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Abstract
The dominant paradigms for integrating machine-
learning into protein engineering are de novo pro-
tein design and guided directed evolution. Guid-
ing directed evolution requires a model of protein
fitness, but most models are only evaluated in sil-
ico on datasets comprising few mutations. Due to
the limited number of mutations in these datasets,
it is unclear how well these models can guide di-
rected evolution efforts. We demonstrate in vitro
how zero-shot and few-shot protein language mod-
els of fitness can be used to guide two rounds of
directed evolution with simulated annealing. Our
few-shot simulated annealing approach recom-
mended enzyme variants with 1.62 × improved
PET degradation over 72 h period, outperform-
ing the top engineered variant from the literature,
which was 1.40 × fitter than wild-type. In the sec-
ond round, 240 in vitro examples were used for
training, 32 homologous sequences were used for
evolutionary context and 176 variants were evalu-
ated for improved PET degradation, achieving a
hit-rate of 39 % of variants fitter than wild-type.

1. Introduction
Proteins are nature’s catalytic and functional materials;
macro-molecules increasingly programmed in the lab for so-
cietal benefit with applications in biomaterials, diagnostics
and biocatalysis.

Whilst strides have been made in de novo protein design in
recent years (Ferruz et al., 2022; Wang et al., 2022; Watson
et al., 2023), directed evolution comprising iterative mutage-
nesis and screening remains the primary method used for the
development of optimized protein variants (Arnold, 1998;
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Arnold & Volkov, 1999; Turner, 2009; Wang et al., 2021).
Protein sequence space is vast and epistatic, so directed evo-
lution experiments may require upwards of 10 000 screen-
ing samples to achieve desired protein function (Romero &
Arnold, 2009; Sarkisyan et al., 2016; Hartman & Tullman-
Ercek, 2019), which is a screening burden sufficient to dis-
suade adoption of protein engineering in smaller scale labs.

Machine-learning-guided directed evolution has emerged as
a paradigm for improving the sample efficiency of protein
engineering efforts (Yang et al., 2019; Biswas et al., 2021;
Saito et al., 2021; Wittmann et al., 2021), and comprises
two in silico components: a model of protein fitness and a
sampling method. The majority of protein fitness models are
only evaluated in silico on mutation effect datasets (Hopf
et al., 2017; Notin et al., 2023), comprising of mostly single-
mutants and with insufficient variants to compare sampling
methods.

We describe how MSA Transformer (Rao et al., 2021) can
be used as a few-shot model of protein fitness to sample vari-
ants using simulated annealing for machine-learning-guided
directed evolution. To demonstrate this method in vitro, we
engineered cutinases to improve polyethylene terephthalate
(PET) degradation—a task of interest for protein engineer-
ing efforts with industrial relevance (Jayasekara et al., 2023;
Sui et al., 2023). As controls, we compared the performance
of our variants to wild-type leaf-compost cutinase (LCC)
(Sulaiman et al., 2012a) and ICCM, a high-performing vari-
ant engineered through site-directed mutagenesis (Tournier
et al., 2020).

We show why in vitro training examples are beneficial when
optimizing industrially relevant phenotypes, by comparing
few-shot recommended variants to zero-shot recommended
variants used for training (Meier et al., 2021), and compar-
ing both of these machine-learning-guided approaches to
a global random mutagenesis baseline using error-prone
polymerase chain reaction (epPCR).
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Figure 1. MSA Transformer models of protein fitness used in
machine-learning-guided directed evolution: (a) zero-shot model,
where logits in mutated positions predicted are scaled relative to
wild-type using the marginal objective described by Meier et al.
(2021); (b) few-shot model, where the MSA Transformer weights
are frozen and a small dataset of measurements are fitted to the
final embeddings of MSA Transformer, using ridge regression.

2. Methods
2.1. Protein Fitness Models

In machine learning, protein language models have gained
traction as tools for predicting the structure (Jumper et al.,
2021; Baek et al., 2021; Lin et al., 2023) and function (Al-
ley et al., 2019; Rao et al., 2019; Meier et al., 2021; Notin
et al., 2022) of protein sequences. Protein language mod-
els are trained on public datasets of reference sequences
(Suzek et al., 2015) to predict next or masked amino acids,
learning the distribution of amino acids in context: UniRep
(Alley et al., 2019) is a single-sequence recurrent neural
network; ESM1b (Rives et al., 2021) is a single-sequence
transformer encoder; and MSA Transformer (Rao et al.,
2021) is a multiple-sequence transformer encoder trained to
predict masked amino acids in multiple sequence alignments
built from UniRef50 reference and homologous sequences.

