(z0:T |z0,y)

[
log

q(z1:T | z0, y)
pθ(z0:T | y)

]
, so that log pθ(z0 | y) ≥ −L(θ) (10)

C.5. Decomposition

By writing out q(z1:T | z0, y) and pθ(z0:T | y) explicitly, we get:

q(z1:T | z0, y) =
T∏
t=1

q(zt | zt−1, y),

pθ(z0:T | y) = pθ(z0 | z1, y)
T∏
t=1

pθ(zt | zt+1, y)

Therefore,

log
q(z1:T | z0, y)
pθ(z0:T | y)

= − log pθ(z0 | z1, y) +

T∑
t=1

[
log q(zt | zt−1, y) − log pθ(zt | zt+1, y)

]
(11)

Taking expectation under q(z0:T | z0, y) yields:

L(θ) = Eq(z0:1|z0,y)

[
− log pθ(z0 | z1, y)

]︸ ︷︷ ︸
(reconstruction into hypercone)

+

T∑
t=1

Eq(z0:T |z0,y)

[
log q(zt | zt−1, y) − log pθ(zt | zt+1, y)

]
︸ ︷︷ ︸

(KL terms between forward vMF and reverse vMF)

(12)

Hypercone Constraint. The key difference from standard hyperspherical diffusion is that

pθ(z0 | z1, y) is constrained to Cy(θy),

i.e. we ensure that z0 stays within angular distance θy of the class mean µy . Hence the “reconstruction term” − log pθ(z0 |
z1, y) does not drive the model to a single point µy, but rather to the full hypercone Cy(θy). Mathematically, this can be
implemented by a truncated vMF distribution or any parametric distribution that has zero probability outside ∠(z, µy) > θy .

C.6. Resulting Objective

Combining the above, we arrive at:

log pθ(z0 | y) ≥ −L(θ) = −Eq(z1:T |z0,y)

[
log pθ(z0 | z1, y) −

T∑
t=1

(
log pθ(zt | zt+1, y) − log q(zt | zt−1, y)

)]
(13)

If each pθ(zt | zt+1, y) is a vMF(mθ, κ̃t) and each q(zt | zt−1, y) is vMF(zt−1, κt), then each KL term has a known
closed form. The final t = 0 term effectively enforces that z0 remains in the class hypercone. Thus, the chain converges to a
distribution localized around µy , with an angular radius θy , rather than collapsing to a single direction.
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D. Uncertainty Modelling
Lemma D.1 (Equivalence of Angular Interpolation and vMF Diffusion). Let zt ∈ Sd−1 be generated by either:

1. Angular interpolation: zt = cos(θt)zt−1 + sin(θt)v, where v ∼ Uniform(Sd−1)

2. vMF sampling: zt ∼ vMF(zt−1, κt)

For κt = cot(θt), these processes generate equivalent distributions over the hypersphere.

Proof. Under angular interpolation, θt = 0 gives zt = zt−1 (perfect preservation), while θt = π/2 gives zt = v (uniform
noise). For vMF with κt = cot(θt), these correspond to κt →∞ (perfect concentration) and κt → 0 (uniform distribution)
respectively. The equivalence follows from the conditional density:

p(zt|zt−1) ∝ exp(cot(θt)z
⊤
t−1zt)

which matches the vMF density f(zt; zt−1, κt) ∝ exp(κtz
⊤
t−1zt) when κt = cot(θt).

Implications: This equivalence offers geometric (angular interpolation) and probabilistic (vMF) views of the forward
process, with κt = cot(θt) ensuring compatibility with Smooth progression θt : 0→ π/2 matches κt :∞→ 0

Lemma D.2 (Concentration of vMF Reverse Process into a Class Hypercone). Suppose we have a discrete-time reverse
Markov chain {zt}0t=T ⊂ Sd−1 defined by

zt−1 ∼ vMF
(
Π
(
zt + ηt∇zt

log f(zt; µc)
)
, κt

)
(14)

where:

1. Π(x) := x/∥x∥ is the projection onto the unit hypersphere Sd−1.

2. ∇zt log f(zt; µc) is the gradient (score function) of a density f(z;µc) that is sharply peaked around the class mean
µc ∈ Sd−1. In particular, this gradient points largely in the direction of µc − zt (where u = µc − zt ) whenever zt is
not too close to µc.

