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ABSTRACT

Depth estimation from a monocular 360◦ image is a burgeoning problem as a
360◦ image provides holistic sensing of a scene with a wide field of view. Re-
cently, some methods, e.g., OmniFusion, have applied the tangent projection (TP)
to represent a 360◦ image and predicted depth values via patch-wise regressions,
which are merged to get a depth map with equirectangular projection (ERP) for-
mat. However, these methods suffer from 1) non-trivial process of merging a
large number of patches; 2) less smooth and accurate depth results caused by ig-
noring the holistic contextual information contained only in the ERP image and
directly regressing the depth value of each pixel. In this paper, we propose a
novel framework, HRDFuse, that subtly combines the potential of convolutional
neural networks (CNNs) and transformers by collaboratively learning the holis-
tic contextual information from the ERP and the regional structural information
from the TP. Firstly, we propose a spatial feature alignment (SFA) module that
learns feature similarities between the TP and ERP to aggregate the TP features
into a complete ERP feature map in a pixel-wise manner. Secondly, we propose
a collaborative depth distribution classification (CDDC) module that learns the
holistic-with-regional histograms capturing the ERP and TP depth distributions.
As such, the final depth values can be predicted as a linear combination of his-
togram bin centers. Lastly, we adaptively combine the depth predictions from two
projections to obtain the final depth map. Extensive experiments on three bench-
mark datasets show that our method achieves more smooth and accurate depth
results while favorably surpassing the SOTA methods by a significant margin.

1 INTRODUCTION

The 360◦ camera is becoming increasingly popular as a 360◦ image provides holistic sensing of a
scene with a wide field of view (FoV) Ai et al. (2022). Therefore, the ability to infer the 3D struc-
ture of a 360◦ camera’s surroundings has sparked the research for monocular 360◦ depth estima-
tion Wang et al. (2020). Generally, raw 360◦ images are transmitted into 2D planar representations
while preserving the omnidirectional information Yoon et al. (2022). Equirectangular projection
(ERP) is the most commonly used projection format and can provide a complete view of a scene.
Cubemap projection (CP) Cheng et al. (2018) projects 360◦ contents into six discontinuous faces
of a cube to reduce the distortion; thus, the pre-trained 2D convolutional neural networks (CNNs)
can be applied. However, ERP images suffer from severe distortions in the polar regions, while CP
patches are hampered by geometric discontinuity and limited FoV.

For this reason, some works Zioulis et al. (2018); Zhuang et al. (2021) have proposed distortion-
aware convolution filters to tackle the ERP distortion problem for depth estimation. BiFuse Wang
et al. (2020) and UniFuse Jiang et al. (2021) explore the complementary information from the ERP
image and CP patches to predict the depth map.

Recently, research has shown that it is promising to use tangent projection (TP) because TP patches
have less distortion, and many pre-trained CNN models designed for perspective images can be
directly applied Eder et al. (2020). Accordingly, 360MonoDepth Rey-Area et al. (2021) predicts
the patch-wise depth maps from a set of TP patches using the state-of-the-art (SOTA) perspective
depth estimators, which are aligned and merged to obtain an ERP format depth map. OmniFusion Li
et al. (2022) proposes a framework leveraging CNNs and transformers to predict depth maps from

1



Under review as a conference paper at ICLR 2023

(a) The overview of our HRDFuse (b) Monocular 360◦ depth estimation

Figure 1: (a) Our HRDFuse employs the SFA module to align the regional information in discrete
TP patches and holistic information in a complete ERP image. The CDDC module is proposed to
estimate ERP format depth outputs from both the ERP image and TP patches based on holistic-with-
regional depth histograms. (b) Compared with OmniFusion Li et al. (2022), our depth predictions
are more smooth and more accurate.

the TP inputs and merges these patch-wise predictions to the ERP space based on geometric prior
information to get the final depth output with ERP format. However, these methods suffer from two
critical limitations because: 1) geometrically merging a large number of patches is computationally
heavy; 2) they ignore the holistic contextual information contained only in the ERP image and
directly regress the depth value of each pixel, leading to less smooth and accurate depth estimation
results.

To tackle these issues, we propose a novel framework, called HRDFuse, that subtly combines the
potential of convolutional neural networks (CNNs) and transformers by collaboratively exploring
the holistic contextual information from the ERP and regional structural information from the TP
(See Fig. 1(a) and Fig. 2). Compared with previous methods, our method achieves more smooth
and more accurate depth estimation results while maintaining high efficiency with three key com-
ponents. Firstly, for each projection, we employ a CNN-based feature extractor to extract spatially
consistent feature maps and a transformer encoder to learn the depth distribution with long-range
feature dependencies. In particular, to efficiently aggregate the individual TP information into an
ERP space, we propose a spatial feature alignment (SFA) module to learn a spatially aligned index
map based on feature similarities between ERP and TP. With this index map, we can efficiently
measure the spatial location of each TP patch in the ERP space and achieve pixel-level fusion of
TP information to obtain a smooth output in ERP format. Secondly, we propose a collaborative
depth distribution classification (CDDC) module to learn the holistic depth distribution histogram
from the ERP image and regional depth distribution histograms from the collection of TP patches.
Consequently, the pixel-wise depth values can be predicted as a linear combination of histogram bin
centers. Lastly, the final depth map is the adaptive fusion of two ERP format depth predictions from
ERP and TP.

We conduct extensive experiments on three benchmark datasets: Stanford2D3D Armeni et al.
(2017), Matterport3D Chang et al. (2017), and 3D60 Zioulis et al. (2018). The results show that
our method can predict more smooth and more accurate depth results while favorably surpassing the
existing methods by a significant margin (See Fig. 1(b) and Tab. 1). In summary, our main contri-
butions are three-fold: (I) We propose HRDFuse that combines the holistic contextual information
from the ERP and the regional structural information from the TP. (II) We introduce the SFA mod-
ule to efficiently aggregate the TP features into the ERP format, relieving the need for expensive
re-projection operations. (III) We propose the CDDC module to learn the holistic-with-regional
depth distributions and estimate the depth value based on the histogram bin centers. (IV) Our exper-
imental results on three benchmark datasets show that our method achieves new SOTA performance.
Our project code will be publicly available upon acceptance.