For the prediction of function, protein language models have
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Figure 2. Few-shot MSA Transformer compared to fine-tuned
UniRep (Alley et al., 2019) and non-fine-tuned ESM-1v (Meier
et al., 2021) trained on samples of 240 training examples from
Sarkisyan et al. (2016).

been mostly applied to zero-shot fitness prediction (Meier
et al., 2021; Notin et al., 2022), where the pseudo-likelihood
of mutations conditioned on the wild-type or homologous
sequences are used as a fitness metric. Note, these models
are not conditioned on substrates, environmental conditions,
or the protein function of interest, which can include di-
verse characteristics from thermostability (Li et al., 2023)
to substrate specificity (Goldman et al., 2022; Kroll et al.,
2023).

We adapted MSA Transformer to predict the fitness of pro-
tein variants in a few-shot scenario using in vitro measure-
ments. This approach is illustrated in contrast to zero-shot
fitness prediction in Figure 1.

2.2. Multiple Sequence Alignments

MSA Transformer is unique in using explicit evolution-
ary context, introduced via multiple sequence alignments
(MSAs), rather than relying on model weights to handle
evolutionary context. This explicit evolutionary context was
found to improve performance compared to single sequence
in zero-shot protein fitness prediction (Meier et al., 2021).
Whilst single-sequence models rely on fine-tuning on 1000s
of homologous sequences to improve evolutionary context
(Biswas et al., 2021), by careful selection of homologous
sequences we could achieve similar predictive performance
on a multiple-mutant dataset of protein variants (Sarkisyan
et al., 2016) with just 32 homologs. Results are shown in
Figure 2.

Following Notin et al. (2022), we identified LCC homologs
using the evcouplings framework (Hopf et al., 2019), max-
imizing the number of significant evolutionary couplings
with respect to the bitscore threshold of the jackhmmer ho-
mology search and multiple sequence alignment algorithm
(Johnson et al., 2010). We sampled sequences from the
resulting set of 384 homologs using sequence reweighted
sampling (Hopf et al., 2017) to provide context in addi-
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Figure 3. Simulated annealing used to sample high fitness variants from a model of protein fitness. This process is run until a convergence
criterion is met, or a maximum number of iterations is reached.

tion to wild-type LCC and the variant sequence for MSA
Transformer.

2.3. In-Silco Mutagenesis

For sampling protein variants, a common approach is to se-
lect a design window of mutations and exhaustively screen
all combinations in silico (Saito et al., 2021; Frisby & Lang-
mead, 2023) but this limits the diversity and number of
mutations that can be explored. Generative models includ-
ing autoencoders (Singer et al., 2022) and masked language
models (Yamaguchi & Saito, 2022) have been used to gen-
erate a library of de novo variants for in silico screening.
Biswas et al. (2021) used a simulated annealing method to
propose random mutations and sample high-fitness variants
using a model of protein fitness. By introducing an exponen-
tially decaying temperature parameter, this algorithm avoids
local optima close to the starting sequence and converges
on high-fitness variants as the search progresses.

The simulated annealing approach used in our experiments
is shown in Figure 3. Following Biswas et al. (2021), the
number of mutations per iteration was sampled from a Pois-
son distribution with a mean from 1.0 to 1.5 mutations, the
location and choice of amino acid substitution were sam-
pled uniformly. The maximum Hamming distance from the
starting sequence was constrained to a predefined trust ra-
dius. In Biswas et al. (2021), the proposed sequence rapidly
approaches the trust radius and iterations are wasted until
wild-type amino acids are randomly sampled for substitu-
tion. We modified the mutation sampler to first introduce
the minimum number of wild-type amino acids in mutated
locations to guarantee that the proposed sequences remain
within the trust radius. Simulated annealing was run multi-
ple times for 2000 iterations each, and the fittest sequence
from each run was recorded and ranked. The top-k variants
were selected for in vitro validation.

