
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FIXED AGGREGATION FEATURES CAN RIVAL GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are widely believed to excel at node represen-
tation learning through trainable neighborhood aggregations. We challenge this
view by introducing Fixed Aggregation Features (FAFs), a training-free approach
that transforms graph learning tasks into tabular problems. This simple shift en-
ables the use of well-established tabular methods, offering strong interpretability
and the flexibility to deploy diverse classifiers. Across 14 benchmarks, well-tuned
multilayer perceptrons trained on FAFs rival or outperform state-of-the-art GNNs
and graph transformers on 12 tasks – often using only mean aggregation. The only
exceptions are the Roman Empire and Minesweeper datasets, which typically re-
quire unusually deep GNNs. To explain the theoretical possibility of non-trainable
aggregations, we connect our findings to Kolmogorov–Arnold representations and
discuss when mean aggregation can be sufficient. In conclusion, our results call
for (i) richer benchmarks benefiting from learning diverse neighborhood aggrega-
tions, (ii) strong tabular baselines as standard, and (iii) employing and advancing
tabular models for graph data to gain new insights into related tasks.

1 INTRODUCTION

Graph neural networks (GNNs) have become the standard approach for learning from graph based
data, and in particular, for solving node classification. Most models follow the message-passing
paradigm (Gilmer et al., 2017), where each node updates its representation by alternating neigh-
borhood aggregation with learned linear combinations across multiple hops. This framework has
been remarkably successful at combining node features with graph structure, driving applications in
domains ranging from social networks to biology (Bongini et al., 2023; Sharma et al., 2024). Yet,
it comes at the cost of high model complexity that poses challenges for interpretation. We ask the
question whether this high complexity is really necessary.

Recent evidence (Luo et al., 2024; 2025a) shows that classic models, such as GCN (Kipf & Welling,
2017), GATv2 (Brody et al., 2022), and GraphSAGE (Hamilton et al., 2017), remain surprisingly
competitive when equipped with proper hyperparameter tuning and standard optimization tech-
niques. When carefully tuned, they can rival more sophisticated approaches, including state-of-
the-art Graph Transformers (Wu et al., 2023; Deng et al., 2024; Kong et al., 2023; Wu et al., 2022;
Chen et al., 2023; Rampášek et al., 2022; Shirzad et al., 2023) and models designed for heterophily
(Zhu et al., 2020; 2021; Chien et al., 2021; Maurya et al., 2022; Li et al., 2022).

These results invite a closer look at which components of graph learning architectures are essential
for strong performance, and thus raise a natural next question: How relevant is learning the aggrega-
tion? In fact, the field has invested heavily in learning increasingly complex convolution layers and
attention mechanisms. In this paper we challenge that premise from first principles. Leveraging the
Kolmogorov–Arnold representation theorem (Kolmogorov, 1957; Schmidt-Hieber, 2021), we give
an explicit, lossless construction of neighborhood aggregations. Consequently, one can in theory
encode neighbor features without discarding information. However, the same construction exposes
a crucial gap between expressiveness and learnability: these lossless encoders are numerically brittle
(e.g., sensitive to floating-point noise) and tend to produce “rough” embeddings that are ill-suited
for standard classifiers on Euclidean space such as MLPs.

Surprisingly, we find that, standard, untrained aggregation operators—sum, mean, max,
min—though not information-preserving, yield useful features without any learnable parameters.
Building on this observation, we propose Fixed Aggregation Features (FAF) (§ 3): a training-free

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

aggregation pipeline that applies fixed aggregation functions—also referred to as “reducers”—over
neighborhoods at multiple hops, concatenates the results into a tabular feature matrix, and then trains
only a downstream classifier (e.g., an MLP). This data transformation brings several advantages:
high interpretability (feature importance and ablations over hops/reducers), compatibility with the
rich toolbox of tabular learning (designed to handle noise, class imbalance, feature selection, etc.),
architectural flexibility, and reduced training compute.

Empirically, FAFs combined with well-tuned MLP classifiers are competitive on 12/14 common
node-classification benchmarks, including citation networks (McCallum et al., 2000; Sen et al.,
2008; Namata et al., 2012), coauthor and Amazon co-purchase graphs (Shchur et al., 2018),
Wikipedia (Mernyei & Cangea, 2020; Rozemberczki et al., 2021), and other heterophilous datasets
(Platonov et al., 2023b). Performance truly trails only on Minesweeper and Roman-Empire, where
the best GNNs rely on linear residual connections; in fact, the remaining gap aligns with the gains
from residuals reported by Luo et al. (2024). This pattern suggests that these datasets (Minesweeper
and Roman-Empire) benefit from hop-specific aggregations. While these GNNs profit from many
layers (10–15), the best-performing FAFs use only 2–4 hops. But why do FAFs work so well in
the other cases? Our theoretical analysis of the employed aggregation functions (§ 4) and our em-
pirical findings (§ 5) suggest that, for most benchmarks, the relevant signal is concentrated within
hops 0–2; on hops 0–1, sum and mean preserve information. At higher hops, different reducers are
complementary, but the information gain from min/max diminishes.

FAFs also let us examine datasets from an optimization-first viewpoint without hard-to-interpret
architectural factors (§ 3.1). By converting neighborhoods into tabular features, we decouple rep-
resentation from optimization and enable standard interpretability tools (e.g., feature importance
(Lundberg & Lee, 2017)) to identify which hop distances and reducers carry signal. Beyond re-
visiting the homophily–heterophily dichotomy or one-hop informativeness (Platonov et al., 2023a;
Zheng et al., 2024; 2025), our method supports a richer characterization of interaction patterns—how
signal varies across scales, which effects are additive vs. redundant, and where long-range depen-
dencies matter. The tabular view also makes it natural to augment features with network-science
descriptors (Blöcker et al., 2025) and neighborhood-masking features inspired by graph rewiring
(Rubio-Madrigal et al., 2025) or computational-graph splitting (Roth et al., 2025).

Together, our results suggest that many benchmarks do not require sophisticated learned aggrega-
tions, and that a large portion of GNN performance can be matched by powerful tabular baselines
built from fixed, transparent summaries. FAFs can serve both as a strong baseline and as a diagnostic
tool for graph benchmarks in this setting. In summary, here are our main contributions:

1. Theory: We construct lossless neighborhood aggregations via Kolmogorov–Arnold representa-
tions, clarifying that learnability and numeric stability—not just expressiveness—govern prac-
tical success. Moreover, we analyze what information common reducers extract from neigh-
borhoods, revealing information preservation at 0 and 1 hops and diminishing information with
higher depth for min/max.

2. Method: We introduce FAFs, which convert graph data into a tabular task by stacking fixed
multi-hop aggregations, offering an interpretable framework to study the interplay between
graph structure, features, and the task.

3. Empirical evidence: FAFs match or exceed classic GNNs on 12/14 standard benchmarks. Our
experiments further corroborate our analysis, finding low hop features to be more important and
diminishing information at higher depth.

4. Implications: Our findings question the necessity of learned neighborhood aggregation on cur-
rent standard benchmarks, motivate strong tabular baselines for graph data, and open a path to
more interpretable, efficient graph learning—and to designing harder benchmarks that genuinely
benefit from aggregation learning.

2 RELATED WORK

Simplifying GNNs. A growing body of work shows that much of a GNN’s power can be re-
tained—even improved for some tasks—when message passing is simplified or fixed. Early ev-
idence comes from Kipf & Welling (2017), inspiring lines of work where aggregation layers are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

frozen or randomized: Ramachandra et al. (2025) obtain competitive node classification on rela-
tional graphs by aggregating randomly transformed random features; Kelesis et al. (2025) analyze
partially frozen GCNs, showing that fixing aggregation can mitigate over-smoothing and ease op-
timization; and GESN (Gallicchio & Micheli, 2010) compute node embeddings via a dynamical
system with randomly initialized reservoir weights, after which only a linear readout is trained for
node classification (Micheli & Tortorella, 2024). Another simplification comes from SGC (Wu
et al., 2019), which remove nonlinearities from a GCN, yielding a model equivalent to applying
a low-pass graph filter followed by a linear readout. For link prediction (Qarkaxhija et al., 2024),
SGCNs are found to be better than GCNs, but even removing the classifier linear layer—and thus all
trainable parameters—provides a good baseline. A fixed aggregation scheme is also used in APPNP
(Gasteiger et al., 2019): an MLP is first trained to produce node embeddings, and a subsequent
Personalized PageRank–based propagation is applied; although the propagation itself is fixed, it
remains in the computation graph, so gradients flow during backpropagation. And for graph classifi-
cation on non-attributed graphs, Cai & Wang (2019) show that first-neighborhood statistics with an
SVM form a surprisingly strong baseline, but performance lags on attributed graphs. In contrast, we
focus on node classification with rich node features. We aggregate across all hops and concatenate
these as inputs, and we place a more powerful, and more carefully tuned classifier on top (an MLP),
all of which are necessary for our results—as shown in our empirical results, such as in Tables 7
and 8. With it we highlight the value of concatenating dependent but informative hop-wise features
(Reddy et al., 2025), and the benefits of overparameterization on graphs—echoing evidence from
random-feature models (Donghi et al., 2024).

Benchmarking GNNs. Our work also connects to the growing literature on properly benchmark-
ing GNNs and what constitutes a meaningful graph-learning dataset. For graph classification, Errica
et al. (2020) show that, under controlled protocols, simple and even structure-agnostic baselines can
rival complex GNNs, suggesting that common benchmarks often fail to exploit graph structure. Re-
cent analyses likewise warn that graph learning risks losing relevance without application-grounded
benchmarks (Bechler-Speicher et al., 2025) and principled criteria for dataset quality beyond ac-
curacy (Coupette et al., 2025). On the dataset side, Bazhenov et al. (2025) recently introduced
industrial node property prediction benchmarks with graph-agnostic baselines. Their neighborhood
feature aggregation (NFA), which augments tabular models with one-hop aggregated neighbor statis-
tics, can be seen as a one-hop instance of our FAF construction. Concurrently, Anonymous (2025)
propose a suite of benchmarks to standardize graph-learning evaluation. In this context, our FAF
approach serves as a simple stress test of whether proposed graph benchmarks genuinely benefit
from learned message passing, and we argue that such well-tuned, fixed, multi-hop baselines should
be routinely included when assessing new graph models and datasets.

GNN aggregation functions. Classical message-passing GNNs differ primarily in how they ag-
gregate neighbor features under permutation invariance. Sum, mean, and max are the canonical
choices, with injectivity and stability trade-offs of each of them tied to their multiset representa-
tions (Xu et al., 2019). Beyond single operators, principal neighborhood aggregation (PNA) mixes
several base reducers with degree-aware scalers to boost expressiveness and well-conditioning for
continuous reducers (Corso et al., 2020). Attention mechanisms instantiate learned weighted sums
(Veličković et al., 2018; Brody et al., 2022), although it has been shown that they suffer from train-
ability problems, including small relative gradients on the attention parameters, slowed-down layer-
wise training speed, and the inability to mute neighbors (Mustafa et al., 2023; Mustafa & Burkholz,
2024a;b). Our perspective is complementary: We study fixed reducers whose strength comes from
(i) their information preservation and (ii) their separability by a powerful downstream classifier. This
decoupling clarifies what must be learned (the readout) versus what can be fixed (the propagation),
and it aligns with our empirical finding that stronger, well-tuned classifiers capitalize on rich, con-
catenated neighborhood views. Because of this, we argue that good optimization and learnability
is as important as expressivity results. In line with this argument, Gorishniy et al. (2022) argue
for tabular data that having the right embeddings for continuous features is key to closing the gap
between transformer-like architectures and feed forward networks, proposing a lossless piecewise
linear embedding to improve the trainability of the latter.

Kolmogorov-Arnold theorem. The Kolmogorov–Arnold representation (Kolmogorov, 1957) ad-
mits several equivalent formulations that reduce multivariate functions to compositions of univariate

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Base: h(0)
v = xv

Node v’s
features ⊕

Neighbor
features

1st hop: h(1)
v

⊕

Φ Φ Φ

2nd hop: h(2)
v }

Φ Φ Φ

Train MLP on
[h

(0)
v ⊕ h

(1)
v ⊕ h

(2)
v]

Figure 1: Fixed Aggregation Features (FAFs) are calculated as a pre-processing step, concatenated
to the input (⊕), and fed to an MLP. If the aggregation function Φ is injective, the neighborhood
information is preserved. The Kolmogorov-Arnold representation theorem ensures the existence of
such a function, although simple reducers are empirically more amenable for optimization.

functions. Recent architectures explicitly instantiate such decompositions with learnable spline-
based univariate components and linear mixing (Liu et al., 2025; Carlo et al., 2025). In contrast,
we use a specific fixed-aggregation formulation with predetermined aggregation weights and a fixed
univariate encoding (Schmidt-Hieber, 2021), so that any multivariate function f can be learned ex-
clusively from a single univariate readout g applied to a fixed weighted sum of univariate transforms.

