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ABSTRACT

We propose the first weakly-supervised few-shot instance segmentation task and a
frustratingly simple but strong baseline model, FoxInst. Our work is distinguished
from other approaches in that our method is trained with weak annotations, i.e.,
class and box annotations, during all phases, which leads to further data efficiency
and practicality. Considering the challenging regime of our problem, we design
the network to be an anchor-free architecture to avoid anchor box restriction, and
train the network in a simple and stable way that first trains the whole network
on the base classes, and then only fine-tunes the heads partially with few novel
class data. To establish the foundation as a strong baseline, we carefully design
evaluation setups by correcting the existing problems in the evaluation metric and
test set, so that the effects of each component are well revealed. We show that
FoxInst achieves comparable or even higher performance with the prior fully-
supervised FSIS networks on COCO and PASCAL VOC datasets. We will release
the code if accepted for reproduction.

1 INTRODUCTION

Instance segmentation (Hariharan et al., 2014; He et al., 2017) is a fundamental and versatile com-
puter vision task that jointly tackles detection, classification, and semantic segmentation of each
instance in an image. This provides a comprehensive analysis of a scene and can be usefully lever-
aged in subsequent applications (Zhang et al., 2016; Chen et al., 2016; Waqas Zamir et al., 2019; Ge
et al., 2019). However, its applicability is limited because most instance segmentation methods (He
et al., 2017; Tian et al., 2020; Bolya et al., 2019; Lee & Park, 2020; Chen et al., 2020) that have
been proposed focus only on the limited closed-set of classes and are trained in a fully-supervised
way with abundant labeled data. It is often impractical to apply them to a real-world deployment
scenario where new classes need to be dealt with only few data but even without mask annotations,
i.e., a data-hungry setting.

Few-shot instance segmentation (FSIS) (Michaelis et al., 2018; Yan et al., 2019; Fan et al., 2020;
Ganea et al., 2021; Nguyen & Todorovic, 2021) is proposed to address those challenges, which pre-
dicts instance-wise masks of novel objects by adapting a pre-trained network with scarce data. This
appears to be annotation-efficient but still requires mask annotations, which are often costly to ob-
tain. In a different context, few-shot semantic segmentation methods (Raza et al., 2019; Wang et al.,
2019; Zhang et al., 2019) attempt to overcome this problem by using weak labels as supervision, i.e.,
image-level tags or box annotations, without semantic mask labels. However, those approaches are
still limited in data efficiency in that they leverage weak annotations only during the test phase and
require full supervision in the base training phase, which uses much more data than the test phase.
In addition, it is non-trivial to extend those approaches to few-shot instance segmentation.

In this regard, we first define a data-efficient task, weakly-supervised FSIS, and propose its frustrat-
ingly simple yet strong baseline, called FoxInst (See Fig. 1). Distinctiveness of our FoxInst is to
require only weak labels, i.e., class label and bounding box per instance, for the entire training and
test phase. With these weak labels, we train a few-shot instance segmentation network in a simple
way that first trains the whole network on the base classes, and then only fine-tunes the prediction
heads (the red parts in Fig. 1) with few novel class data. This simple design choice is motivated by
the recent analysis by Raghu et al. (2020). Raghu et al. systematically analyze a popular few-shot
meta-learning algorithm, MAML (Finn et al., 2017), and find that its success is due to feature reuse,
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Figure 1: The architecture of FoxInst. In the base training phase, the entire network is trained
on the training set of the base classes. In the few-shot fine-tuning stage, the backbone and mask
branch (blue) are frozen while the four prediction heads (red) are fine-tuned with few data points
sampled from the novel classes. Note that FoxInst is trained with class and box annotations as weak
supervision in the whole training and fine-tuning phases.

not fast model adaption capability to novel tasks. This allows us to simplify the meta-learning and
the model adaptation on novel classes to pre-training on the base classes and simple fine-tuning on
novel classes, respectively, i.e., two-stage fine-tuning (TFA; Wang et al., 2020). Hence, our method
can be regarded as its extension to the weakly-supervised regime with mask prediction.

In addition, weak labels we use can be regarded as noisy labels; thus, our task is more challenging
than FSIS and weakly-supervised instance segmentation. To derive a reliable and robust model, we
adopt an anchor-free architecture. It is discussed that the anchor-based networks are often prone to
overfitting and biased to specific sizes (Tian et al., 2019; Nguyen & Todorovic, 2021). This effect can
be stand out in the few-shot regime, where only few training samples are given for the target object.
FoxInst can avoid this problem with the anchor-free property. With these design choices, despite
using only box annotations, FoxInst achieves comparable or even superior performance to the prior
FSIS models trained with full-supervision, i.e., instance-wise masks, on the various experimental
settings: COCO benchmark and PASCAL VOC. In particular, in the cross-dataset setting using
COCO and VOC, FoxInst also outperforms the fully-supervised state-of-the-art with a large gap.

