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DNTextSpotter: Arbitrary-Shaped Scene Text Spotting via
Improved Denoising Training

Anonymous Paper
ABSTRACT
More and more end-to-end text spotting methods based on Trans-
former architecture have demonstrated superior performance. These
methods utilize a bipartite graph matching algorithm to perform
one-to-one optimal matching between predicted objects and actual
objects. However, the instability of bipartite graph matching can
lead to inconsistent optimization targets, thereby affecting the train-
ing performance of the model. Existing literature applies denoising
training to solve the problem of bipartite graph matching instabil-
ity in object detection tasks. Unfortunately, this denoising training
method cannot be directly applied to text spotting tasks, as these
tasks need to perform irregular shape detection tasks and more
complex text recognition tasks than classification. To relieve the
issue, in this paper, we propose a novel denoising training method
(DNTextSpotter) for arbitrary-shaped text detection and recogni-
tion. Specifically, we decompose the queries of the denoising part
into noised positional queries and noised content queries. We use
the four Bezier control points of the Bezier center curve to gener-
ate the noised positional queries. For the noised content queries,
considering that the output of the text in a fixed positional order
is not conducive to aligning position with content, we employ a
masked character sliding method to initialize content queries to
assist the alignment of text content and position. To improve the
model’s perception of the background, we further utilize an ad-
ditional loss function for background characters classification in
the denoising training part. Although DNTextSpotter is concep-
tually simple, it outperforms the state-of-the-art methods on four
benchmarks (Total-Text, SCUT-CTW1500, ICDAR15, and Inverse-
Text), especially yielding an improvement of 11.3% against the best
approach in Inverse-Text.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems;

KEYWORDS
Scene text spotting, Transformer, Denoising training

1 INTRODUCTION
Text Spotter, as an essential foundational technology that encom-
passes text detection and recognition, plays a critical role in various
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Figure 1: The convergence curves of DNTextSpotter (Ours),
DeepSolo, TESTR, and ESTextSpotter on the Inverse-Text
dataset using the ResNet-50 backbone in the ’None’ results,
where ’None’ denotes the F1-measure without lexicon.

domains [4, 29, 35, 45] such as autonomous driving, security mon-
itoring, and social media analysis. Given that textual elements in
wild scenarios are often set against complex backgrounds, pre-
sented in diverse font sizes, and subject to distortions, accurate
identification of text remains a challenging and dynamic field of
research. To address these challenges, traditional CNN-based text
spotters [1, 20, 23, 26, 33, 36, 38] divide the text localization task
into separate detection and recognition stages, following a detect-
then-recognize principle.

Compared to these classical spotting algorithms, building on
the Deformable DETR [50], TESTR [48] represents a significant
advancement in text spotting with its dual decoder design. This
novel approach streamlines the process by removing the neces-
sity for manually designed components and eliminating interme-
diate steps. TESTR simplifies the complex tasks of detection and
recognition by treating them as a unified set prediction problem.
It leverages bipartite graph matching to concurrently assign la-
bels for both detection and recognition, achieving a more efficient
and integrated workflow. Despite the significant achievements of
TESTR, the employment of two decoders significantly increases
computational complexity. Moreover, initializing queries with dis-
tinct properties for detection and recognition poses challenges for
model optimization. Many methods have been proposed to address
these issues. For example, TTS [15] attempts to unify the detec-
tion and recognition tasks within a single decoder. DeepSolo [44],
while using a single decoder, introduces a novel query form with
shared parameters, which initializes decoder queries by utilizing
a series of explicit coordinates generated from the text line. How-
ever, despite further improvements in performance, these methods
overlook the instability introduced by the bipartite matching em-
ployed in the DETR-like methods. In general object detection tasks,

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Paper

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

DN-DETR [16] firstly points out the instability problem of bipartite
graph matching when using the DETR architecture and proposes
denoising training to solve this problem. Denoising training, in sim-
ple terms, initializes noised queries using ground truth with a small
amount of noise added, allowing for direct loss calculation with the
ground truth after decoding, bypassing the bipartite graph match-
ing algorithm. DINO [46] further proposes a contrastive denoising
training method to further enhance the performance of denoising
training. Unfortunately, for the tasks of spotting scene text, the
challenge is significantly amplified due to the arbitrary shapes of
the text to be detected and the need for recognition tasks that are
more complex than mere classification. This complexity makes it
difficult to directly apply this denoising training method. In fact,
ESTextSpotter [12] directly incorporates a DINO-based denoising
training method within its model architecture. In this context, as
shown by the convergence curves in Fig. 1, this denoising training
starts with regular bounding boxes as queries initialization, and the
results on inverse-like texts become very poor, indirectly reflecting
the negative impact brought by this coarse prior.