3 FIXED AGGREGATION FEATURES

Node neighborhoods can be compressed into single-node features, eliminating the need to learn
feature embeddings before every layer of message passing. Our approach, Fixed Aggregation
Features (FAFs), recursively constructs and concatenate features via a set of reducers R ⊂
{mean, sum,max,min, std, . . .} in the following way:

h(0,r)
v = xv, h(k,r)

v = r
(
{h(k−1,r)

u : u ∈ N(v) }
)
, (1)

where k ∈ {1, . . . ,K} and r ∈ R. We then train an MLP on the concatenated representation

zv = xv ⊕
(⊕

r∈R
⊕

k∈{1,...,K}

(
h(k,r)
v

))
(2)

with input dimensionality |xv| · (1+ |R| ·K) per node v. Figure 1 illustrates the case R = {Φ} with
K = 2. If the reducers are injective, then the neighborhood information at each depth is preserved
in zv . This waives the need for aggregating learned embeddings in GNNs, thus transforming graph
data into high-dimensional tabular data. Our analysis explains why this is theoretically possible
(§ 4). Additionally, in our experiments (§ 5), we show that MLPs trained on FAFs can match the
performance of classic GNNs on most standard node-classification benchmarks and, by comparing
with Luo et al. (2024), of Graph Transformers and heterophily-aware models.

3.1 ADVANTAGES OF TABULAR OVER GRAPH DATA REPRESENTATION

1 0 2 3 4 5 6

Base feature
0.0

0.5

1.0

1.5

2.0

Im
po

rta
nc

e

3 1 2

1

3 2

Minesweeper Top 7 important features (stacked by hop)
hop 0
hop 1
hop 2
hop 3
hop 4

Figure 2: SHAP feature importance for
Minesweeper, stacked by hop. Numbers on the
stacked bars indicate the ranking of that partic-
ular feature on that particular hop.

We now turn to further benefits of the tabular
view: interpretability, optimization, efficiency,
and augmentations.

Interpretability. Our construction concate-
nates each node’s original features with K-hop
neighborhood statistics and feeds this expanded
representation to a tabular classifier. This setup
surfaces feature and hop aggregation factors ex-
plicitly, enabling us to assess their contributions
using the widely-used toolbox for tabular inter-
pretability. For instance, we can analyze effects
across hops by examining feature importance of
the MLP. As an illustration, we compute Shapley

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Additive Explanations (SHAP) (Lundberg & Lee, 2017) on Minesweeper with mean aggregation
(Fig. 2), one of the two datasets where FAFs lag. In this dataset, labels are bombs, feature 0 masks
other features, and features 1–6 one-hot encode the number of neighboring bombs. The top signal
is the hop-1 mean of feature 1, i.e., the fraction of neighbors whose local bomb count is null. When
this proportion is greater than zero, the model knows that the node cannot have a bomb; when it
is zero, all its neighbors observe bombs so there is a possibility of having a bomb. This heuristic
does not completely solve the problem, as neighbors can be merely observing second-hop bombs,
creating ambiguity that likely underlies residual errors. The model also correctly gives importance
to the number of masked neighbors (hop-0 feature 0). These attributions clarify where the model
succeeds and where it fails. For comparison, we report SHAP importances for two other datasets in
Fig. 5 in the appendix: Pubmed (homophilic) and Amazon-Ratings (heterophilic).

Rather than explaining a particular classifier, one can aim to explain the dataset—localizing which
hops and features carry signal independent of model choice. Following Donnelly et al. (2023),
noisy tabular datasets often admit a “Rashomon set” of comparably well-performing models. Ac-
cordingly, feature importance is better assessed over this set—preferably constrained to simpler or
sparser models—than from a single fit. This lens may offer a principled way to interrogate graph
data beyond feature homophily–heterophily (Zheng et al., 2024) or strictly one-hop neighborhoods
(Zheng et al., 2025), though its current implementation requires binarized data on regression tasks.

Optimization. GNNs usually exhibit early overfitting, where training accuracy converges almost
immediately while validation and test accuracy plateau or even decay. Thus, the best validation
accuracy is often achieved before relevant aggregations are learned. This might partially explain
why FAFs can often compete with trained GNNs: They avoid overfitting aggregations. GNNs can
also suffer from ineffective aggregation learning (Mustafa et al., 2023; Mustafa & Burkholz, 2024b),
so their potential to outcompete FAFs is likely underexplored due to trainability issues. By contrast,
optimization on tabular data (like FAFs) is better tractable and understood by standard toolkits.

Efficiency. Precomputing aggregation once and then training an MLP on top is far more scalable
than repeatedly running message-passing layers and backpropagating through them, as required in
GNNs. However, as the number of reducers, original features, and hops in FAF increases, so does
the input dimensionality, which in turn enlarges the parameter count of the MLP’s first layer. This
issue could be mitigated through common feature reduction techniques. For the original features,
we report the average training runtimes of our FAF and GNN models in Table 5. FAFs are generally
more efficient, particularly when using a single reducer.

Augmentations. Adding more features does not improve accuracy monotonically. Beyond a point,
some feature selection is needed. Still, the tabular view lets us concatenate diverse features atop the
aggregations. In addition to concatenating multiple reducers and hops, one can append structural
statistics such as degree, centrality, and other network-science metrics (Blöcker et al., 2025). Our
framework is also compatible with pre-processing graph rewiring, where aggregation is computed
on a modified adjacency matrix e.g. to fight over-squashing (Topping et al., 2022; Jamadandi et al.,
2024). But unlike standard rewiring, we can concatenate the rewired features instead of replacing
the originals. As fixed aggregations can suffer from similar issues as trainable GNNs, FAFs can also
benefit from proposed remedies. To extract more precise information from complex environments,
we examine a feature similarity-based rewiring loosely based on Rubio-Madrigal et al. (2025), where
edges of negative feature cosine similarity between nodes are dropped. We then append features
aggregated on the rewired graph, or split edges into positive/negative sets and aggregate separately,
inspired by computational-graph splitting that helps fight over-smoothing (Roth et al., 2025). Results
(Table 10) show that on datasets already helped by mean aggregation, adding these features yields
larger gains than substituting them; e.g., WikiCS surpasses classic GNNs where other FAF variants
do not. These augmentations not only improve performance but also help disentangle where the
gains come from: additional extracted signal versus changes to the optimization of graph models.
We therefore advocate FAFs as baselines for methods that modify the aggregation component of
GNNs—akin to analyses of SGC and GESN (Micheli & Tortorella, 2025), though in our case we
obtain benefits from these operations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 THEORETICAL FOUNDATIONS: DOES AGGREGATION NEED LEARNING?

Let G = (V,E) be a graph with node features X ∈ RF . A neighborhood function is a map
f : M(RF) → R acting on the multiset Xv := {Xu : u ∈ N(v)} for v ∈ V . We seek a fixed
encoder Φ such that we can learn any neighborhood function via a univariate map g with f = g◦Φ−1.
This enables tabular classifiers to learn graph data losslessly.

4.1 WHAT INFORMATION IS PRESERVED BY STANDARD AGGREGATIONS?

FAFs apply a transformation of neighborhoods that is not learnable, which raises the question of
what information gets lost by the aggregation. Permutation invariant aggregations treat graph neigh-
borhoods as multisets consisting of feature vectors of neighbors. Accordingly, they extract dis-
tribution information and forget about the identity of specific neighbors. This property is usually
regarded as helpful inductive bias and therefore of no concern. Our next theorems analyze which
information is preserved by sum and mean aggregations from these multisets. To do so, we first gen-
eralize Lemma 5 by Xu et al. (2019) for one-hot encoded discrete features to orthogonal features.
Combined with the fact that hop features are concatenated, this insights establishes that information
from the 1-hop neighborhood can be preserved.
Theorem 1 (1-hop aggregation). Assume the features X are orthogonal. Then, the function h(X) =∑

x∈X x defined on multisets X ⊆ X of bounded size is injective. Moreover, any multiset function
f can be decomposed as f(X) = g

(∑
x∈X x

)
for some function g.

The proof is given in the appendix A.2. Note that a multiset X ⊆ X is characterized by the count
nx of elements that have specific features x. These counts can also be extracted from the sum h(X)
(as demonstrated in the proof). Consequently, any multiset function f transforms such counts by
f(nx). The function g would thus first extract the counts from the sum h(X) and then apply f to the
counts. If the features of a node v include its degree dv , then mean aggregation contains the same
information, as a classifier can learn to multiply h(X) = 1/dv

∑
x∈X x by dv . In contrast, max and

min aggregations extract whether at least one neighbor has a specific feature property. They focus
on the tails of distributions rather than full neighborhoods.

Information loss for k-hops. One might hope that the above theorem also applies to aggregations
from hop k to k + 1. The orthogonality assumption, however, is essential and no longer met by the
aggregated neighbor features h

(k)
n for k ≥ 1. As a consequence, from k ≥ 2, not all information

about the distribution of features across neighbors is preserved, as Figure 4 exemplifies. In particular,
h
(2)
1 captures neither the degrees of its neighbors, nor the number and types of second-hop neighbors

associated with each first-hop neighbor. Even so, aggregation still extracts useful information, and
different aggregations concatenate complementary properties of neighborhoods.

• Sum aggregation: Sums count, for each of the n distinct orthogonal feature vectors xf , how
many nodes in the k-hop neighborhood exhibit feature f . A classifier can extract it by computing
xT
f h

(k)
v . Note that nodes reachable through multiple length-k paths are counted multiple times.

• Mean aggregation: Means can partially distinguish neighbors with different degrees by consid-
ering the fraction of nodes that exhibit a specific feature vector xf . The quantity xT

f h
(k)
v weights

each node i with feature xf by 1/di. Note that nodes reachable through multiple length-k paths
are again counted with multiplicity.

• Max aggregation: Max aggregation on one-hot encoded features returns whether at least one
node within k hops has a given feature. For large neighborhoods as k increases, this indicator
quickly saturates, so increasing hops adds little further information. The same reasoning applies
when taking the maximum entry of the orthogonal features.

• Min aggregation: The same reasoning applies to the minimum as to the maximum: It indicates
whether any node within k hops lacks the feature, and increasing k adds little further information.

4.2 LOSSLESS NEIGHBORHOOD AGGREGATION

When node features are real-valued in general, Corso et al. (2020) show that no single continuous,
permutation-invariant aggregation function can be lossless for all multiset functions. This mirrors

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a classical topological obstruction due to Netto (1879): There is no continuous bijection R→ R2

(Dauben, 1975). However, there can exist discontinuous bijections, namely space filling functions.
We adopt a concrete construction based on ternary expansions and the Cantor set, adapted from a
Kolmogorov-Arnold representation variant from Theorem 2 by Schmidt-Hieber (2021).

Theorem 2 (Kolmogorov-Arnold representation from Thm. 2 of Schmidt-Hieber (2021)). For any
fixed d ≥ 2, there exists a monotone function ϕ : [0, 1] → C (the Cantor set) such that the map
Φ(x1, . . . , xd) = 3

∑d
p=1 3

−p ϕ(xp) is injective on [0, 1]d. Moreover, for every continuous f :

[0, 1]d → R there exists a continuous g : Φ([0, 1]d) → R with f(x1, . . . , xd) = g(Φ(x1, . . . , xd)) .

Theorem 2 isolates all required discontinuity into a fixed aggregation. While Φ is not continuous,
its inverse is, which makes the learnable part g := f ◦ Φ−1 inherit the continuity properties of f .
Schmidt-Hieber (2021) has also quantified how much information is lost if g is learned instead of f .
For f β-smooth with β ≤ 1, there is no difference in the rate of approximation. However, for higher
order smoothness, the multivariate and univariate function approximation may vary. Note that this
aggregation even remembers node identities. From this theorem we can learn the following insight:

A lossless, fixed, even univariate neighborhood aggregation function exists, but it has to be
discontinuous for general continuous features.

4.3 IMPLICATIONS AND OPEN CHALLENGES

When we encode neighborhoods via the injective function Φ and learn g so that f = g ◦ Φ−1, the
information content, smoothness properties, and approximation rates of the neighborhood function f
transfer to g. However, this theoretical sufficiency does not guarantee strong empirical performance
when Φ is used directly as a reducer for FAF (see Table 9). In Appendix A.1, we visualize how Φ
maps 2D circles into the univariate Cantor set, and how Φ−1 can recover them continuously. We also
compare against mean and std, and observe that Φ pushes inputs that are close together into far-apart
representations, whereas mean and std bring together far-apart inputs that share commonalities. It is
the case that, in practice, the simple statistics studied in § 4.1 often provide distributional summaries
that downstream classifiers exploit more effectively.

