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Abstract. Due to its important potential for various clinical applica-
tions, universal organ and cancer segmentation has attracted increasing
attention recently. However, its performance is largely hindered due to
issues such as (1) partial and noisy labels from different sources and (2)
tremendously heterogeneous tumor cases. In this paper, we propose a
novel partially supervised segmentation framework by introducing the
merge − max operation for hard mining among the unlabeled classes.
Besides, to take full advantage of the expertly annotated tumor data,
we design a novel context-aware CutMix scheme to dynamically perform
tumor augmentation during training. We also introduce a useful data-
cleaning strategy for self-training and adjust the nnU-Net framework for
better efficiency. The average scores of organ DSC, organ NSD, tumor
DSC and tumor NSD on the public validation set are 92.18%, 96.33%,
46.26% and 38.65%, respectively. And we achieve scores of 93.17% (or-
gan DSC), 96.76% (organ NSD), 61.49% (tumor DSC) and 49.9% (tu-
mor NSD) on the official test set. The average inference time is 13.95
seconds, the average maximum GPU memory is 2823 MB, and the av-
erage area under the GPU memory-time curve is 14112. Collectively,
we ranked second among all submitted teams. Our code is available at
https://github.com/luckieucas/FLARE23.

Keywords: Universal organ and cancer segmentation · Merge-max op-
eration · Context-aware CutMix.

1 Introduction

Automatic multi-organ and cancer segmentation plays a vital role in computer-
aided diagnosis and treatment planning. Recently, deep learning based methods
have made remarkable progress in solving organ and tumor segmentation tasks.
However, most of them focus only on one type of tumor (e.g., liver cancer,
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kidney cancer). Pursuing a general and publicly available model for universal
abdominal organ and cancer segmentation is rarely studied. Generally, multi-
organ and cancer segmentation are faced with challenges from the following
aspects: 1) Label inconsistency and partial annotations. Since the datasets are
usually collected from different sources with varying purposes, not all the labels
are annotated, and the same organ may be labeled as different indexes in different
subsets; 2) Significant variations in the pan-cancer class. Due to different types
of cancers, the non-rigidity of tumors and different disease progression across
patients, the visual appearances of the pan-cancer class may vary dramatically
among different individuals; 3) Label noise. Due to the requirement of expertise,
noisy labels may occur in the forms of isolated points etc., especially in the
annotations of pan-cancer class. This kind of noisy data can notoriously degrade
the performance of NSD.

Many efforts have been devoted to solve the problems of label inconsistency
and partial annotations. In PaNN [22], the average organ size distributions on
the partially labeled datasets were constrained to resemble the prior statistics
obtained from the fully labeled dataset. Another method was introduced in [17],
where the non-overlapping characteristics between different organs was exploited
to design the exclusion loss. Besides the prior-knowledege-based methods, co-
training between two models with consistency constraints on soft pseudo labels
[8], and multi-scale features learned in a pyramid-input and pyramid-output net-
work [3] were both explored for partially supervised multi-organ segmentation.
To allow effective training of the inconsistently labeled data, we introduce a
merge−max operation to perform hard mining on the unlabeled classes. Con-
cretely, the labeled classes are constrained to be discriminative against each other
and the hardest unlabeled class, where the hardest unlabeled class is identified
as the index of the largest logits from the unlabeled classes.

To address the problem of tremendous intra-class variability (size, shape,
positions and visual appearances etc.) of tumors, we propose a novel context-
aware CutMix strategy to dynamically perform online tumor augmentation dur-
ing training. Specifically, we locate all the tumor objects by finding each con-
nected tumor regions, and cropping the tumor objects with neighboring regions
to form a Context-aware Tumor Object (CTO) pool. These CTOs are then fil-
tered and combined online with image cases not containing tumors for tumor
augmentation during training.

To mitigate the effect of label noise, we introduce a novel data cleaning
strategy to improve training data quality, which is proven to improve NSD seg-
mentation performance without bells and whistles. (with only a small part of the
unlabeled data, we can achieve equivalent performance compared to other meth-
ods that using all the unlabeled data. Besides, no post-processing is needed).