2.4. Experimental Setup

LCC is a wild-type cutinase used in the literature for en-
gineering enzymes for PET degradation (Sui et al., 2023).
To generate samples for lab testing, enzyme-encoding gene
variants were inserted into plasmids and expressed in E.
coli cells. Cell pellets were chemically lysed and the re-
sulting lysates were assayed for PET degradation (1) and
thermostability (2). A panel of PET degrading enzymes
reported in the literature was tested under these assay con-
ditions in-house, identifying ICCM as the best-performing
variant. Thus, further experiments included wild-type LCC
and ICCM as controls.

To assess PET degradation, lysate was incubated with semi-
crystalline PET powder and hydrolysis products TPA and
MHET were quantified. Few-shot regression models were
trained to predict the logarithm of the detected products
relative to wild-type

fPET(x) =
cTPA(x) + cMHET(x)

cTPA(xLCC) + cMHET(xLCC)
(1)

where cTPA and cMHET are the concentrations (mmol mL−1)
of TPA and MHET, respectively.

To assess variant thermostability, enzymatic activity was
measured by incubating lysate with pNPB, a commonly
used proxy for monitoring degradation of PET-like mate-
rial (Furukawa et al., 2019). The hydrolysis product was
detected chromatically and the reaction rate was calculated.
The heat-treated activity was measured by pre-incubating
lysate at 70 °C for 2 h, and then performing the pNPB enzy-
matic activity assay. Thermostability was calculated as the
ratio of heat-treated to non-heat-treated activity. Few-shot
regression models were trained to predict the logarithm of
this ratio relative to wild-type

fT (x) =
∆Ah(x)/∆A0(x)

∆Ah(xLCC)/∆A0(xLCC)
(2)
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(a) Fitness of epPCR variants
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(b) Fitness of zero-shot variants
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(c) Fitness of few-shot variants

Figure 4. Distribution of PET degredation, fPET, for variants assayed with control LCC annotated in red and ICCM in violet. Few-shot
variants are optimized for fPET.

where ∆Ah and ∆A0 are the maximum changes in absorp-
tion at 405 nm for heat-treated and non-heat-treated samples,
respectively.

LCC variants were generated using (a) epPCR, to serve as a
baseline method for comparison with ML-based methods;
(b) MSA Transformer zero-shot simulated annealing, to
generate training data and starting point variants for few-
shot approach and to serve as a comparison; and (c) MSA
Transformer few-shot simulated annealing, using phenotype
data collected on variants from (b). Few-shot models were
trained on phenotypes (1) & (2), generating two sets of
variants, one for each objective.

3. Results
To facilitate comparison, one 96-well plate of variants was
re-assayed for PET degradation for each of the epPCR, zero-
shot, and few-shot experiments, with LCC and ICCM as
controls. Detailed results of these comparisons are recorded
in Table 1 and Figure 4 shows the distribution of variant
fitness relative to LCC. Using a binomial test, we determined
that zero-shot variants were fitter than LCC more often than
epPCR variants at a significance level of 0.003, and few-
shot variants were fitter than LCC more often than zero-shot
variants at a significance level of 0.005.

Figure 5 shows the distribution of mutations in our few-shot
simulated annealing variants compared to controls. Finally,
a comparison of the in vitro thermostability and PET degra-
dation of variants recommended by simulated annealing is
shown in Figure 6.

4. Discussion
Site-saturation mutagenesis is a powerful tool for explor-
ing a small number of mutations in a focused region, but
machine-learning-guided mutagenesis can explore a larger

Table 1. Comparison of PET degradation, fPET, of variants from
each experiment relative to wild-type LCC; hit-rate, which is the
proportion of variants fitter than controls; and Spearman rank cor-
relation, which measures repeatability across two bio-replicates.
Few-shot variants are optimized for fPET.

epPCR Zero-shot Few-shot

Fitness, mean 0.24 0.58 0.68
fPET median 0.03 0.71 0.72

max 1.24 1.20 1.62

Hit-rate, fPET > LCC 0.05 0.20 0.39
fPET > ICCM 0.00 0.00 0.10

Spearman, ρ 0.89 0.83 0.94

Controls, fPET LCC — — 1.00
fPET ICCM — — 1.40

number of mutations across the scaffold and active site,
and identify more beneficial mutations. In Tournier et al.
(2020), ICCM was identified by recombination of four out
of five beneficial mutations around the active site identified
by site-saturation mutagenesis and an additional stabilizing
disulfide bond. However, with only five beneficial mutation
sites, there is little scope to improve ICCM further without
another round of mutagenesis. In contrast, our machine-
learning-guided approach identified a variant with 16 %
greater catalytic activity than ICCM exploring a similar
number of variants. The resulting library of beneficial muta-
tions across the scaffold and active site could be recombined
to further improve performance.