An ideal aggregation function would be both injective, like Φ, and would extract useful statistical
insights, like mean. It is still an open challenge to design, or potentially learn, efficient embed-
dings that extract relevant information from graph neighborhoods, while easing the learning prob-
lem for the classifier (Burkholz et al., 2022). One might expect GNNs to learn such representations
end-to-end without overfitting. Our experiments with FAFs (Tables 2, 6) suggest—despite some
information loss at iterative hops—that simple reducers suffice for most standard node-classification
benchmarks.

Experimentally, we find that mean aggregation alone is often among the top performers. This sug-
gests that neighborhood feature distributions provide most task-relevant signal, and that neighbor
degrees encode useful structural information, helping to distinguish the contribution of distinct
neighbors. Consistent with this, the most relevant information is already provided in the imme-
diate neighborhood (k = 0, 1, see Table 6) and the concatenation of this information is key so that
it is not lost by repeated aggregations (see Table 8). Consequently, information loss at larger k is
of little practical concern—except for two datasets that appear to require subtler information. Taken
together, these observations motivate the following hypothesis.

Hypothesis: For most standard node-classification benchmarks, either the predictive signal is
already concentrated within the first one or two hops, or current GNNs struggle to learn layer-
wise aggregations that extract relevant information beyond mean or sum.

The first part of this hypothesis underscores the need for more real-world datasets where long-
range interactions and richer aggregations matter, supporting prior calls to revisit benchmark design
(Errica et al., 2020; Bechler-Speicher et al., 2025). Although some tasks (like Roman Empire)
benefit from long-range signal (Topping et al., 2022), making deep graph models work reliably
remains a challenge. Recent evidence indicates that graph models generally struggle to capture
interactions beyond roughly 13 hops, irrespective of over-smoothing, over-squashing, or vanishing
gradients (Zhou et al., 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy on node classification: Best validation FAF against classic GNNs.

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

GCN 93.58 ± 0.44 95.77 ± 0.27 53.86 ± 0.48 44.62 ± 4.50 72.72 ± 0.45 95.73 ± 0.15 97.47 ± 0.08
GAT 93.91 ± 0.22 96.45 ± 0.37 55.51 ± 0.55 42.90 ± 5.47 71.82 ± 0.65 96.14 ± 0.08 97.12 ± 0.13
SAGE 93.31 ± 0.17 96.17 ± 0.44 55.26 ± 0.27 43.11 ± 4.73 71.82 ± 0.81 96.21 ± 0.10 97.10 ± 0.09
MLP 87.75 ± 0.42 93.62 ± 0.36 49.04 ± 0.39 38.59 ± 3.29 57.22 ± 2.25 93.80 ± 0.19 96.02 ± 0.16

FAFbestval 94.01 ± 0.21 96.54 ± 0.13 55.09 ± 0.24 42.96 ± 2.45 70.48 ± 1.24 95.37 ± 0.17 97.05 ± 0.18

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

GCN 84.38 ± 0.81 97.48 ± 0.06 80.00 ± 0.77 78.44 ± 0.23 91.05 ± 0.15 44.26 ± 1.22 80.06 ± 0.81
GAT 83.02 ± 1.21 97.00 ± 1.02 79.80 ± 0.94 77.72 ± 0.71 90.38 ± 0.49 39.31 ± 2.42 81.01 ± 0.23
SAGE 83.18 ± 0.93 97.72 ± 0.70 77.42 ± 0.40 76.75 ± 1.07 90.41 ± 0.10 40.22 ± 1.47 80.57 ± 0.42
MLP 58.56 ± 1.75 51.74 ± 0.83 68.22 ± 0.96 70.40 ± 1.17 66.43 ± 0.12 39.11 ± 1.93 72.98 ± 0.49

FAFbestval 82.84 ± 0.63 90.00 ± 0.39 80.96 ± 1.06 78.69 ± 0.50 78.11 ± 0.38 44.59 ± 1.62 80.25 ± 0.34

The second part of the hypothesis concerns the ability of GNNs to actually realize useful aggrega-
tions in practice. For instance, GNNs may not move far enough from their initializations. Indeed,
the two datasets on which GNNs hold an advantage require linear residual transformations to realize
that gap (Luo et al., 2024). Prior work also shows that GATs cannot flexibly adjust attention to shut
off unhelpful neighbors (Mustafa & Burkholz, 2024b). This supports our results on rewiring the
adjacency matrix before aggregation (Table 10). If GATs could learn to prune the edges that we
manually drop, they would enjoy similar gains.

We see opportunity for future work along three fronts that build directly on our findings:

1. Feature/reducer engineering: FAFs highlight untapped potential for designing meaningful node
features that encode graph structure, require less learning, potentially preserve more—but ide-
ally only relevant—information, and allow for higher learning efficiency. In combination with
partial feature learning, they might form the basis of a new generation of graph based learning
architectures.

2. Moving beyond injectivity: As our theory and empirical results highlight, improving GNN ex-
pressiveness and thus injectivity alone is not likely to inspire practical improvements on current
benchmarks, as those can be competitively solved even with simple, non-injective aggregation.
We therefore call for a shift in focus from mere injectivity to other learning properties—a theo-
retical gap to be addressed not only for FAFs but for GNNs in general.

3. Benchmarks: Enough information to solve current benchmark tasks is already contained in early
hops and can be extracted with simple, non-injective aggregation. If we really want to showcase
the capabilities of GNNs to learn meaningful features, we need more difficult benchmarks that
require this ability.

In theory, fixed information-preserving aggregations can reduce graph learning to tabular pre-
diction. In practice, task relevant representations and information preservation are a challenge.
Progress likely requires both more amenable reducers and better tasks for evaluation.

5 EXPERIMENTS

5.1 COMPARISON TO CLASSIC GNNS

Performance of FAFs. Table 1 reports test performance for classic GNNs—GCN (Kipf &
Welling, 2017), GATv2 (Brody et al., 2022), and GraphSAGE (Hamilton et al., 2017)—versus our
approach, which feeds Fixed Aggregation Features (FAFs) into MLPs (Figure 1 and Eq. 1). We ag-
gregate up to the same hop depth as the GNN baselines. As a control, we include an MLP baseline
with zero-hop aggregation, which performs substantially worse than all other models. We obtain the
best FAF variant from validation results, shown in Table 2. FAF4 uses the reducers R = {mean,
sum, max, min}, and is tuned with exactly the hyperparameter grid from Luo et al. (2024); this
makes our results directly comparable to their Graph Transformers and heterophily-aware archi-
tectures, where they find that classic GNNs can also rival them. Additional FAF variants include

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Validation accuracy on node classification: FAFs against classic GNNs.

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

GCN 92.58 ± 0.10 95.42 ± 0.11 54.01 ± 0.23 48.15 ± 2.35 70.36 ± 0.09 95.32 ± 0.07 97.16 ± 0.07
GAT 92.86 ± 0.06 95.93 ± 0.15 55.56 ± 0.68 46.97 ± 2.07 69.52 ± 0.27 95.30 ± 0.08 97.11 ± 0.03
SAGE 92.33 ± 0.17 95.60 ± 0.16 55.90 ± 0.54 46.22 ± 2.12 68.48 ± 1.05 95.51 ± 0.04 97.02 ± 0.09
MLP 87.89 ± 0.13 93.33 ± 0.07 48.98 ± 0.72 41.43 ± 1.77 56.80 ± 1.24 93.70 ± 0.07 95.89 ± 0.02

FAF4 93.05 ± 0.04 96.34 ± 0.07 55.53 ± 0.43 48.51 ± 2.31 67.28 ± 0.64 94.93 ± 0.07 96.83 ± 0.01
FAFmean,std 93.04 ± 0.13 96.23 ± 0.08 55.11 ± 0.40 48.42 ± 1.64 67.20 ± 0.28 94.94 ± 0.07 96.84 ± 0.03
FAFmean 93.16 ± 0.04 96.06 ± 0.10 53.78 ± 0.52 47.99 ± 2.02 66.92 ± 0.87 95.20 ± 0.14 97.00 ± 0.04
FAFmax,std 92.32 ± 0.08 95.80 ± 0.04 55.70 ± 0.45 48.42 ± 2.14 66.64 ± 0.54 95.04 ± 0.04 96.56 ± 0.03
FAFmax 91.93 ± 0.04 95.60 ± 0.04 55.63 ± 0.29 48.06 ± 2.30 66.56 ± 0.50 95.19 ± 0.13 96.54 ± 0.01
FAFsum 90.95 ± 0.04 94.88 ± 0.04 53.48 ± 0.59 47.29 ± 1.92 67.84 ± 1.45 95.13 ± 0.09 96.65 ± 0.05
FAFstd 92.50 ± 0.06 95.86 ± 0.10 55.31 ± 0.32 47.27 ± 2.15 63.44 ± 0.17 95.01 ± 0.12 96.76 ± 0.02

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

GCN 81.28 ± 0.33 97.36 ± 0.46 79.08 ± 0.23 78.63 ± 0.23 91.14 ± 0.58 44.88 ± 1.27 81.52 ± 0.37
GAT 81.16 ± 0.52 97.08 ± 1.16 78.84 ± 0.52 78.12 ± 1.03 90.49 ± 0.68 43.30 ± 1.43 82.38 ± 0.57
SAGE 81.32 ± 0.41 97.68 ± 0.63 78.88 ± 0.91 77.35 ± 1.09 90.44 ± 0.66 40.58 ± 1.17 82.27 ± 0.38
MLP 62.68 ± 1.15 51.12 ± 0.93 71.12 ± 0.52 71.58 ± 1.46 66.28 ± 0.27 40.57 ± 0.92 74.86 ± 0.33

FAF4 82.84 ± 0.43 89.63 ± 1.03 79.08 ± 0.36 79.53 ± 1.12 78.68 ± 0.19 47.31 ± 1.39 81.92 ± 0.43
FAFmean,std 83.36 ± 0.17 89.18 ± 0.71 81.28 ± 0.30 77.32 ± 0.36 77.59 ± 0.41 47.30 ± 1.32 81.37 ± 0.51
FAFmean 83.28 ± 0.30 89.89 ± 0.93 81.16 ± 0.97 78.53 ± 0.87 76.67 ± 0.36 46.29 ± 1.50 81.58 ± 0.46
FAFmax 81.80 ± 0.42 86.08 ± 0.77 77.48 ± 0.30 79.15 ± 0.86 75.06 ± 0.14 46.47 ± 1.38 80.30 ± 0.56
FAFmax,std 82.08 ± 0.33 87.83 ± 0.63 78.28 ± 0.30 78.86 ± 0.89 76.19 ± 0.26 47.44 ± 1.51 80.46 ± 0.53
FAFsum 82.60 ± 0.65 89.86 ± 0.85 79.40 ± 0.57 78.12 ± 0.27 77.13 ± 0.23 46.85 ± 1.28 78.17 ± 0.23
FAFstd 81.40 ± 0.51 88.20 ± 0.52 80.00 ± 0.40 76.25 ± 0.53 73.95 ± 0.49 45.91 ± 1.32 77.65 ± 0.31

mean+std, mean only, max+std, max only, sum only, and std only. The best overall result is shown
in bold, the second best is underlined. More details on the setup are given in § B, as well as all test
accuracy counterparts in Table 11 in § D. We also show all training, validation, and test curves of all
datasets for FAF4 and GCN in Fig. 6.

Overall, we improve on 5 datasets, match within error or 1% on another 5, and trail on 4. On most
datasets, FAF4 performs comparably to mean+std. Among the ones within 1%, we have Coauthor-
CS and Coauthor-Physics (Figures 6f, 6g), which are are the largest and most feature-rich; targeted
feature selection may close the gap. Among the 4 trailing datasets, two are homophilic and two het-
erophilic; the homophilic tasks are close to parity. Citeseer exhibits optimization instability (Fig. 6e),
and Cora has a large test-validation gap in GCNs (Fig. 6h), not present in any other. The two het-
erophilic datasets, Minesweeper and Roman-Empire (Figures 6i, 6l) show larger performance drops.
This behavior mirrors the decrease reported by Luo et al. (2024) when residual connections are re-
moved. Notably, the best-performing FAFs on these two datasets use far fewer hops (4 and 2) than
the GNN baselines (15 and 10), suggesting that key signal lies at longer ranges. The shallower FAFs
under-aggregate relative to what those tasks require, but adding extra hops does not provide extra
information, as discussed in § 4.1. We also show it in Table 6, where we concatenate up to different
amount of hops. In fact, most datasets peak at K = 2, and either plateau or decrease in performance.