2 RELATED WORK

Monocular 360 Depth Estimation ERP-based methods: To address the spherical distortion in the
ERP images, endeavours have been made to leverage the characteristics of convolutional filters.
OmniDepth Zioulis et al. (2018) applies row-wise rectangular filters to cope with the distortions
in different latitudes, while ACDNet Zhuang et al. (2021) leverages a group of dilated convolution
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filters to rectify the receptive field. Tateno et al. Tateno et al. (2018) explored the standard convo-
lution filters trained with the perspective images, and deformed the shape of sampling grids based
on spherical distortion accordingly during the inference. SliceNet Pintore et al. (2021) partitions an
ERP image into vertical slices and directly applies the standard convolutional layers to predict the
ERP depth map. Combination of CP and ERP: BiFuse Wang et al. (2020) proposes to bidirection-
ally fuse the ERP and CP features at both encoding and decoding stages. By contrast, UniFuse Jiang
et al. (2021) fuses the features only at the encoding stage as it is argued that ERP features are more
important for final ERP format depth prediction. Differently, Bai et al. (2022) employs CNNs to
extract ERP features and a transformer block Dosovitskiy et al. (2021) to extract CP features, which
are fused to predict the final depth map. TP-based methods: TP is recently shown to suffer less from
distortion, and the pre-trained CNN models designed for perspective images can be directly applied.
Accordingly, 360MonoDepth Rey-Area et al. (2021) and OmniFusion Li et al. (2022) build their
frameworks based on the TP patches. For more details, we refer readers to a recent survey Ai et al.
(2022). Compared with these methods, our HRDFuse combines the potential of CNNs and trans-
formers by collaboratively learning the holistic contextual information from the ERP image and
regional structural information from the TP patches. Our method achieves new SOTA performance
on three benchmark datasets.

Distribution-based Perspective Depth Estimation Many methods estimate depth by directly re-
gressing the depth values; however, they suffer from slow convergence, and deficiency of global
analysis Laina et al. (2016b); Lee et al. (2021). For this reason, Fu et al. (2018) discretized the
depth range into several pre-determined intervals and recast depth prediction as an ordinal regression
problem, which accounts the depth distributions depending on the located intervals. Adabins Bhat
et al. (2021) divides the depth range into many adaptive bins whose widths are computed from the
scene information, and the depth values are a linear combination of the bin centers, showing better
performance over previous methods. Our HRDFuse is the first to explore the idea of depth distribu-
tion classification for 360◦ depth estimation. The proposed CDDC module learns the holistic depth
distributions from the ERP image and regional depth distributions from the collection of TP patches.
As such, the final depth values are predicted as a linear combination of bin centers.

Vision Transformer Transformers are capable of modeling the long-range dependencies for com-
puter vision tasks Dosovitskiy et al. (2021). Recently, it has been shown that the combination of
convolutional operations and self-attention mechanisms further enhance the representation learn-
ing. For instance, DeiT Touvron et al. (2021) employs a CNN as the teacher model to distill the
tokens to the transformer, while DETR Carion et al. (2020) models the global relationship via se-
rially feeding the features extracted by CNNs to the transformer encoder-decoder. Moreover, some
works,e.g., Peng et al. (2021); Chen et al. (2021) attempted to concurrently fuse the features from
CNNs and transformers. Our HRDFuse framework is also built based on the combination of CNNs
and transformers; however, it shares a different spirit as we focus on ensuring network efficiency.
For this reason, we extract the high-resolution feature maps using a CNN-based encoder-decoder
and feed them to a smaller transformer encoder Dosovitskiy et al. (2021) to estimate distributions.

3 METHODOLOGY

Overview. As depicted in Fig. 2, to exploit the complementary information from holistic context
and regional strcuture, our framework simultaneously takes two projections of a 360◦ image, an
ERP image and N TP patches, as inputs. For the ERP branch (See Fig. 2 Top), an ERP image with
the resolution of H ×W is fed into a feature extractor, comprised of an encoder-decoder block, to
produce a decoded ERP feature map FERP. For the TP branch (See Fig. 2 Bottom), N TP patches
are first obtained with gnomonic projection Eder et al. (2020). Then, these TP patches are passed
through the TP feature extractor to obtain 1-D patch feature vectors {Vn, n = 1, . . . , N}, which are
passed through the TP decoder to obtain the TP feature maps

{
FTP
n , n = 1, . . . , N

}
.

To determine and align the spatial location of each TP patch in the ERP space, we propose the spatial
feature alignment (SFA) module (See Fig. 2) to learn feature correspondences between pixel vectors
in the ERP feature map FERP and patch feature vectors {Vn}. This way, we can obtain the spatially
aligned index map M , recording the location of each patch in the ERP space.

Next, the index map M , ERP feature map FERP, and TP feature maps
{
FTP
n

}
are fed into the

proposed collaborative depth distribution classification (CDDC) module that accordingly outputs
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Figure 2: Overview of our HRDFuse, consisting of three parts: feature extractors for both ERP and
TP inputs, spatial feature alignment (SFA) module, and collaborative depth distribution classification
(CDDC) module (See Fig. 3 for details).

two ERP format depth predictions (See Fig. 3). In principle, the CDDC module first learns holistic-
with-regional histograms to simultaneously capture depth distributions from the ERP image and a
set of TP patches. Consequently, the depth distributions are then converted to depth values through
a linear combination of bin centers. Lastly, the two depth predictions from the CDDC module are
adaptively fused to output the final depth result. We now describe these modules in detail.

3.1 FEATURE EXTRACTION

Overall, taking the ERP image and a collection of TP patches as inputs, the feature extractor of
the ERP branch outputs the decoded feature map FERP, and the feature extractor of the TP branch
produces encoded patch feature vectors {Vn} and decoded TP feature maps

{
FTP
n

}
.