Lastly, since the weakly-supervised FSIS baselines are proposed for the first, it is important to
analyze and identify the current bottleneck and status of development in the weakly-supervised
FSIS regime, so that we can suggest the right future directions for subsequent research. We find
out two issues on the evaluation metric and test data. For the metric, the widely used metrics in
instance segmentation are entangled with the classification and mask (or localization) errors. Also,
the existing test split in the popular benchmarks, COCO (Lin et al., 2015), is designed to have
notable false positive bias leading to incorrect evaluation. To assess the details of components, we
devise an alternative metric to assess separate effects and propose a new split of the original test set.

To summarize, our main contributions are as follows:

• We first define a data-efficient task, weakly-supervised few-shot instance segmentation, and pro-
pose its first baseline called FoxInst, which is a simple, efficient, and anchor-free model.

• For more analytical evaluation, we deploy a metric, FG-AP, to separate the measurement of de-
tection and segmentation performance from the classification dependency. We also construct a
refined test split which only includes images having at least one novel object instance.

2 RELATED WORK

Few-shot instance segmentation (FSIS). Few-shot learning is an adaptation method that uses few
examples belonging to unseen classes during training. Approaches to tackle few-shot learning can
be categorized into metric-based (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018; Gidaris
& Komodakis, 2018) and optimization-based methods (Finn et al., 2017; Nichol & Schulman, 2018;
Rusu et al., 2019; Antoniou et al., 2019; Grant et al., 2019). Recently, Chen et al. (2019) and Dhillon
et al. (2020) show that simple fine-tuning is surprisingly effective in few-shot tasks.
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Since the aforementioned techniques have been primarily developed for simple classification prob-
lems, extending the ideas to the complicated FSIS tasks is non-trivial. Only a few works (Michaelis
et al., 2018; Yan et al., 2019; Fan et al., 2020; Ganea et al., 2021; Nguyen & Todorovic, 2021)
tackle few-shot regimes of instance segmentation. FGN (Fan et al., 2020) proposes attention-based
guide modules to deal with FSIS by episodic training (Vinyals et al., 2016) but because of the heavy
memory requirement of episodic training, it can only consider a limited number of novel classes.
MTFA (Ganea et al., 2021) is free from the memory issue by virtue of the fine-tuning adaptation to
the novel classes. We take this strategy to leverage its simple and stable learning properties. Also,
this line of approaches requires full supervision, i.e., instance segmentation masks. In this respect,
improving annotation efficiency using weak labels is a consequential research direction.

Weakly-supervised instance segmentation. Obtaining delicate mask annotations is laborious in
terms of both time and cost. To reduce the dependency on this costly annotation, weakly-supervised
instance segmentation (Hu et al., 2018; Zhou et al., 2016; 2018; Cholakkal et al., 2019; Hsu et al.,
2019; Arun et al., 2020; Liu et al., 2020; Hwang et al., 2021; Lee et al., 2021) is proposed, which
leverages image-level tags or box annotations as weak supervision. Specifically, a bounding box
can be exploited to compute weakly-supervised loss functions and refine the localization using local
color similarity (Tian et al., 2021). Our method further extends the annotation efficiency beyond
these weakly-supervised methods to few-shot regimes.

Object localization and instance segmentation. A key module of instance segmentation is object
localization which separates each instance from multiple objects and background. Object localiza-
tion has been developed in either an anchor-based or anchor-free way. The most famous anchor-
based model is Faster R-CNN (Ren et al., 2015) that predicts the bounding box locations based on
the region proposal network. It is extended to instance segmentation by adding the mask branch (He
et al., 2017). However, using anchor boxes is known to be computationally inefficient, and the exis-
tence of anchor boxes limits the flexibility of proposals, e.g., scale and aspect ratio, which may lead
to performance degradation or overfitting (Tian et al., 2019; Yang et al., 2018; Zhang et al., 2020).

On the other hand, anchor-free networks (Tian et al., 2019; Bolya et al., 2019; Chen et al., 2020; Lee
& Park, 2020) predict multiple objects directly without an external proposal module. CondInst (Tian
et al., 2020) employs a dynamic mask head and obtains instance-wise masks from a single feature
map. In this work, we use the anchor-free architecture to avoid the problem of anchors in the FSIS
setup, where it is more prone to overfitting and requires generalization ability.

3 METHOD

We first define the problem that this work aims to tackle in Sec. 3.1. In Sec. 3.2, we introduce how
we build a novel weakly-supervised few-shot instance segmentation method.

3.1 PROBLEM DEFINITION

We mainly follow the few-shot instance segmentation setting introduced by (Ganea et al., 2021).
The entire dataset D is divided into three sets: training Dbase, fine-tuning Dfine, and query Dq

sets. The set Dbase contains a large number of examples of base classes Cbase, Dfine has few
NK number of data of novel classes Cnovel, where N is the number of novel classes and K the
number of examples in each class (i.e., K-shot and typically K is small in few-shot regimes), and
the data in Dq are also sampled from Cnovel. Each input image x in both Dbase and Dfine has a set
of annotations {(ci, bi)}Ii=1, where I is the number of instances in x, ci is the category of the i-th
instance, and bi ∈ R4 is the bounding box coordinates of the i-th instance.