Our overall contributions can be summarized as follows:

– We propose a novel partially supervised segmentation framework by intro-
ducing the merge − max operation for hard mining among the unlabeled
classes.
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– We design a novel context-aware CutMix scheme to dynamically perform
tumor augmentation during training.

– We introduce a useful data-cleaning strategy for self-training and adjust the
nnU-Net framework for better efficiency.

2 Method

In this section, we will elaborate on the training protocol of our method. Firstly,
the partially labeled data is processed in a fine-resolution setting, and subse-
quently utilized to train a fine model for selecting the unlabeled data. Then a
small part of the unlabeled data with confident pseudo labels are selected and
combined with the partially labeled data to train a coarse model for final in-
ference. During training, the merge −max operation is introduced to perform
hard mining on the unlabeled classes. Moreover, a novel context-aware CutMix
is proposed for online tumor augmentation. Please note, data-cleaning is per-
formed before coarse model training. We use the summation between Dice loss
and cross-entropy loss, because compound loss functions have been proven to
be robust in various medical image segmentation [11]. We also adapt the nnU-
Net framework for better inference efficiency. Figure 1 illustrates our training
protocol.

Fig. 1. A schematic illustration of our training protocol.
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2.1 Preprocessing

We follow the standard preprocessing steps of nnU-Net to process the data before
feeding into the network. For the fine-resolution and coarse-resolution prepro-
cessing, the target spacing is (2.5,0.82,0.82) and (2.5,1.5,1.5) respectively.

2.2 Proposed Method

Hard mining for partially supervised segmentation As many organs or
tumors are not labeled in the challenge data, traditional segmentation losses
(e.g., cross-entropy loss and Dice loss) can not be directly utilized for training. To
enable effective training, we first group the data into different types considering
their annotated label configurations. In our method, CT images with the same
annotated classes are identified as the same type. During training, a certain
labeling type is first selected with a probability proportional to its amount ratio,
then a mini-batch of images from the selected type are randomly selected for
partially supervised training. In this way, the annotated parts of images in a
mini-batch are guaranteed to be the same.

Merge-max operation Mathematically, denote each input image as I ∈ RZ×H×W ,
where Z,H,W refers to the number of slices along each dimension. Then the gen-
erated logits can be denoted as P ∈ RC×Z×H×W , where C is the total number of
classes. Then P is split into labeled and unlabeled predictions Pl ∈ RCl×Z×H×W

and Pu ∈ RCu×Z×H×W , where Cl + Cu = C. Pl and Pu are further organized
into a new prediction as,

P′ = [Pl;max:C(Pu)], (1)

where [; ] refers to concatenation along the first dimension, and max:C(·) returns
the max value along the C dimension. The final reorganized predictions and
groud truth labels are of size (Cl + 1) × Z × H × W . Then traditional cross-
entropy loss and Dice loss are calculated as the training loss. Instead of using the
summation over all the unlabeled predictions, our proposed merge−max oper-
ation can help to select the hardest unlabeled class for distinguishing between
labeled classes in current mini-batch.

Context-aware CutMix for online tumor augmentation Another chal-
lenge in building a universal organ and tumor segmentation model is the lack
of context-aware tumor cases, where a large fraction of the labeled tumor cases
only contain tumors, while organs are labeled as background. To effectively take
advantage of the labeled tumor cases, we propose a novel context-aware CutMix
scheme for online tumor augmentation. Before that, we first generate pseudo
labels for the cases that only contain labeled tumors using the fine model. Then
Context-aware Tumor Objects (CTOs) are generated and processed for online
tumor augmentation.
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Unlabeled data selection Following Section 2.2, we can get the fine model trained
on the partially labeled data with fine-resolution preprocessing. Then we make
predictions and get pseudo labels for the unlabeled data. As the tumor prediction
confidence is low (<50%), we first select the most confident 1000 samples by sort-
ing their organ prediction uncertainty. Then 100 out of the 1000 cases with the
least tumor uncertainty are selected as the pseudo labeled samples for subsequent
training. On the remaining 900 cases, the tumor class is relabeled as background
for coarse model training. For details of uncertainty calculation, please refer
to [9]. Please note, we separately calculate the uncertainty for organs and tu-
mors. During the uncertainty calculation of organs, the pseudo labels generated
by the FLARE22 winning algorithm [9] and the best-accuracy-algorithm [19] are
utilized together with our fine model.