Best hyperparameters. All FAF variants benefit from normalization components (BatchNorm or
LayerNorm), as aggregated features can vary widely in scale across reducers and hops. Compared
with GNNs, FAFs typically favor larger learning rates, which can yield faster training, improved
generalization via implicit regularization, and feature sparsity (Mohtashami et al., 2023; Sadrtdinov
et al., 2024). Dropout levels, however, are broadly similar to those used for GNNs. This suggests
that dropout’s gains on these node-classification tasks are driven more by dataset properties than by
the specifics of training graph convolutions, which nuances prior interpretations (Luo et al., 2025b).

5.2 ABLATIONS

Ablation on single reducers. Concatenating multiple aggregations has advantages and draw-
backs. On the plus side, an MLP can learn to weight each reducer, removing the need to pick
one per dataset. Because our individual reducers are not lossless, different datasets may favor dif-
ferent ones; moreover, adding informative, correlated covariates can improve robustness and reduce
variance (Reddy et al., 2025). On the downside, concatenation increases input dimensionality, with

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

corresponding memory and optimization costs. Table 2 reports validation results when using a sin-
gle aggregation at a time. Note that this resembles a simple feature selection over FAF4. We keep
the same hyperparameters as FAF4 to isolate the effect of the aggregation choice, though the lower
dimensionality could allow for alternative settings that further improve performance. Surprisingly,
a single reducer often suffices, though the preferred choice varies by dataset. The mean is most fre-
quently strongest, sometimes surpassing FAF4 and FAFmean,std—e.g., on Pubmed, where FAFmean

outperforms the GNNs while other FAF variants do not. This may reflect optimization challenges
from high-dimensional inputs or increased overfitting. Still, mean is not universally best: sum or
max win on some datasets (e.g., Citeseer favors sum; Amazon-Ratings favors max). Combining re-
ducers therefore remains beneficial when one wishes to avoid committing to a specific one a priori.

Comparison with one-layer classifier and last hop. Other simplifications of GNNs (Wu et al.,
2019; Micheli & Tortorella, 2024) effectively fix the aggregation and train a single linear layer on
the final-hop representation. In contrast, we concatenate representations from all hops and train
a well-tuned MLP classifier. This choice is crucial for matching GNN performance. As shown
in Table 7, MLPs consistently outperform a single linear layer applied to the same concatenated
features, indicating that their nonlinearity and increased capacity are important to learn from multi-
hop features. Moreover, Table 8 shows that only using the last hop lacks important information that
is not transmitted across aggregations.

Kolmogorov-Arnold aggregation. Our hypothesis that Roman-Empire lags due to information
loss is reinforced by a FAF variant that uses the Kolmogorov–Arnold (KA) function Φ, which is
theoretically lossless (Theorem 2). As we also exemplified in Fig. 3, in practice, KA is hard to use
for classification. We observe in Table 9 that some datasets struggle to fit (lower training accuracy),
while others show mild overfitting. Nevertheless, on Roman-Empire this variant attains a validation
accuracy of 80.45± 0.25, the highest among all FAFs, suggesting that providing full neighborhood
information helps close the gap on this task. This, in turn, highlights the need for benchmarks where
predictive signal genuinely arises at distant hops in complex ways.

6 CONCLUSIONS

We have introduced Fixed Aggregation Features (FAFs), a non-learnable tabular mapping from local
neighborhoods of graph features to univariate representations that an MLP can learn to classify.
Our analysis shows that fixed, injective neighborhood aggregation functions exist, linking multiset
expressivity to Kolmogorov–Arnold factorizations; thus learned message passing is not required
for expressivity in theory. But in practice, common non-injective reducers (mean, sum, max, min)
train more reliably, underscoring a gap between what is expressive in principle and what is reliably
learnable. We also highlight the practical advantages of a tabular view, such as access to the rich
tabular toolkit of interpretability and tuning, and isolated representation from inference so we can
attribute gains or failures to the features themselves rather than to message-passing optimization.

On node classification datasets, FAFs are a strong baseline: they match or beat classic GNNs on
many benchmarks, and trail only on two datasets needing longer-range interactions, where residual-
ized GNNs help. Two ablations explain most gains: a well-tuned MLP beats a single linear classifier
on top of FAF features, and concatenating all hop beats using only the last hop. This is consistent
with later hops losing detail for these practical aggregation schemes. Surprisingly, two hops usually
suffice, suggesting either limited signal in current benchmarks, or difficulty training deep GNNs to
exploit more of it. While our theory carries over other downstream tasks, other benchmarks may
surface different constraints that can alter the empirical outcomes.

Our findings have immediate implications. We recommend always including a tuned FAF baseline
in future studies to calibrate what fixed aggregation alone can achieve; re-evaluating—and, when
appropriate, retiring—datasets on which FAFs reach state-of-the-art performance; and developing
benchmarks that genuinely require long-range dependencies and inter-hop dynamics. More broadly,
we advocate for simplifying models and balancing expressiveness against optimizability, rather than
assuming that extra parameters or higher expressiveness extract more relevant signal than simple
baselines. Notably, several phenomena that are often blamed on graph architectures—overfitting,
depth-related degradation, and sensitivity to dropout—also arise in tabular settings, indicating that
some limitations may stem from dataset properties rather than the graph-aware architectures alone.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Experimental details are provided in Appendix B, and further experimental results are included in
Appendix C. Detailed train/validation/test performance across all epochs of the main runs can be
found in Appendix D. The code for the experiments is attached as supplement.

LLM STATEMENT

To improve fluency of the text sentence level, editing has been done using large language models.

REFERENCES

Anonymous. Graphbench: Next-generation graph learning benchmarking. 2025. URL https:
//openreview.net/forum?id=h4FOb6ak0Q. under review.

Gleb Bazhenov, Oleg Platonov, and Liudmila Prokhorenkova. Graphland: Evaluating graph ma-
chine learning models on diverse industrial data. In The Thirty-ninth Annual Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2025. URL https:
//openreview.net/forum?id=Gyq8lMgdk5.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
audin, Viktor Zaverkin, Michael M. Bronstein, Mathias Niepert, Bryan Perozzi, Mikhail Galkin,
and Christopher Morris. Position: Graph learning will lose relevance due to poor benchmarks. In
Forty-second International Conference on Machine Learning Position Paper Track, 2025. URL
https://openreview.net/forum?id=nDFpl2lhoH.

Christopher Blöcker, Martin Rosvall, Ingo Scholtes, and Jevin D. West. Insights from network
science can advance deep graph learning, 2025. URL https://arxiv.org/abs/2502.
01177.

Pietro Bongini, Niccolò Pancino, Franco Scarselli, and Monica Bianchini. Biognn: How graph
neural networks can solve biological problems. In Artificial Intelligence and Machine Learning
for Healthcare, pp. 211–231. Springer, 2023.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=F72ximsx7C1.

Rebekka Burkholz, Nilanjana Laha, Rajarshi Mukherjee, and Alkis Gotovos. On the existence of
universal lottery tickets. In International Conference on Learning Representations, 2022.

Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification.
In ICLR Workshop: Representation Learning on Graphs and Manifolds, 2019. URL https:
//rlgm.github.io/papers/5.pdf.

Gianluca De Carlo, Andrea Mastropietro, and Aris Anagnostopoulos. Kolmogorov–arnold graph
neural networks, 2025. URL https://openreview.net/forum?id=udfjje2xXb.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=8KYeilT3Ow.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized PageRank
graph neural network. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=n6jl7fLxrP.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal
neighbourhood aggregation for graph nets. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. ISBN 9781713829546.

11

https://openreview.net/forum?id=h4FOb6ak0Q
https://openreview.net/forum?id=h4FOb6ak0Q
https://openreview.net/forum?id=Gyq8lMgdk5
https://openreview.net/forum?id=Gyq8lMgdk5
https://openreview.net/forum?id=nDFpl2lhoH
https://arxiv.org/abs/2502.01177
https://arxiv.org/abs/2502.01177
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://rlgm.github.io/papers/5.pdf
https://rlgm.github.io/papers/5.pdf
https://openreview.net/forum?id=udfjje2xXb
https://openreview.net/forum?id=8KYeilT3Ow
https://openreview.net/forum?id=n6jl7fLxrP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Corinna Coupette, Jeremy Wayland, Emily Simons, and Bastian Rieck. No metric to rule them
all: Toward principled evaluations of graph-learning datasets. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
XbmBNwrfG5.

Joseph W Dauben. The invariance of dimension: Problems in the early development of set theory
and topology [1]. Historia Mathematica, 2(3):273–288, 1975. ISSN 0315-0860. doi: https:
//doi.org/10.1016/0315-0860(75)90066-X. URL https://www.sciencedirect.com/
science/article/pii/031508607590066X.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph trans-
former in linear time. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=hmv1LpNfXa.

Giovanni Donghi, Luca Pasa, Luca Oneto, Claudio Gallicchio, Alessio Micheli, Davide An-
guita, Alessandro Sperduti, and Nicolò Navarin. Investigating over-parameterized randomized
graph networks. Neurocomputing, 606:128281, 2024. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2024.128281. URL https://www.sciencedirect.com/science/
article/pii/S092523122401052X.

Jon Donnelly, Srikar Katta, Cynthia Rudin, and Edward P Browne. The rashomon importance
distribution: Getting RID of unstable, single model-based variable importance. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=TczT2jiPT5.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neu-
ral networks for graph classification. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HygDF6NFPB.

Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The 2010 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2010. doi: 10.1109/IJCNN.2010.5596796.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pp. 1263–1272. JMLR.org, 2017.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numer-
ical features in tabular deep learning. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 24991–25004. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
9e9f0ffc3d836836ca96cbf8fe14b105-Paper-Conference.pdf.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning against
over-squashing and over-smoothing. In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https://openreview.net/forum?id=
EMkrwJY2de.

Dimitrios Kelesis, Dimitris Fotakis, and Georgios Paliouras. Partially trained graph convolu-
tional networks resist oversmoothing. Machine Learning, 114(10):211, Aug 2025. ISSN
1573-0565. doi: 10.1007/s10994-025-06865-3. URL https://doi.org/10.1007/
s10994-025-06865-3.

12

https://openreview.net/forum?id=XbmBNwrfG5
https://openreview.net/forum?id=XbmBNwrfG5
https://www.sciencedirect.com/science/article/pii/031508607590066X
https://www.sciencedirect.com/science/article/pii/031508607590066X
https://openreview.net/forum?id=hmv1LpNfXa
https://www.sciencedirect.com/science/article/pii/S092523122401052X
https://www.sciencedirect.com/science/article/pii/S092523122401052X
https://openreview.net/forum?id=TczT2jiPT5
https://openreview.net/forum?id=TczT2jiPT5
https://openreview.net/forum?id=HygDF6NFPB
https://openreview.net/forum?id=H1gL-2A9Ym
https://proceedings.neurips.cc/paper_files/paper/2022/file/9e9f0ffc3d836836ca96cbf8fe14b105-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9e9f0ffc3d836836ca96cbf8fe14b105-Paper-Conference.pdf
https://openreview.net/forum?id=EMkrwJY2de
https://openreview.net/forum?id=EMkrwJY2de
https://doi.org/10.1007/s10994-025-06865-3
https://doi.org/10.1007/s10994-025-06865-3

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. In Doklady Akademii
Nauk, volume 114(5), pp. 953–956. Russian Academy of Sciences, 1957.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Gold-
stein. GOAT: A global transformer on large-scale graphs. In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pp. 17375–17390. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/kong23a.html.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 13242–13256. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/li22ad.html.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ozo7qJ5vZi.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic GNNs are strong baselines: Reassessing GNNs
for node classification. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
xkljKdGe4E.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Can classic GNNs be strong baselines for graph-level
tasks? simple architectures meet excellence. In Forty-second International Conference on Ma-
chine Learning, 2025a. URL https://openreview.net/forum?id=ZH7YgIZ3DF.

Yuankai Luo, Xiao-Ming Wu, and Hao Zhu. Beyond random masking: When dropout meets graph
convolutional networks. In The Thirteenth International Conference on Learning Representa-
tions, 2025b. URL https://openreview.net/forum?id=PwxYoMvmvy.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
graph neural networks. Journal of Computational Science, 62:101695, 2022. ISSN 1877-7503.
doi: https://doi.org/10.1016/j.jocs.2022.101695. URL https://www.sciencedirect.
com/science/article/pii/S1877750322000990.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automat-
ing the construction of internet portals with machine learning. Information Retrieval, 3(2):
127–163, 2000. doi: 10.1023/A:1009953814988. URL https://doi.org/10.1023/A:
1009953814988.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neu-
ral networks. In ICML Workshop: Graph Representation Learning and Beyond, 2020. URL
https://arxiv.org/abs/2007.02901.