Note that, as described, both the training Dbase and fine-tuning Dfine datasets do not have mask
supervision, and the data in Dfine is scarce; thus, our problem of interest is a weakly-supervised
setting as well as few-shot regime. Given this data setting, our goal is to find a model that performs
well on the query set Dq of novel classes that are not overlapped with the base classes Cbase

3.2 FOXINST: FEW-SHOT BOX-BASED INSTANCE SEGMENTATION NETWORK

Our approach deals with a few-shot instance segmentation task in a weakly-supervised way with
fine-tuning method. The training process of FoxInst is as follows: base training and fine-tuning. We
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use only the box annotations as weak supervision to predict the mask during the whole phase. In
this section, we elaborate the architecture design and the details of each process.

Architecture. We adopt the architecture of BoxInst (Tian et al., 2021) for the weakly-supervised
FSIS setting. BoxInst is comprised of ResNet-based (He et al., 2016) feature pyramid network
(FPN; Lin et al., 2017a) backbone, mask branch, dynamic mask head, and prediction heads. We
follow FCOS (Tian et al., 2019) for the prediction branch design, where the branches are composed
of classification, regression, and centerness heads. All the heads are convolutional layers, instead
of fully-connected layers, for per-pixel and anchor-free prediction. BoxInst has an additional head
called controller, which dynamically predicts the weights of the mask head. This instance-aware
controller enables the mask generation to be class-agnostic.

Weakly base training. In the base training phase, we train our whole network (the blue and red
parts in Fig. 1) with the large amount of training data Dbase sampled from the base classes Cbase.
Since only weak supervisions of class and box annotations {(ci, bi)}Ii=1 are given in our problem,
we obtain mask supervision signals by leveraging the weakly-supervised loss (Tian et al., 2021) for
mask Lmask = Lproj. + Lpair., where

Lproj. = L(Projx(m̃),Projx(b)) + L(Projy(m̃),Projy(b)),

Lpair. = − 1
N

∑
e∈Ein

1[Se ≥ τ ] logP (ye = 1),
(1)

where m̃ denotes the prediction mask, b its associated ground-truth bounding box, Proj(·) the binary
pixel projection operation onto each axis, and L(·, ·) the Dice loss (Sudre et al., 2017). e denotes
an edge between axis-aligned neighbor pixels, 1[Se ≥ τ ] the indicator function which becomes 1
if Se ≥ τ and 0 otherwise, Se the color similarity between two connected pixels, P (ye = 1) the
probability of an edge connecting two pixels belonging to the same class given the predicted mask,
and N is the number of the edges in the set Ein, which contains edges with at least one pixel inside
the box. The projection loss term Lproj. enforces the predicted pixel-level mask to be the tight box
when projected on the x-axis and y-axis aligning to the bounding box supervision. The pairwise
loss term Lpair. propagates the predicted mask along the regions having similar colors. Lmask(·)
consists of these two loss terms which enable the model to predict finer masks aligned with object
boundaries from bounding box supervision. This loss trains the mask branch and controller.

For the other heads, the given weak labels are sufficient to provide full-supervision for the classi-
fication, centerness, and bounding box regression heads. We can use the standard full-supervision
loss for these components. Thus, the total loss for our method is summarized as:

L = Lcls. + λ1Lcen. + λ2Lreg. + λ3Lmask, (2)

where Lcls. denotes the focal loss (Lin et al., 2017b) for classification, Lcen. the binary cross entropy
loss for the object centerness, Lreg. IoU loss (Yu et al., 2016) for box regression. {λ} are the
balancing parameters between the loss terms, and we set them to 1 in this work.

Weakly few-shot fine-tuning. Given the fine-tuning dataset Dfine of the novel classes Cnovel, we
adapt the model trained in the weakly base training phase to novel objects. We freeze the backbone
and mask branch (the blue parts in Fig. 1), and fine-tune the prediction heads (the red parts in Fig. 1),
i.e., classification, centerness, bounding box regression, and controller heads, on the dataset Dfine,
which has the NK number of data sampled from the N number of Cnovel with the K-shot samples
for each class. The weights of classification head associated with theCnovel are randomly initialized
due to the mismatch between the number of Cbase and N . During this phase, FoxInst also exploits
only weak supervisions {(ci, bi)}NK

i=1 and is trained with the same loss in Eq. (2) used in the base
training phase but with lower learning rates and the small number of iterations to prevent overfitting.

To the best of our knowledge, our FoxInst is the first few-shot instance segmentation network that
does not require mask annotations at all including the base training phase. Compared to the weakly
few-shot semantic segmentation literature (Raza et al., 2019) as the closest work, our method is far
more annotation-efficient because it calls for full supervision in the base training phase, where the
number of Dbase is large.