Context-aware tumor objects (CTOs) generation Since the shapes, positions,
sizes and visual appearances of tumors may vary dramatically given the different
disease types and progression in patients. Besides, for some cases, the tumors
may be widely distributed in different parts of the body. It is not reasonable to
use the tumor cases as a whole for online augmentation. To address this problem,
we propose to generate context-aware tumor objects (CTOs), where each CTO
contains only one connected tumor region. To further preserve the context of
each tumor region, the neighboring regions with a predefined size are cropped
together with the tumor object to form a context-aware tumor object. Figure 2
demonstrates some CTO slices on the transverse plane. In our paper, based
on the statistics of tumor sizes, the neighboring extension sizes are randomly
chosen between [8,16] and [24,32] along the Z and H,W dimension respectively.
The cropped CTOs are processed following the same pre-processing steps as the
coarse-resolution configurations, and saved offline for coarse model training.

Fig. 2. Some sample slices of the generated CTO on the transverse plane. The middle-
centered regions within each yellow bounding box are tumor objects. The neighboring
areas are also cropped to capture context information.

Online tumor augmentation During the training of coarse model, for image
cases with labeled tumors, they are directly optimized according to Section 2.2.
As for images without labeled tumors, the offline generated CTOs are ran-
domly selected and pasted into the abdominal regions of the current image
for loss calculation. This is referred as the context-aware CutMix. Mathemati-
cally, denote the (image, label) pair of current image and the selected CTO as
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I ∈ RZ×H×W ,Y ∈ RZ×H×W and ICTO ∈ RZ1×H1×W1,YCTO ∈ RZ1×H1×W1

respectively, where Z1, H1,W1 are varying according to the size of the selected
CTO. To perform context-aware CutMix, we first generate a zero-centered mask
M ∈ {0, 1}Z×H×W , indicating whether the voxel comes from the CTO (0) or
the current image (1). The size of the zero-value region is Z1, H1,W1. Please
note the zero-center is constrained to be inside the abdominal region in our ex-
periments. Formally, the image and label obtained using context-aware CutMix
is formulated as,

ICM = I⊙M+ ICTO ⊙ (1−M);YCM = Y ⊙M+YCTO ⊙ (1−M), (2)

where ⊙ means element-wise multiplication. ICM ,YCM are further utilized to
train the coarse model according to Section 2.2.

Data-cleaning for robust training To further improve the training data quality,
we introduce the data-cleaning strategy as follows. Firstly, we remove the very
small isolated regions (100 voxels in our case), since they could be noise. Then we
filter out the tumors that are not in the abdominal region. We further filter out
tumor objects far away from all the organs to preserve context during training.

Efficient adaptations to nnU-Net To improve the inference efficiency, we
make the following adaptations to the nnU-Net framework. We modify the crop-
ping and resampling functions in the image preprocessing stage, where Pytorch
interpolation is adopted for faster resampling. In [9], the authors assume that
organs locate in the middle of the transverse plane in CT images. Inspired by
this, we design a novel filtering strategy to filter out the sliding windows by
only predicting a small fraction of the windows in the current transverse plane.
In specific, when 2 × 2 (3 × 3) windows exist in current transverse plane, we
select the windows indexed as 0, 3 (4) as the indicator. If the selected windows
only contain the background, then the other windows within the same trans-
verse plane is directly set as background. This strategy can effectively improve
the inference efficiency, especially for large image cases.

3 Experiments and Results

3.1 Datasets and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [13][14],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [2], LiTS [1], MSD [18], KiTS [6,7], au-
toPET [5,4], TotalSegmentator [20], and AbdomenCT-1K [15]. The training set
includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
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liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [21], nnU-Net [10], and
MedSAM [12].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04 LTS
CPU Dual Intel Xeon Platinum 8168, 2.7GHz, 24 cores
RAM 1.5TB
GPU (number and type) 16x NVIDIA Tesla V100
CUDA version 11.7
Programming language Python 3.10
Deep learning framework torch 2.0, torchvision 0.15.1
Specific dependencies nnU-Net 2.0
Code https://github.com/luckieucas/FLARE23

Table 2. Training protocols.