Specifically, for the ERP branch (Fig. 2 Top), we design the feature extractor with an encoder-
decoder network, following the design of OmniFusion Li et al. (2022). It consists of an encoder
built with the pre-trained ResNet34 He et al. (2016), a multi-head self-attention block Vaswani et al.
(2017), and a decoder with commonly used up-sampling blocks. This way, we obtain the decoded
feature map FERP.

For the TP branch, we first sample TP patches from the sphere via gnomonic projection Ai et al.
(2022); Eder et al. (2020). The details can be found in the appendix. Secondly, we feed the patches
simultaneously into the feature extractor, similar to the ERP branch but without the multi-head self-
attention block, which helps to maintain the independence of each patch feature vector for spatial
feature alignment. As such, we extract the patch feature vectors {Vn} through the encoder and
obtain the decoded patch feature maps

{
FTP
n

}
. The resolutions of the ERP feature map FERP and

TP feature maps
{
FTP
n

}
are set to half of the corresponding input resolutions for efficiency.

3.2 SPATIAL FEATURE ALIGNMENT

With ERP feature map FERP and patch feature vectors {Vn}, our SFA module outputs the spatially
aligned index map M . It determines the spatial relations between TP patches and pixel positions in
the ERP space according to the feature similarity score ranking (See Fig. 2) and can be applied to
achieve smooth pixel-wise fusion of individual TP information. Existing works aggregate the discrete
TP information into the complete ERP space via geometric fusion Li et al. (2022); Rey-Area et al.
(2021). However, they are less capable of predicting smooth equirectangular depth outputs without
holistic contextual information. For instance, as shown in Fig. 1(b), depth predictions in OmniFusion
suffer from severe artifacts along the edges of the merged regions. For this reason, we propose the
SFA module to measure, rank, and record the pixel-wise similarities between the ERP feature map
FERP and patch feature vectors {Vn}. The pixel-wise similarity can be formulated as

s(i,j),k =

−−−−−−−→
FERP(i, j) ·

−→
Vk

∥FERP(i, j)∥ ∥Vk∥
, (1)

where (i, j) is the coordinate of a pixel in the ERP feature map and k is the TP patch index. As
depicted in Fig. 2, for each feature vector FERP(i, j) in the ERP feature map, our SFA module
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calculates the cosine similarity score s(i,j),k between FERP(i, j) and each patch feature vector Vk.
Then, it ranks the scores, selects the m-th patch that satisfies:

m = argmax
k

s(i,j),k, (2)

and records the index m of the pixel location (i, j) on the spatially aligned index map M . For
convenience, we extend each index into an N-dimension one-hot vector and transform the resolution
size of index map M to he × we, where (he, we) is the resolution size of ERP feature map FERP.
Note that this spatially aligned index map is produced with the guidance of the holistic contextual
information only contained in the ERP image. With this index map, we can efficiently aggregate the
TP features into an ERP format feature map while maintaining spatial consistency.

3.3 COLLABORATIVE DEPTH DISTRIBUTION CLASSIFICATION

Figure 3: Overview of the CDDC module with two steps:
depth distribution histogram classification, and depth pre-
diction combination based on the range attention maps.

The proposed CDDC module re-
places the pixel-wise depth value re-
gression with depth distribution clas-
sification, inspired by the works for
perspective images Bhat et al. (2021);
Fu et al. (2018). Importantly, to fully
exploit the complete view in the ERP
image and structural details in the
less-distorted TP patches, we marry
the potential of CNNs and transform-
ers to learn the holistic-with-regional
histograms capturing the ERP and TP
depth distributions simultaneously.

In the following, we introduce our
CDDC module in three parts: generic
depth distribution classification,
depth prediction based on the holistic
depth distribution, and depth pre-
diction based on the regional depth
distributions.

Generic depth distribution clas-
sification. Following previous
works Bhat et al. (2021); Fu et al.
(2018), given an extracted feature map F ∈ RH×W×Cin (e.g., FERP in Fig 3(a)), a sequence of
embedding tokens Tin is obtained from F by a convolutional layer followed by a spatially flattening
module. A transformer encoder then encodes the embedding tokens Tin, producing processed
tokens Tout. Note that the processed tokens Tout now benefit from the global context and thus
can accurately capture the depth distribution. Then the first token Tout[0] from Tout is selected to
predict the bin centers c of depth distribution histograms (e.g., cH in Fig 3(a)) as:

ci = Dmin + (wi/2 +

i−1∑
j=1

wj), (3)

wi = (Dmax −Dmin)
(mlp(Tout[0]))i + ϵ∑B
j=1 (mlp(Tout[0]))j + ϵ

, (4)

where i, j = 1, . . . , B, w is the bin widths of the distribution histogram, mlp denotes a multi-layer
perceptron (MLP) head with a ReLU activation, (Dmin, Dmax) is the depth range of the dataset, B
denotes the number of depth distribution bins, and ϵ is a small constant to ensure that each value of
w is positive. Finally, the bin centers c are linearly blended with a probability score map P (e.g.,
PH in the Fig 3(a)) to predict the depth value at each pixel (i, j):

D(i, j) =

B∑
b=1

P (i, j)b · cb. (5)
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(a) RGB (b) UniFuse (c) OmniFusion (d) HRDFuse(ours) (e) GT

Figure 4: Qualitative results on Matterport3D (top), Stanford2D3D (middle), and 3D60 (bottom).

We will detail the computation of P respectively in the following subsections.