3. κt (the vMF concentration) increases over time, and ηt → 0 at a suitable rate (e.g. ηtκt →∞ but ηt → 0 as t→ 0).

Define the class hypercone of half-angle α > 0 around µc by:

Cα(µc) :=
{
u ∈ Sd−1

∣∣∣ u⊤µc ≥ cos(α)
}

Then under mild smoothness assumptions on f and the above monotonicity/decay rates for κt and ηt, the chain converges
(in distribution) into the hypercone Cα(µc) as t→ 0. Specifically, for any α > 0,

lim
t→0

P
[
zt ∈ Cα(µc)

]
= 1

Equivalently, the angle between zt and µc goes to zero with high probability.

Sketch of Proof. We outline the main arguments:

1. Directional Gradient Alignment. By assumption,∇zt log f(zt; µc) points generally toward µc for zt not close to µc.
Hence the update zt + ηt∇zt

log f rotates zt closer in angle to µc. After projection Π(·) to the hypersphere, this
remains a unit vector closer to µc than zt was.

2. Sharp Concentration under vMF. As κt →∞, vMF
(
m, κt

)
puts most of its mass around m, with the variance of

the angular distribution shrinking like 1/κt. Thus, if the mean direction Π
(
zt + ηt∇zt log f

)
is already within α of

µc, then with high probability the new sample zt−1 remains near µc.
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3. Iteration and Convergence. Given that ηt → 0, the movement per step in the hypersphere’s tangent space shrinks,
preventing large excursions away from µc. Meanwhile, κt (the concentration) grows so that each step’s sample is
drawn from an increasingly peaked distribution. Iterating backward from t = T down to t = 0, the probability of
zt being outside any cone Cα(µc) diminishes at each step. By the last steps near t = 0, zt concentrates with high
probability in the chosen hypercone around µc.

Thus, in the limit t→ 0, we conclude that zt converges in distribution to directions arbitrarily close to µc, i.e. within any
desired half-angle α. Equivalently, the angle ∠(zt, µc) goes to zero with high probability, implying limt→0 z

⊤
t µc = 1

almost surely.

Algorithm 3 Hypercone-Constrained Sampling with Learned Truncation

Require: Class label y, diffusion steps T
Require: Angular schedule {θt}Tt=1, step sizes {ηt}Tt=1

1: Sample zT ∼ Uniform(Sd−1)
2: for t = T to 1 do
3: mt ← Dϕ(zt, t, y) ▷ Predict direction
4: θy ← Cψ(zt, t, y) ▷ Predict angle
5: Ct,y ← {z : ∠(z,mt) ≤ θy}
6: ϕt ← ∠(zt,mt)
7: κt ← κmaxσ(β[θy − ϕt])
8: if t > 1 then
9: ∇zt

log f ← ScoreNetθ(zt, t, y)
10: ut ← zt + ηt∇zt

log f
11: ut ← ut/∥ut∥
12: zt−1 ∼ TvMF(ut, κt, Ct,y)
13: end if
14: end for
15: return Final sample z1

E. Brownian Motion on Hypersphere
Recent advances in continuous-time score-based generative models (Song et al., 2021; Karras et al., 2022) suggest viewing
the forward noising process as an SDE, whose time-reversal recovers the data distribution. When data reside on a hypersphere
Sd−1, an analogous approach involves constructing a Brownian motion restricted to Sd−1, then reversing it to produce
samples from the original (or a conditional) distribution. Concretely, let z(t) ∈ Sd−1 evolve for t ∈ [0, T ] such that it
follows an intrinsic Brownian motion on the hypersphere. In the simplest form,

dz(t) =
√
2σ2(t) Pz(t) dw(t), (15)

where, σ(t) ≥ 0 is a noise scale (or diffusion coefficient) and Pz(t) projects Rd increments dw(t) onto the tangent space at
z(t) ∈ Sd−1.