Network initialization “He” normal initialization
Batch size 4
Patch size 32×192×192
Total epochs 1200
Optimizer SGD with nesterov momentum(µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy:(1− epoch/1000)0.9

Training time 24 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 88.62M3

Number of flops 2036G4

CO2eq 1 Kg5
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Training protocols During training, we first train a fine model on fine-resolution
data (where the target spacing is set as (2.5, 0.82, 0.82)). Then, we generate
pseudo labels for the unlabeled data using the trained fine model, and 1000
out of the 1800 unlabeled data are selected according to their organ prediction
uncertainty. 100 out of the selected 1000 samples with least tumor uncertainty
are further chosen as the pseudo labeled samples for training the coarse model
(where the target spacing is set as (2.5, 1.5, 1.5)). While on the remaining 900
cases, online tumor augmentation is performed to enhance the tumor diversity
during coarse model training. We adopt extensive data augmentations (including
rotations, elastic deformations, and random cropping) to enhance our models’
generalization capabilities. In our patch-based training, we over-sample the fore-
ground classes with the oversampling percent set as 0.7. Our training batch size
is set as 4. And the optimal models are selected based on their segmentation
performance on the public validation set. More details of the training protocol
are presented in Table 2.

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 shows the quantitative results on validation set. Our method achieves a
mean Dice Similarity Coefficient (DSC) of 88.90% and a Normalized Surface Dice
(NSD) of 92.21% on the FLARE 2023 online validation dataset. Table 4 shows
the effectiveness of using unlabeled data. One can see that by using unlabeled
data for training, the segmentation performance improved.

Table 3. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.40 ± 0.57 99.13 ± 0.99 98.39 99.15 97.26 98.17
Right Kidney 95.71 ± 8.65 95.86 ± 8.49 95.55 95.73 95.49 95.16
Spleen 98.37 ± 0.69 99.31 ± 1.20 98.47 99.51 97.71 98.81
Pancreas 88.13 ± 6.82 97.27 ± 4.79 87.50 96.91 92.03 97.99
Aorta 97.37 ± 1.64 99.13 ± 1.88 97.39 99.08 98.06 99.68
Inferior vena cava 96.01 ± 1.81 97.96 ± 2.36 95.97 97.86 96.63 98.70
Right adrenal gland 88.76 ± 2.99 97.78 ± 1.83 87.45 96.08 88.46 96.60
Left adrenal gland 88.09 ± 5.11 97.31 ± 3.58 88.01 96.58 89.59 97.15
Gallbladder 91.66 ± 7.88 92.26 ± 9.59 87.41 87.98 85.59 87.75
Esophagus 84.26 ± 14.91 92.90 ± 15.57 85.28 94.35 91.73 98.78
Stomach 93.89 ± 5.95 96.71 ± 6.57 94.74 97.52 95.00 97.81
Duodenum 86.20 ± 6.59 95.62 ± 4.53 86.87 96.13 90.99 97.82
Left Kidney 95.67 ± 5.67 95.07 ± 9.10 95.30 95.39 94.35 94.55
Tumor 52.76 ± 34.21 43.92 ± 31.68 46.26 38.65 61.49 49.90
Average Organ 92.50 ± 5.33 96.64 ± 5.42 92.18 96.33 93.17 96.76
Average 89.66 ± 7.39 92.87± 7.30 88.90 92.21 90.91 93.41
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Table 4. The effect of using unlabeled data.