Holistic distribution-based depth prediction. As depicted in Fig. 3a, we follow the process of
generic depth distribution classification to predict the holistic depth bin centers cH . We then per-
form the following steps to obtain the holistic probability score map PH . First, we select a part of
processed tokens, which are the output of the transformer encoder and contain global context, as
the “query” embedding TH . At the same time, we encode a spatially consistent feature map FH

containing local pixel-wise information as the “keymap”. Next, we calculate the dot-production
between the query TH and pixel features in FH to obtain a range attention map RH . This range
attention map RH thus contains global context and is spatially aligned with the ERP feature map.
Then RH is passed through a 1 × 1 convolutional layer with a softmax activation to predict the
probability score map PH . Given holistic depth bin centers and probability score map, we can now
calculate the holistic depth map following Eq. 5. Note that the ERP feature map is with the half
resolution of the input ERP image to limit GPU memory usage. Therefore, we additionally employ
an up-sampling module to upscale the probability score map to the desired resolution (i.e., H×W ).

Regional distribution-based depth prediction. Compared with the ERP branch, predicting an ERP
format depth map from TP patches based on corresponding regional depth distributions meets two
critical difficulties: 1) accurate and smooth fusion of individual TP patches; 2) capturing the holistic
information for the ERP format depth output. To address them, we utilize the spatially aligned index
map M from the SFA module and the holistic query embedding TH from the ERP branch (See
Fig. 3b). We first follow the generic depth distribution classification to collect regional depth bin
centers from the collection of TP feature maps

{
FTP
n

}
and concatenate them to obtain the tensor

cR with the size B × N . Then, with the spatial guidance of index map M , we can obtain an ERP
format bin center map Mc from cR as:

Mc(i, j) =

N∑
n=1

M(i, j)n · cRn (6)

where (i, j) is the pixel coordinate, and n is the patch index. The bin center map Mc represents the
depth distribution of each pixel with aggregated regional structural information.

Meanwhile, we concatenate and average a collection of processed regional tokens, which record the
regional structural information of each individual TP patch, to a tensor TR. Similarly, the index
map M then helps to aggregate the regional structure in TR to a regional feature map Mkey . Next,
with Mkey as the “keymap” and TH as the “query”, we can predict the regional probability score
map PR and further output the ERP format regional depth map DR. Note that the query embedding
TH from the ERP branch provides necessary and favorable holistic guidance. Due to the page limit,
more details can be found in the appendix.

3.4 THE FINAL OUTPUT AND LOSS FUNCTION

To obtain the final depth map, we adaptively fuse the depth prediction DH from the holistic contex-
tual branch and depth prediction DR from the regional structural branch, which can be formulated
as follows:

D = w0D
H + w1D

R, (7)
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Table 1: Quantitative comparison with the SOTA methods. ∗ represents that the model is re-trained
following the official setting.

Datasets Method Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Stanford2D3D

FCRN Laina et al. (2016a) −/− 0.1837 - 0.5774 - 0.7230 0.9207 0.9731
RectNet Zioulis et al. (2018) −/− 0.1996 - 0.6152 - 0.6877 0.8891 0.9578

BiFuse with fusion Wang et al. (2020) −/− 0.1209 - 0.4142 - 0.8660 0.9580 0.9860
UniFuse with fusion Jiang et al. (2021) −/− 0.1114 - 0.3691 - 0.8711 0.9664 0.9882

OmniFusion (1-iter) Li et al. (2022) 256× 256 / 80◦ 0.0961 0.0543 0.3715 0.1699 0.8940 0.9714 0.9900
OmniFusion (2-iter) Li et al. (2022) 256× 256 / 80◦ 0.0950 0.0491 0.3474 0.1599 0.8988 0.9769 0.9924

HRDFuse,Ours 128× 128 / 80◦ 0.0984 0.0530 0.3452 0.1465 0.8941 0.9778 0.9923
HRDFuse,Ours 256× 256 / 80◦ 0.0935 0.0508 0.3106 0.1422 0.9140 0.9798 0.9927

Matterport3D

FCRN Laina et al. (2016a) −/− 0.2409 - 0.6704 - 0.7703 0.9714 0.9617
RectNet Zioulis et al. (2018) −/− 0.2901 - 0.7643 - 0.6830 0.8794 0.9429

BiFuse with fusion Wang et al. (2020) −/− 0.2048 - 0.6259 - 0.8452 0.9319 0.9632
UniFuse with fusion Jiang et al. (2021) −/− 0.1063 - 0.4941 - 0.8897 0.9623 0.9831

OmniFusion (1-iter) Li et al. (2022) 256× 256 / 80◦ 0.0980 0.0611 0.4536 0.1587 0.9040 0.9757 0.9919
OmniFusion (2-iter) Li et al. (2022) 256× 256 / 80◦ 0.0900 0.0552 0.4261 0.1483 0.9189 0.9797 0.9931

OmniFusion (1-iter) * 256× 256 / 80◦ 0.1054 0.0992 0.4548 0.1713 0.9061 0.9650 0.9834
OmniFusion (2-iter) * 256× 256 / 80◦ 0.1007 0.0969 0.4435 0.1664 0.9143 0.9666 0.9844

HRDFuse,Ours 128× 128 / 80◦ 0.0967 0.0936 0.4433 0.1642 0.9162 0.9669 0.9844
HRDFuse,Ours 256× 256 / 80◦ 0.0981 0.0945 0.4466 0.1656 0.9147 0.9666 0.9842

3D60

FCRN Laina et al. (2016a) −/− 0.0699 0.2833 - - 0.9532 0.9905 0.9966
RectNet Zioulis et al. (2018) −/− 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979

Mapped Convolution Eder et al. (2019) −/− 0.0965 0.0371 0.2966 0.1413 0.9068 0.9854 0.9967
BiFuse with fusion Wang et al. (2020) −/− 0.0615 - 0.2440 - 0.9699 0.9927 0.9969
UniFuse with fusion Jiang et al. (2021) −/− 0.0466 - 0.1968 - 0.9835 0.9965 0.9987

ODE-CNN Cheng et al. (2020) −/− 0.0467 0.0124 0.1728 0.0793 0.9814 0.9967 0.9989
OmniFusion (1-iter) Li et al. (2022) 128× 128 / 80◦ 0.0469 0.0127 0.1880 0.0792 0.9827 0.9963 0.9988
OmniFusion (2-iter) Li et al. (2022) 128× 128 / 80◦ 0.0430 0.0114 0.1808 0.0735 0.9859 0.9969 0.9989