In vitro measurements are necessary to ensure alignment
between machine-learning-guided variants and desired phe-
notypes. The zero-shot variants measured in our assay had
a significantly higher hit-rate relative to LCC than epPCR,
but variants with performance greater than ICCM were only
identified after training few-shot models on those zero-shot
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Figure 5. (a) and (b) show the distributions of mutated positions explored by few-shot simulated annealing and site saturation mutagenesis
(Tournier et al., 2020) highlighted on the crystal structure of LCC obtained from the protein databank, PDB ID: 4EB0 (Sulaiman et al.,
2012b). Mutations found in variants fitter than wild-type are shown in red, and mutations found in variants less fit than wild-type are
shown in blue. (c) and (d) show the same mutations along the primary sequence (x-axis), but also the amino acid substituted (y-axis).
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Figure 6. Spearman rank correlation between in vitro thermosta-
bility and PET degradation of variants, ICCM annotated in violet.
Few-shot variants optmized for thermostability are highlighted in
red and those optimized for PET degredation are in blue. Variants
optimized for thermostability are frequently inactive on PET.

results. One interpretation of zero-shot marginal fitness
proposed by (Meier et al., 2021) is that these metrics rep-
resent the divergence between a mutated sequence and the
distribution of sequences contained in the UniProt reference
clusters, from which homologous sequences are identified
and the underlying protein language model is trained. The
majority of sequences in the UniProt knowledgebase are
naturally occurring, so it is surprising that zero-shot fitness
is a useful proxy for PET degradation, which performs op-
timally at temperatures that cannot be tolerated by most
organisms. Whilst zero-shot models provide a useful screen

for early rounds of sequence exploration, there is no differ-
ence in method between zero-shot-guided mutagenesis for
generating variants with improved thermostability or PET
degradation, and measurements of these phenotypes were
weakly correlated. In contrast, the few-shot models pro-
posed leverage generalized features of naturally occurring
protein sequences and evolutionary context, and so can be
tuned to contrasting phenotypes or environmental conditions
unique to industrial applications.

There is potential to extend this approach to more efficiently
exploit larger libraries of fit variants identified through
machine-learning-guided mutagenesis. In Tournier et al.
(2020) and Biswas et al. (2021), a design window is used
to restrict the explored mutation sites. We succeeded in
making recommendations with a high hit-rate using a global
mutagenesis method, allowing the simulated annealing al-
gorithm to identify which locations to mutate. However,
the parameter with the largest impact on hit-rate is the trust
radius constraint on the maximum number of mutations
introduced in each round of in vitro experiments, which sim-
ulated annealing cannot identify automatically. We found
four mutations to be optimal for few-shot models and two
for the zero-shot model. This is a significant improvement
over experimental mutagenesis, where single or double mu-
tants are screened and selectively recombined to identify
variants distant from wild-type.

With further improvements, the trust radius constraint could
be eliminated by introducing penalties or constraints to en-
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courage the sampling of variants representative of those
measured in vitro. For example, by modifying sampling
methods to interpolate between training examples; or adopt-
ing kernel methods to model protein fitness based on sim-
ilarity to high-fitness variants. With these modifications,
protein language models in directed evolution could be used
to effectively perform in silico recombination mutagenesis,
identifying and combining beneficial mutations and motifs
from previous lab efforts.
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A. Modeling Details
A.1. Zero-shot Simulated Annealing Mutagenesis

To generate variants by zero-shot simulated annealing, 20
sets of 150 simulated annealing runs were performed using
MSA Transformer with the masked marginal fitness objec-
tive. Simulated annealing runs were initialized with wild-
type LCC, executed for 2000 iterations, and constrained to
a trust radius of 2 mutations. For each iteration, the number
of mutations was sampled from a Poisson distribution. The
mean of the Poisson distribution was sampled uniformly
from 1.0 to 1.5 mutations at the beginning of each run.
Each set of 150 simulated annealing runs were executed in
parallel on a different GPU and used a different sequence
reweighted random sample of 32 homologs to ensure model
diversity. The top variant from each run was ranked, and the
top-364 variants were selected for in vitro validation.