Spherical Forward Process and Hyperspherical Score Estimation. By choosing σ(t) such that the marginal distribution
of z(T ) approaches the uniform measure on Sd−1, we obtain a continuous analog of spherical diffusion. In practice, one
can incorporate a small drift term b(z, t) to ensure that q(z(T )) is nearly uniform, similar to the variance-preserving or
variance-exploding schedules in Euclidean SDEs (Song et al., 2021). Concurrently, we learn a score network sθ(z, t) that
approximates∇z log qt(z), using a spherical variant of score matching (Vincent, 2011).

Reverse-Time SDE and Generative Sampling. Once sθ is trained, we generate new samples by solving the reverse-time
SDE. Formally, time reversal of the forward process (15) yields

dz(t) =
[
−σ2(t) sθ(z, t)

]
dt +

√
2σ2(t) Pz(t) dw(t),
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where, t ∈ [T, 0] and dw(t) is again Brownian noise on the tangent space, and we solve backward from z(T ) ∼
Uniform(Sd−1) down to z(0). Intuitively, the term −σ2(t) sθ(z, t) acts as a drift that guides samples toward the data
manifold on the hypersphere.

Comparison to vMF Diffusion. In discrete-time spherical diffusion using vMF noise , each forward step is vMF
(
zt−1, κt

)
,

while the reverse step estimates vMF(·, κ̃t) with a learned center. Spherical Brownian motion (15) can be viewed as
the continuous limit of many small vMF perturbations. Inversely, discretizing (E) via Euler–Maruyama method yields a
small-angle vMF reverse step that remains tangent to Sd−1.

Lemma E.1. Discrete-Continuous Correspondence Let q∆t(zt+∆t|zt) be a vMF transition with concentration κ∆t. As
∆t→ 0 with κ∆t = O(1/∆t), the process converges weakly to the solution of the spherical Brownian motion SDE (15).

Handling Class Hypercones and Adaptive Freezing. Finally, to respect class geometry or hypercone constraints, one may
introduce a drift term that becomes very large (or a reflection boundary) whenever z(t) moves outside the class-constrained
cone. Alternatively, if each class y has a known center µy and angular tolerance θy , the reverse SDE (E) can incorporate a
penalty encouraging ∠(z,µy) ≤ θy , effectively “locking” ( constraining to a sub-manifold like a hypercone on the sphere)
trajectories in the appropriate region of Sd−1. Such mechanisms ensure the final sample remains class-consistent while
leveraging the flexibility and elegance of spherical Brownian motion as the underlying diffusion.

F. Beyond Geometry and Uncertainty: Retaining Image Information
For the experiment with two diffusion process, the forward (noising) step at time t can be viewed as:

αt = αt−1 + σ ϵt ; dt ∼ vMF
(
dt−1, κt

)
xt = αt dt

where, σ ϵt is a small Gaussian perturbation (e.g. ϵt∼ N (0, 1)) controlling how the magnitude spreads, and dt is sampled
from a vMF distribution centered at dt−1 with concentration κt. As t increases, κt may decrease (making directions more
diffuse), while σ can enlarge the variance of αt, allowing the embedding norm to fluctuate more widely.

Reverse (Denoising) Process. We define the reverse chain to invert both magnitude and direction back to the original
class-consistent configuration. To invert this process, we learn parameters θ that predict a suitable Gaussian mean for the
magnitude and a suitable mean direction for the vMF. Formally, we define

α̂t−1 ∼ N
(
µθ
(
αt, dt

)
, σ̃2

)
,

d̂t−1 ∼ vMF
(
mθ

(
αt, dt

)
, κ̃t

)
,

xt−1 = α̂t−1 d̂t−1

Here, µθ(·) is a neural network output that infers the ideal norm given the current αt and dt, while mθ(·)∈Sd−1 is another
network output that estimates the best directional center for the vMF.

This design provides a powerful way to incorporate both global image information and class geometry: we learn how
to denoise both magnitude (via the Gaussian) and direction (via vMF), thus recovering the class-relevant structure on
the hypersphere encoded in the angular direction while preserving essential image information encoded in α. This dual-
uncertainty approach ensures that face embeddings can vary naturally in intensity or brightness, yet remain consistent with
class geometry, capturing both how bright an image is and which identity it belongs to.