HRDFuse,Ours 128× 128 / 80◦ 0.0363 0.0103 0.1565 0.0594 0.9888 0.9974 0.9990
HRDFuse,Ours 256× 256 / 80◦ 0.0358 0.0100 0.1555 0.0592 0.9894 0.9973 0.9990

where w0 and w1 are learnable parameters and w0 + w1 = 1 (superiority of adaptive weighting
is shown in Table. 6). Following previous works Li et al. (2022); Jiang et al. (2021), we adopt
BerHu loss Laina et al. (2016b) for pixel-wise depth supervision, denoted as Ldepth. Furthermore,
to encourage the holistic distribution to be consistent with all depth values in the ground truth depth
map, we adopt the commonly used bi-directional Chamfer loss Fan et al. (2016) as the holistic
distribution loss LHbin

. Therefore, the total loss Ltotal can be written as:

Ltotal = Ldepth + λLHbin
, (8)

where λ is a weight factor and set to 0.1 for all experiments empirically Bhat et al. (2021).

4 EXPERIMENTS

Datasets and Metrics. We conduct experiments on three benchmark datasets: Stanford2D3D Ar-
meni et al. (2017), Matterport3D Chang et al. (2017), and 3D60 Zioulis et al. (2018). Note that
Stanford2D3D and Matterport3D are real-world datasets, while 3D60 is composed of two synthetic
datasets (SUNCG Song et al. (2016) and SceneNet Handa et al. (2016)) and two real-world datasets
(Stanford2D3D and Matterport3D).

Following previous works Li et al. (2022); Wang et al. (2020), we evaluate our method with the
standard metrics: Absolute Relative Error (Abs Rel), Squared Relative Error (Sq Rel), Root Mean
Squared Error (RMSE), Root Mean Squared Logarithmic Error (RMSE (log)), as well as a percent-
age metric with a threshold δt, where t ∈ {1.251, 1.252, 1.253}. Due to the lack of space, the details
of datasets and metrics can be found in the appendix.

Implementation Details. We implement our method using Pytorch and train it on a single NVIDIA
3090 GPU. We use ResNet-34 He et al. (2016), pre-trained on ImageNet Deng et al. (2009), as
the encoder. Following Li et al. (2022), we use Adam Kingma & Ba (2014) optimizer with co-
sine annealing Loshchilov & Hutter (2016) learning rate policy and set the initial learning rate to
10−4. The default TP patch number is N = 18, and the batch size is 4. We train 80 epochs
for Stanford2D3D Armeni et al. (2017) and 60 epochs for Matterport3D Chang et al. (2017), and
3D60 Zioulis et al. (2018). The input images are augmented only by horizontal translation and
vertical flipping.
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Table 2: The ablation results for individual components.
Methods FPS #Params Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑
ERP branch only 2.88 33.57M 0.1028 0.0985 0.4543 0.9086 0.9658 0.9841

TP branch only 2.56 37.09M 0.1018 0.0982 0.4492 0.9104 0.9662 0.9842

ERP branch + TP branch+ geometric fusion 2.82 70.66M 0.0986 0.0944 0.4466 0.9141 0.9664 0.9843

ERP branch +TP branch + SFA 6.21 49.95M 0.0991 0.0956 0.4479 0.9132 0.9666 0.9843

ERP branch +TP branch + SFA + CDDC 5.52 53.77M 0.0967 0.0936 0.4433 0.9162 0.9669 0.9844

4.1 COMPARISON WITH THE STATE-OF-THE-ARTS

In Table. 1, we compare our HRDFuse with the SOTA methods on three benchmark datasets. For a
fair comparison, we do not discuss self-supervised methods Vaswani et al. (2017); Lai et al. (2021).
Note that OmniFusion did not provide the pre-trained models on the Matterport3D dataset, so we
re-trained them with the official hyper-parameters. For all the datasets, we show the results of the
proposed HRDFuse with TP patch sizes of 128× 128 and 256× 256.

As shown in Table. 1, our HRDFuse performs favorably against the SOTA methods Li et al.
(2022); Jiang et al. (2021); Wang et al. (2020); Zioulis et al. (2018); Laina et al. (2016a) by a
significant margin on all three datasets. Specifically, for the Stanford2D3D dataset, our HRDFuse
with the patch size of 256 × 256 outperforms UniFuse Jiang et al. (2021) by 16.07% (Abs Rel),
15.85% (RMSE), and 4.29% (δ1). Compared with OmniFusion (2-iter), our HRDFuse improves
RMSE(log) by 11.07% and δ1 by 1.52%.

For Matterport3D and 3D60 datasets, which contain more samples, our HRDFuse is more advan-
tageous and surpasses the compared methods for all metrics. On the Matterport3D dataset, our
HRDFuse with the patch size 128 × 128 outperforms UniFuse by 2.65% (δ1), 9.03% (Abs Rel),
and outperforms OmniFusion (2-iter) by 3.97%(Abs Rel), 3.41% (Sq Rel). On the 3D60 dataset,
HRDFuse with the patch size 256 × 256 outperforms UniFuse by 23.18% (Abs Rel) and 20.99%
(RMSE), and outperforms OmniFusion (2-iter) by 16.74% (Abs Rel) and 13.99% (RMSE).

In Fig. 4, we present the qualitative comparison with UniFuse 4(b) and OmniFusion 4(c). As demon-
strated in the figure, our HRDFuse 4(d) can recover more regional structural details (e.g., leaves and
seats) and suffer less from artifacts caused by the discontinuity among TP patches (see red boxes).
More qualitative comparisons can be found in the appendix.

4.2 ABLATION STUDY AND ANALYSES

The effectiveness of each module. We verify the effectiveness of each module in our HRDFuse

Table 3: The ablation results for the TP patch size
and FoV.