In this paper, we propose a novel denoising training method
specifically designed for transformer-based text spotters that han-
dle arbitrary shapes. Considering that the task of text spotting aims
at the detection and recognition of text in any shape, and using
regular boxes to initialize noised queries is coarse, we abandon the
traditional approach that relies on 4D anchor boxes and classifica-
tion labels. Instead, we use Bezier control points and text characters
to initialize noised queries. Technically, we feed the noised queries
obtained from the ground truth along with randomly initialized
learnable queries into the transformer’s decoder. We design the
noised query using bezier control points of the bezier center curve
and text scripts, thereby accomplishing the denoising of both points
coordinates and text characters. In addition, considering that out-
putting the text characters in a fixed positional order is not con-
ducive to aligning position with content, before initializing the text
script as noised queries, we use a masked character sliding method
to initialize noised content queries to assist in the alignment of
content and position of the text instance.

We verify the effectiveness of DNTextSpotter by using multiple
public datasets. In the metrics of ’None’ results with ResNet-50
backbone, compared with the current state-of-the-art methods, our
method achieves 2.0% and 2.1% improved results on the Total Text
and CTW1500 datasets respectively, reaching 84.5% and 67.0% re-
spectively. On the newly released benchmark Inverse-Text dataset,
ourmethod even exceeds the state-of-the-art results by 11.3%, reach-
ing 75.9%. When switching to the ViTAEv2-S backbone, scores for
all metrics are further improved.

In summary, our main contributions can be summarized as fol-
lows:

• We introduce a novel denoising training method to design
an end-to-end text spotting architecture. Starting from the
attribute of arbitrary shapes of scene text, we utilize bezier
control points as well as text characters to design this de-
noising training method.

• Taking into account the negative impact of directly using
ground truth text scripts to initialize noised queries, which
leads to misalignment between the position of the characters

and the content of these characters, we design a masked
character sliding method to preprocess these ground truth
text scripts, thereby optimizing the alignment between text
position and content.

• Our method achieves state-of-the-art results on multiple
benchmarks. Specifically, we conduct a qualitative analysis
of several text spotting architectures based on the trans-
former structure, including analyses of instability results
and visualization of results.

2 RELATEDWORKS
Early literature tends to classify end-to-end text spotting architec-
ture into two-stage methods and one-stage methods. Recently, due
to the popularity of transformer-based text spotters, we categorize
these methods into CNN-based methods and transformer-based
methods. Earlier comprehensive and in-depth surveys on text spot-
ting are available in [4, 29].

2.1 CNN-based Text Spotter
The first end-to-end scene text recognition network [17] combines
detection and recognition into a single system. This method is
limited to recognizing regular-shaped text. Subsequent works [1,
8] improve the connection between the detector and recognizer,
considering single characters or text blocks to handle irregular
text more flexibly. The Mask TextSpotter series [20, 30] employs
segmentation approaches to generate proposals. These methods
rely on character-level annotations, significantly increasing the
effort required for generating ground truth. Text Perceptron [36]
and Boundary [33] utilize Thin-Plate-Spline [2] transformation to
rectify features obtained from curved text. The ABCNet series [24,
26] use BezierAlign to address the problem of curved text, requiring
the prediction of a small fixed number of points.

While these methods achieve good performance, they require
additional RoI-based [9] or TPS-based connectors, and the only
shared part between the detector and recognizer is the backbone
network’s features, neglecting the collaborative nature of detection
and recognition. [49] propose ARTS, highlighting the importance
of collaborative detection and recognition in the text spotting task.
Lastly, all of the aforementioned methods require complex manual
operations like Non-Maximum Suppression (NMS).

2.2 Transformer-based Text Spotter
With the impressive success of Transformers in visual tasks [6, 7, 14,
18, 27, 28, 42, 47], also influenced by the DETR family [3, 16, 22, 31,
46, 50], more recent works explore Transformer-based structures
for the Text Spotting. TESTR [48] employs dual decoders for detec-
tion and recognition tasks, sharing the backbone and Transformer
encoder features. TTS [15] utilizes an encoder and a decoder with
multiple prediction heads for performingmulti-tasks. DeepSolo [44]
employs an explicit points method to model decoder queries.

Although these methods achieve promising results, they still
exhibit certain limitations. The random initialized queries used in
TESTR [48] and TTS [15] still lack clarity and fail to efficiently rep-
resent queries encompassing both positional and semantic aspects.
Utilizing the encoder’s output features, DeepSolo [44] generates
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Figure 2: The overall framework of DNTextSpotter. The model utilizes a backbone and an encoder to extract multi-scale features.
The queries of the decoder can be divided into two parts: a matching part and a denoising part. The queries in the matching
part are randomly initialized queries. The noised queries of denoising part can be found in Fig .3 and Fig .4. After decoder and
task-specific head, the matching part calculates loss through a bipartite graph matching algorithm, and the denoising part
calculates loss directly with the ground truth.