Theorem F.1. Dual-Uncertainty Preservation Let x0 ∈ Rd with α0 = ||x0|| and d0 = x0/||x0||. Under the forward
process:

αt = αt−1 + σϵt,

ϵt ∼ N (0, 1) dt ∼ vMF(dt−1, κt) xt = αtdt
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The following holds for all t ≥ 0:

E[αt − α0] = 0

Var(αt − α0) = tσ2E[dt⊤d0] =
t∏
i=1

Ad(κi)

where, Ad(κ) = Id/2(κ)/Id/2−1(κ) is the ratio of modified Bessel functions. Moreover, p(xt|x0) = p(αt|α0)p(dt|d0)

with dt ∈ Sd−1 almost surely.

G. Adaptive Class-based Hypercone Learning
Class Hypercone Setup. Each class y ∈ {1, . . . , C} is associated with a direction µy ∈ Sd−1 and an angular radius θy ≥ 0.
Hence, the class hypercone is defined by:

Cy(θy) =
{
z ∈ Sd−1 : ∠

(
z, µy

)
≤ θy

}
(16)

Forward (Noising) Process. We consider a forward chain of length T , where each step injects vMF noise:

q(z1:T | z0) =

T∏
t=1

q
(
zt | zt−1

)
, where q

(
zt | zt−1

)
= vMF

(
zt−1, κt

)
(17)

Here, κt is a (potentially decreasing) schedule that pushes zt toward uniform on Sd−1 as t grows.

Adaptive Reverse with Learned Concentration. Instead of using a fixed reverse schedule, we let

κθ(zt, y) : Sd−1×{1, . . . , C} → R≥0 (18)

be a learned function of the current state zt ∈ Sd−1 and the class y. We define the reverse model as

pθ(z0:T | y) = p
(
zT
) T∏
t=1

pθ
(
zt−1 | zt, y

)
,where pθ

(
zt−1 | zt, y

)
= vMF

(
mθ(zt, y), κθ(zt, y)

)
(19)

Here, p
(
zT
)

is uniform on the hypersphere (i.e. the limiting vMF with zero concentration), and mθ(zt, y) ∈ Sd−1 is a
learned mean direction. The key distinction is that κθ

(
zt, y

)
can grow large once zt is in the correct hypercone, effectively

“freezing” further denoising.

Example of a Freezing Mechanism. Let

α(zt, y) = ∠
(
zt, µy

)
and κθ(zt, y) = κmax σ

(
β
[
θy − α(zt, y)

])
, (20)

where, σ(·) is a monotonic squashing function (e.g. sigmoid), κmax is a large positive constant, and β > 0 controls slope. If
α(zt, y) ≤ θy , then κθ(zt, y) saturates near κmax, locking zt−1 into the hypercone Cy

(
θy
)

by making the vMF distribution
highly concentrated.

H. Experimental Details
For feature extraction, we employ different architectures based on the domain: facial representations are obtained using a
pre-trained ArcFace (Deng et al., 2019) model with iResNet50 (Duta et al., 2021) backbone, while object categories use a
CNN-based feature extractor, both producing hyperspherical embeddings. The latent space is configured with dimensions
32×32×3, balancing detail and computational efficiency. Our diffusion process uses an angular parameter θ that progresses
from 0 to π/2 across diffusion steps, with the concentration parameter κ derived as cot(θ), naturally transitioning from
high concentration (κ >> 1 at θ = 0) to a uniform distribution. For class-conditional generation, we utilize a context
dimension of 512 to encode class information. The class specific hypercone constraints are implemented through adaptive κ
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       Samples under 𝜅 with angle ⍺
       Samples under 𝜅 with angle 𝛽
       Samples under 𝜅 with angle 𝛾
       Samples under 𝜅 with angle 𝜆
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  Hypercone angle: 𝛾

α
β
४

λ

Hypercone Coverage Ratio

Measures amount of samples outside 
original class hypercone

0 <= HCR <= 1
Lower HCR : Better Perseverance
Higher HCR : Angular distortion

Hypercone Difficulty Skew

Measures spread of samples across
multiple sub-hypercone for a class

0 <= HDS <= 1
Lower HDS : Better generalization

 Higher HDS : Simplicity Bias

Figure 8. Geometric interpretation of proposed metrics HCR and HDS.

values, ranging from 0 to a class-specific maximum determined by the class angular radius θc, which is predicted by a UNet
architecture. The maximum κ follows κmax = log(1/ϵ)/(1− cos(θc)), ensuring generated samples respect class-specific
geometric structure. For training, we use the Adam optimizer with a learning rate of 1e-4 and batch size of 128, with the
model trained for 100K iterations on a single NVIDIA A100 GPU. For comparison with Gaussian based diffusion, we used
Variance preserving variant of diffusion.