We can regard the backbone as a feature extractor and fine-tune the novel class-specific prediction
heads using the features extracted from the backbone. This has an analogy to Raghu et al. (2020)
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that discovers few-shot adaptation of the last layers (heads) far more heavily affects the performance
than that of the earlier layers (body). Similar findings are reported in few-shot classification (Chen
et al., 2019) and detection (Wang et al., 2020) studies. Our base training followed by the fine-tuning
can be regarded as a variant of the previous works to the few-shot instance segmentation task with
challenging noisy weak supervision.

4 EXPERIMENT

In this section, we evaluate our FoxInst and compare with the previous works and a baseline on
various settings. The models are trained and evaluated on a single NVIDIA Quadro RTX 8000.

Evaluation metric. The standard evaluation metric in instance segmentation is the average pre-
cision (AP). However, AP evaluates both classification and detection (or segmentation) in a single
value making it hard to disentangle the performance of individual tasks, e.g., low AP can be either
due to bad localization with correct classification or accurate localization with the wrong classifi-
cation. In order to analyze the localization performance independent of the class prediction, we
additionally adopt foreground AP (FG-AP) to evaluate FSIS methods. FG-AP disentangles the ef-
fects of each head, so that we can readily identify which part is the performance bottleneck in a
system. This provides a systematic way to analyze results, which is not possible by AP.1

Datasets. We use the large-scale MS COCO benchmark (Lin et al., 2015) (COCO) and PASCAL
VOC (Everingham et al., 2010) (VOC) to evaluate our method. COCO has 80 classes, and VOC has
20 classes that are a subset of COCO classes. The overlapped 20 classes are used as novel classes
Cnovel, and the remaining 60 classes are assigned as base classes Cbase. Following the setting
suggested by Ganea et al. (2021), we use the train set of 80k images and the validation set of 35k
images in COCO for training. The remaining 5k images in COCO are used for testing. Additionally,
we evaluate our model trained on COCO with the VOC test set, which contains 1,449 test images
and is referred to as COCO2VOC.

We also construct and evaluate on a new data split, the COCO Novel-only test set, consisting of
3,992 images where each image includes at least one instance of the novel classes Cnovel. We find
out that the remaining 1,008 images of the total 5k test set of COCO do not contain any instance
belonging to Cnovel. Since the original test set configuration can bias to numerous false positives,
we further evaluate our FoxInst on the Novel-only setting. We randomly sample K = 1, 5, 10 shots
for each novel class to form Dfine, and the average results from the total of 10 tests are reported for
all experiments. More details of the dataset setting can be found in the supplementary material.

Baselines. Since we are the first to propose weakly-supervised FSIS, there is no directly com-
parable method; thus, we develop a baseline. GrabCut (Rother et al., 2004), which extracts the
foreground region of an object given a bounding box covering the object, has been used as a strong
baseline on several weakly-supervised segmentation studies (Khoreva et al., 2017; Kulharia et al.,
2020). Following these works, we design the GrabCut baseline by replacing the mask branch of
FoxInst to GrabCut, named FoxInst+GrabCut. In other words, FoxInst+GRabCut generates mask
prediction from predicted bounding box using GrabCut instead of mask branch.

We also juxtapose the recent fully-supervised FSIS models for the reference purpose, including
a fully-converged Mask R-CNN fine-tuned on the novel classes (MRCN+ft-full; Yan et al. 2019,
where ft stands for fine-tuning), Meta R-CNN (Yan et al., 2019), and MTFA (Ganea et al., 2021).2
Thereby, we can sense the performance gap between full-supervision and weakly-supervision.

4.1 COMPARISON WITH OTHER FSIS METHODS

Results on the COCO novel classes. We evaluate our FoxInst on the novel classes Cnovel of
COCO and report the results in Table 1. FoxInst achieves about two times higher segmentation
performance than the GrabCut baseline (2.99% vs. 6.09% mask AP for K = 10). FoxInst also

1In few-shot semantic segmentation literature (Wang et al., 2019; Dong & Xing, 2018; Rakelly et al., 2018),
FG-IoU has been used to measure mask quality independently to other factors, but we are the first to suggest to
use FG-AP in the FSIS context.

2There is another recent fully-supervised FSIS work, FAPIS (Nguyen & Todorovic, 2021), but we cannot
include it because the source code and the specific data composition of FAPIS have not been released.
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Figure 2: Qualitative results of FoxInst on the COCO novel classes. As shown in the figure, FoxInst
predicts the mask well with only 5-shot samples for each class without pixel-level mask annotations.

Table 1: Performance on the COCO novel classes. FoxInst (det.) + GrabCut (seg.) represents the
baseline model that replaces the mask branch of FoxInst to GrabCut.