Patch FoV Patch size Abs Rel ↓ Sq Rel ↓ RMSE ↓

60 128×128 0.0986 0.0961 0.4454
256×256 0.0986 0.0942 0.4448

80 128×128 0.0967 0.0936 0.4433
256×256 0.0981 0.0945 0.4466

100 128×128 0.0970 0.0938 0.4453
256×256 0.0979 0.0940 0.4458

by adding one module each time (Table. 2). We
form our baselines in three ways. Firstly, for
the ERP branch-only baseline, we directly em-
ploy the feature extractor to obtain the decoded
feature map and add a convolutional layer, fol-
lowed by a commonly used up-sampling block,
to regress the depth map. Secondly, with only
the TP branch, we add the geometric fusion, as
done in Li et al. (2022), to the feature extractor
to obtain the ERP format depth map. Thirdly,
we combine the ERP branch and TP branch,
followed by the geometric fusion mechanism
in Li et al. (2022). Based on this, we then add the SFA module. Here, we directly leverage the
spatially aligned index map to aggregate the patch feature vectors Vn into an ERP feature map and
predict the depth map, without employing the decoder (see Fig. 2) or the geometric fusion module
of Li et al. (2022) in the TP branch. Lastly, we add the CDDC module to learn the holistic-with-
regional depth distributions.

As shown in Table. 2, with the ERP branch alone, it is difficult to alleviate the projection distortion,
thus leading to the worst depth estimation performance. The performance improves when using the
TP branch only due to less distortion, and is further improved by the fusion of the ERP branch and
TP branch (with the geometric fusion mechanism). Furthermore, by introducing the SFA module,
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the network parameters are significantly reduced by 29.31%, leading to more than three frames per
second (fps) gain in inference speed. When the CDDC module is finally added, the performance is
further boosted by 2.42%(Abs Rel) and 2.09%(Sq Rel), although the parameters slightly increase.

Patch size, FoV, and the number of patches of TP. They are essential parameters and can di-
rectly affect the accuracy and efficiency of our method. Therefore, we study their impact and find
an optimal balance between efficiency and performance. Following Li et al. (2022), we fix the
patch number as 18 and study how TP patch size affects the learning under multiple patch FoVs.

Table 4: The ablation results for the number of TP patches.
Number Patch size/FoV Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑

10

128×128 / 80◦

0.0996 0.0965 0.4491 0.9130 0.9664
18 0.0967 0.0936 0.4433 0.9162 0.9669
26 0.0978 0.0945 0.4444 0.9151 0.9670
46 0.1232 0.1178 0.4996 0.8780 0.9563

10

256×256 / 80◦

0.0976 0.0948 0.4447 0.9152 0.9668
18 0.0981 0.0945 0.4466 0.9147 0.9666
26 0.0974 0.0953 0.4478 0.9147 0.9662
46 0.0966 0.0938 0.4432 0.9168 0.9668

As shown in Table 3, on the Mat-
terport3D dataset, all the results with
the patch size of 128 × 128 per-
form better than those of 256 × 256,
which indicates that too large patch
size may cause the redundancy of re-
gional structural information and de-
grade the accuracy of the final ERP
format output. Meanwhile, we can
observe the influence of patch FoV in
Table 3: either too small patch FoV or too large patch FoV degrades the performance. When FoV
is too small, the regional information in each TP patch would be insufficient; in contrast, too large
FoV will increase the inconsistency in the overlapping areas between adjacent TP patches.

Furthermore, as the number of TP patches and the computational memory cost are directly related,

Table 5: The ablation study for the number B of
depth distribution histogram bins.

Number of bins Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑
20 0.0997 0.0963 0.4502 0.9132 0.9661
50 0.0971 0.0939 0.4454 0.9159 0.9665
100 0.0967 0.0936 0.4433 0.9162 0.9669
150 0.0997 0.0948 0.4497 0.9121 0.9662
300 0.0999 0.0959 0.4476 0.9131 0.9666

we fix the patch size and FoV to compare the
depth results with different patch numbers such
that we can find the most cost-effective patch
number. As shown in Table. 4, too few patches
can not provide sufficient regional structural in-
formation, while too many patches lead to the
redundancy of regional information, thus de-
grading the role of holistic contextual informa-
tion. We find that N = 18 performs best in our experiments.

Number of bins. In this study, we compare the performance with various numbers of depth

Table 6: The ablation study for the final fusion.
ERP branch TP branch Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑

1 0 0.0976 0.0948 0.4450 0.9153 0.9664
0 1 0.0975 0.0944 0.4459 0.9149 0.9670

0.5 0.5 0.0969 0.0942 0.4442 0.9157 0.9668

Adaptive weighting 0.0967 0.0936 0.4433 0.9162 0.9669

distribution histogram bins. As ob-
served from Table. 5, starting from
B=20, the depth accuracy first im-
proves with the increase of B, and
then drops significantly. The result
indicates that too many bins lead to
difficulty in classification. For this
reason, we choose 100 as the number of bins for experiments.

Weights of fusion. Table. 6 lists the estimated depth results under four groups of fusion weights
with the patch number set as N = 18, patch size as 128×128, and FoV as 80◦. Overall, our adaptive
weighting achieves the best performance.

5 CONCLUSION

This paper proposed a novel solution for monocular 360◦ depth estimation, which predicts an ERP
format depth map by collaboratively learning the holistic-with-regional depth distributions. To ad-
dress the two issues: 1) challenges in pixel-wise depth value regression; 2) boundary discontinuities
brought by the geometric fusion, our HRDFuse introduced the SFA module and the CDDC mod-
ule, whose contributions allow HRDFuse to efficiently incorporate ERP and TP, and significantly
improve the depth prediction accuracy and achieve new SOTA performance.

Limitations and future work Our work focused on the supervised monocular 360◦ depth estimation
task and did not cover self-supervised methods. In the future, we will further explore the potential of
TP, e.g., contrastive learning for TP patches. In addition, our task and 360◦ semantic segmentation
task are closely related, as they are both dense scene understanding tasks. Therefore, joint 360◦
monocular depth estimation and semantic segmentation based on the combination of ERP and TP is
a promising research direction.
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A APPENDIX

A.1 MORE DETAILS OF TANGENT PROJECTION

Figure 5: An example of TP and ERP. Two TP patches are projected from two different areas (red
area and yellow area).