Bezier center curve proposals, which subsequently serve to gener-
ate positional queries. It effectively decouples the ambiguously de-
fined queries into positional queries and content queries. Although
these methods have achieved certain accomplishments, they, like
DETR-like methods, use bipartite graph matching algorithms to ob-
tain one-to-one matching results. The instability of bipartite graph
matching has been proven to have a negative impact on detection
tasks by DN-DETR [16] and DINO [46]. While ESTextSpotter [12]
attempted to propose a method for denoising training, this method
uses boxes as a positional prior for point prediction, failing to con-
sider the irregular attributes of text instances and the characteristics
of text scripts. Therefore, we design a denoising training approach
based on Bezier control points and characters.

3 METHODOLOGY
3.1 Preliminaries
Denoising Training. The denoising training method was first
proposed by DN-DETR to address the slow convergence issue of
DETR. This method constructs an additional auxiliary task in the
decoder section without bipartite matching, which can be used to
accelerate the convergence of DETR-like methods. Technically, it
additionally feeds noised ground-truth boxes and labels into the
transformer decoder to reconstruct these ground-truths, and this
part is updated through an additional auxiliary DN loss. DINO
improved the denoising training method and further proposed a
contrastive denoising training method, which adds negative queries
in addition to the original noised queries to predict the background.
In our method, we further extend the denoising training approach
based on this foundation.
Bezier Center Curve. ABCNet[24] was the first to use Bezier
curves to flexibly adapt to any shape of scene text with a small
number of fixed points. Subsequently, DeepSolo introduced the
Bezier Center Curve, which initializes transformer decoder queries
by uniformly sampling a fixed number of points on the curve. This
Bezier Center Curve is obtained by calculating the average of the
four Bezier control points on the top and bottom edges of each text

Position Embedding

MLP

Noised Positional Queries Generation

Figure 3: We generate noised positional queries using four
Bezier control points from the ground truth, which includes
uniformly sampling points along the Bezier curve, position
embedding, and a two-layer MLP.

instance. In our method, we consider utilizing Bezier center curves
in denoising training.

3.2 Query Initialization
The ambiguous meaning of decoder queries in DETR is often inter-
preted in existing literature[22, 46] as a combination of positional
queries and content queries. We also utilize this modeling approach
and follow DeepSolo, using the Bezier Center Curve to initialize
positional queries and then combine them with learnable content
queries. In the denoising part, we represent noised queries as two
parts: noised positional queries and noised content queries.
Noised Positional Queries. As shown in Fig. 3, for any text in-
stance, the four Bezier control points of the Bezier center curve.
Assuming that a picture contains 𝑁 text instances, we can represent
the set of all instances as: S = {𝑆 𝑗 | 𝑗 = 1, 2, . . . , 𝑁 }, 𝑆 𝑗 is a set of
the four Bezier control points of the Bezier center curve of a text
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Figure 4: This image shows the process of generating noised
content queries from the ground-truth texts. "∅" indicates
the characters will be masked, while "𝜎" denotes flipping the
characters into any character.

instance. Each instance can be represented as:

S𝑗 = {(𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ) |𝑖 = 0, 1, 2, 3}, (1)

where each point is composed of a pair of coordinates (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ),
and the index 𝑖 ranges from 0 to 3, indexing the four Bezier control
points. Random noise is added to these points to obtain:

S
′
𝑗 = {(𝑥𝑖 𝑗 + Δ𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 + Δ𝑦𝑖 𝑗 ) |𝑖 = 0, 1, 2, 3}, (2)

where Δ𝑥𝑖 𝑗 and Δ𝑦𝑖 𝑗 are obtained by calculating the distance be-
tween the four Bezier control points of the center curve and the
four Bezier control points on the top side and are denoted as 𝐷𝑥

𝑖 𝑗

and 𝐷𝑦

𝑖 𝑗
. We use elements 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 from sets that satisfy a 0 − 1

uniform distribution to control the noise ratio for the 𝑥 and 𝑦 coor-
dinates respectively. Therefore, we can represent the offset of the
coordinates as follows:

Δ𝑥𝑖 𝑗 =

{
(−1)𝑚𝛼𝑖 𝑗𝐷

𝑥
𝑖 𝑗

if positive;
(−1)𝑚 (𝛼𝑖 𝑗 + 1)𝐷𝑥

𝑖 𝑗
otherwise. (3)

Δ𝑦𝑖 𝑗 =

{
(−1)𝑚𝛽𝑖 𝑗𝐷

𝑦

𝑖 𝑗
if positive;

(−1)𝑚 (𝛽𝑖 𝑗 + 1)𝐷𝑦

𝑖 𝑗
otherwise. (4)

where𝑚 and 𝑛 are used to control the direction of the offset, with
"positive" indicating the coordinates of the positive part.