Target Train without unlabeled data Train with labeled and unlabeled data
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 98.34 99.00 98.39 99.15
Right Kidney 95.20 95.84 95.55 95.73
Spleen 98.38 99.43 98.47 99.51
Pancreas 86.66 96.51 87.50 96.91
Aorta 96.99 98.61 97.39 99.08
Inferior vena cava 94.84 96.29 95.97 97.86
Right adrenal gland 87.97 97.35 87.45 96.08
Left adrenal gland 86.40 95.83 88.01 96.58
Gallbladder 84.43 84.86 87.41 87.98
Esophagus 83.72 93.08 85.28 94.35
Stomach 93.89 96.65 94.74 97.52
Duodenum 84.45 94.80 86.87 96.13
Left kidney 94.52 95.16 95.30 95.39
Tumor 42.65 34.90 46.26 38.65
Average Organ 91.20 95.65 92.18 96.33
Average 87.74 91.31 88.90 92.21

4.2 Qualitative results on validation set

We analyze the samples with relatively good predictions and those with poor
predictions. Figure 3 shows the results. Cases #0017 and #0053 are good cases,
it can be observed that the well-segmented cases have clear organ and tumor
boundaries. Case #0067 and #0035 are bad cases, they often have poor pre-
dictions of results on tumors, this may due to the large differences in tumor
size of different organs. Furthermore, when training with both labeled and unla-
beled data, the segmentation results are more consistent with the ground truth
compared to the segmentation results achieved by training with only labeled
data.

4.3 Segmentation efficiency results on validation set

The average running time in validation set is 16.10 s per case in inference phase ,
and average used GPU memory is 2823 MB. The area under GPU memory-time
curve is 18720. Table 5 lists segmentation efficiency of some typical cases.

4.4 Results on final testing set

We obtained scores of 93.17% (organ DSC), 96.76% (organ NSD), 61.49% (tu-
mor DSC), and 49.9% (tumor NSD) on the official test set. The average time
latency and memory usage on the test set were 13.95 seconds and 2823 MB, with
an average area under the GPU memory-time curve of 14112. Collectively, we
ranked second among all submitted teams.
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Fig. 3. Qualitative results on easy (case FLARETs #0017 and#0053) and hard (case
FLARETs #0035 and #0067) examples. Please note that the results in the third col-
umn are generated by the model trained using only the partially labeled data.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 15.02 2688 11549
0051 (512, 512, 100) 13.47 2962 14673
0017 (512, 512, 150) 24.04 3022 23779
0019 (512, 512, 215) 17.27 2810 19026
0099 (512, 512, 334) 19.24 2958 23661
0063 (512, 512, 448) 23.27 3020 30148
0048 (512, 512, 499) 24.74 2994 33037
0029 (512, 512, 554) 31.57 3184 43774
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4.5 Discussion on unlabeled data

In our framework, the unlabeled data contributes from the following two aspects.
Firstly, we select 100 pseudo labeled data with highest confidence to improve the
data diversity, especially for tumors. Considering that the DSC performance of
tumor is very low (less than 50%), only 100 out of the 1800 unlabeled samples
are directly utilized to guarantee the pseudo labeling quality. Secondly, to take
advantage of the confident organ parts from the unlabeled set, we select another
900 cases with best DSC performance on organs, and reset the tumor prediction
as background. During training, the 900 cases will perform online CutMix with
our generated CTOs to achieve dynamic tumor augmentation. In this way, we
can effectively utilize the unlabeled data without introducing too much labeling
noise.

4.6 Limitation and future work

We summarize the limitations of our method as follows: 1) Given that only 100
samples with tumors are utilized, the tumor cases in the unlabeled data is not
fully exploited. 2) Due to different types of cancers, the non-rigidity of tumors
and different disease progression across patients, the visual appearances of the
pan-cancer class may vary dramatically among different individuals. Therefore,
directly classifying the tumors as one unified class may be not the best choice.
To address the first issue, we will resort to the noisy learning tricks to directly
learn the knowledge from noisy pseudo labels. As for the second issue, we will try
to incorporate more prior knowledge (e.g., typical positional correlation between
each organ and the corresponding tumor) into our framework to enhance the
tumor learning process.

5 Conclusion

In this paper, we propose a novel framework to achieve universal organ and
tumor segmentation. Specifically, we introduce the merge-max operation to per-
form hard-mining on unlabeled classes. Furthermore, to properly utilize the la-
beled tumor cases, we propose a novel context-aware CutMix scheme. This online
tumor augmentation strategy is demonstrated to boost the segmentation perfor-
mance. We further validate that the data cleaning step is crucial to improve the
NSD performance, especially for organs.
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