Shots Mask
sup. Method

Detection Segmentation

AP AP50 FG-AP FG-AP50 AP AP50 FG-AP FG-AP50

K=1

F MTFA 2.47 4.85 2.89 6.14 2.66 4.56 2.40 4.15

B FoxInst (det.) + GrabCut (seg.) 1.96 3.49 2.49 5.04 0.74 1.63 0.88 2.21
B FoxInst (det. + seg.) 1.62 3.05 1.72 3.71

K=5

F MRCN+ft-full 1.3 3.0 - - 1.3 2.7 - -
F Meta R-CNN 3.5 9.9 - - 2.8 6.9 - -
F MTFA 6.61 12.32 6.30 12.97 6.62 11.58 5.11 9.88

B FoxInst (det.) + GrabCut (seg.) 5.58 10.02 6.57 13.23 2.39 5.19 2.45 5.89
B FoxInst (det. + seg.) 4.56 8.52 4.31 9.39

K=10

F MRCN+ft-full 2.5 5.7 - - 1.9 4.7 - -
F Meta R-CNN 5.6 14.2 - - 4.4 10.6 - -
F MTFA 8.52 15.53 7.21 14.49 8.39 14.64 5.88 11.29

B FoxInst (det.) + GrabCut (seg.) 7.55 13.62 8.30 16.39 2.99 6.66 3.05 7.42
B FoxInst (det. + seg.) 6.09 11.63 5.61 12.22

F–Full supervision, B–Weak supervision with bounding boxes.

has comparable performance to the fully-supervised networks and even surpasses the recent fully-
supervised FSIS methods, MRCN+ft-full and Meta R-CNN. These results imply that our simple
fine-tuning approach in FoxInst is indeed strong and our FoxInst system integration is non-trivial.

For the all K-shot settings, the performance gaps between FoxInst and MTFA are smaller in FG-AP
than in AP, e.g., for K = 10, 2.3% gap in mask AP (6.09% vs. 8.39%) and 0.27% gap in mask FG-
AP (5.61% vs. 5.88%). This demonstrates that FoxInst can generate a segmentation mask as delicate
as the powerful fully-supervised method, MTFA, and the bottleneck of FoxInst is not segmentation
but classification. This analysis is useful to identify a future direction to further develop in this new
area of weakly-supervised FSIS. Besides, this fact is well demonstrated in Fig. 2 that shows the high-
quality mask predictions of FoxInst despite few training examples without any mask annotation. In
addition, FoxInst not only outperforms the GrabCut baseline (6.66% vs. 11.63% mask AP50 for
K = 10) but also predicts more accurate masks than the ground-truth in some cases, e.g., the back
of the bus and the top of the train in Fig. 3.

We postulate that this high-performance mask prediction of FoxInst is by virtue of the class-agnostic
mask head. (Pinheiro et al., 2015) demonstrate that the class-agnostic mask model can be general-
ized well to unseen classes if trained with abundant full annotations. Our results show that its
effectiveness is extended and generalized in our weakly few-shot regime as well.

Results on both base and novel COCO classes. In Table 2, we evaluate FoxInst fine-tuned on both
Cbase and Cnovel of COCO, following the protocol suggested by Ganea et al. (2021), and summarize
the performance on the overall and individual class compositions. Through this experiment, we can
observe how much the performance of the model trained on Cbase is maintained even after fine-
tuning, i.e., forgetting effects (Gidaris & Komodakis, 2018). In this experiment, we compare our
method to the closest fully-supervised work, MTFA, and the weakly-supervised GrabCut baseline,
and the models are trained onDfine, which is a balanced subset consisting of both Cbase and Cnovel.
As performance upper bound references, we also compare FoxInst with the models trained only on
Cbase in the base training phase, which are tagged with Base-only.
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(a) Ground-truth (b) FoxInst (ours) (c) GrabCut baseline

Figure 3: Qualitative comparisons between our FoxInst and the GrabCut baseline. The enlarged
views (red box) show in detail that FoxInst predicts a higher quality mask than the GrabCut baseline.

Table 2: Performance on both base and novel COCO classes. In this setting, fine-tuning and query
sets are sampled from both base and novel COCO classes while base training is the same as before.
Base-only tag means the model is trained only on the base classes without fine-tuning phase.

Shots Mask
sup. Method

Detection Segmentation

Overall Base Novel Overall Base Novel

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

-
F MTFA Base-only 28.67 43.53 38.22 58.04 - - 26.34 41.55 35.12 55.40 - -

B FoxInst Base-only 30.74 45.24 38.43 56.55 - - 23.69 40.85 29.61 51.06 - -

K=1

F MTFA 24.32 39.64 31.73 51.49 2.10 4.07 22.98 37.48 29.85 48.64 2.34 3.99

B FoxInst (det.) + GrabCut (seg.) 25.37 38.31 33.10 49.79 2.19 3.86 6.25 11.63 8.03 14.82 0.94 2.06
B FoxInst (det. + seg.) 19.57 34.13 25.52 44.41 1.73 3.30

K=5

F MTFA 26.39 41.52 33.11 51.49 6.22 11.63 25.07 39.95 31.29 49.55 6.38 11.14

B FoxInst (det.) + GrabCut (seg.) 28.66 42.66 36.22 53.43 6.00 10.36 7.56 14.06 9.24 16.88 2.52 5.60
B FoxInst (det. + seg.) 22.09 38.14 27.90 47.89 4.66 8.86

K=10

F MTFA 27.44 42.84 33.83 52.04 8.28 15.25 25.97 41.28 31.84 50.17 8.36 14.58

B FoxInst (det.) + GrabCut (seg.) 28.69 42.78 35.73 52.64 7.59 13.19 7.64 14.31 9.22 17.02 2.89 6.17
B FoxInst (det. + seg.) 22.12 38.22 27.56 47.24 5.80 11.18

F–Full supervision, B–Weak supervision with bounding boxes.