After adding noise to the Bezier control points, we obtain a
new set of control points S′, Using these noisy Bezier control
points, we uniformly sample𝑇 point coordinates from the resulting
Bezier curves. These point coordinates form tensor Points with
shape (𝑁,𝑇 , 2). Finally, these coordinates are processed through
positional encoding (𝑃𝐸) and two layers of MLP to obtain Noised
Positional Queries (𝑄𝑁 ) with a shape of (𝑁,𝑇 , 256). We represent
𝑄𝑁 as follows:

𝑄𝑁 = 𝑀𝐿𝑃 (𝑃𝐸 (𝑃𝑜𝑖𝑛𝑡𝑠)) . (5)

Section 4.4 analyzes ’Why add noise to the Bezier control points?’.
Noised Content Queries.We designed Mask Character Sliding
(MCS), as shown in Fig. 4, to initialize the noised content queries.

For the maximum recognition length𝑇 , which is equal to the𝑇 men-
tioned above, we perform a sliding operation on the valid characters
in the positive part. Specifically, we first determine the number of
valid characters 𝑡 , which refers to the number of characters in the
input sequence that actually have meaning. Then, we calculate the
number of times each valid character should be cloned by perform-
ing a division operation𝑇 //𝑡 , in order to evenly distribute the total
length𝑇 of the sequence to each valid character. Additionally, since
the division of 𝑇 by 𝑡 may not be exact, there will be a remainder
𝑘 = 𝑇 − 𝑇 //𝑡 , indicating that there are 𝑘 additional spaces that
need to be allocated. To fairly distribute these extra spaces, we
assign one additional clone to each of the first 𝑘 valid characters in
the sequence, ensuring that the allocation for each character is as
even as possible. Since this operation visually resembles a character
sliding operation, we name it Character Sliding. After sliding the
characters, we use a mask operation to control the number of con-
secutive characters, flipping a portion of the consecutive characters
into a background label with a certain probability. After processing
the positive part, we add noise to the characters in both the positive
part and the negative part, causing these characters to flip to other
characters with a probability of 𝜆. These characters are then trans-
formed into noised content queries after being embedded, with all
the characters initialized in the negative part being backgrounds.

In addition, we use a dynamic group 𝑔 to fully utilize the perfor-
mance of denoising training. Considering the computational cost,
we set the maximum number of text instances 𝑁 per image to 100.
When 𝐵 exceeds 100, we simply use the slicing method to take the
first 100 instances. The division of 𝑔 is as follows:

𝑔 = (5,
⌊
100
𝑛

⌋
). (6)

3.3 Single Attention Mask
To ensure that during the decoder self-attention calculation, the in-
formation in the denoising part contains ground-truth information,
we need to ensure that the information in the matching part cannot
see the information in the denoising part. In addition, each group
should not be able to see each other. Considering that there are
two parts during self-attention calculation, namely intra-relation
self-attention which calculates the attention relationship between
characters, and inter-relation self-attention which calculates the
attention relationship between text instances. We consider whether
two attention masks are needed to prevent information leakage.
However, in fact, for intra-relation self-attention which calculates
the attention relationship between characters, we do not need to
use an attention mask, because, for any text instance (including
the denoising part and the matching part), the attention calculation
is within the text instance and does not interact with other text
instances. So we only need to consider the design of inter-relation
self-attention, we call this attention mask that only needs to be
used once as Single Attention Mask, and we devise the attention
mask A =

[
a𝑖 𝑗

]
(𝑔+2𝑛)×(𝑔+2𝑛) as follows:

𝑎𝑖 𝑗 =


1, if 𝑗 < 𝑔 × 2𝑛 and ⌊ 𝑖

2𝑛 ⌋ ≠ ⌊ 𝑗
2𝑛 ⌋;

1, if 𝑗 < 𝑔 × 2𝑛 and 𝑖 ≥ 𝑔 × 2𝑛;
0, otherwise.

(7)
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where 𝑔 and 𝑛 represent the number of groups and the number of
text instances per image, respectively. 𝑎𝑖 𝑗 = 1 means the 𝑖-th query
is blind to the 𝑗-th query; if it’s 0, they can see each other.

3.4 Training Losses
Compared to the matching part, the denoising part uses a slightly
modified loss function and an additional background computation
loss function (namely, the background part is calculated twice,
which we briefly refer to as BCT). The rest of the loss functions are
consistent with DeepSolo [44], including the Hungarian matching
algorithm, focal loss, CTC loss [10], and L1 loss. The details of the
matching part are elaborated in the appendix.
Overall Loss. We use focal loss [21] to calculate the classification
of text instances. In each set of denoising queries, the positive
part represents positive samples, and the negative part represents
negative samples, with the focal loss being used to compute the
background loss for the first time. Therefore, for the 𝜏𝑡ℎ query in
the positive part of the denoising queries, the calculation of the
focal loss for text instance classification is as follows:

L (𝜏 )
cls = − 1{𝜏∈Im(𝜑 ) }𝛼 (1 − 𝑏 (𝜏 ) )𝛾 log(𝑏 (𝜏 ) )

− 1{𝜏∉Im(𝜑 ) } (1 − 𝛼) (𝑏 (𝜏 ) )𝛾 log(1 − 𝑏 (𝜏 ) ),
(8)

where 1 represents the indicator function, and Im(𝜑) denotes the
image of the mapping 𝜑 . Concerning character classification, for
the 𝜏-th denoised query in the positive part, we employ the CTC
loss:

L (𝜏 )
text,pos = 1{𝜏∈Im(𝜑 ) }CTC(𝑡 (𝜑

−1 (𝜏 ) ) , 𝑡 (𝜏 ) ). (9)
The cross entropy loss for the 𝜅-th denoised query in the negative
part during the second background calculation:

L (𝜅 )
text,neg = 1{𝜅∈Im(𝜑 ) }CE(𝑡 (𝜑

−1 (𝜅 ) ) , 𝑡 (𝜅 ) ) . (10)

Additionally, for the coordinate points of the center curve and
boundaries in the positive part of the 𝜏-th denoised query, we
employ the L1 loss for the computation:

L (𝜏 )
coord = 1{𝜏∈Im(𝜑 ) }

𝑁−1∑︁
𝑛=0




𝑝 (𝜑−1 (𝜏 ) )
𝑛 − 𝑝

(𝜏 )
𝑛




 , (11)

L (𝜏 )
bd = 1{𝜏∈Im(𝜑 ) }

𝑁−1∑︁
𝑛=0

( 


𝑡𝑜𝑝 (𝜑−1 (𝜏 ) )
𝑛 − ˆ𝑡𝑜𝑝 (𝜏 )𝑛





+



𝑏𝑜𝑡 (𝜑−1 (𝜏 ) )

𝑛 − ˆ𝑏𝑜𝑡 (𝜏 )𝑛




 ), (12)

where top refers to the top curves of the boundaries, and bot refers
to the bottom curves of the boundaries. The negative part does not
participate in the calculation of the part.

The loss function for the denoised queries consists of four afore-
mentioned losses in the positive part and two aforementioned losses
in negative part:

Lpos =
∑︁
𝜏

(
𝜆clsL

(𝜏 )
cls + 𝜆text,posL (𝜏 )

text,pos

+𝜆coordL
(𝜏 )
coord + 𝜆bdL

(𝜏 )
bd

)
,

(13)

Lneg =
∑︁
𝜅

(
𝜆clsL

(𝜅 )
cls + 𝜆text,negL (𝜅 )

text,neg

)
, (14)

where 𝜆cls, 𝜆text, 𝜆coord, 𝜆bd are hyper-parameters to balance differ-
ent tasks. The final loss function of the denoising part is:

Ldn = Lpos + Lneg . (15)

4 EXPERIMENT
We conduct comparisonswith knownTransformer-based approaches
on various datasets, including Total-Text, SCUT-CTW1500, IC-
DAR15, and InverseText which contain multi-directional scene text
and arbitrary-shaped text instances. In addition, We choose pub-
licly available datasets Synth150K, MLT17, IC13, and TextOCR as
additional pre-training datasets.

4.1 Public Datasets
Total-Text is a widely used comprehensive scene text dataset intro-
duced by [25], specifically designed for arbitrary text detection. It
comprises 1255 training images and 300 testing images, containing
horizontal, multi-directional, and arbitrary-shaped text instances.
SCUT-CTW1500 is another significant dataset for arbitrary-shaped
text, published by [5]. It comprises 1500 images, consisting of 1000
training images and 500 testing images.
ICDAR2015 Incidental Text (ICDAR15) [13] includes 1000 train-
ing images and 500 testing images with quadrilateral text. It con-
tains multi-directional text instances annotated with word-level
quadrilateral annotations.
InverseText was manually annotated by [43] and includes 500
test images. Unlike the previous datasets, this dataset contains 40%
inverse-like text instances, specifically designed to address the lack
of inverse-like texts in existing test datasets.

4.2 Implementation Details
All settings are based on the ResNet-50 backbone. We employ 6
layers of encoder and 6 layers of decoder, with a hidden dimension
of 256. For character classification, we predict 37 classes on the
Total Text, ICDAR15 , and InverseText datasets, and 96 classes on
the CTW1500 dataset. During training, we set the noise hyperpa-
rameters as follows: The probability 𝜆 of characters being flipped
to other characters is set to 0.4. The learning rate scheduler utilizes
an initial learning rate of 2𝑒−5 for the backbone and 2𝑒−4 for other
parts. We train the DNTextSpotter for a total of 435𝑘 steps, and
the learning rate is reduced by a factor of 0.1 at 375𝑘 steps. We use
AdamW as the optimizer and train our network with a batch size
of 8. The denoising part loss weights 𝜆cls, 𝜆coord, 𝜆bd, 𝜆text,pos, and
𝜆text,neg are set to 1.0, 1.0, 0.5, 0.5, and 0.5. The focal loss parameters
𝛼 and 𝛾 are set to 0.25 and 2.0, respectively.