We start by introducing an example of the tangent projection (TP) Ai et al. (2022). As shown in
Fig. 5, Ps is a point on the sphere surface, O is the center of the sphere, Pc is the center of the
tangent plane, and Pt is the intersection point of the tangent plane and the extension line of

−−→
OPs.

As both Ps and Pc are on the sphere surface, we represent their spherical coordinates as (θs, ϕs)
and (θc, ϕc), respectively. Then, we can obtain the planar coordinate (ut, vt) of the point Pt on the
tangent plane as follows:

ut =
cos(ϕs) sin(θs − θc)

cos(c)
,

vt =
cos(ϕc) sin(ϕs)− sin(ϕc) cos(ϕs) cos(θs − θc)

cos(c)
,

cos(c) = sin(ϕc) sin(ϕs) + cos(ϕc) cos(ϕs) cos(θs − θc).

(9)

And the inverse transformations are:

θs = θc + tan−1(
ut sin(σ)

γ cos(ϕc) cos(σ)− vt sin(ϕc) sin(σ)
),

ϕs = sin−1(cos(σ) sin(ϕc) +
1

γ
vt sin(σ) cos(ϕc)),

(10)

where γ =
√
u2
t + v2t and σ = tan−1 γ. With Eq.9 and Eq. 10, we can convert the points on the

sphere and pixels in TP patches to each other. In addition, we can convert the spherical points into
pixels in the ERP image with (ue, ve) = ( θs∗w2π , ϕs∗h

π ), where w and h are the width and height
of the ERP image, respectively. Therefore, given the spherical coordinate of a TP patch center, we
can achieve the mapping between the pixels in the ERP images and those in the corresponding TP
patches.

The number of TP patches projected from a 360◦ spherical image depends on the sampling latitudes
(the range of latitude is from -90◦ to 90◦) and the sampling number at each latitude. For instance,
in Omnifusion Li et al. (2022), TP patches are sampled from four latitudes: -67.5◦, -22.5◦, 22.5◦,
67.5◦, with 3, 6, 6, 3 patches on each latitude, respectively (see Fig 6c). Besides, for one more
case, as shown in Fig 6d, the sampled latitudes can be set: -72.2◦, -36.1◦, 0◦, 36.1◦, 72.2◦, while
the sampled patch numbers are 3, 6, 8, 6, 3, respectively. From Fig 6, we can see that with the
patch number increased, the area of the overlapping regions increased correspondingly. As shown in
Table. 6, too few patches can not provide sufficient regional structural information, while too many
patches lead to the redundancy of regional information. As a result, we chose to use a relatively
small patch number of 18.

We fix the patch FoV to 80◦ and compare TP patches with different patch sizes of 32×32, 64×64,
128×128, and 256×256 in Fig. 7, and it demonstrates that different patch sizes do not affect the
content in each TP patch, but a large patch size does produce TP patches with more details. However,
as shown in Table. 3 of the main paper, too large patch size will increase computational costs and
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(a) ERP image (b) TP patches (N=10) (c) TP patches (N=18)

(d) TP patches (N=26) (e) TP patches (N=48)

Figure 6: (a) An ERP image; (b) TP patches with the patch number N = 10, which are sampled
at three latitudes; (c) TP patches with N = 18, which are sampled at four latitudes; (d) TP patches
with N = 26, which are sampled at five latitudes; (e) TP patches with N = 46, which are sampled
at six latitudes

the redundancy of regional structural information (the amount of pixels in the overlapping regions),
which may further influence the prediction from holistic contextual information and decrease the
overall performance. As a result, we chose to use a relatively large patch size of 128×128.

(a) Patch size = 32 x 32

(c) Patch size = 64 x 64 (d) Patch size = 128 x 128

(b) Patch size = 256 x 256

Figure 7: TP patches with different patch sizes.

For the patch FoV, we fix the patch size to 128×128, and change the patch FoVs to obtain a set of
TP patches, as shown in Fig. 8. Compared with the complete view of Fig. 6a, too small FoV causes
the loss of the scene information, while too large FoV causes the redundancy of information in the
overlapping areas. As a result, we chose to use patch FoV 80◦.

(a) Patch FoV =60° (b) Patch FoV = 80° (c) Patch FoV = 120°

Figure 8: TP patches with different patch FoVs.
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B MORE DETAILS OF COLLABORATIVE DEPTH DISTRIBUTION
CLASSIFICATION

In this section, we introduce the calculation process of the collaborative depth distribution classifi-
cation (CDDC) module in detail.

First, given an ERP image with the size of He × We × 3, we follow the gnomonic projection to
obtain N TP patches with the size of Ht×Wt×3. Through the feature extractors, we can obtain the
ERP feature map fE with the size He/2 ×We/2 × Ce and TP feature maps

{
fT
n

}
, n = 1, . . . , N

with the size of Ht/2×Wt/2× Ct ×N , as the inputs of CDDC module. Then we summarize the
detailed layer-by-layer network configurations in Table. 7. Especially, we introduce network con-
figurations in four parts: holistic depth distribution classification, holistic depth prediction, regional
depth distribution classification, and regional depth prediction.