The results show that FoxInst surpasses the fully-supervised MTFA in the detection task on Cbase
and achieves comparable performance on Cnovel, which leads to an outstanding result on the overall
AP. In the detection task, the Base-only cases of both MTFA and FoxInst show the best results for
Cbase as expected, but the gap between FoxInst fine-tuned on both base and novel classes and the
FoxInst Base-only tends to be smaller than that of MTFA. For K = 5, 10, those gaps are further
small, which are 2.21 (36.22% vs. 38.43% mask AP) and 2.7 (35.73% vs. 38.43% mask AP),
respectively. This implies that FoxInst can lead off the information obtained during the base training
phase while being successfully adapted to the novel classes in the detection task.

In the segmentation task, FoxInst outperforms the GrabCut baseline and the gap in K = 10 is
prominent as 30.22% (from 17.02% to 47.24%) and 5.01% (from 6.17% to 11.18%) mask AP50
for Cbase and Cnovel, respectively. Moreover, our inference time is much faster than the GrabCut
baseline, where FoxInst takes about 0.24 seconds per image and GrabCut requires about 1.2 seconds
per object (note that per object, not per image). Also, compared to the fully supervised MTFA,
FoxInst perform favorably against MTFA despite being only with bounding box annotations.

Results on the novel COCO classes for Novel-only setting. As mentioned, in the query set
Dq of COCO, there are images containing no novel instance, which can bring in false positives in
evaluation procedure. For the more fair and right experiment on Cnovel, we construct a Novel-only
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Table 3: Performance on the COCO novel classes for Novel-only setting. In the Novel-only setting,
the query set contains 3,992 images that have at least one novel object among the total 5,000 COCO
query images.

Shots Mask
sup. Method

Detection Segmentation

AP AP50 FG-AP FG-AP50 AP AP50 FG-AP FG-AP50

K=1

F MTFA 2.82 5.55 3.92 8.33 2.97 5.16 3.26 6.14

B FoxInst (det.) + GrabCut (seg.) 2.28 4.04 3.14 6.30 0.85 1.87 1.11 2.76
B FoxInst (det. + seg.) 1.88 3.53 2.19 4.66

K=5

F MTFA 7.27 13.59 7.98 16.42 7.21 12.69 6.46 12.52

B FoxInst (det.) + GrabCut (seg.) 6.15 11.08 8.04 16.30 2.56 5.57 2.92 7.04
B FoxInst (det. + seg.) 4.95 9.36 5.22 11.52

K=10

F MTFA 9.27 16.99 8.77 17.78 9.02 15.88 7.10 13.78

B FoxInst (det.) + GrabCut (seg.) 8.22 14.90 9.66 19.31 3.18 7.13 3.47 8.51
B FoxInst (det. + seg.) 6.54 12.62 6.45 14.27

F–Full supervision, B–Weak supervision with bounding boxes.

Table 4: One-shot performance on the COCO2VOC novel classes. COCO2VOC is a cross-dataset
using the COCO as base training and fine-tuning set, and VOC as query set.

Mask
sup. Method

Detection Segmentation

AP AP50 FG-AP FG-AP50 AP AP50 FG-AP FG-AP50

F MRCN+ft+full - 6.0 - - - 0.4 - -
F Siamese Mask R-CNN - 23.9 - - - 13.8 - -
F Meta R-CNN - 20.1 - - - 12.5 - -
F FGN - 30.8 - - - 16.2 - -
F MTFA 9.99 21.68 9.37 21.19 9.51 19.28 8.38 17.10

B FoxInst (det.) + GrabCut (seg.) 17.79 33.08 17.76 34.54 6.85 15.62 6.98 16.32
B FoxInst (det. + seg.) 12.17 26.24 12.14 26.70

F–Full supervision, B–Weak supervision with bounding boxes.

setting and evaluate the models on it in Table 3, where the refined set consists of only images that
include at least one novel class instance. The results are improved by and large compared with
Table 1, which means that the original Dq of COCO causes a lot of false positive bias and disturbs
further analysis. Based on our findings, we recommend future few-shot learning works consider our
new test split, the Novel-only, as an evaluation dataset.

Results on the COCO2VOC. In Table 4, we further evaluate our FoxInst on the cross-dataset set-
ting called COCO2VOC, referring to Fan et al. (2020), where the training dataset Dbase and Dfine
are sampled from the associated data in COCO, and the query set Dq from the associated ones
with Cnovel in VOC. The evaluation procedure follows the ground-truth only evaluation (GTOE)
setting (Fan et al., 2020), which eliminates the predictions for the classes that do not exist in the
ground-truth by zeroing the corresponding softmax outputs. The results show that our FoxInst sur-
passes all counterpart models, including fully-supervised models, by a large margin. We postulate
that all the models except our FoxInst are anchor-based ones; thus, they may suffer from overfit-
ting to a specific scale of anchor box suitable for Dbase of COCO, and it may lead to performance
degradation for Dq of VOC. Contrastively, FoxInst as an anchor-free model is inherently free from
overfitting problems and robust to cross-datasets.