Alessio Micheli and Domenico Tortorella. Designs of graph echo state networks for node
classification. Neurocomputing, 597:127965, 2024. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2024.127965. URL https://www.sciencedirect.com/science/
article/pii/S0925231224007367.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v202/kong23a.html
https://proceedings.mlr.press/v202/kong23a.html
https://proceedings.mlr.press/v162/li22ad.html
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=xkljKdGe4E
https://openreview.net/forum?id=xkljKdGe4E
https://openreview.net/forum?id=ZH7YgIZ3DF
https://openreview.net/forum?id=PwxYoMvmvy
https://www.sciencedirect.com/science/article/pii/S1877750322000990
https://www.sciencedirect.com/science/article/pii/S1877750322000990
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://arxiv.org/abs/2007.02901
https://www.sciencedirect.com/science/article/pii/S0925231224007367
https://www.sciencedirect.com/science/article/pii/S0925231224007367

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alessio Micheli and Domenico Tortorella. An empirical evaluation of rewiring approaches in graph
neural networks. Pattern Recognition Letters, 196:134–141, 2025. ISSN 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2025.05.021. URL https://www.sciencedirect.com/
science/article/pii/S0167865525002168.

Amirkeivan Mohtashami, Martin Jaggi, and Sebastian U Stich. Special properties of gradient de-
scent with large learning rates. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 25082–25104. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/mohtashami23a.html.

Nimrah Mustafa and Rebekka Burkholz. Dynamic rescaling for training GNNs. In Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024a. URL https:
//openreview.net/forum?id=IfZwSRpqHl.

Nimrah Mustafa and Rebekka Burkholz. GATE: How to keep out intrusive neighbors. In Forty-first
International Conference on Machine Learning, 2024b. URL https://openreview.net/
forum?id=Sjv5RcqfuH.

Nimrah Mustafa, Aleksandar Bojchevski, and Rebekka Burkholz. Are GATs out of balance? In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=qY7UqLoora.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In Proceedings of the Workshop on Mining and Learning with Graphs,
2012.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: homophily-heterophily dichotomy and beyond. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, NIPS
’23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023b.

Lisi Qarkaxhija, Anatol Eugen Wegner, and Ingo Scholtes. Link prediction with untrained mes-
sage passing layers. In The Third Learning on Graphs Conference, 2024. URL https:
//openreview.net/forum?id=IRFfBpbdI9.

Sandeep Ramachandra, Vic Degraeve, Gilles Vandewiele, Bram Steenwinckel, Sofie Van Hoecke,
and Femke Ongenae. Rr-gcn: Exploring untrained random embeddings for relational graphs.
International Journal of Software Engineering and Knowledge Engineering, 35(06):809–
834, 2025. doi: 10.1142/S0218194025500184. URL https://doi.org/10.1142/
S0218194025500184.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 14501–14515. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf.

Abbavaram Gowtham Reddy, Celia Rubio-Madrigal, Rebekka Burkholz, and Krikamol Muandet.
When shift happens - confounding is to blame, 2025. URL https://arxiv.org/abs/
2505.21422.

Andreas Roth, Franka Bause, Nils Morten Kriege, and Thomas Liebig. Preventing representa-
tional rank collapse in mpnns by splitting the computational graph. In Guy Wolf and Smita
Krishnaswamy (eds.), Proceedings of the Third Learning on Graphs Conference, volume 269 of
Proceedings of Machine Learning Research, pp. 14:1–14:24. PMLR, 26–29 Nov 2025. URL
https://proceedings.mlr.press/v269/roth25a.html.

14

https://www.sciencedirect.com/science/article/pii/S0167865525002168
https://www.sciencedirect.com/science/article/pii/S0167865525002168
https://proceedings.mlr.press/v202/mohtashami23a.html
https://proceedings.mlr.press/v202/mohtashami23a.html
https://openreview.net/forum?id=IfZwSRpqHl
https://openreview.net/forum?id=IfZwSRpqHl
https://openreview.net/forum?id=Sjv5RcqfuH
https://openreview.net/forum?id=Sjv5RcqfuH
https://openreview.net/forum?id=qY7UqLoora
https://openreview.net/forum?id=qY7UqLoora
https://openreview.net/forum?id=IRFfBpbdI9
https://openreview.net/forum?id=IRFfBpbdI9
https://doi.org/10.1142/S0218194025500184
https://doi.org/10.1142/S0218194025500184
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5d4834a159f1547b267a05a4e2b7cf5e-Paper-Conference.pdf
https://arxiv.org/abs/2505.21422
https://arxiv.org/abs/2505.21422
https://proceedings.mlr.press/v269/roth25a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale attributed node embedding. Jour-
nal of Complex Networks, 9(2), 05 2021. ISSN 2051-1329. doi: 10.1093/comnet/cnab014. URL
https://doi.org/10.1093/comnet/cnab014.

Celia Rubio-Madrigal, Adarsh Jamadandi, and Rebekka Burkholz. GNNs getting ComFy: Commu-
nity and feature similarity guided rewiring. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=g6v09VxgFw.

Ildus Sadrtdinov, Maxim Kodryan, Eduard Pokonechny, Ekaterina Lobacheva, and Dmitry
Vetrov. Where do large learning rates lead us? In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 58445–58479. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/6b7375226d4742ff910618a56ae72b7d-Paper-Conference.pdf.

Johannes Schmidt-Hieber. The Kolmogorov–Arnold representation theorem revisited. Neu-
ral Networks, 137:119–126, 2021. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2021.01.020. URL https://www.sciencedirect.com/science/article/pii/
S0893608021000289.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157.

Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah, Sang-Wook Kim,
and Srijan Kumar. A survey of graph neural networks for social recommender systems. ACM
Computing Surveys, 56(10):1–34, June 2024. ISSN 1557-7341. doi: 10.1145/3661821. URL
http://dx.doi.org/10.1145/3661821.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS,
2018.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 31613–31632. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/shirzad23a.html.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=7UmjRGzp-A.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/wu19e.html.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scal-
able graph structure learning transformer for node classification. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 27387–27401. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf.

15

https://doi.org/10.1093/comnet/cnab014
https://openreview.net/forum?id=g6v09VxgFw
https://proceedings.neurips.cc/paper_files/paper/2024/file/6b7375226d4742ff910618a56ae72b7d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6b7375226d4742ff910618a56ae72b7d-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0893608021000289
https://www.sciencedirect.com/science/article/pii/S0893608021000289
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
http://dx.doi.org/10.1145/3661821
https://proceedings.mlr.press/v202/shirzad23a.html
https://proceedings.mlr.press/v202/shirzad23a.html
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/af790b7ae573771689438bbcfc5933fe-Paper-Conference.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. SGFormer: Simplifying and empowering transformers for large-graph representa-
tions. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 64753–64773. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/cc57fac10eacadb3b72a907ac48f9a98-Paper-Conference.pdf.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? dis-
entangling graph homophily for graph neural networks. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 68406–68452. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/7e810b2c75d69be186cadd2fe3febeab-Paper-Conference.pdf.

Yilun Zheng, Xiang Li, Sitao Luan, Xiaojiang Peng, and Lihui Chen. Let your features tell the
differences: Understanding graph convolution by feature splitting. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=I9omfcWfMp.

Dongzhuoran Zhou, Evgeny Kharlamov, and Egor V. Kostylev. GLora: A benchmark to evaluate
the ability to learn long-range dependencies in graphs. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
2jf5x5XoYk.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33, 2020.

Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph neural networks with heterophily. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 35(12):11168–11176, May 2021. doi: 10.1609/aaai.v35i12.17332. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17332.

16

https://proceedings.neurips.cc/paper_files/paper/2023/file/cc57fac10eacadb3b72a907ac48f9a98-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cc57fac10eacadb3b72a907ac48f9a98-Paper-Conference.pdf
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper_files/paper/2024/file/7e810b2c75d69be186cadd2fe3febeab-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7e810b2c75d69be186cadd2fe3febeab-Paper-Conference.pdf
https://openreview.net/forum?id=I9omfcWfMp
https://openreview.net/forum?id=I9omfcWfMp
https://openreview.net/forum?id=2jf5x5XoYk
https://openreview.net/forum?id=2jf5x5XoYk
https://ojs.aaai.org/index.php/AAAI/article/view/17332

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

A STUDY OF REDUCERS FOR NEIGHBORHOOD AGGREGATION

A.1 KOLMOGOROV-ARNOLD FUNCTION Φ AND ITS CONTINUOUS INVERSE

Here we showcase the behavior of Φ from the Kolmogorov-Arnold representation from Thm. 2. In
Fig. 3a, we see the Φ image of two circles colored by their angle. Colors that were close together
end up in separate parts of the Cantor set; for instance, oranges and reds, or purples and blues. In
contrast, in Fig. 3b we see Φ−1 maps the Cantor set to the circles in such a way that all colors
maintain their closeness.

If we use Φ as a fixed neighborhood aggregation, the classifier on top needs to learn to reverse it,
therefore it is advantageous to have a continuous inverse. However, this does not give information
about neighborhood distributions like the commonly used mean, sum, and max. In Fig. 3c we show
the behavior of mean and std; mean gives approximate location but fuses together points that are
very far apart. For instance, blues and reds have an unusually large first (but different) coordinate
and are mapped to the center; however, this information can be recovered with std.

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(i) (x, y)

0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

(ii) (ϕ(x),ϕ(y))

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

(iii) Φ(x, y)

0

π
2

π

3π
2

2π

(a) Aggregating from (x, y) to (ϕ(x), ϕ(y)) to Φ(x, y).

0.0 0.2 0.4 0.6
0.0

0.2

0.4

0.6

(i) z∈ 

0.00 0.25 0.50 0.75
0.0

0.2

0.4

0.6

(ii)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(iii) Φ−1(z)

0.2

0.4

0.6

0.8

(b) Recovering information from the aggregated variable z ∈ C to Φ−1(z).

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(x, y)

0.2 0.4 0.6
0.1

0.2

0.3

0.4

0.5

0.6
mean(x, y)

0.0 0.1 0.2
0.00

0.05

0.10

0.15

0.20

0.25
std(x, y)

0

π

2π

3π

4π

(c) Mean and std as aggregation functions.

Figure 3: Functions Φ (Thm 2)—and its inverse—, mean and std. Circles and square-like panels
(a.i, a.ii, b.ii, b.iii, c.i) live in the 2D space, while segments and Cantor sets (a.iii, b.i, c.ii, c.iii) live
in 1D. Colors in (a) and (c) are based on angles on 2D, while colors in (b) are based on position.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 PROOF OF MAIN THEOREM

For convenience, the following theorem restates Theorem 1 of the main paper.

Theorem (1-hop aggregation). Assume the features X are orthogonal. Then, the function h(X) =∑
x∈X x defined on multisets X ⊆ X of bounded size is injective. Moreover, any multiset function

f can be decomposed as f(X) = g
(∑

x∈X x
)

for some function g.

Proof. Note that the multiset X is fully characterized by the number nf of nodes in the set that have
a feature xf for all possible features xf . Our objective is to show that this information is contained
in the aggregated form h(X) =

∑
x∈X x.

So let us assume that the features are orthogonal. Accordingly, the features xv of each node v
assume one of a finite number of possible states x1, · · ·xn ∈ Rnf with nf ≥ n and xT

i xj = 0 for
any pair i, j ∈ V with i ̸= j. Note that the number of possible feature states n must be finite even
in an infinitely large graph, as long as the number of features are finite, i.e. nf < ∞. Since the
feature values must be pairwise orthogonal, there can maximally exist nf distinct feature vectors, as
nf orthogonal vectors would form a basis of Rnf and therefore an additional vector would become
linearly dependent on the basis vectors.

So let us consider any of the possible feature states xf . Then xT
f h(X) =

∑
x∈X xT

f x =∑
x∈X,x=xf

1 = nxf
counts the number of nodes in the set S that have features xf . Since this

holds for all possible feature vectors xf , all information about any multiset X is preserved by h(X).

Accordingly, we can write any multiset function f(X) = (f(nx1), · · · , f(nxn)) (which transforms
the feature counts) into a function g that extracts first the count information from the sum h(X).
Concretely, we can define: g(h(X))f := f(nxf

) = f(xT
f h(X)).

A.3 LOSS OF INFORMATION OVER SECOND HOPS

We now explore an example of a computational tree of a node with two rounds of sum aggregation,
and the qualitative kind of information that is lost from the first to the second hop. As shown by
Xu et al. (2019) and generalized in Thm. 1, sum is injective over one-hot encoded features, but
the second aggregation round sums features that are not necessarily orthogonal, and therefore loses
neighborhood information. The computational tree and calculation of hops are displayed in Figure 4.

1

2

4

5

3
6

7

8

Feature encodings: □ =
(
1
0

)
and ⃝ =

(
0
1

)
H

(0)
1 =

(
1
0

)
H

(0)
2 = H

(0)
3 =

(
0
1

)
=⇒ H

(1)
1 =

(
0
2

)
H

(1)
2 =

(
2
1

)
and H

(1)
3 =

(
3
1

)
=⇒ H

(2)
1 =

(
5
2

)
Figure 4: Example of a two-hop neighborhood with one-hot encoded features and sum aggregation.