In the holistic depth distribution classification, given the output of the transformer encoder, embed-
ding tokens TkHout, we select the first token TkHout[0] to calculate the bin center vector cH as

cHi = Dmin + (wH
i /2 +

i−1∑
j=1

wH
j ), (11)

wH
i = (Dmax −Dmin)

(mlp(TkHout[0]))i + ϵ∑B
j=1 (mlp(TkHout[0]))j + ϵ

, (12)

where i, j = 1, . . . , B, wH is the bin widths of the holistic distribution histogram, mlp denotes a
multi-layer perceptron (MLP) head with a ReLU activation, (Dmin, Dmax) is the depth range of the
dataset, B denotes the number of depth distribution bins, and ϵ is a small constant to ensure that each
value of wH is positive. For the holistic depth prediction, the bin centers cH are linearly blended
with a probability score map PH to predict the depth value at each pixel (i, j):

DH(i, j) =

B∑
b=1

PH(i, j)b · cHb . (13)

For the regional depth distribution classification, as illustrated in the Table. 7, we collect regional
depth bin center vectors from the collection of TP feature map

{
FTP
n

}
and concatenate the center

vectors to obtain the tensor cR with the size of B×N . Moreover, with the spatial guidance of index
map M , we can obtain an ERP format bin center map Mc based on cR as follows:

Mc(i, j) =

N∑
n=1

M(i, j)n · cRn (14)

where (i, j) is the pixel coordinate, and n is the patch index. The bin center map Mc represents the
depth distribution of each pixel with the regional structural information. Meanwhile, we concatenate
the collection of selected tokens and reduce the first dimension of the concatenation with the average
operation, to obtain the tensor QR. Then we combine QR with the spatial locations of index map
M to obtain a feature map Mkey . Moreover, we introduce the embedding vectors QH of the ERP
branch. With Mkey as the “keymap” and QH as the “queries”, we can predict the probability score
map PR and further output the ERP format regional depth map DR.

B.1 MORE DETAILS OF DATASETS AND METRICS

We conduct experiments on three benchmark datasets: Stanford2D3D Armeni et al. (2017), Matter-
port3D Chang et al. (2017) and 3D60 dataset Zioulis et al. (2018). Note that Stanford2D3D dataset
and Matterport3D dataset are real-world datasets, while 3D60 dataset is composed of two synthetic
datasets (SunCG Song et al. (2016) and SceneNet Handa et al. (2016)) and two real-world datasets
(Stanford2D3D and Matterport3D). Stanford2D3D contains 1413 panoramic samples and we split it
into 1,000 samples for training, 40 samples for validation and 373 samples for testing. Matterport3D
is the largest real-world dataset for indoor panorama scenes containing 10,800 panoramas and we
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Table 7: Network summary of the CDDC module (⊙ denotes the dot-production).
Collaborative Depth Distribution Classification (CDDC)

Input InpRes Kernel Stride Ch I/O Opt. OutRes Output

Holistic Depth Distribution Classification

FERP He/2×We/2× Ce 8 8 Ce/C1 Flatten (He∗We

256 )× C1 TkHin

TkHin (He∗We

256 )× C1 - - C1/C1 Transformer Encoder (He∗We

256 )× C1 TkHout

TkHout[0] 1× C1 - - C1/B Eq. 11, Eq. 12 1×B cH

Holistic Range Attention Map

FERP He/2×We/2× Ce 3 1 Ce/C1 He/2×We/2× C1 FH

FH& He/2×We/2× C1& - - -
⊙ He/2×We/2× C2 RH

TkHout[1 : C2 + 1](QH) C2 × C1 - - -

RH He/2×We/2× C2 - - - Up-sample He ×We × C2 RH
′

RH
′

He ×We × C2 1 1 C2/B Softmax He ×We ×B PH

Holistic Depth Prediction

cH&PH 1×B&He ×We ×B - - B/1 Eq. 13 He ×We × 1 DH

Regional Depth Distribution Classification{
FTP
n

}
Ht

2 × Wt

2 × Ct ×N 4 4 Ct/C1 Flatten (Ht∗Wt

64 )× C1 ×N TkRin

TkRin (Ht∗Wt

64 )× C1 ×N - - C1/C1 Transformer Encoder (Ht∗Wt

64 )× C1 ×N TkRout

TkRout[0] 1× C1 ×N - - C1/B Similar to Eq. 11, Eq. 12 1×B ×N cR

cR&M 1×B ×N&He

2 × We

2 ×N - - - Eq. 14 He

2 × We

2 ×B Mc

Regional Range Attention Map

TkRout[1 : C2 + 1] C2 × C1 ×N - - - Mean C1 ×N QR

QR&M C1 ×N&He

2 × We

2 ×N - - - Similar to Eq. 14 He

2 × We

2 × C1 Mkey

Mkey&QH He

2 × We

2 × C1&C2 × C1 - - - ⊙ He

2 × We

2 × C2 RR

RR He

2 × We

2 × C2 - - - Up-sample He ×We × C2 RR
′

RR
′

He ×We × C2 1 1 C2/B Softmax He ×We ×B PR

Regional Depth prediction

Mc
He

2 × We

2 ×B - - - Up-sample He ×We ×B M
′

c

M
′

c&PR He ×We ×B&He ×We× - - B/1 Similar to Eq. 14 He ×We × 1 DR

follow the official split to split it into 33875 samples for training, 800 samples for validation, and
1298 samples for testing. As the largest 360◦ depth estimation dataset, 3D60 totally contains 35973
panoramic samples where 33875 of them are used for training, 800 samples for validation, and 1298
samples for testing. During training and testing, we resize the resolution of the panorama and depth
map in the former two datasets into 512 × 1024. For 3D60, we set the input size into 256× 512.

B.2 ADDITIONAL VISUAL RESULTS

More visual comparisons on Stanford2D3D and Matterport3D. In Fig. 9, we perform qualitative
comparisons with the SOTA methods, UniFuse. Jiang et al. (2021) and OmniFusion Li et al. (2022),
on the Stanford2D3D dataset and Matterport3D dataset, whose samples are from real-world scenes.
From the visual results, we confirm that our HRDFuse predicts the depth maps which are more
precise and contain more structural details than other methods.

More visual comparisons on 3D60. In Fig. 10, we perform qualitative comparisons with the SOTA
methods, UniFuse. Jiang et al. (2021) and OmniFusion Li et al. (2022), on the 3D60 dataset, which
contains both real-world and synthetic samples. From the visual results, we further confirm the
superiority of our HRDFuse.
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Figure 9: Visual comparisons on Stanford2D3D and Matterport3D.

Figure 10: Visual comparisons on 3D60 dataset.
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