Four 96 well plates were prepared with samples, each plate
comprising 91 variants and 5 controls including wild-type
LCC and ICCM. Two different assays were used to charac-
terize each variant and control: PET degradation (B.3) and
enzyme thermostability (B.4).

A.2. Few-shot Simulated Annealing Mutagenesis

To generate variants by few-shot simulated annealing, 24
sets of 306 simulated annealing runs were performed using
MSA Transformer with a ridge regression model, trained on
results from A.1. The 24 sets comprised a different combi-
nation of parameters comprising: trust radius constraint of
2, 4, or 6 mutations; regression target (1) or (2); and initial
sequence, which was of wild-type LCC, 1st, 2nd, or 3rd
top variants measured in A.1. Simulated annealing was run
for 2000 iterations. For each iteration, the number of muta-
tions was sampled from a Poisson distribution. The mean
of the Poisson distribution was sampled uniformly from 1.0
to 1.5 mutations at the beginning of each run. Each set of
306 simulated annealing runs was executed in parallel on
a different GPU and used a different sequence reweighted
random sample of 32 homologs and 240 training examples
from A.1 to ensure model diversity. The top variant from
each run was ranked by regression target, and the top-176
variants were selected for improved PET degradation and
enzyme thermostability.

Four 96 well plates were prepared with samples, each plate
comprising 88 variants and 8 controls including wild-type
LCC and ICCM. Two different assays were used to charac-
terize each variant and control: PET degradation (B.3) and
enzyme thermostability (B.4).

B. Lab Methods
B.1. Synthesis of Variants and Expression Strains

epPCR Variants Error-prone polymerase chain reaction
(epPCR) was used to generate libraries of LCC variants
with a range of substitution frequencies. The LCC DNA
sequence was first codon-optimised for expression in E. coli,
and then synthesized and cloned into pET21(+) plasmid by
Twist Bioscience.

Using pET21(+) containing LCC as the template, epPCR
was then performed using a commercial kit (Agilent Gen-
eMorph II EZClone Domain Mutagenesis Kit, 200552),
adjusting conditions and parameters to achieve various mu-
tation rates within the LCC sequence.

Plasmids containing the epPCR-generated variants were
then transformed into E. coli XL gold cells (Agilent,
200315) and the resulting growth colonies were verified
via Sanger sequencing. Plasmids were finally extracted,
purified and used for the construction of expression strains.
186 Only 150 variants showing 1 to 4 amino acid substi-
tutions were taken forward. 74 variants with 5 or more
amino acid substitutions, premature stop codons, insertions
or deletions were not used.

Controls and Simulated Annealing Variants Amino
acid sequences for both control variants and machine-
learning-guided variants were first codon-optimized for ex-
pression in E. coli, and then synthesized and cloned into
pET21(+) plasmid by Twist Bioscience. Plasmids were used
for the construction of expression strains.

Construction of Expression Strains pET21(+) plasmids
containing control, machine-learning guided, and epPCR-
generated variants were transformed into expression strain
E. coli BL21 (DE3) (Sigma Aldrich). Strains were grown
and stored for further testing in long-term glycerol stocks.
Sanger sequencing was done on random samples to confirm
the rate of successful cloning and transformation.

B.2. Protein Expression and Sample Preparation

Protein Expression Seed cultures were inoculated from
long-term glycerol stocks in 96 deep well plates, and grown
for 18 h in 0.5 mL LB Miller with 100 µg mL−1 carbenicillin.
Seed cultures were then used to inoculate the protein expres-
sion cultures, starting OD 600 nm of 0.2. Protein expres-
sion cultures were grown in 48 deep well plates in 1.5 mL
auto-induction medium (Studier, 2005) with 100 µg mL−1

carbenicillin for 24 h. All cultures were grown at 37 °C
under shaking at 800 rpm with 3 mm throw.