H.1. Analysis of metrics

The Hypercone Coverage Ratio (HCR) and Hypercone Difficulty Skew (HDS) together offer a comprehensive framework
for evaluating generative models in terms of their alignment with the original class distribution and their ability to handle
sample difficulty.

The HCR primarily assesses whether the generative model preserves the class structure by examining the percentage of
generated samples that fall outside the class’s hypercone. A lower HCR suggests that the model is generating samples that
remain within the expected angular region of the class distribution, indicating that it faithfully reproduces the structure of
the original class. On the other hand, a higher HCR implies that the model is producing out-of-class or unrealistic samples
that deviate significantly from the class’s expected region. This could be a sign of overfitting or a failure to learn the true
distribution of the class, leading to unrealistic or poorly sampled outputs.

The HDS, in contrast, focuses on the model’s ability to balance difficulty across the generated samples. By dividing the
class’s hypercone into multiple sub-cones based on increasing angular thresholds, HDS captures how well the model
distributes its generated samples across regions of varying difficulty. The model is expected to generate a mix of easy (close
to the class mean) and hard (further from the mean) samples, reflecting the full diversity of the class. A high HDS indicates
that the model primarily generates easy samples clustered in the innermost sub-cones. This could suggest a bias towards
overfitting simpler patterns. This bias is undesirable because it fails to capture the full range of complexity in the class
distribution. Conversely, a low HDS suggests that the model is distributing its samples more evenly across different difficulty
levels, which is indicative of a more robust generative process that captures both simple and complex variations in the class.

Together, these two metrics help to paint a fuller picture of a generative model’s performance. A well-balanced generative
model should ideally have a low HCR, reflecting good preservation of class boundaries, and a moderate HDS, indicating that
it generates a variety of sample difficulties, capturing the full complexity of the class distribution. A high HCR combined
with a low HDS might indicate that the model is overly focused on easy samples, while a high HDS with a low HCR
could suggest that the model is struggling to maintain class consistency. Thus, an optimal model should strike a balance,
maintaining a good coverage of the class’s angular space without overfitting to simpler, easier samples.

H.2. Results

Reverse Denoising Comparison The results presented in Tables 3 to 5 provide a comparative analysis of Euclidean
versus angular-based reverse denoising strategies across three datasets: CIFAR-10, MNIST, and D-LORD. For all datasets,
we observe that angular-based methods, particularly those using cosine and geodesic formulations, consistently offer
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improvements or comparable performance across key metrics. Specifically, angular approaches yield lower FID scores,
indicating better sample quality. For example, FID improves from 3.52 to 3.28 on CIFAR-10 and from 1.86 to 1.77 on
MNIST. In terms of Hypercone Coverage Ratio (HCR), angular losses preserve class structure similarly or better than
MSE-based approaches, while Hypercone Difficulty Skew (HDS) values suggest that angular methods produce a more
balanced range of sample difficulty. These improvements highlight that angular loss functions better align with the intrinsic
hyperspherical nature of feature embeddings, enhancing both generation quality and class consistency. The consistency of
these trends across datasets confirms the generalizability of angular reverse denoising in hyperspherical diffusion models.

Table 3. Comparative analysis of Euclidean and Angular based reverse denoising step for CIFAR-10 dataset. Various score functions are
also used for evaluation.