4.2 ABLATION STUDY

We perform a couple of ablation studies on the 5-shot setting for the COCO novel classes.

Fine-tuning strategy. To analyze the importance of each component in FoxInst during the fine-
tuning phase, we evaluate the combinations of the components to be fine-tuned as follows: (1) the
classification head alone, (2) the classification and the box regression heads, (3) all of the prediction
heads, and (4) the whole model. The results are summarized in Table 5. When comparing (3) and
(4), the result supports that high performance is achieved from the prediction head fine-tuning by
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Table 5: Ablation study of FoxInst according to fine-tuning components. The components of FoxInst
are classifier, box regressor, controller, and backbone and mask branch.

Classifier Box
regressor Controller Backbone &

Mask branch
Detection Segmentation

AP AP50 AP AP50
(1) X 5.20 9.15 4.27 7.84
(2) X X 5.21 (+0.01) 9.26 (+0.11) 4.33 (+0.06) 8.02 (+0.18)
(3) X X X 5.58 (+0.38) 10.02 (+0.87) 4.56 (+0.29) 8.52 (+0.68)
(4) X X X X 5.12 (-0.08) 8.33 (-0.82) 4.01 (-0.26) 7.28 (-0.56)

Table 6: Initialization comparison of class-agnostic prediction heads. Class-agnostic prediction
heads include the centerness, bounding box regression, and controller heads. Warm-start parameters
are obtained from the base trained model.

Initialization
Detection Segmentation

AP AP50 AP AP50
Random 5.17 9.79 0.11 0.26

Warm-start 5.58 (+0.41) 10.02 (+0.23) 4.56 (+4.45) 8.58 (+8.32)

feature reuse (Raghu et al., 2020), not fast model adaptation (Finn et al., 2017). It implies that
our weakly-supervised two-phase fine-tuning method, which freezes the feature extraction layers
and fine-tunes only the prediction branches, is suitable for the weakly-supervised FSIS task. Next,
comparing (1), (2), and (3), we can figure out the importance of each prediction head through the
gain as each component is added. The results imply that the controller head is a key component of
FoxInst during the fine-tuning phase.

Weight initialization. We compare weight initialization on our FoxInst’s class-agnostic predic-
tion heads; the bounding box regression, centerness, and controller heads. There are two ways of
initialization: (1) random initialization and (2) warm-start with the weights pre-trained on the base
classes. Table 6 shows that the gap between the two methods is subtle in detection (9.79% vs.
10.02% mask AP) but rather noticeable in segmentation (0.26% vs. 8.58% mask AP). It implies
that a warm initial point gives a positive effect on the controller, which is the segmentation-related
one. Bounding box regression and centerness heads, which are the detection-related ones, are less
affected by initialization and easier to be trained with only few samples.

5 CONCLUSION

We first define a data-efficient instance segmentation task, weakly-supervised few-shot instance seg-
mentation (weakly-supervised FSIS), and propose a frustratingly simple baseline, called FoxInst,
which is the first weakly-supervised FSIS network. FoxInst only uses class labels and bounding
box annotations as supervision during both the train and test phase, and fast adapt to novel classes
with only few data. This is more data efficient than the previous FSIS setup and models. Fox-
Inst outperforms or performs favorably against the strong baseline and the fully-supervised FSIS
methods on various data settings. In addition, FoxInst even outperforms the state-of-the-art of the
fully-supervised FSIS in the cross-dataset setting, COCO2VOC.

Moreover, we systematically analyze which parts are dominant components by proposing a metric,
FG-AP which better disentangles the effects of each component. Also, we found a critical evaluation
bias in FSIS, and refine the existing test dataset by removing images with no novel class instance.
This allows for more precise evaluation. Our analysis suggests that future research should deal with
the current bottleneck, i.e., classification, in focus. We believe that FoxInst can be a solid foundation
in the weakly-supervised FSIS task and open up many new subsequent applications to be derived.

ETHICS STATEMENT

As many studies have focused only on the accuracy of deep learning (Xie et al., 2020; Devlin et al.,
2019; Dosovitskiy et al., 2021), the impact on the environment has been overlooked and an aston-
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ishing amount of carbon footprint is still being generated. The concept of Green AI (Schwartz et al.,
2020) is emerging and the attitude of studying artificial intelligence while considering their effect on
the environment is being emphasized, e.g., reproducibility of the trained model, understanding the
principle of deep learning, and data efficiency. We believe that adopting the mechanism of FoxInst to
train a deep learning network with few data samples and a small training schedule would contribute
to decrease a carbon footprint in terms of data-efficiency.
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SUPPLEMENTARY MATERIAL

In this supplementary material, we present additional implement details, qualitative results, and
experiments that are not included in the main paper due to the page limit.