Given the previous hops H
(0)
1 =

(
1
0

)
and H

(1)
1 =

(
0
2

)
, and the second hop H

(2)
1 =

(
5
2

)
, what

other combinations of two-hop neighborhoods can there be for node 1? Apart from itself, node
1’s two-hop neighbors are in a

(
3
2

)
feature ratio. However, we have lost the ability to recognize a)

how many belong to each of its one-hop neighbor; and b) the distribution or homogeneity of each
neighborhood. In reality, these 5 nodes are approximately spread out in number and distribution
across the one-hop neighbors 2 and 3. But alternatively, all 5 nodes could have belonged to node 2,
or all squared nodes could have belonged to node 3.

Note that, without previous hops H(0)
1 and H

(1)
1 , we cannot even distinguish node 1’s original fea-

tures, nor distinguish its presence as a neighbor in its one-hop neighbors. Therefore, concatenating
all hops is advantageous.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For completeness, we also include the calculations for mean aggregation, which are qualitatively
similar to the sum in this case.

H
(0)
1 =

(
1
0

)
; H

(0)
2 = H

(0)
3 =

(
0
1

)
=⇒ H

(1,m)
1 =

(
0
1

)
H

(1,m)
2 =

(
2/3
1/3

)
and H

(1.m)
3 =

(
3/4
1/4

)
=⇒ H

(2,m)
1 =

(
17/24
7/24

)
A good lossless aggregation scheme should take all possible second-hop neighborhood distributions
and map them to values that would not lose information when aggregated. For instance, choosing a, b

such that
(
2
1

)
→ a from node 2, and

(
3
1

)
→ b from node 3, so that, H(2)

1 = a+ b could recover both
values separately. Naturally, mapping them to one-hot encodings per distribution would suffice, but
it would grow exponentially. This opens the door for better suitable fixed aggregations, or perhaps
other kinds of learnable aggregation beyond current understanding of message passing.

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

Datasets are taken directly from the setup of Luo et al. (2024), which includes varied node classifica-
tion datasets. Here in Table 3 we include for completeness the same overview of these benchmarks.

Table 3: Details of the node classification datasets.

Dataset Type # Nodes # Edges # Features Classes Metric Origin

Cora Homophily 2,708 5,278 1,433 7 Accuracy (McCallum et al., 2000)
CiteSeer Homophily 3,327 4,522 3,703 6 Accuracy (Sen et al., 2008)
PubMed Homophily 19,717 44,324 500 3 Accuracy (Namata et al., 2012)
Computer Homophily 13,752 245,861 767 10 Accuracy (Shchur et al., 2018)
Photo Homophily 7,650 119,081 745 8 Accuracy (Shchur et al., 2018)
CS Homophily 18,333 81,894 6,805 15 Accuracy (Shchur et al., 2018)
Physics Homophily 34,493 247,962 8,415 5 Accuracy (Shchur et al., 2018)
WikiCS Homophily 11,701 216,123 300 10 Accuracy (Mernyei & Cangea, 2020)
Squirrel Heterophily 2,223 46,998 2,089 5 Accuracy (Rozemberczki et al., 2021)
Chameleon Heterophily 890 8,854 2,325 5 Accuracy (Rozemberczki et al., 2021)
Roman-Empire Heterophily 22,662 32,927 300 18 Accuracy (Platonov et al., 2023b)
Amazon-Ratings Heterophily 24,492 93,050 300 5 Accuracy (Platonov et al., 2023b)
Minesweeper Heterophily 10,000 39,402 7 2 ROC-AUC (Platonov et al., 2023b)
Questions Heterophily 48,921 153,540 301 2 ROC-AUC (Platonov et al., 2023b)

B.2 HYPERPARAMETERS

Each experiment is run on an NVIDIA A100 GPU. The setup is taken from Luo et al. (2024). That
is, for a maximum of 2500 epochs, we tune the following parameters:

1. DROPOUT ∈ (0.0 0.2 0.3 0.5 0.7)
2. LR ∈ (0.01 0.005 0.001 0.0001)
3. NORMALIZATION ∈ (ln bn none)
4. HIDDEN CHANNELS ∈ (64 256 512)

While Luo et al. (2024) includes weight decay as a hyperparameter, there are no concrete ranges
specified for it. Therefore, we tune all the different values from the best runs of the given datasets:

5. WEIGHT DECAY ∈ (0.0 1e-2 1e-3 5e-4 5e-5).

Moreover, Luo et al. (2024) tunes the local layers from 1 to 10 or 15. We instead take for each
dataset the same value that they have found best for the GNNs, and use it to construct our fixed
aggregation features up to that depth. In some cases where there are too many features, we restrict
the depth to a smaller value, thus including a strict subset of features instead. This serves as an ad
hoc feature selection to reduce overfitting.

We include as hyperparameter the MLP depth. We also include results for MLP = 1 in Table 7.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Best hyperparameters for FAF. Classic GNNs are taken from (Luo et al., 2024).

Dataset Model dropout lr bn ln hidden channels wd hops mlp layers res

computer GCN 0.5 0.001 0 1 512 5e-05 3 0 0
GAT 0.5 0.001 0 1 64 5e-05 2 0 0
SAGE 0.3 0.001 0 1 64 5e-05 4 0 0
FAF 0.7 0.005 1 0 256 5e-05 2 2 0

photo GCN 0.5 0.001 0 1 256 5e-05 6 0 1
GAT 0.5 0.001 0 1 64 5e-05 3 0 1
SAGE 0.2 0.001 0 1 64 5e-05 6 0 1
FAF 0.5 0.005 1 0 256 0.0005 4 2 0

ratings GCN 0.5 0.001 1 0 512 0 4 0 1
GAT 0.5 0.001 1 0 512 0 4 0 1
SAGE 0.5 0.001 1 0 512 0 9 0 1
FAF 0.2 0.001 1 0 256 0 3 2 0

chameleon GCN 0.2 0.005 0 0 512 0.001 5 0 0
GAT 0.7 0.01 1 0 256 0.001 2 0 1
SAGE 0.7 0.01 1 0 256 0.001 4 0 1
FAF 0.3 0.001 1 0 512 0.01 5 5 0

citeseer GCN 0.5 0.001 0 0 512 0.01 2 0 0
GAT 0.5 0.001 0 0 256 0.01 3 0 1
SAGE 0.2 0.001 0 0 512 0.01 3 0 0
FAF 0 0.005 0 1 512 0.001 2 3 0

coauthor-cs GCN 0.3 0.001 0 1 512 0.0005 2 0 1
GAT 0.3 0.001 0 1 256 0.0005 1 0 1
SAGE 0.5 0.001 0 1 512 0.0005 2 0 1
FAF 0.2 0.005 1 0 64 0.01 2 2 0

coauthor-physics GCN 0.3 0.001 0 1 64 0.0005 2 0 1
GAT 0.7 0.001 1 0 256 0.0005 2 0 1
SAGE 0.7 0.001 1 0 64 0.0005 2 0 1
FAF 0 0.001 1 0 512 0.001 1 2 0

cora GCN 0.7 0.001 0 0 512 0.0005 3 0 0
GAT 0.2 0.001 0 0 512 0.0005 3 0 1
SAGE 0.7 0.001 0 0 256 0.0005 3 0 0
FAF 0.7 0.01 0 1 512 0.01 3 3 0

minesweeper GCN 0.2 0.01 1 0 64 0 12 0 1
GAT 0.2 0.01 1 0 64 0 15 0 1
SAGE 0.2 0.01 1 0 64 0 15 0 1
FAF 0.2 0.01 1 0 64 0 4 12 0

pubmed GCN 0.7 0.005 0 0 256 0.0005 2 0 0
GAT 0.5 0.01 0 0 512 0.0005 2 0 0
SAGE 0.7 0.005 0 0 512 0.0005 4 0 0
FAF 0.7 0.01 0 1 64 0 4 2 0

questions GCN 0.3 3e-05 0 0 512 0 10 0 1
GAT 0.2 3e-05 0 1 512 0 3 0 1
SAGE 0.2 3e-05 0 1 512 0 6 0 0
FAF 0.2 0.005 1 0 512 0.01 4 3 0

roman-empire GCN 0.5 0.001 1 0 512 0 9 0 1
GAT 0.3 0.001 1 0 512 0 10 0 1
SAGE 0.3 0.001 1 0 256 0 9 0 0
FAF 0.7 0.01 1 0 256 0 2 3 0

squirrel GCN 0.7 0.01 1 0 256 0.0005 4 0 1
GAT 0.5 0.005 1 0 512 0.0005 7 0 1
SAGE 0.7 0.01 1 0 256 0.0005 3 0 1
FAF 0.7 0.01 1 0 512 0.01 4 5 0

wikics GCN 0.5 0.001 0 1 256 0 3 0 0
GAT 0.7 0.001 0 1 512 0 2 0 1
SAGE 0.7 0.001 0 1 256 0 2 0 0
FAF 0.7 0.01 1 0 64 0.001 2 2 0

6. MLP LAYERS ∈ (2 3 5).

On the other hand, we do not include linear residual connections, as these are used to bypass the
convolutional layers in the classical GNNs. This creates a direct difference on the two datasets that
most benefit from this component, Minesweeper and Roman-Empire.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Empirical training time in seconds of FAF and GNN models, averaged over runs.

Dataset GCN GAT SAGE FAF4 FAF2 FAF1 MLP

computer 127.30 ± 0.58 29.33 ± 3.22 45.33 ± 0.58 42.67 ± 0.58 25.00 ± 0.00 17.00 ± 0.00 9.33 ± 0.58
photo 82.00 ± 0.00 26.00 ± 0.00 33.33 ± 0.58 66.67 ± 0.58 36.00 ± 0.00 21.33 ± 0.58 7.33 ± 0.58
ratings 140.30 ± 0.58 161.30 ± 0.58 330.00 ± 0.00 46.00 ± 0.00 26.00 ± 0.00 17.33 ± 0.58 10.00 ± 0.00

chameleon 22.30 ± 0.48 15.20 ± 0.42 18.00 ± 0.00 44.50 ± 0.97 22.50 ± 0.53 15.10 ± 0.32 10.00 ± 0.00
citeseer 16.20 ± 0.45 20.00 ± 0.00 26.00 ± 0.00 62.80 ± 1.79 36.20 ± 0.45 25.80 ± 1.79 13.60 ± 0.55

coauthor-cs 157.00 ± 0.00 70.33 ± 0.58 301.30 ± 20.50 296.30 ± 1.16 159.00 ± 0.00 91.00 ± 0.00 26.33 ± 0.58
coauthor-physics 65.33 ± 0.58 190.00 ± 0.00 400.30 ± 0.58 2383.00 ± 0.58 1004.00 ± 1.00 532.70 ± 0.58 183.00 ± 0.00

cora 16.40 ± 0.89 20.20 ± 0.45 11.20 ± 0.45 46.80 ± 0.45 26.00 ± 0.00 17.00 ± 0.00 8.20 ± 0.45
minesweeper 69.67 ± 0.58 100.30 ± 0.58 68.67 ± 2.08 19.00 ± 0.00 20.00 ± 3.46 19.00 ± 0.00 18.00 ± 1.73

pubmed 20.20 ± 0.45 42.00 ± 0.00 78.20 ± 0.45 34.00 ± 0.00 19.20 ± 0.45 12.00 ± 0.00 6.20 ± 0.45
questions 650.00 ± 0.00 258.00 ± 1.00 363.70 ± 0.58 180.70 ± 0.58 122.70 ± 0.58 94.00 ± 0.00 64.67 ± 1.16

roman-empire 240.30 ± 0.58 294.30 ± 0.58 93.00 ± 0.00 38.67 ± 2.89 23.33 ± 0.58 18.00 ± 0.00 14.67 ± 2.89
squirrel 29.00 ± 0.00 87.10 ± 0.32 24.70 ± 1.89 43.30 ± 0.48 25.20 ± 0.42 18.00 ± 0.00 11.70 ± 0.48
wikics 60.00 ± 3.46 97.33 ± 0.58 27.33 ± 0.58 10.00 ± 0.00 7.33 ± 0.58 7.00 ± 0.00 7.00 ± 0.00

In Table 4 we include the best hyperparameter choices for the four models: GCN, GATv2, Graph-
SAGE, and FAF4, the results of which are in Table 2. We run baselines directly from the setup of
Luo et al. (2024), and we sweep FAF4 with the same ranges included in their work. Each dataset
has a specific number of splits given by their setup (from 3 to 10), which we then average.