4.3 Comparison with State-of-the-Art Methods
For Arbitrarily-Shaped Scene Text Spotting: As previously indi-
cated, the Total-Text and SCUT-CTW1500 datasets are specifically
designed to emphasize text instances characterized by arbitrary
shapes. In comparison to other methods on the Total-Text dataset
(shown in Table 1), in the detection task, our approach is close
to the current state-of-the-art method, ESTextSpotter, achieving
89.2%. While its detection performance is slightly lower, it has a sig-
nificant advantage in recognition performance. Without a lexicon
(’None’ results), outperforming ESTextSpotter by 3.7%, reaching
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Table 1: Performances on Total-Text and CTW1500 with different backbone. "None" denotes lexicon-free. "Full" denotes the
inclusion of all words present in the test dataset. The top three scores are shown in bold red, blue, and green fonts.

Method Backbone
Total Text CTW1500

FPSDetection E2E Detection E2E
P R F None Full P R F None Full

TextDragon [8] VGG16 85.6 75.7 80.3 48.8 74.8 84.5 82.8 83.6 39.7 72.4 −
SRSTS [40] ResNet-50 92.0 83.0 87.2 78.8 86.3 − − − − − 18.7
CharNet [41] ResNet-50-Hourglass57 88.6 81.8 84.6 63.6 − − − − − − 1.2
TextPerceptron [33] ResNet-50-FPN 88.8 81.8 85.2 69.7 78.3 − − − − 57.0 −
Boundary [36] ResNet-50-FPN 88.9 85.0 87.0 65.0 76.1 − − − − 46.1 73.0
PGNet [37] ResNet-50-FPN 85.5 86.8 86.8 63.1 − − − − − − 35.5
ABCNet v2 [26] ResNet-50-FPN 90.2 84.1 87.0 70.4 78.1 85.6 83.8 84.7 57.5 77.2 10.0
TPSNet [39] ResNet-50-FPN 90.2 86.8 88.5 78.5 84.1 88.7 86.3 87.5 60.5 80.1 14.3
GLASS [34] ResNet-50-FPN 90.8 85.5 88.1 79.9 86.2 − − − − − 3.0
SwinTextSpotter [11] Swin-T-FPN − − 88.0 74.3 84.1 − − 88.0 51.8 77.0 2.9
UNITS[14] Swin-B − − 89.8 78.7 86.0 − − − − −
TESTR [48] ResNet-50 93.4 81.4 86.9 73.3 83.9 92.0 82.6 87.1 56.0 81.5 5.5
TTS [15] ResNet-50 − − − 78.2 86.3 − − − − − −
SPTS [32] ResNet-50 − − − 74.2 82.4 − − − 63.6 83.8 0.4
ESTextSpotter [12] ResNet-50 92.0 88.1 90.0 80.8 87.1 91.5 88.6 90.0 64.9 83.9 4.3
DeepSolo [44] ResNet-50 93.2 84.6 88.7 82.5 88.7 92.5 86.3 89.3 64.2 81.4 17.0
DeepSolo [44] VITAEv2-S 92.9 87.4 90.0 83.6 89.6 − − − − − 10.0
DNTextSpotter(Ours) ResNet-50 91.5 87.0 89.2 84.5 89.8 93.5 87.1 90.2 67.0 84.2 17.0
DNTextSpotter(Ours) VITAEv2-S 92.9 88.6 90.7 85.0 90.5 94.2 88.9 91.5 69.2 85.9 10.0

Table 2: Performance on Inverse-Text. E2E: the end-to-end
spotting results. The top three scores are shown in bold red,
blue, and green fonts.

Method E2E
None Full

MaskTextSpotter v2 [19](ResNet-50-FPN) 39.0 43.5
ABCNet [24](ResNet-50-FPN) 22.2 34.3
ABCNet v2 [26](ResNet-50-FPN) 34.5 47.4
TESTR [48](ResNet-50) 34.2 41.6
SwinTextSpotter [11](Swin-T-FPN) 55.4 67.9
SPTS [32](ResNet-50) 38.3 46.2
ESTextSpotter [12](ResNet-50) 51.2 55.1
DeepSolo[44] (ResNet-50) 64.6 71.2
DeepSolo[44] (ViTAEv2-S) 68.8 75.8

DNTextSpotter(ResNet-50) 75.9 81.6
DNTextSpotter(ViTAEv2-S) 78.1 83.8

84.5%, andwith a lexicon (’Full’ results), exceeding it by 2.7%, achiev-
ing 89.8%. Compared to the state-of-the-art method in recognition
performance, DeepSolo, is higher by 2.0% and 1.1%, respectively.
On the CTW1500 dataset, both detection and recognition perfor-
mances have reached the current state-of-the-art. The detection
F1 score reached 90.2%, surpassing the state-of-the-art method ES-
TextSpotter by 0.2%. Without a lexicon (’None’ results), it exceeds
ESTextSpotter by 2.1%, and with a lexicon (’Full’ results), it sur-
passes by 0.3%, reaching 84.2%. Compared to our baseline model,
DeepSolo, there is a significant improvement in performance for

Table 3: Performance on ICDAR15. E2E: the end-to-end recog-
nition results. "S," "W", and "G" correspond to Strong, Weak,
and Generic lexicon, respectively. The top three scores are
shown in bold red, blue, and green fonts.