Euclidean with MSE Angular with Cosine Angular with Geodesic
FID 3.52 3.28 3.35
HCR 0.20 0.20 0.19
HDS 0.48 0.51 0.47

Table 4. Comparative analysis of Euclidean and Angular based reverse denoising step for MNIST dataset.
Euclidean with MSE Angular with Cosine Angular with Geodesic

FID 1.86 1.79 1.77
HCR 0.14 0.15 0.14
HDS 0.52 0.47 0.48

Table 5. Comparative analysis of Euclidean and Angular based reverse denoising step for D-LORD dataset.
Euclidean with MSE Angular with Cosine Angular with Geodesic

FID 9.27 9.01 8.97
HCR 0.21 0.19 0.20
HDS 0.62 0.61 0.62

Effect of Scheduling κ Scheduling κ controls the rate at which class structure degrades, ensuring a smooth transition to
uniform noise. Without scheduling, any fixed κ eventually results in a uniform distribution on the hypersphere, particularly
as T increases. Gradually decaying κt preserves intra-class structure longer, aiding recovery during the reverse process.
Formally, for dt ∼ vMF(dt− 1, κt), the marginal distribution approaches uniformity as κT → 0 p(dT ) ≈ 1

|Sd−1| .
Empirical results on the effect of κ scheduling are shown in Table 6.

Feature Representation Figure 9 illustrates the feature representations of conditional samples generated from the 10
classes of the CIFAR-10 dataset. The figure highlights that the vMF-based reverse sampling effectively converges samples
within class-specific hypercones, capturing the angular geometry of the data. In contrast, Gaussian-based reverse sampling
produces samples that converge within Euclidean space, failing to adhere to the hyperspherical structure.

Facial Data Generation The Figure 10 illustrates the generated images with diversity and occlusion facial challenges
present, which is critical for robust face recognition under real-world conditions. The top section presents multiple views of
the same subject generated without occlusion, showing typical intra-subject variation. The middle section focuses on cases
with eye-region occlusion caused by sunglasses, while the bottom section includes examples of full occlusion from multiple
accessories such as hats and scarves.

Hypercone specific generation Figure 12 and Figure 13 shows samples generated from inner and outer hypercone based
on class-specific θk that determines the boundary of class. As demonstrated by the figure, the images sampled from inner
hypercone are sharp and realistic while samples generated around the boundary are noisy. Also, various samples generated
are shown in Figure 11

I. Applications
The applications of the proposed vMF-based angular diffusion are:
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Table 6. Effect of using kappa scheduler. Comparative analysis of using the kappa scheduler on two datasets for various evaluation metrics
Metric CIFAR-10 MNIST

With scheduling Without scheduling With scheduling Without scheduling
Class-wise Accuracy 89.35 72.59 96.01 86.48
FID 3.52 6.28 1.86 2.11
HCR 0.20 0.37 0.14 0.21
HDS 0.48 0.63 0.52 0.75

(a) Gaussian Diffusion (b) vMF based Diffusion

Figure 9. Feature representation of the CIFAR-10 dataset generated using Gaussian-based diffusion (left) and vMF-based diffusion (right).
The vMF-based sampling aligns generated sample features within class-specific 3D hypercones, while Gaussian-based sampling results in
scattered features outside the class-hypercones.

• Few-shot learning: Our approach improves performance by generating more diverse and class-consistent samples from
limited data.

• Fairness and bias mitigation: Manifold-aware generation allows controlled augmentation to rebalance datasets across
demographics, reducing biases.

• Face recognition robustness: Explicitly preserving directional structures helps models robustly handle variations
(occlusion, illumination, pose).

• Difficult sample generation: Controlled angular diffusion produces challenging samples near class boundaries, refining
decision boundaries and improving model reliability.
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Figure 10. Facial data synthesis demonstrates variations across occlusion, pose and resolution.

(a) MNIST

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

(b) CIFAR-10

Figure 11. Generated samples from the proposed vMF-based diffusion model trained on (a) MNIST and (b) CIFAR-10 datasets. The
samples effectively preserve class-specific information while maintaining high visual quality.
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Inner Hypercone Outer Hypercone

Figure 12. Generated samples from the inner and outer hypercones using the proposed vMF-based diffusion model trained on the MNIST
dataset. Samples from the outer hypercone exhibit noticeable noise and distortions.
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Inner Hypercone Outer Hypercone

Figure 13. Generated samples from the inner and outer hypercones using the proposed vMF-based diffusion model trained on the
CIFAR-10 dataset. Inner hypercone samples exhibit superior quality and effectively preserve class-specific information.
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