We also include in Table 5 the training runtime of our algorithms, including FAF4 and its variants,
grouped by the number of reducers—as MLPs with the same input width will have the same training
time. Note that all runs have the same number of epochs (2500), as in the original setup, and all
datasets match the number of runs of the setup. In general, MLPs are more efficient than MPGNNs,
as backpropagation over message-passing is costly. However, we increase the number of features in
the data—depending on the aggregation depth and number of reducers—so for some datasets with
many features the improvement is not necessarily observed. A way to reduce this overhead may be
to apply dimensionality reduction to the tabular FAF representation.

B.3 FAFS BEYOND NODE CLASSIFICATION

Our theory applies to any task that learns multiset functions over neighborhoods. In our experi-
ments, we focus on node classification for two main reasons. First, these are the benchmarks on
which GNNs have been shown to be competitive with more complex architectures in Luo et al.
(2024), so they are amenable to simple models for which we have strong, well-tuned hyperparam-
eters. Second, node-classification datasets typically provide rich features that depend on neighbor-
hood distributions. Thus, non-injective but commonly used reducers such as mean and sum still
convey highly informative distributional signals. Regarding inductive settings, they would require
computing the new aggregation rounds at test time. We would not have access to the test node fea-
tures when precomputing training aggregations. Otherwise, our approach is just as feasible as in the
transductive case.

C ADDITIONAL EXPERIMENTS

In Table 6 we include results for different number of hops concatenated as features for FAF4. Note
that one hop already gives much of the information, and two hops often give the best performance.

In Table 7 we show the performance of two classifiers on the same FAF4 features: one linear layer
and a multilayer perceptron—this being our choice for other experiments.

In Table 8 we ablate on using only the last hop as features to an MLP, or using the last hop con-
catenated to the original features. This mimics the choice of directly freezing a GNN and using its
output as features to an (often linear) classifier.

Table 9 shows the last epoch training accuracy and best epoch validation accuracy of using the
Kolmogorov-Arnold function Φ as a reducer for FAF. Following Corso et al. (2020), we make it act
on multisets by sorting, which we fix by the given data order.

In Table 10 we include results on rewiring the input graph by deleting edges based on pairwise
cosine similarity. REW includes hop-wise features where negative similarity neighbors are set to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0. SP includes hop-wise features where positive and negative similarity neighbors are aggregated in
different features and concatenated together.

Table 6: Increasing number of concatenated hops in FAF4, compared to the best GNN (Classic).

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

Classic 92.86 ± 0.06 95.93 ± 0.15 55.90 ± 0.54 48.15 ± 2.35 70.36 ± 0.09 95.51 ± 0.04 97.16 ± 0.07
FAF+0 87.89 ± 0.13 93.33 ± 0.07 48.98 ± 0.72 41.43 ± 1.77 53.80 ± 0.82 93.70 ± 0.07 95.89 ± 0.02
FAF+1 92.53 ± 0.08 96.14 ± 0.07 54.17 ± 0.14 46.91 ± 1.43 65.52 ± 0.64 94.84 ± 0.08 96.83 ± 0.01
FAF+2 93.05 ± 0.04 96.23 ± 0.08 55.02 ± 0.67 47.30 ± 1.76 67.28 ± 0.64 94.93 ± 0.07 96.63 ± 0.02
FAF+4 93.04 ± 0.10 96.34 ± 0.07 55.08 ± 0.19 48.42 ± 2.22 50.52 ± 3.84 94.88 ± 0.07 96.63 ± 0.04
FAF+8 92.96 ± 0.13 96.21 ± 0.07 55.26 ± 0.30 48.74 ± 1.69 40.72 ± 2.26 94.92 ± 0.09 -

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

Classic 81.32 ± 0.41 97.68 ± 0.63 79.08 ± 0.23 78.63 ± 0.23 91.14 ± 0.58 44.88 ± 1.27 82.38 ± 0.57
FAF+0 62.68 ± 1.15 51.12 ± 0.93 71.12 ± 0.52 71.58 ± 1.46 66.28 ± 0.27 40.57 ± 0.92 74.86 ± 0.33
FAF+1 82.16 ± 0.33 87.65 ± 0.47 78.24 ± 0.36 77.44 ± 1.07 77.36 ± 0.55 47.26 ± 1.31 81.37 ± 0.51
FAF+2 82.84 ± 0.38 89.48 ± 1.08 78.52 ± 0.41 79.71 ± 0.86 78.68 ± 0.19 47.18 ± 1.44 81.92 ± 0.43
FAF+4 81.80 ± 0.35 89.63 ± 1.02 79.08 ± 0.36 79.67 ± 0.89 77.48 ± 0.17 47.61 ± 1.43 81.73 ± 0.53
FAF+8 74.28 ± 0.23 89.10 ± 1.03 76.80 ± 0.20 79.94 ± 0.88 75.08 ± 0.23 47.95 ± 1.36 81.58 ± 0.63

Table 7: Comparison of 1 linear layer (1L) versus multiple layers (MLP) as the classifier over FAF4.

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

FAF+MLP 93.05 ± 0.04 96.34 ± 0.07 55.53 ± 0.43 48.51 ± 2.31 67.28 ± 0.64 94.93 ± 0.07 96.83 ± 0.01
FAF+1L 91.50 ± 0.08 96.01 ± 0.00 47.65 ± 0.75 47.11 ± 2.68 66.76 ± 0.99 93.32 ± 0.05 96.62 ± 0.01

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

FAF+MLP 82.84 ± 0.43 89.63 ± 1.03 79.08 ± 0.36 79.53 ± 1.12 78.68 ± 0.19 47.31 ± 1.39 81.92 ± 0.43
FAF+1L 81.08 ± 0.41 88.99 ± 0.76 78.00 ± 0.51 77.22 ± 1.04 75.56 ± 0.28 45.89 ± 1.75 81.25 ± 0.96

Table 8: Using only the last hop (H(K)), that and original features (H(0)⊕(K)), and all hops (FAF4).

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

FAF4 93.05 ± 0.04 96.34 ± 0.07 55.53 ± 0.43 48.51 ± 2.31 67.28 ± 0.64 94.93 ± 0.07 96.83 ± 0.01
H(0)⊕(K) 92.35 ± 0.08 95.53 ± 0.04 54.95 ± 0.23 48.16 ± 2.61 66.80 ± 0.42 95.13 ± 0.02 96.65 ± 0.01
H(K) 91.67 ± 0.04 92.18 ± 0.04 49.64 ± 0.40 49.18 ± 2.14 66.68 ± 0.46 92.83 ± 0.10 96.22 ± 0.06

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

FAF4 82.84 ± 0.43 89.63 ± 1.03 79.08 ± 0.36 79.53 ± 1.12 78.68 ± 0.19 47.31 ± 1.39 81.92 ± 0.43
HL 82.12 ± 0.52 69.40 ± 1.50 79.24 ± 0.36 78.14 ± 0.93 55.43 ± 0.51 46.10 ± 1.46 80.14 ± 0.67
H(0)⊕(K) 81.80 ± 0.28 73.30 ± 1.26 79.64 ± 0.38 79.29 ± 0.27 76.42 ± 0.13 46.41 ± 1.84 81.22 ± 0.52
H(K) 82.12 ± 0.52 69.40 ± 1.50 79.24 ± 0.36 78.14 ± 0.93 55.43 ± 0.51 46.10 ± 1.46 80.14 ± 0.67

Table 9: (Last epoch) training and (best) validation accuracy of the KA function Φ from Thm. 2.

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

FAFKA (train) 94.73 ± 0.12 99.65 ± 0.09 99.92 ± 0.02 96.35 ± 3.44 70.17 ± 41.23 99.49 ± 0.22 99.84 ± 0.28
FAFKA (val) 87.88 ± 0.19 93.40 ± 0.07 51.97 ± 0.12 41.65 ± 1.91 55.76 ± 1.07 93.66 ± 0.08 95.90 ± 0.05

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

FAFKA (train) 14.29 ± 0.00 51.68 ± 0.44 33.33 ± 0.00 99.85 ± 0.09 86.41 ± 0.23 39.30 ± 2.30 97.64 ± 1.09
FAFKA (val) 29.56 ± 0.79 51.61 ± 0.42 42.80 ± 0.76 74.28 ± 1.95 80.45 ± 0.25 40.43 ± 1.10 77.38 ± 0.88

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Feature augmentations based on similarity-based rewiring (REW) and computational
graph splitting (SP) on a subset of datasets that benefit from mean aggregation.

Dataset computer photo chameleon citeseer cora pubmed wikics

FAFmean 93.16 ± 0.04 96.06 ± 0.10 47.99 ± 2.02 66.92 ± 0.87 83.28 ± 0.30 81.16 ± 0.97 81.58 ± 0.46
REWmean 93.25 ± 0.08 95.90 ± 0.04 43.94 ± 2.39 66.92 ± 0.78 82.36 ± 0.17 80.80 ± 0.42 82.44 ± 0.56
SPmean 93.20 ± 0.11 95.97 ± 0.10 43.71 ± 1.71 67.32 ± 0.99 81.80 ± 0.24 80.84 ± 0.62 82.38 ± 0.46
FAFmean+REWmean 93.33 ± 0.12 96.03 ± 0.04 48.26 ± 1.66 67.48 ± 0.36 83.20 ± 0.20 80.84 ± 0.52 82.46 ± 0.48
FAFmean+SPmean 93.31 ± 0.10 96.06 ± 0.04 47.99 ± 1.83 67.88 ± 0.33 83.52 ± 0.36 81.24 ± 0.43 82.43 ± 0.51

In Figure 5 we show two more plots of feature importance using SHAP (Lundberg & Lee, 2017) for
Pubmed and Amazon-Ratings, on the MLP over single-reducer FAFs. Features are sorted by global
importance and broken down over the different hops by color. While the implementation of SHAP
on MLPs used (GradientExplainer) relies on local linearization and often assumes input feature
independence, the explanations still reveal informative qualitative patterns. In Pubmed, feature 346
is most important at hops 1 and 2, and remains second at hops 0 and 4, whereas the most important
base feature (205) contributes little at other hops. By contrast, in Amazon-Ratings, importance is
more evenly distributed across features and hops.

34
6 8 16 12
3

28
6

44
9

18
4

19
6

23
5 28 89 46
8

32
8

44
4 69 44
5

21
8

41
8

49
8

11
1 54 35
1

10
0

37
9

48
4 10 90 36
2

29
6

47
1

33
8

11
0

40
1

49
9

20
5

Base feature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
po

rta
nc

e

2 4 10 6 8 11 3 5 18 17 20 1

1 7 2
17

11 10
18 9 8

13
4

6

1
3 5

2
4

7

6
17

15 12
18 14

16
13 11 20 9

20
2 7

4
3 1

6
9 15 5 8 14

16 12 11 19

2
13 15 6

1 10 4
9

17 3 7 8 19 20 16 18 11

Pubmed Top 35 important features (stacked by hop)
hop 0
hop 1
hop 2
hop 3
hop 4

17
5 26 32 18
9 0 52 16
7 38 17
8

18
0 55 26
7

17
0 49 26
8

20
5

25
2

19
6

10
4

26
3

29
5

21
8

15
9

10
6

21
5

27
1 72 16
0

22
0

28
1 54 75 19
1 42 15
2

Base feature

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Im
po

rta
nc

e

32 5 39 16 1 14 57 51 17 3 65 11 37 82 45 60 48 40 27 6 15 63 52 61

1 18 2 97 7 4 75 6 21 35 11 19 3 49 50 5 90 57
27 72 33 91 66 56

58 14 96 4 75 78 45
32

21 7 17 80 66 34 33
76 27 43 24 10 55 52 9

39 46 8 72 85 11 63

22 95 54 21 39 9 76 10 1 56 93 88 82 14 23 42 2 3 81 48 32 12 83 33 7 6

Amazon-Ratings Top 35 important features (stacked by hop)
hop 0
hop 1
hop 2
hop 3

Figure 5: SHAP feature importance for Pubmed and Amazon-Ratings. The base features are ranked
according to the sum of their importance values across hops. Numbers on the stacked bars indicate
the ranking of that particular feature on that particular hop.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D TRAINING, VALIDATION, AND TEST ACCURACY CURVES

In this section we compare training MLPs on FAF features to training GCNs, by tracking
train/validation/test accuracy over epochs (Figure 6). Below we summarize the behaviors on datasets
where differences arise between the two methods:

• Amazon-Computer (6a) and Amazon-Photo (6b) behave similarly, but GCNs are more unstable.

• FAF for Chameleon (6d) has much better training accuracy but similar generalization; in con-
trast, GCN for Squirrel (6m) has much better training, but slightly worse generalization than
FAF.

• Citeseer (6e) with FAF breaks at the end of training, which indicates instability. However, this
could be overcome with standard learning rate schedules.