Method E2E
S W G

ABCNet v2 [26](ResNet-50-FPN) 82.7 78.5 73.0
SwinTextSpotter [11](Swin-T-FPN) 83.9 77.3 70.5
TESTR [48](ResNet-50) 85.2 79.4 73.6
SPTS [32](ResNet-50) 77.5 70.2 65.8
ESTextSpotter [12](ResNet-50) 87.5 83.0 78.1
DeepSolo [44](ResNet-50) 88.0 83.5 79.1
DeepSolo [44](ViTAEv2-S) 88.1 83.9 79.5

DNTextSpotter(ResNet-50) 88.7 84.3 79.9
DNTextSpotter(ViTAEv2-S) 89.4 85.2 80.6

detection and recognition, with increases in F1, ’None’, and ’Full’
by 0.9%, 2.8%, and 2.8%, respectively. We use only ResNet-50 as the
backbone, and the experimental results on various datasets reach
state-of-the-art. When we switch the backbone to ViTAEv2-S, our
performance greatly exceeds that of DeepSolo, which also uses
ViTAEv2-S.
For Arbitrarily-Oriented Scene Text Spotting: In the case of
the multi-oriented benchmark ICDAR15, DNTextSpotter exhibits
excellent performance when compared to other Transformer-based
methods. As shown in Table 3, DNTextSpotter achieves results of
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Table 4: Comparison of DNTextSpotter results (black) and
DeepSolo results (blue) at different Training Steps. The learn-
ing rate decays by a factor of 0.1 at 375K steps.

Training
Steps

InverseText TotalText
None Full None Full

25K 27.9 (25.2) 38.2 (34.2) 52.5 (52.5) 68.9 (65.3)
50K 32.1 (29.5) 35.5 (35.3) 65.0 (60.0) 74.2 (70.3)
100K 40.9 (39.2) 49.5 (47.3) 67.9 (64.9) 79.9 (77.8)
200K 48.8 (46.5) 55.8 (52.3) 73.1 (71.9) 82.9 (82.2)
300K 54.5 (48.6) 61.8 (54.4) 74.0 (71.5) 84.1 (82.0)
375K 58.7 (50.6) 69.4 (55.1) 74.9 (73.9) 83.4 (81.9)
435K 67.9 (59.1) 74.4 (65.8) 79.2 (76.6) 85.1 (84.0)

88.7%, 84.3%, and 79.9% on the settings of "S", "W", and "G", respec-
tively. These results surpass the current state-of-the-art method,
DeepSolo, by 0.6% in "S", 0.4% in "W", and 0.4% in "G", respectively.
For Inverse-like Scene Text Spotting: Besides ESTextSpotter,
whose weights were measured using the publicly available weights
from the paper, all other results were taken from the DeepSolo
report. In the latest Inverse-Text dataset, our method achieves sig-
nificant success. Compared to the current state-of-the-art method,
DeepSolo, our results without a lexicon ("None") surpassed it by
11.3%, reaching 75.9%, and with a lexicon ("Full"), we exceeded it
by 10.4%, achieving 81.6%. We analyze why our method performed
exceptionally well on this dataset. We believe this is due to the fact
that datasets for Inverse-like texts present a more complex chal-
lenge than those for arbitrarily shaped texts. Unlike conventional
texts that follow a left-to-right order, these texts are ordered from
right to left and are flipped downward, making it challenging for
the original model to learn this pattern. Denoising training, as an
auxiliary task, with its relatively simpler nature, can more easily
help the model learn these uncommon or complex forms of text.

Table 5: Ablation comparison of different noise scales 𝜆 in the
experiment, where 𝜆 represents the probability of a character
flipping to another character.

𝜆
Detection E2E

P R F1 None Full
0.8 91.8 85.1 88.2 82.9 88.8
0.6 92.2 85.6 88.7 83.4 89.2
0.4 91.5 87.0 89.2 84.5 89.8
0.2 92.9 84.4 88.4 84.0 89.6
0.0 91.2 84.8 87.8 82.7 88.6

4.4 Ablation Studies
Ablation experiments were conducted on the Total-Text dataset. Ta-
ble 4 further demonstrates the convergence effects of the improved
denoising training. Table 6 shows the impact of noise scale and
mask probability. Table 7 shows the effects of adding noise to Bezier
control points, using masked character sliding, and calculating an
additional background loss.

Table 6: Adjustment of mask probability, where ’mask’ refers
to the probability of converting repeated characters into the
background.

Mask Probability 0% 25% 50% 75%
F1 (%) 88.7 88.6 89.2 88.9

None (%) 83.1 83.7 84.5 82.9
Full (%) 88.6 88.9 89.8 88.4

Table 7: Ablation comparison of the proposed components.
"DN" denotes whether denoising training is employed. "BCP"
refers to the addition of noise to Bézier control points rather
than directly to the sampling points on the Bézier curve’s cen-
terline. "MCS" denotes the use of masked character sliding,
while "BCT" indicates the use of an additional background
loss calculation, i.e., background calculation twice.