A IMPLEMENT DETAILS

Our framework is implemented based on Detectron2 (Wu et al., 2019). For the COCO benchmark,
the base training phase runs for 90k iterations with a learning rate of 0.01, decaying with a factor
of 10 at 60k and 80k iterations. We fine-tune the network on the novel classes with a learning
rate of 0.0005 for 1k iterations. When we consider both base and novel classes as in Table 2, we
reuse the classification heads trained on the base training phase and the fine-tuning on the novel
classes. In other words, we fine-tune FoxInst on a balanced subset of both base and novel classes,
the warm-starting with weights from the base training and fine-tuning on the novel classes.

However, we find out that using a unified learning rate for all convolution filters of classification
head significantly degrades the performance on the base classes, i.e., forgetting effects (Gidaris &
Komodakis, 2018). Therefore, the convolution filters for the base classes are fine-tuned with a small
learning rate of 0.00001 (= 1e−5), while a relatively large value of 0.005 is used for the convolution
weights linked to the novel classes. The other prediction heads are trained with a learning rate of
0.0005 as same as the original setting. For K = 1, 5, we fine-tune FoxInst only for 500 iterations,
because the longer training schedule causes overfitting to the novel classes, injuring the performance
on the base classes. The models are trained for 1k iterations on 10-shot setting with the assist of
comparatively enough samples to avoid the problem.

B QUALITATIVE RESULTS

In this section, we give some qualitative results with 5-shot setting.

B.1 QUALITATIVE RESULTS ON THE COCO NOVEL CLASSES.

Figure 4 is the visualization of FoxInst trained with 5-shot setting on the COCO novel classes. The
result shows the high-quality mask predictions of FoxInst despite few training examples without any
mask annotation

Figure 4: Qualitative results of FoxInst on the COCO novel classes.
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Figure 5: Qualitative results of FoxInst on the COCO2VOC setting.

Figure 6: Qualitative results of VOC2VOC.

B.2 QUALITATIVE RESULTS ON COCO2VOC.

Figure 5 is the visualization of FoxInst trained with 5-shot setting on COCO2VOC. This result
demonstrates that FoxInst can obtain high-quality masks only with few samples and box annotation,
even for the cross-dataset, where the training and query dataset are different. We believe that Fox-
Inst can be extended to a more complicated domain adaptation task with its powerful and efficient
method.
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Table 7: Performance of FoxInst and the GrabCut baseline on the VOC2VOC novel classes.

Shots Method

Novel-class Setup 1 Novel-class Setup 2 Novel-class Setup 3

Detection Segmentation Detection Segmentation Detection Segmentation

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

K=1
FoxInst (det.) + GrabCut (seg.) 6.96 14.30 3.00 6.73 4.66 11.89 2.99 7.23 5.37 11.67 1.84 4.47
FoxInst (det. + seg.) 4.37 10.47 3.34 8.87 2.52 6.87

K=5
FoxInst (det.) + GrabCut (seg.) 16.78 32.35 6.29 14.30 11.21 25.33 5.81 13.41 13.08 28.12 5.09 12.05
FoxInst (det. + seg.) 10.52 23.64 6.88 17.18 6.64 18.22

K=10
FoxInst (det.) + GrabCut (seg.) 22.43 42.63 8.30 18.46 14.66 31.52 6.78 16.05 17.88 38.16 6.72 15.87
FoxInst (det. + seg.) 14.09 32.26 8.36 21.07 9.24 25.56

C RESULTS ON VOC2VOC.

We further evaluate our FoxInst on the VOC2VOC setting, which assesses the model trained on
the small number of base training data. In this setting, the VOC dataset is used in base training,
fine-tuning, and query evaluation. Fifteen classes are used as the base classes, and the remaining
five classes are assigned to the novel classes. Three configurations of the novel classes are used
as following TFA (Wang et al., 2020); {“bird”, “bus”, “cow”, “motorbike”, “sofa”}, {“aeroplane”,
“bottle”, “cow”, “horse”, “sofa”}, and {“boat”, “cat”, “motorbike”, “sheep”, “sofa”}. Evaluation
for VOC2VOC follows the Novel-only setting, which leaves 420, 421, and 402 images out of the
total 1,449 test images for each configuration.

We compare against the GrabCut baseline3 and the results are shown in Table 7. In all K-shot
settings, FoxInst surpasses the GrabCut baseline. For the first setup, FoxInst achieves 32.26% mask
AP50 with 10-shot samples, which is 13.80% higher than the performance of GrabCut. Figure 6 is
the qualitative results of our FoxInst trained with 5-shot samples on VOC2VOC. FoxInst can detect
minute regions, e.g., the front wheel of the airplane, and multiple instances in a single image. These
results demonstrate that FoxInst can perform successfully with the small base training dataset.

3Although FGN (Fan et al., 2020) also considers the VOC2VOC setting, we cannot compare FoxInst with
it because they randomly sample the novel classes and the specific composition has not been released.
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