• Coauthor-CS (6f) and Coauthor-Physics (6g) have dips in all metrics for both models.

• Questions (6f) with FAF is more (locally) unstable but also more stationary and does not degrade
performance later on.

• As mentioned in the main text, Minesweeper (6i) and Roman-Empire (6l) are the two datasets
that seem to truly lose neighborhood information with FAF.

D.1 TEST ACCURACY OF MAIN RESULTS

Here in Table 11 we report the test accuracy of the main FAF variants of our experimental results
(§ 5) where in Table 1 we only have the best validation FAF’s test results, and in Table 2 we show
validation results. FAFs in all datasets are ±1% away from the best classic GNN, except for those
already mentioned in the main text (Citeseer, Cora, Roman-Empire, and Minesweeper).

Table 11: Test accuracy on 14 node classification benchmarks: FAFs+MLP against classic GNNs.
Validation accuracy is shown in Table 2.

Dataset computer photo ratings chameleon citeseer coauthor-cs coauthor-physics

GCN 93.58 ± 0.44 95.77 ± 0.27 53.86 ± 0.48 44.62 ± 4.50 72.72 ± 0.45 95.73 ± 0.15 97.47 ± 0.08
GAT 93.91 ± 0.22 96.45 ± 0.37 55.51 ± 0.55 42.90 ± 5.47 71.82 ± 0.65 96.14 ± 0.08 97.12 ± 0.13
SAGE 93.31 ± 0.17 96.17 ± 0.44 55.26 ± 0.27 43.11 ± 4.73 71.82 ± 0.81 96.21 ± 0.10 97.10 ± 0.09
MLP 87.75 ± 0.42 93.62 ± 0.36 49.04 ± 0.39 38.59 ± 3.29 57.22 ± 2.25 93.80 ± 0.19 96.02 ± 0.16

FAFbestval 94.01 ± 0.21 96.54 ± 0.13 55.09 ± 0.24 42.96 ± 2.45 70.48 ± 1.24 95.37 ± 0.17 97.05 ± 0.18

FAF4 93.75 ± 0.04 96.54 ± 0.13 54.42 ± 0.45 42.96 ± 2.45 69.42 ± 1.32 95.33 ± 0.20 96.96 ± 0.09
FAFmean,std 94.00 ± 0.25 96.30 ± 0.23 54.73 ± 0.22 45.13 ± 3.42 67.90 ± 0.95 95.34 ± 0.14 96.93 ± 0.04
FAFmean 94.01 ± 0.21 96.71 ± 0.16 53.12 ± 0.44 43.21 ± 2.24 66.82 ± 1.74 95.37 ± 0.17 97.05 ± 0.18
FAFmax,std 93.60 ± 0.25 96.01 ± 0.41 55.09 ± 0.24 43.20 ± 2.42 67.18 ± 0.88 95.53 ± 0.10 96.61 ± 0.04
FAFmax 92.98 ± 0.22 96.12 ± 0.10 54.79 ± 0.15 42.15 ± 3.19 67.52 ± 0.40 95.55 ± 0.08 96.84 ± 0.13
FAFsum 91.77 ± 0.24 95.08 ± 0.61 53.44 ± 0.18 39.63 ± 2.90 70.48 ± 1.24 95.08 ± 0.12 96.86 ± 0.06
FAFstd 93.54 ± 0.26 96.17 ± 0.10 54.77 ± 0.14 42.68 ± 2.75 62.70 ± 1.18 95.77 ± 0.12 96.97 ± 0.09

Dataset cora minesweeper pubmed questions roman-empire squirrel wikics

GCN 84.38 ± 0.81 97.48 ± 0.06 80.00 ± 0.77 78.44 ± 0.23 91.05 ± 0.15 44.26 ± 1.22 80.06 ± 0.81
GAT 83.02 ± 1.21 97.00 ± 1.02 79.80 ± 0.94 77.72 ± 0.71 90.38 ± 0.49 39.31 ± 2.42 81.01 ± 0.23
SAGE 83.18 ± 0.93 97.72 ± 0.70 77.42 ± 0.40 76.75 ± 1.07 90.41 ± 0.10 40.22 ± 1.47 80.57 ± 0.42
MLP 58.56 ± 1.75 51.74 ± 0.83 68.22 ± 0.96 70.40 ± 1.17 66.43 ± 0.12 39.11 ± 1.93 72.98 ± 0.49

FAFbestval 82.84 ± 0.63 90.00 ± 0.39 80.96 ± 1.06 78.69 ± 0.50 78.11 ± 0.38 44.59 ± 1.62 80.25 ± 0.34

FAF4 81.44 ± 0.38 90.01 ± 0.51 77.20 ± 0.45 78.69 ± 0.50 78.11 ± 0.38 44.02 ± 2.08 80.25 ± 0.34
FAFmean,std 82.84 ± 0.63 90.17 ± 0.51 80.96 ± 1.06 75.82 ± 1.27 77.14 ± 0.52 43.83 ± 2.34 79.48 ± 0.81
FAFmean 82.80 ± 0.70 90.00 ± 0.39 79.88 ± 0.92 76.83 ± 1.19 76.36 ± 0.55 42.44 ± 1.73 79.61 ± 0.56
FAFmax,std 79.34 ± 0.95 88.36 ± 0.74 77.52 ± 0.77 76.62 ± 0.79 75.89 ± 0.30 44.59 ± 1.62 78.44 ± 0.67
FAFmax 79.34 ± 0.67 86.39 ± 1.22 77.18 ± 0.13 77.59 ± 1.67 75.01 ± 0.43 43.03 ± 1.90 78.63 ± 0.35
FAFsum 81.46 ± 0.62 89.96 ± 0.45 77.46 ± 0.43 76.12 ± 1.08 76.90 ± 0.28 44.07 ± 1.98 76.59 ± 0.36
FAFstd 79.50 ± 0.39 88.93 ± 0.68 79.06 ± 1.09 73.99 ± 1.67 73.80 ± 0.21 43.63 ± 1.43 76.09 ± 0.26

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Computer FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Computer GCN

train_acc
valid_acc
test_acc

(a) Amazon-Computer: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Photo FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Photo GCN

train_acc
valid_acc
test_acc

(b) Amazon-Photo: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Ratings FAF
train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Amazon-Ratings GCN
train_acc
valid_acc
test_acc

(c) Amazon-Ratings: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Chameleon FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Chameleon GCN
train_acc
valid_acc
test_acc

(d) Chameleon: FAF vs. GCN

Figure 6: Train, validation, and test accuracy of FAF+MLP versus GCN. (i)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Citeseer FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Citeseer GCN
train_acc
valid_acc
test_acc

(e) Citeseer: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Coauthor-Cs FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Coauthor-Cs GCN

train_acc
valid_acc
test_acc

(f) Coauthor-CS: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Coauthor-Physics FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Coauthor-Physics GCN

train_acc
valid_acc
test_acc

(g) Coauthor-Physics: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Cora FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Cora GCN

train_acc
valid_acc
test_acc

(h) Cora: FAF vs. GCN

Figure 6: Train, validation, and test accuracy of FAF+MLP versus GCN. (ii)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Minesweeper FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Minesweeper GCN

train_acc
valid_acc
test_acc

(i) Minesweeper: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Pubmed FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Pubmed GCN
train_acc
valid_acc
test_acc

(j) Pubmed: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Questions FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Questions GCN
train_acc
valid_acc
test_acc

(k) Questions: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Roman-Empire FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Roman-Empire GCN

train_acc
valid_acc
test_acc

(l) Roman-Empire: FAF vs. GCN

Figure 6: Train, validation, and test accuracy of FAF+MLP versus GCN. (iii)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Squirrel FAF
train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Squirrel GCN
train_acc
valid_acc
test_acc

(m) Squirrel: FAF vs. GCN

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Wikics FAF

train_acc
valid_acc
test_acc

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Wikics GCN

train_acc
valid_acc
test_acc

(n) Wikics: FAF vs. GCN

Figure 6: Train, validation, and test accuracy of FAF+MLP versus GCN. (iv)

E PRELIMINARY RESULTS ON OTHER BENCHMARKS

We include preliminary results for FAFs on the GraphLand bechmark (Bazhenov et al., 2025) . We
do not perform the full hyperparameter sweep, therefore we indicate FAFs with an asterisk (*),
as there could be better performing versions. We copy baselines from the original paper: MLP,
MLP-NFA (one-hop FAFs), GCN and GAT. For FAFs, we only report results for mean+std and
mean aggregations. We choose the best validation hyperparameters we have been able to find so far
(shown in Table 13) and report the resulting test accuracy in Table 12. While we do not yet achieve
the performance of GATs, we approach that of GCNs, and we improve upon MLPs and NFA.

Table 12: Test accuracy of 4 GraphLand datasets (averaged over 10 runs).

artnet-exp hm-categories tolokers-2 pokec-regions

ResMLP 35.07 ± 2.34 37.72 ± 0.18 41.16 ± 1.13 4.88 ± 0.01
ResMLP-NFA 38.25 ± 0.56 48.72 ± 0.38 48.14 ± 1.40 8.05 ± 0.03
GCN 43.09 ± 0.38 61.70 ± 0.35 51.32 ± 0.96 34.96 ± 0.38
GAT 46.62 ± 0.32 67.96 ± 0.33 53.78 ± 1.34 46.17 ± 0.32

FAF*mean,std 41.56 ± 0.26 59.50 ± 0.15 52.74 ± 0.53 28.44 ± 0.22
FAF*mean 39.25 ± 0.38 54.50 ± 0.13 50.72 ± 0.38 31.23 ± 0.18

Table 13: Best hyperparameters found so far for FAFs on GraphLand datasets.

dropout lr bn hidden channels weight decay local layers mlp layers

artnet-exp 0.7 0.01 1 256 0.01 3 2
hm-categories 0.5 0.001 1 512 0.0005 3 3
tolokers-2 0.3 0.0001 1 512 5e-05 3 5
pokec-regions 0 0.001 1 512 0.001 3 3

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F COMPARISON TO GRAPH ECHO STATE NETWORKS

Graph Echo State Networks (GESN) (Gallicchio & Micheli, 2010) compute label-independent node
embeddings via fixed “reservoir” layers, one per hop, followed by a linear readout. We compare
FAFs to this approach in Table 14 as a representative previously proposed simplification of GNNs.
We do not include the coauthor-physics or questions datasets, as GESN exceeds memory capacity
on them.

We use the public implementation at https://github.com/dtortorella/graph-esn,
keeping most GESN-specific hyperparameters as in their example. We set the “depth” (local layers)
and “hidden units” (hidden channels) as in the best GCN. Each layer is given 10 minutes to compute
its embedding.

As the classifier, we replace the original linear readout with a MLP of the same architecture as for
FAFs to provide a fair comparison of the role of the embeddings. For the MLP hyperparameters, we
try both the best GCN and the best FAF configurations. Since our different FAFs could share MLP
hyperparameters, we expected them to transfer well here, but in this case the GCN hyperparameters
perform slightly better. As shown below, FAFs seem to be more suitable for the tested benchmark
tasks.

Table 14: Test accuracy of GESN (Gallicchio & Micheli, 2010) against FAFs.

Dataset computer photo ratings chameleon citeseer coauthor-cs

FAFbestval 94.01 ± 0.21 96.54 ± 0.13 55.09 ± 0.24 42.96 ± 2.45 70.48 ± 1.24 95.37 ± 0.17
GESN+MLP 90.80 ± 0.10 92.72 ± 0.27 50.34 ± 0.26 41.64 ± 3.63 41.44 ± 0.34 89.99 ± 0.09

Dataset cora minesweeper pubmed roman-empire squirrel wikics

FAFbestval 82.84 ± 0.63 90.00 ± 0.39 80.96 ± 1.06 78.11 ± 0.38 44.59 ± 1.62 80.25 ± 0.34
GESN+MLP 65.78 ± 0.26 50.93 ± 1.28 64.98 ± 1.57 11.76 ± 0.38 36.58 ± 1.18 73.98 ± 0.85

29

https://github.com/dtortorella/graph-esn

	Introduction
	Related work
	Fixed Aggregation Features
	Advantages of tabular over graph data representation

	Theoretical foundations: Does aggregation need learning?
	What information is preserved by standard aggregations?
	Lossless neighborhood aggregation
	Implications and open challenges

	Experiments
	Comparison to classic GNNs
	Ablations

	Conclusions
	Study of bluereducers for neighborhood aggregation
	Kolmogorov-Arnold function and its continuous inverse
	Proof of main Theorem
	Loss of information over second hops

	Experimental details
	Dataset details
	Hyperparameters
	FAFs beyond node classification

	Additional experiments
	Training, validation, and test accuracy curves
	Test accuracy of main results

	Preliminary results on other benchmarks
	Comparison to Graph Echo State Networks