DN BCP MCS BCT Detection E2E
P R F1 None Full

✗ ✗ ✗ ✗ 93.2 84.6 88.7 82.5 88.7
✓ ✗ ✗ ✗ 91.5 85.1 88.1 82.1 88.0
✓ ✓ ✗ ✗ 92.3 85.9 88.9 82.5 88.4
✓ ✓ ✓ ✗ 93.2 85.5 89.0 84.1 89.2
✓ ✓ ✓ ✓ 91.5 87.0 89.2 84.5 89.8

(1) Effect of BCP: We investigate the addition of noise on the
Bezier control points (BCP) rather than directly on the sampling
points of the Bezier center curve. Using BCP leads to a noticeable
improvement in ’F1’ results, by approximately 0.8%. We think BCP
can contribute positional prior information to the noised positional
queries, which is not achieved by directly adding noise to the sam-
pling points on the centerline. Conversely, if noise is directly added
to these sampling points, the denoising training segment would
miss out on the benefits of the smooth Bezier curve’s positional
priors, thereby negatively impacting the training outcome.
(2) Effect of MCS: Generating queries directly without masked
character sliding (MCS) leads to a significant decrease in perfor-
mance because it forces the model to learn a fixed postional output
order. Introducing the sliding operation means that the model no
longer learns targets based on a fixed position, which promotes a
one-to-one alignment between character and position. The exper-
imental results also confirm the effectiveness of MCS, showing a
1.6% increase in ’None’ results.
(3) Effect of BCT: Employing additional background loss calcu-
lation techniques (BCT) leads to improvements in both F1 scores
(+0.2%) and ’None’ results (+0.4%). BCT is actually a reuse of the
negative part. Originally, the focal loss was used solely to calculate
the loss for binary classification between the foreground and back-
ground. Now, an additional cross-entropy loss requires that each
character in the negative part undergo multi-class classification.
(4) Effect of Noise Scale and Mask Probability: The ablation ex-
periments presented in Table 5 and Table 6 indicate that choosing an
appropriate noise ratio is crucial, as both excessive and insufficient
noise can impact the experimental outcomes. We conduct ablation
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Figure 5: Several instance examples: rows display ESTextSpotter, DeepSolo, andDNTextSpotter (Ours) visualizations, respectively.
In the recognition results, blue within parentheses represents correct recognition, while red denotes incorrect ones; outside the
parentheses, ∅ signifies no detection or no recognition took place. Additional visual analysis is provided in the appendix.

experiments on the hyperparameter 𝜆 for randomly flipping charac-
ters, with the experimental results showing the performance when
𝜆 is set between 0.0 and 0.8. Furthermore, we control the noise scale
𝜆 at 0.4 to conduct ablation experiments on the mask probability.
The experimental results show that either excessive or insufficient
noise can affect the model’s performance.

4.5 Qualitative Analysis
Instability Measurement: We utilize the analysis method for
quantifying the instability(𝐼𝑆) of bipartite graph matching proposed
by DN-DETR[16]. The calculation formula can be found in the
appendix. For a training image in the TotalText dataset, we calculate
the indices of 𝑁 proposals every 10k iterations, with every 10k
iterations considered as one group. By comparing the differences
in indices between the ith group and the (𝑖 + 1)th group, we obtain
the results for 𝐼𝑆 . We visualize the 𝐼𝑆 results as shown in Fig. 6.
Additionally, the training set of the Total Text contains a total of
1255 training images, with an average of 7.04 text instances per
image, so the largest possible 𝐼𝑆 is 7.04 × 2 = 14.08.
Visualization Comparisons: Fig. 5 illustrates the experimental
results on the InverseText dataset. ESTextSpotter significantly strug-
gles with the recognition of inverse-like text. Even for some texts,
distortions and deformations occur during detection. Although
DeepSolo has greatly improved the recognition of these inverse-
like texts, it faces challenges in recognizing all the more dense texts.
As for DNTextSpotter, we achieve good performance on most of
the inverse-like texts, indicating that denoising training has an
increasingly positive effect on more complex tasks. More detailed
visualization results can be found in the appendix.

Figure 6: For the IS of TESTR, DeepSolo, and DNTextSpotter,
we trained for 120k steps under the same settings, calculating
the IS at every consecutive 10k step interval.

5 CONCLUSION
In this paper, we design a novel denoising training method from
the perspective of the attributes of scene text. Our research has
found that devising a denoising training method that aligns the po-
sitions and contents of characters is very effective for performance
improvement. In the future, designing denoising training methods
that align more closely with task characteristics to improve model
performance is a promising research avenue. We hope our denois-
ing training approach for text spotters provides valuable insights
to other researchers.
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