Preparation of Lysate After growth, 1.2 mL culture was
transferred to a 96 deep well plate and centrifuged at



Protein Language Models in Directed Evolution

4000 xg for 20 min at 4 °C. The supernatant was removed
and discarded and the pellets were frozen at −20 °C. Pellets
were chemically lysed using lysis buffer consisting 300 µL
B-PER Protein Extraction Reagent (Thermo Scientific) and
3 µL DNase I (Sigma). Pellets were resuspended in the ly-
sis buffer and left shaking at 800 rpm, 3 mm throw, room
temperature for 1 h. The lysates were then assayed for PET
degradation and enzyme thermostability.

B.3. PET Degradation Assay

A final volume of 1 mL lysate diluted 1:5 with Tris HCl,
pH 8 was mixed with 10 mg semi-crystalline PET powder
(Goodfellows) in 96 deep well plates. Reactions were incu-
bated at 60 °C for a total of 96 h. Sampling was performed at
24 h, 48 h, 72 h and 96 h intervals. At each interval, samples
were quenched with methanol containing 0.1 % v/v formic
acid.

PET hydrolysis products terephthalic acid (TPA),
mono(2-hydroxyethyl) terephthalate (MHET), and bis(2-
hydroxyethyl) terephthalate (BHET) were then quantified
by Ultra High Pressure Liquid Chromatography using an
Agilent 1290 Infinity II system. Samples were filtered
using Multiscreen HTS GV Filter Plates, 0.22 µm before
analysis. 2 µL of filtrates were injected onto an InfinityLab
Poroshell 120 EC-C18 guard column and analytical
column, 2.1 × 50 mm, 1.9 µm (Agilent) maintained at a
column compartment temperature of (40.0 ± 0.8) °C. The
flow rate during analysis was 1 mL min−1 and the mobile
phase consisted of 0.1 % v/v formic acid (Phase A) and
acetonitrile (Phase B). The gradient elution employed
a non-linear profile: Phase A started at 6 % for 1.2 min,
transitioned 6 % to 7 % for 0.4 min, then 7 % to 40 % for
1.2 min, with 40 % maintained for a further 0.2 min, before
a rapid shift from 40 % to 6 % in 1 s and 6 % then held for a
further 39 s.

Products were detected using a 1290 Infinity II Diode Array
Detector (G7117B Detector) at a wavelength 254 nm with
a peak width exceeding 0.05 min (5 Hz), 100 mAU margin
for negative absorbance, and a slit width of 4 nm. Retention
times for TPA, MHET and BHET peaks were 0.932 min,
1.739 min and 1.866 min, respectively. Data analysis was
performed with Open Lab CDS software, using calibra-
tion curves prepared using authentic standards of each com-
pound.

TPA and MHET concentrations at 72 h were used as a re-
gression target for the models of protein fitness, as they
were the values with the lowest experimental error. BHET
concentrations were omitted as they were negligible.

B.4. Enzyme Thermostability Assay

100 µL of lysate was incubated with 100 µL p-nitrophenyl
butyrate (pNPB) into a 96 deep well plate. Hydrolysis of
pNPB was followed at 405 nm for 19.5 min, sampling every
90 s using an Infinite 200 Pro plate reader (Tecan). To test
enzyme thermostability, 100 µL of lysate from the same
preparation was heat-treated by incubating at 70 °C for 2 h
in a 96 well PCR plate with a PCR plate seal. After heat-
treatment lysates were incubated with pNPB and hydrolysis
followed as above. The hydrolysis reaction rates from both
non-heat-treated and heat-treated samples were calculated
using the maximum centered difference of 3 consecutive
absorption measurements.

B.5. Lab Automation

Transformation of E. coli cells, inoculation of growth plates,
preparation of lysates, preparation of PET degradation assay
plates, and the thermostability assay were automated on a
Tecan Fluent 1080 Liquid Handling Robot.

C. In-Vitro Model Performance
The results comparing the predicted fitness of variants to
assay results using the model described in Figure 1 are
included in Figure 7. Whilst there is no correlation between
predicted fitness and assay results, these sets of variants
only contain samples predicted to be significantly fitter than
wild-type. The results in Table 1 suggest these models are
still effective at discriminating between fit and unfit variants,
sampling variants fitter than wild-type with an effective
hit-rate.
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Figure 7. Comparison of predicted fitness to assay results for variants sampled by simulated annealing.


